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This paper presents a review of the recent advances in performing inference in probabilistic clas-
sifier chains for multi-label classification. The interest of performing such inference arises in an
attempt of improving the performance of the approach based on greedy search (the well-known
CC method) and simultaneously reducing the computational cost of an exhaustive search (the
well-known PCC method). Unlike PCC and as CC, inference techniques do not explore all the
possible solutions, but they increase the performance of CC, sometimes reaching the optimal
solution in terms of subset 0/1 loss, as PCC does. The ε−approximate algorithm, the method
based on a beam search and Monte Carlo sampling are those techniques. An exhaustive set
of experiments over a wide range of datasets are performed to analyze not only in what extent
these techniques tend to produce optimal solutions, otherwise also to study their computational
cost, both in terms of solutions explored and execution time. Only ε−approximate algorithm with
ε = .0 theoretically guarantees reaching an optimal solution in terms of subset 0/1 loss. However,
the other algorithms provide solutions close to an optimal solution, despite the fact they do not
guarantee to reach an optimal solution. The ε−approximate algorithm is the most promising to
balance the performance in terms of subset 0/1 loss against the number of solutions explored and
execution time. The value of ε determines in what extent one prefers to guarantee to reach an
optimal solution at the cost of increasing the computational cost.
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1 Introduction
Multi-label classification1 (MLC) is a machine learning problem in which models are able to assign a subset of (class) labels to each
instance, unlike conventional (single-class) classification that involves predicting only a single class. Multi-label classification problems
are ubiquitous and naturally occur, for instance, in assigning keywords to a paper, tags to resources in a social network, objects to
images or emotional expressions to human faces.

In general, the problem of multi-label learning is coming with two fundamental challenges. The first one bears on the computational
complexity of the algorithms. A complex approach might not be applicable in practice when the number of labels is large. Therefore,
the scalability of algorithms is a key issue in this field. The second problem is related to the own nature of multi-label data. Not only the
number of labels is typically large, otherwise each instance also belongs to a variable-sized subset of labels simultaneously. Moreover,
and perhaps even more important, the labels will normally not occur independently of each other; instead, there are statistical depen-
dencies between them. From a learning and prediction point of view, these relationships constitute a promising source of information,
in addition to the information coming from the mere description of the instances. Thus, it is hardly surprising that research on MLC has
very much focused on the design of new methods that are able to detect—and benefit from—interdependencies among labels.

Several approaches have been proposed in the literature to cope with MLC. Firstly, researchers tried to adapt and extend different
state-of-the-art binary or multi-class classification algorithms, including methods using decision trees2, neural networks 3, support vector
machines4, naive Bayes5, conditional random fields6 and boosting 7. Secondly, they further analyzed in depth the label dependence and
attempted to design new approaches that exploit label correlations8. In this regard, two kinds of label dependence have been formally
distinguished: conditional dependence6,9–13 and unconditional dependence3,14,15. Also, pairwise relations3,4,7,16,17, relations in sets of
different sizes12,18,19, or relations in the whole set of labels10,14,15 have also been exploited.

Regarding conditional label dependence, the approach called Probabilistic Classifier Chains (PCC) has aroused great interest among
the multi-label community, since it offers the nice property of being able to estimate the conditional joint distribution of the labels.
However, the original PCC algorithm9 suffers from high computational cost, since it performs an exhaustive search as inference strategy
to obtain optimal solutions in terms of a given loss function. Then, several efforts that use different searching and sampling strategies
in order to overcome this drawback are being made just now. This includes uniform-cost search20, beam search21,22 and Monte Carlo
sampling20,23,24. All of these algorithms successfully estimate the optimal solution reached by the original PCC9, at the same time
that they reduce the computational cost in terms of both the number of candidate solutions explored and execution time. This paper
studies in depth the behavior and the properties of all these algorithms, comparing their strategies and establishing their differences
and similarities, paying special attention to the meaning of their parameters and the effect of the different values they can take. The
methods are experimentally compared over a wide range of multi-label datasets, concluding that even those that do not theoretically
guarantee obtaining optimal solutions also reach good performance. However, the ε−approximate algorithm shows to be a promising
election, even for values of ε that do not guarantee reaching optimal solutions. For this algorithm, it happens that renouncing to reach
optimal solutions leads to reduce the computational cost in terms of candidate solutions explored and execution time and viceversa.

The rest of the paper is organized as follows. Section 2 formally describes multi-label framework and the principles of PCC. Section 3
discusses the properties and behavior of the different existing approaches for inference in PCC. Exhaustive experiments are shown and
discussed in Section 4. Finally, Section 5 exposes some conclusions and includes new directions of future work.

2 Probabilistic Classifier Chains in multi-label classification
This section formally describes the MLC task. Let be L = {`1, `2, . . . , `m} a finite and non-empty set of m labels and S = {(x1,y1), . . . ,

(xn,yn)} a training set independently and randomly drawn according to an unknown probability distribution P(X,Y) on X × Y,
where X and Y are the input and the output space, respectively. The former is the space of the instance description, whereas the latter
is given by the power set P(L) of L. To ease notation, we define yi as a binary vector yi = (yi,1, yi,2, . . . , yi,m) in which yi,j = 1

indicates the presence (relevance) and yi,j = 0 the absence (irrelevance) of `j in the labeling of xi. Hence, yi is the observation of a
corresponding random vector Y = (Y1,Y2, . . . ,Ym). Using this convention, the output space can also be defined as Y = {0, 1}m.
The goal in MLC is to induce from S a hypothesis h : X −→ Y that minimizes the risk in terms of certain loss function L(·) when it
provides a vector of relevant labels y = h(x) = (h1(x), h2(x), . . . , hm(x)) for unlabeled query instances x. This risk can be defined as
the expected loss over the joint distribution P(X,Y), i.e.,

RL(h) = EX,YL(Y,h(X)), (1)

therefore, denoting by P(y |x) the conditional distribution Y = y given X = x , the so-called risk minimizer h∗ can be expressed by

h∗(x) = arg min
h

∑
y∈Y

P(y |x)L(y,h(x)). (2)

Let us comment that the conditional distribution P(y |x) presents different properties which are crucial for optimizing different loss
functions. At this respect, the strategy followed by a certain MLC algorithm for modeling label dependence determines the optimized
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Fig. 1 A generic node and its children of the probability binary tree. The top part of each node contains the combination of labels and the bottom part
includes the joint probability of such combination. The edges are labeled with the conditional probability

loss function. Unfortunately, it is quite complex and confuse to find out the loss function optimized by several algorithms.
In regard to the loss functions, several performance measures have been taken for evaluating multi-label classification. The most

specific ones are the subset 0/1 loss and the Hamming loss, but there exist other measures that have been taken from other research
fields, such as the F1 measure or the Jaccard index. Here, we will focus on just the subset 0/1 loss because it is the measure that PCC
is able to optimize. The subset 0/1 loss looks whether the predicted and relevant label subsets are equal or not. It is defined by

LS0/1
(y,h(x)) = [[y 6= h(x)]], (3)

in which the expression [[p]] evaluates to 1 when the predicate, p, is true and to 0 otherwise. Notice that it suffices taking the mode of
the entire joint conditional distribution for optimizing this loss function. Formally, the risk minimizer adopts the simplified following
form

h∗(x) = arg max
y∈Y

P(y |x). (4)

Among the methods that cope with MLC, the simplest straightforward approach is Binary Relevance (BR) 25. This method assumes
independence among the labels and provides optimal prediction for subset 0/1 loss when such independence actually exists. Hence, it
estimates P(yj |x) for label `j just considering the description of the instances and using a probabilistic model hj : X −→ [0, 1]. The
joint distribution of labels Y = (Y1,Y2, . . . ,Ym) is computed using the product rule of probability assuming independence among
labels, that is P(y |x) =

∏m
j=1 P(yj |x).

Concerning methods that take into account the possible dependence among labels, let us focus on those based on learning a chain
of classifiers (as CC 12,26 or PCC 9). First, these methods define an order of the label set. Then, following such order, they train a
probabilistic binary classifier for each label `j to estimate P(yj |x, y1, . . . , yj−1). Hence, the probabilistic model obtained for predicting
label `j , denoted by hj , is of the form

hj : X × {0, 1}j−1 −→ [0, 1]. (5)

The training data for this classifier is the set Sj = {(x1, y1,j), . . . , (xn, yn,j)} where xi = (x, yi,1, . . . , yi,j−1), that is, the features are
xi supplemented by the relevance of the labels `1, . . . , `j−1 preceding `j in the chain and the category is the relevance of the label `j .

In the testing stage of the methods based on learning a chain of classifiers, the goal is to perform inference for each instance, which
consists of estimating the risk minimizer for a given loss function over the estimated entire joint conditional distribution. The idea
revolves around repeatedly applying the general product rule of probability to the joint distribution of the labels Y = (Y1,Y2, . . . ,Ym),
that is, computing

P(y |x) =

m∏
j=1

P(yj |x, y1, . . . , yj−1) (6)

Before analyzing this issue in the following section, notice that from a theoretical point of view, this expression holds for any order
considered for the labels. But, in practice, these methods are label order dependent for several reasons. On the one hand, it is not
possible to assure that the models obtained in the training stage perfectly estimate the joint conditional probability P (y |x). On the
other hand, predicted values instead of true values are successively taken in the testing stage. This is more serious if the highest errors
occur at the beginning of the chain, since error predictions are successively propagated11,27,28. In any case, in this paper we assume
an order of the labels in the chain in order to better analyze all these methods in insolation without taking into account other factors.
Hence, we do not include any study about which order can be the best.

Finally, let us now consider the task of performing different inference procedures as different manners of exploring a probability
binary tree in order to facilitate the explanation and analysis of the inference approaches in next section. In such tree, a node of the
(j−1)-th level is labeled by (v1, . . . , vj−1) with vi ∈ {0, 1} for i = 1, . . . , j − 1. This node has two children respectively labeled as
(v1, . . . , vj−1, 0) and (v1, . . . , vj−1, 1) with marginal joint conditional probability P(y1 = v1, . . . , yj−1 = vj−1, yj = 0 |x) and P(y1 =
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v1, . . . , yj−1 = vj−1, yj = 1 |x), respectively. The weights of the edges between both parent and children are respectively P(yj =

0 |x, y1 = v1, . . . , yj−1 = vj−1) and P(yj = 1 |x, y1 = v1, . . . , yj−1 = vj−1), which are respectively estimated by 1 − hj(x, v1, . . . , vj−1)

and hj(x, v1, . . . , vj−1). The marginal joint conditional probability of the children is computed using the product rule of probability.
Then, P(y1 = v1, . . . , yj−1 = vj−1, yj = 0 |x) = P(yj = 0 |x, y1 = v1, . . . , yj−1 = vj−1) · P(y1 = v1, . . . , yj−1 = vj−1 |x) and P(y1 =

v1, . . . , yj−1 =vj−1, yj =1 |x) = P(yj =1 |x, y1 =v1, . . . , yj−1 =vj−1) ·P(y1 =v1, . . . , yj−1 =vj−1 |x). The root node is labeled by the
empty set. Figure 1 illustrates it.

3 Inference in Probabilistic Classifier Chains
Several approaches have been proposed for inference in PCC. The method firstly proposed was that one based on greedy search
(GS), being the integral part of the original CC method26. Its successor is the exhaustive search (ES), called the PCC method9. The
ε−approximate (ε−A) algorithm20 is an uniform-cost search algorithm that can output optimal predictions in terms of subset 0/1 loss,
reducing significantly the computational cost of ES. A more recent approach based on beam search (BS) 21,22 presents good behavior
both in terms of performance and computational cost. Finally, Monte Carlo sampling (MS)20 is an appealing and simpler alternative 20,23

to overcome the high computational cost of ES. Before proceeding to cope with the particularities of all these inference methods, notice
that the training phase is common to all of them, thus, the models hj induced by the binary classifiers will be the same. So, in what
follows we will focus just on the testing stage for a given unseen example x.

3.1 Greedy search
At the testing stage, the GS strategy, originally called CC12,26, provides an output ŷ = (ŷ1, . . . , ŷm) for a new unlabeled instance x

by successively querying each classifier hj that estimates the conditional probability P(yj |x, y1, . . . , yj−1). This means to explore
just one node in each level j. Given that only the two children of the explored node in level j are taken, their marginal joint condi-
tional probabilities only differ in the marginal conditional probability term, P(yj |x, y1, . . . , yj−1), since both children have the same
parent. Thus, the path selected is the one of the child with the highest marginal conditional probability P(yj |x, y1, . . . , yj−1). No-
tice that when ŷj is estimated, hj is applied, which needs both the feature vector x and the values for the labels from `1 to `j−1.
In this regard, let us remind that y1, . . . , yj−1 are not available in the testing stage, hence, the respective predictions ŷ1 = h1(x),

ŷ2 = h2(x, ŷ1), . . . , ŷj−1 = hj−1(x, ŷ1, ŷ2, . . . , ŷj−2) are taken instead. Thus, the prediction for an instance x is of the form
ŷ = (h1(x), h2(x, h1(x)), h3(x, h1(x), h2(x, h1(x))), . . .).

Figure 2(a) shows the path followed by an instance using this strategy. In this example, only the right node is explored in each level.
The optimal solution is not reached, since the optimal solution is that which ends in the sixth leaf, whereas the method falls in the last
leaf. The pseudocode of the GS method can be seen in Algorithm 1 (left) in which vR = ∅ is the root node of the probability tree, and
(Π(lc(v)),Π(rc(v))) are the marginal conditional probabilities of the left and right child of a node v, respectively. For instance, if v is a
node of j-th level, Π(lc(v)) = P(yj = 0|x, y1 = v1, . . . , yj−1 = vj−1) and Π(rc(v)) = P(yj = 1|x, y1 = v1, . . . , yj−1 = vj−1).

Concerning the optimization of subset 0/1 loss, a rigorous analysis20 establishes bounds for the performance of GS. For this purpose,
the authors define the regret r of a classifier h for a given loss L(·, ·) as the difference between the risk of that classifier and the Bayes-
optimal classifier hB , that is

rL(h) = EX,YL(Y,h(X))− EX,YL(Y,hB(X)) (7)

In case of the subset 0/1 loss, one can just analyze the expectation over Y given x, since this loss is decomposable with regard to
individual instances. Hence, the regret becomes

rL(h) = EYL(Y,h(x))− EYL(Y,hB(x)) (8)

Then, assuming that perfect estimate of the joint conditional probability P(y |x) is obtained, they establish an upper bound equal to
2−1 − 2−m for the regret of the classifier h induced by the GS method for the subset 0/1 loss. This bound shows that this method offers
quite poor performance for this loss, in other words, the method does not manage to provide a good estimation of the risk minimizer for
this loss. However, the work concludes stating that GS tries to optimize the subset 0/1 loss rather than, for instance, the Hamming loss,
since it is more suitable for estimating the mode of the joint conditional distribution rather than the mode of the marginal conditional
distribution.

3.2 Exhaustive search
Unlike GS that explores only one label combination, ES analyzes all possible paths in the tree, estimating the entire joint conditional
distribution P(y |x) for a new instance x. Hence, it provides Bayes optimal inference. Then, for each h(x), it computes P(y |x) and
L(y,h(x)) for all combination of labels y = (y1, y2, . . . , ym) and outputs the combination ŷ = (ŷ1, . . . , ŷm) = h∗(x) with minimum
risk for the given loss L(·, ·). By doing so, it generally improves in terms of performance, since it perfectly estimates the risk minimizer,
albeit at the cost of a higher computational cost, as it comes down to summing over an exponential (2m) number of label combinations
for each h(x).
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Fig. 2 An example of paths followed by an instance using Greedy Search (CC). The dotted arrows show the path followed by the algorithm.
Subcaptions: (a) Greedy Search (CC) (b) Exhaustive Search (PCC)
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Algorithm 1 Greedy search (left) and Exhaustive search (right)

1: function GREEDYSEARCH

Input: CC Model {hj : j = 1, ...,m}
Output: v = (v1, ..., vm) with vj ∈ {0, 1}

2: v ← vR // the root of the probability tree
3: while v is not a leaf do
4: lc(v), rc(v)← left and right child of v
5: if Π(lc(v)) ≥ Π(rc(v)) then
6: v ← lc(v)
7: else
8: v ← rc(v)

9: return v

1: function EXHAUSTIVESEARCH

Input: CC Model {hj : j = 1, ...,m}
Output: v = (v1, ..., vm) with vj ∈ {0, 1}

2: Q← {(vR,Π(vR) = 1)} // {(root node,Π(root node))}
3: maxP ← 0
4: while Q 6= ∅ do
5: w ← pop an element in Q
6: lc(w), rc(w)← left and right child of w
7: compute Π(lc(w)), Π(rc(w)) recursively from Π(w)
8: if lc(w) and rc(w) are not leaves then
9: Q← Q ∪ {(lc(w),Π(lc(w))), (rc(w),Π(rc(w)))}

10: else if max(Π(lc(w)),Π(rc(w))) > maxP then
11: v ← argmaxw′∈{lc(w),rc(w)}(Π(w′)

12: maxP ← max(Π(lc(w)),Π(rc(w)))

13: return v

Figure 2(b) illustrates this approach; all paths are explored and the optimal solution is always reached. Algorithm 1 (right) shows a
possible pseudocode for this method. In this case, Π(v) = P (y1 = v1, ..., yj = vj |x) is recursively obtained by Π(v) = Π(v) · Π(pa(v))

in which v is a node of the j-th level and pa(v) denotes the parent of node v.

3.3 ε−approximate algorithm
The ε−approximate (ε−A) algorithm20 arises as an alternative to the high computational cost of ES and to the poor performance of
CC. In terms of the probability tree defined above, it expands only the nodes whose marginal joint conditional probability exceeds the
threshold ε = 2−k with 1 ≤ k ≤ m. This marginal joint conditional probability for a node in level j for an unlabeled x is

P(y1, . . . , yj |x) =

j∏
i=1

P(yi |x, y1, . . . , yi−1), (9)

where P(yi, |x, y1, . . . , yi−1) is estimated by hi(x, y1, . . . , yi−1).
The nodes are expanded in the order established by this probability, calculating the marginal joint conditional probability for their

children. So, the algorithm does not follow a specific path, otherwise it changes from one path to another depending on the marginal
joint conditional probabilities. At the end, two situations can be found: i) the node expanded is a leaf or ii) there are not more nodes that
exceed the threshold. If the former situation occurs, the prediction for the unlabeled instance x will be ŷ = (ŷ1, . . . , ŷm) corresponding
to the combination of the leaf reached (see Figure 3(a)). Conversely, if situation ii) takes place, then GS is applied to the nodes whose
children do not exceed the threshold, and the prediction ŷ = (ŷ1, . . . , ŷm) for the unlabeled instance x in this case will be that with
highest entire joint conditional probability P(y1, . . . , ym |x) (see Figures 3(b) and 3(c)). Algorithm 2 contains the pseudocode of this
method.

The parameter ε plays an important role in the algorithm. The particular case of ε = .0 (or any value in the interval [0, 2−m], that
is, k = m) has special interest, since the algorithm performs a uniform-cost search (UC) that always finds the optimal solution. This
is so because the marginal joint conditional probabilities for at least one leaf is guaranteed to be higher than ε, since any probability is
positive (or null in the worst case). Even more, this leaf is an optimal solution, since the marginal joint conditional probabilities dismiss
as it goes down on the tree. Figure 3(a) illustrates this situation. In this case all nodes are candidates to be explored, since all of them
will have a marginal joint conditional probability greater than ε. Firstly, the right node of the first level is explored. Their children have
a marginal joint conditional probability (respectively 0.24 and 0.36) lower than their uncle (0.4), so their uncle is explored before them.
After that, the child more to the right of the first node is explored because it has the highest marginal joint conditional probability (0.36)
among their brother and cousins. The following node to explore is its right cousin with a probability of 0.32, which is higher than their
children (0.144 and 0.216). Then, its brother (0.24) is explored and finally its right nephew 0.24, which is already a leaf and as expected
the leaf of the optimal solution.

Conversely, the method is looking to GS as ε grows, being the GS in case of ε = .5 (or equivalently ε = 2−1, that is, k = 1). This is so
because in this case two situations are possible: i) only one node has a marginal joint conditional probability greater than ε, in whose
case the algorithm follows one path, or ii) none node has a marginal joint conditional probability greater than ε, in whose case a GS is
applied from here to the bottom of the tree. Figure 3(b) shows an example of this particular case. In the first level, only the right node
has a marginal joint conditional probability that exceeds the value of ε. However, in the second level, none marginal joint conditional
probability of the two nodes is greater than ε. In both cases, a step of GS algorithm is applied. Besides, the path followed leads to a non
optimal solution.
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(a) ε−A algorithm with ε = .0(k = m)
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(b) ε−A algorithm with ε = .5(k = 1)
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(c) ε−A algorithm with ε = .25(k = 2)

Fig. 3 Several examples of the paths followed by ε−A algorithm for different values of ε. The nodes with a cross are those that have a marginal joint
conditional probability lower than ε and, hence, they are not explored anymore. The dotted arrows show the path followed by the algorithm. The solid
arrows indicate the path followed by the algorithm when the marginal joint conditional probability does not exceed the value of ε, and, hence a GS is
applied to this node from here to the bottom of the tree. Subcaptions: (a) ε−A algorithm with ε = .0(k = m), (b) ε−A algorithm with ε = .5(k = 1), (c)
ε−A algorithm with ε = .25(k = 2)
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Algorithm 2 Pseudocode of the ε−approximate algorithm
1: function ε-APPROXIMATE

Input: CC Model {hj : j = 1, ...,m}, and ε ≥ 0
Output: v = (v1, ..., vm) with vj ∈ {0, 1}

2: an ordered list Q← {(vR,Π(vR) = 1)} // {(root node,Π(root node))}
3: an ordered list K ← ∅ // list of non-survived parents
4: repeat
5: v ← pop the first element in Q
6: if v is not a leaf then
7: lc(v), rc(v)← left and right child of v
8: compute Π(lc(v)) and Π(rc(v)) recursively from Π(v)
9: if Π(lc(v)) ≥ ε then

10: insert (lc(v),Π(lc(v))) in list Q sorted according to Π

11: if Π(rc(v)) ≥ ε then
12: insert (rc(v),Π(rc(v))) in list Q sorted according to Π

13: if lc(v) and rc(v) are not inserted in the list Q then
14: insert (v,Π(v)) in list K sorted according to Π

15: until v is a leaf or Q = ∅
16: if v is not a leaf then
17: ε← 0
18: while K 6= ∅ do
19: w ← pop first element in K and apply GreedySearch to obtain Π(w)
20: if Π(w) ≥ ε then
21: v ← w and ε← Π(w)

22: return v

Notice that this method provides an optimal prediction if the entire joint conditional probability of the corresponding label com-
bination is greater than ε. The interpretation of the method for a generic value of ε = 2−k is that the method guarantees to reach
a partial optimal solution at least until the k-th level on the tree. Even more, the solution remains optimal in levels below the k-th
level if the highest marginal joint conditional probability remains higher than 2−k in these levels. As a particular case, if this situation
remains until reaching a leaf, then the algorithm obtains an optimal solution. Also notice that the partial combination of labels which
is optimal at least until k-th level or which can be optimal until levels below the k-th level can be different from the one of the global
optimal solution until such levels, since the global optimal solution also depends on what happens hereinafter. At this respect and from
(k + 1)-th level, if the joint conditional probability of the optimal solution is greater than ε, then none node is discarded and hence this
global optimal solution is reached. Conversely, if the entire joint conditional probability of the optimal solution is lower than ε, then
some nodes will be discarded because their marginal joint conditional probability will fall below ε, and hence, it is guarantee that one
of these nodes would have lead to the optimal solution. However, if this situation takes place, that is, if a node is discarded, then the
algorithm never reaches a leaf, and hence, GS is applied starting at each discarded node. Therefore, the optimal solution is reached if
GS follows the optimal path, which is not guaranteed. Figure 3(c) shows the particular case of ε = .25. In the figure, some nodes do
not exceed the constraint of having their marginal joint conditional probability greater than ε. Even more, none leaf is reached without
applying the GS strategy and the optimal solution is not reached.

Consequently, this algorithm estimates the risk minimizer for the subset 0/1 loss a greater or lesser extent depending on the value
of ε. Moreover, a theoretical analysis of this estimation 20 allows to bound its goodness as a function of the number of iterations, which
in turn depends on ε. Particularly, and in the same direction followed for the GS approach, this analysis establishes that this algorithm
needs less than O(m2k) iterations to find a prediction that allows to upper bound the regret rL(h) of the classifier h by 2−k − 2−m

for the subset 0/1 loss and k ≤ m, again under the assumption that a perfect estimate of the joint conditional probability P (y |x) is
obtained. As a consequence, if the probability distribution for which the joint mode has a probability mass bigger than 2−k, then, the
algorithm needs less than m2k iterations to find a prediction that corresponds to this mode. Let notice that the particular case of ε = .0

(or k = m) makes the bound becomes 0.

3.4 Beam search
Beam Search (BS) 21,22 also explores more than one path in the probabilistic tree. This method includes a parameter b called beam
width that limits the number of combinations of labels explored. The idea is to explore b possible candidate sets of labels at each level
of the tree. Hence, a certain number of the top levels are exhaustively explored depending on the value of b, particularly a total of
k∗ − 1 levels, being k∗ the lowest integer such that b < 2k∗ . Then, only b number of possibilities are explored for each of the remaining
levels. The combinations explored from the level k∗ to the bottom are those with the highest marginal joint conditional probability
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seen thus far. This marginal joint conditional probability for a node of level j for an unlabeled instance x is the same as for the ε−A
algorithm. Hence, such probability is given by Equation (9). At the end, the algorithm outputs ŷ = (ŷ1, . . . , ŷm) with the highest entire
joint conditional probability P(y1, . . . , ym |x).

BS differs from GS in that i) BS explores more than one combination and also in ii) the probability taken for deciding a path to
follow in the tree. Concerning ii), both take the marginal joint conditional probability P(y1, . . . , yj |x), but in the case of GS, that is
equivalent to take the marginal conditional probability P(yj , |x, y1, . . . , yj−1) since the two nodes explored in each level of the tree
have the same parent as explained before. However, in case of BS, the b nodes explored do not have to have the same parent (except
for the root node) even in the case of b = 2.

In the case of b = 1, BS expands just one node in each level, that with highest marginal joint conditional probability that coincides
with the highest marginal conditional probability, so BS when b = 1 follows just one path that coincides with the one followed by GS.
Also, if b = 2m, BS performs an ES. Hence, BS encapsules both GS and ES respectively by considering b = 1 and b = 2m. This makes
it possible to control the trade-off between computational cost and performance of the method by tuning b between 1 and 2m. The
number of nodes expanded by BS is bounded by O(bm).

Algorithm 3 Beam Search
1: function BEAMSEARCH

Input: CC Model {hj : j = 1, ...,m}, and b ≥ 1 // b is the beam width
Output: v = (v1, ..., vm) with vj ∈ {0, 1}

2: B(0) ← {(vR,Π(vR) = 1)} // {(root node,Π(root node))}
3: for j = 1, . . . ,m do
4: B(j) ← ∅
5: for w ∈ B(j−1) do
6: lc(w), rc(w)← left and right child of w
7: compute Π(lc(w)) and Π(rc(w)) recursively from Π(w)
8: if Π(lc(w)) > Π(last(Bj)) then
9: insert (lc(w),Π(lc(w))) in B(j) sorted according to Π and B(j) ← Topb(B

(j))

10: if Π(rc(w)) > Π(last(Bj)) then
11: insert (rc(w),Π(rc(w))) in B(j) sorted according to Π and B(j) ← Topb(B

(j))

12: return v ← Top(B(m))

As final remark, the fact that BS considers marginal joint conditional probabilities makes the method tend to estimate the risk
minimizer for the subset 0/1 loss. In any case, it would be possible to include other loss functions into the search algorithm. At this
respect, the authors who proposed BS for inference in PCC in multi-label classification21,22 do not include any theoretical analysis about
the goodness of the estimation of the risk minimizer. However, they empirically show that taking certain values of b (b < 15), the risk
minimizer provided by the method converges to the one obtained using ES.

Figure 4 shows an example of the paths explored by the BS algorithm when b = 2. Hence, all nodes of the first level are explored.
From there, just two nodes are explored, those with highest marginal joint conditional probability among the children whose parents
have been previously explored. At this respect, notice that the node with the optimal solution is not explored since its parent has not
been previously explored. This example confirms that BS cannot guarantee to reach optimal solutions unless b = 2m. The pseudocode
of the algorithm is detailed in Algorithm 3.

3.5 Monte Carlo sampling
Monte Carlo sampling is a technique based on repeating random sampling in order to obtain the distribution of an unknown probabilistic
distribution. There are several ways of implementing a Monte Carlo method, but they tend to follow a particular pattern: i) they define
a domain of possible values, ii) they generate values randomly from a probability distribution over the domain, iii) they perform a
deterministic computation on the values, and finally, iv) they aggregate the results.

Regarding PCC for multi-label classification, two different Monte Carlo algorithms were recently proposed20,23. Both use the domain
of the 0/1 vectors of dimension m. In both approaches, the random values are drawn using each classifier hj , which estimates the prob-
ability P(yj |x, y1, . . . , yj−1) of being the label `j relevant for a new unlabeled instance x. Hence, both algorithms take the previously
obtained ŷ

(i)
1 , . . . , ŷ

(i)
j−1 in the chain, for predicting ŷ(i)j in iteration i. Hence, the conditional probability P(yj |x, ŷ(i)1 , . . . , ŷ

(i)
j−1) esti-

mated by hj(x, ŷ
(i)
1 , . . . , ŷ

(i)
j−1)) is calculated when the random process takes place for the label `j . The difference between Monte Carlo

approaches and GS, for instance, is that, in the latter the prediction ŷj for `j is directly obtained from the evaluation of hj , whereas
in the former such prediction is obtained after a random process drawn using the distribution induced by hj . This difference makes
it possible to repeat the process a certain number of times, producing different predictions, although some of them may be repeated
several times. Algorithm (4) shows the pseudocode of both approaches. The key element is the process to draw observations of the
conditional distribution (line 4 in the pseudocode). Figure 5 depicts an example of one observation. In each node v, a random number
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Fig. 4 An example of paths followed by an instance using Beam Search (BS) with b = 2. The cross out nodes with a cross mean that this node has
not any of the highest marginal joint conditional probabilities and, hence, it is not explored anymore. The dotted arrows show the path followed by the
algorithm

Algorithm 4 Pseudocode of Monte Carlo Sampling (left) and Efficient Monte Carlo Sampling (right)

1: function MONTECARLOSAMPLING

Input: CC Model {hj : j = 1, ...,m}, and q // q sample
size
Output: v = (v1, ..., vm) with vj ∈ {0, 1}

2: Q = ∅
3: for t = 1, . . . , q do
4: draw w according to Π
5: insert w in Q
6: return v ← mode of Q

1: function EFFICIENTMONTECARLOSAMPLING

Input: CC Model {hj : j = 1, ...,m}, and q // q sample
size
Output: v = (v1, ..., vm) with vj ∈ {0, 1}

2: Π(u0)← 0
3: for t = 1, . . . , q do
4: draw w according to Π
5: if Π(w) > Π(ut−1) then
6: ut ← w
7: else
8: ut ← ut−1

9: return v ← uq

is generated to decide whether the next label is relevant or not. If the random number is lower or equal that Π(lc(v)) then the left
child is selected and the next label is irrelevant; otherwise the label is relevant. The process moves down in the tree according to this
rule until a leaf is reached, obtaining a new observation. Notice that this implies that the number of nodes expanded by Monte Carlo
approaches is always mq, being q the number of observations of the sample.

Finally, different aggregation approaches of the predictions obtained through the iteration procedure can be performed depending
on the target loss to be optimized. The risk minimizer in this case is estimated over the subset of Y formed by the predictions obtained
in the iterations instead of over the whole Y. Hence, the estimation can be poorer than in case of ES, and, hence the optimal solution
is not guarantee to be reached. However, the fact of using the distribution induced by hj in the random process guarantees that the
aggregated final prediction ŷ = (ŷ1, . . . , ŷm) of these Monte Carlo methods converges to the risk minimizer when the sample drawn
is large enough and when an adequate aggregation procedure according to the loss to be minimized is taken. It is in this point where
the two Monte Carlo approaches differ. The first one proposed (we will refer to it as MC) 20 takes the most frequent combination of
ŷ = (ŷ1, . . . , ŷm), that is, the mode. This approach not only has been used for performing inference in classifier chains, otherwise
it was also used for performing inference in classifier trellisers 29. Conversely, the most recent proposal (we will refer to it as EMC,
Efficient MC) 23 takes the combination with the highest joint conditional probability. Their authors tag this approach as efficient, since
this aggregation procedure allows the method to converge faster. Besides, it is not necessary to store all the combinations, consuming
less memory. In any case, both tend to optimize the subset 0/1 loss, despite it is not possible to guarantee to reach it.
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Fig. 5 An example of one observation drawn using Monte Carlo sampling. In each node v, a biased coin is flipped to decide whether the label is
relevant or not. The probability of tails and heads are given, respectively, by the weights π(lc(v)) and π(rc(v)) of the left and right child of a node v. If
the random number is lower or equal than π(lc(v)) then the left child is selected and the label is irrelevant; the right child is selected otherwise. One
observation of the conditional distribution is obtained when a leaf is reached

4 Experiments
The experiments were performed over several benchmark multi-label datasets whose main properties are shown in Table 1. As can be
seen, there are significant differences in the number of attributes, instances and labels. The cardinality—number of labels per instance—
varies from 1.07 to 4.27. Concerning the number of labels, there are some datasets with just 5, 6 or 7 labels, whereas others have more
than a hundred, even one of them has almost four hundred labels. The approaches for inference in PCC compared were those discussed
along the paper, except ES. None experiment was carried out with the ES method due to its computational cost. Hence, the methods
compared were GS, ε−A algorithm for different values of ε (.0, .25, .5), BS for different values of the beam width b (1, 2, 3, 10) and the
Monte Carlo sampling approaches, MC and EMC, with samples of different size (10, 50, 100), as suggested in23. Let us remember that
the ε−A algorithm with ε = .5 is equivalent to GS and to BS with b = 1.

The results will be presented in terms of the example-based subset 0/1 loss estimated by means of a 10-fold cross-validation.
The base learner employed to obtain the binary classifiers that compose all these multi-label models was logistic regression 30 with
probabilistic output. The regularization parameter C was established for each individual binary classifier performing a grid search over
the values C ∈ {10−3, 10−2, . . . , 103} optimizing the Brier loss estimated by means of a balanced 2-fold cross validation repeated 5
times. The Brier loss 31 is a proper score that measures the accuracy of probabilistic predictions. The expression is 1

n

∑n
i=1(p̂i − ai)2,

where for an instance i, pi is the predicted probability that label i is relevant, and ai is the actual label value (0 or 1).
Tables 2, 3 and 4 respectively show the subset 0/1 loss, the number of nodes explored and the averaged computational time (in

seconds) per test instance for the different methods compared. The number of nodes explored and the computational time for the
Monte Carlo approaches should be the same as those of GS multiplied by the size of the sample drawn. Maybe slight differences can
occur in time due to initialization or other implementation issues.

Before discussing the results of the tables, let us remember that only ε−A algorithm with ε = .0 provides Bayes optimal inference,
like ES does. This means that it always predicts the label combination with the highest joint conditional probability. Despite other
methods may predict other label combination with lower joint conditional probability for some examples, they obtain better subset 0/1
scores in some few cases. This fact may be due to several reasons, mainly: a) the relatively small size of the testing sets, and b) the
models hj obtained to estimate the joint conditional probability P (y |x) do not return true estimations usually. Theoretically, under
perfect conditions (large test sets and perfect models), ε−A with ε = .0 would obtain the best scores.

Then, looking at Table 2 and as it is theoretically expected, the performance of ε−A algorithm decreases as the value of ε increases.
As commented before, some exceptions can occur. In this case, it happens for flag and reuters datasets.

Concerning BS method, the performance increases as b increases (as theoretically expected), although some exceptions appear in
bibtex, reuters, slashdot and yeast, due to the same reasons discussed above. Values from 1 to 3 were taken into account, since the
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Table 1 Properties of the datasets

Datasets Instances Attributes Labels Cardinality
bibtex 7395 1836 159 2.40
corel5k 5000 499 374 3.52
emotions 593 72 6 1.87
enron 1702 1001 53 3.38
flags 194 19 7 3.39
image 2000 135 5 1.24
mediamill* 5000 120 101 4.27
medical 978 1449 45 1.25
reuters 7119 243 7 1.24
scene 2407 294 6 1.07
slashdot 3782 1079 22 1.18
yeast 2417 103 14 4.24

Table 2 Subset 0/1 loss for the different methods. Those scores that are equal or better than optimal predictions reached by ε−A and ES are shown in
bold

Datasets
ES ε-A GS BS BS BS MC MC MC EMC EMC EMC

ε-A(.0) (.25) BS(1) (2) (3) (10) (10) (50) (100) (10) (50) (100)
ε-A(.5)

bibtex 81.92 81.95 82.19 81.88 81.92 81.92 84.02 82.85 82.46 82.73 82.22 82.11
corel5k 97.48 98.62 98.90 98.30 98.04 97.48 99.64 98.98 98.26 98.72 97.70 97.42
emotions 71.16 71.82 72.83 72.16 71.32 71.16 80.77 73.68 73.84 72.83 72.33 72.50
enron 83.14 84.26 85.43 83.43 83.37 83.14 92.95 85.90 84.61 87.43 83.61 83.26
flags 87.13 87.16 86.13 88.21 87.13 87.13 96.39 91.21 89.24 91.29 90.71 90.18
image 68.35 68.35 69.75 68.35 68.35 68.35 69.20 65.25 62.65 64.95 65.70 62.95
mediamill* 83.86 84.58 85.80 84.10 83.86 83.86 90.90 85.88 84.88 85.34 83.70 83.40
medical 30.37 30.37 30.67 30.37 30.37 30.37 31.19 30.16 30.67 30.16 30.16 30.16
reuters 22.73 22.70 23.60 22.69 22.73 22.73 25.37 23.18 22.83 22.97 22.83 22.83
scene 31.86 31.86 33.28 31.90 31.86 31.86 33.53 30.28 29.70 29.24 29.24 29.29
slashdot 51.80 52.22 54.49 51.77 51.80 51.80 56.45 52.96 52.70 52.22 52.35 52.35
yeast 76.95 77.62 79.77 76.83 77.08 76.95 85.52 79.93 79.35 79.06 77.53 77.62

performance gets steady when b = 3 for most of the datasets. Even more, it reaches steadiness when b = 3 for the half of the datasets
and when b = 2 for both image and medical. In any case, a value equal to 10 was also considered to show some cases in which the
predictions of the algorithm converge to those of ε−A with ε = .0 or ES. Notice that this is at the cost of exploring much more solutions.

Both Monte Carlo approaches improve their performance as the size of the sample increases. However, there are some exceptions.
In this sense, it happens that MC reaches slightly better subset 0/1 loss for a sample size of 50 than for a sample size of 100 in case
of emotions and medical. Unfortunately, EMC has more exceptions, but this is quite logical, since EMC is more sensitive to the size
of the sample. This is so because it takes the maximum joint conditional probability, which is more likely to change as the sample
size increases. In case of MC, it would be necessary to enlarge enough the sample size to make the mode change. Comparing both
approaches, it is clear that EMC converges faster than MC, since the subset 0/1 of EMC is quite lower than that of MC for the same size
of the sample drawn, especially in case of size equal to 10. Even more, MC with a sample of size equal to 50 is hardly able to reach
EMC with a sample of size equal to 10. Also, EMC with a sample size of 50 outperforms all MC for most of the datasets. Just flags
and image are exceptions. EMC is an appealing approach to perform inference in PCC, however, sometimes, even with a large enough
sample, EMC is able to reach the precision of ε−A with ε = .0 in some datasets.

With regard to the number of nodes explored (see Table 3), GS (equivalent to ε−A algorithm with ε = .5 and to BS(1)) is the
method which explores the smallest number of nodes, since it only goes over one path in the tree. In fact, such number corresponds to
the number of labels plus one, because the root of the tree is considered as an explored node. It follows the ε−A algorithm with ε = .25,
since the BS(b) with b from 2 rapidly increases the number of nodes explored. However, let us remember that none of those methods
guarantee to reach an optimal solution. Then, focusing on the method that theoretically reaches the optimum (the ε−A algorithm
with ε = .0), it occurs that this particular case of the ε−A algorithm explores the greatest amount of nodes among the same algorithm
with other values for ε, especially as the number of labels grows. However, the ε−A algorithm clearly outperforms the BS technique
in number of nodes explored, even for ε = .0 and for low values of the beam width b. Regarding EMC and MC, the number of nodes
considerably increases as the size of the sample drawn increases. Hence, they requiere to explore much more nodes to be closer to the
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Table 3 Number of explored nodes for the different methods

Datasets
ε-A ε-A GS BS BS BS MC/EMC MC/EMC MC/EMC
(.0) (.25) BS(1) (2) (3) (10) (10) (50) (100)

ε-A(.5)
bibtex 289.3 184.0 160.0 319.0 477.0 1575.0 1590.0 7950.0 15900.0
corel5k 1474.2 517.1 375.0 749.0 1122.0 3725.0 3740.0 18700.0 37400.0
emotions 10.7 10.8 7.0 13.0 18.0 45.0 60.0 300.0 600.0
enron 114.8 77.3 54.0 107.0 159.0 515.0 530.0 2650.0 5300.0
flags 22.6 16.3 8.0 15.0 21.0 55.0 70.0 350.0 700.0
image 7.3 7.7 6.0 11.0 15.0 35.0 50.0 250.0 500.0
mediamill* 191.8 142.4 102.0 203.0 303.0 995.0 1010.0 5050.0 10100.0
medical 46.6 46.6 46.0 91.0 135.0 435.0 450.0 2250.0 4500.0
reuters 8.2 8.3 8.0 15.0 21.0 55.0 70.0 350.0 700.0
scene 7.2 7.3 7.0 13.0 18.0 45.0 60.0 300.0 600.0
slashdot 25.3 24.9 23.0 45.0 66.0 205.0 220.0 1100.0 2200.0
yeast 26.1 26.0 15.0 29.0 42.0 125.0 140.0 700.0 1400.0

Table 4 Average prediction time (in seconds) per example for all methods

Datasets
ES ε-A GS BS BS BS MC MC MC EMC EMC EMC

ε-A(.0) (.25) BS(1) (2) (3) (10) (10) (50) (100) (10) (50) (100)
ε-A(.5)

bibtex 0.0162 0.0099 0.0079 0.0110 0.0156 0.0507 0.3220 1.6099 3.2256 0.3207 1.6021 3.2065
corel5k 0.1360 0.0161 0.0110 0.0278 0.0404 0.1361 0.7607 3.8076 7.6294 0.7563 3.7815 7.5781
emotions 0.0006 0.0006 0.0004 0.0005 0.0006 0.0013 0.0120 0.0590 0.1177 0.0117 0.0585 0.1172
enron 0.0072 0.0030 0.0019 0.0039 0.0055 0.0172 0.1046 0.5227 1.0457 0.1039 0.5190 1.0388
flags 0.0012 0.0007 0.0004 0.0005 0.0007 0.0016 0.0139 0.0691 0.1381 0.0136 0.0680 0.1360
image 0.0005 0.0005 0.0004 0.0004 0.0005 0.0009 0.0100 0.0491 0.0978 0.0098 0.0485 0.0970
mediamill* 0.0115 0.0055 0.0037 0.0072 0.0105 0.0333 0.1992 0.9963 1.9937 0.1984 0.9910 1.9821
medical 0.0027 0.0027 0.0027 0.0033 0.0046 0.0144 0.0886 0.4422 0.8857 0.0881 0.4404 0.8823
reuters 0.0005 0.0005 0.0005 0.0005 0.0007 0.0016 0.0138 0.0684 0.1373 0.0137 0.0682 0.1368
scene 0.0005 0.0005 0.0004 0.0005 0.0006 0.0013 0.0119 0.0587 0.1172 0.0118 0.0584 0.1171
slashdot 0.0015 0.0014 0.0012 0.0016 0.0022 0.0063 0.0433 0.2159 0.4317 0.0429 0.2149 0.4296
yeast 0.0015 0.0010 0.0006 0.0010 0.0014 0.0040 0.0277 0.1380 0.2759 0.0274 0.1369 0.2737

optimal, despite sometimes their performance could be better.
The computational time is expected to be higher as more nodes are explored, and looking at Table 4 one can confirm that this is

what indeed happens. At this respect, ε−A algorithm is actually quite faster than BS technique and Monte Carlo sampling. In the same
way, considering each method separately and varying their parameters is shown that ε−A algorithm is faster as ε increases, whereas BS
is faster as the beam width b dismisses. However, this is not surprising, since increasing the value of ε or dismissing the value of the
beam width b means to explore less nodes of the tree. Analogously, the time needed for the Monte Carlo approaches enlarge as the size
of the sample drawn grows.

Additional experiments were performed in order to analyze the possible influence of taking different label orders. Table 5 contains
the average of the subset 0/1 scores for a set of random label orders. Particularly, it was taken 20% of the possible label orders for the
datasets with 5 or 6 labels (24 and 144 different label orders, respectively) and 10% for reuters dataset that has 7 labels (500 different
label orders). The results confirm that ε−A algorithm obtains the best scores. The only exception is the scene dataset in which EMC
performs slightly better.

As a conclusion, the ε−A algorithm can be considered the best alternative if one desires to guarantee good performance in terms of
subset 0/1, taking care of not exceeding the number of nodes explored and the execution time, even in the case of taking ε = .0 for
which an optimal solution is guaranteed to reach.

5 Conclusions
This paper analyzes the methods that have been proposed so far for performing inference in probabilistic classifiers chains for multi-
label classification. The ε−approximate algorithm with ε = .0 is theoretically shown to reach an optimal solution in terms of subset
0/1 loss, unlike other approaches that only estimate it, like the method based on a beam search, Monte Carlo sampling or even the
same algorithm with ε > 0. Besides, it offers good behavior both in number of nodes explored and in computational time. Even, the
ε−approximate algorithm with values of ε greater than .0 offers good behavior, since it considerably reduces both the number of nodes
explored and execution time with regard to either beam search or Monte Carlo sampling, keeping similar performance in terms of subset
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Table 5 Subset 0/1 loss (with the standard deviation) for the compared methods considering a sample of different label orders. The number of label
orders are in parentheses and represent the 20% of the possible label orders, except in the case of reuters dataset which represent the 10%

Datasets ε−A(.0) ε−A(.25) ε−A(.5) BS(2) MC(10) EMC(10)
image(24) 64.44 ± 2.62 65.02 ± 2.45 66.69 ± 1.93 64.61 ± 2.72 71.05 ± 1.97 66.03 ± 2.69
emotions(144) 71.55 ± 1.06 71.71 ± 1.00 73.16 ± 1.17 71.75 ± 1.02 78.81 ± 1.38 72.36 ± 1.07
scene(144) 32.09 ± 1.26 32.11 ± 1.27 34.35 ± 1.68 32.09 ± 1.26 35.63 ± 1.50 32.00 ± 1.30
reuters(500) 22.78 ± 0.29 22.78 ± 0.29 23.69 ± 0.25 22.78 ± 0.29 25.29 ± 0.33 22.87 ± 0.28

0/1. Although beam search and Monte Carlo sampling seem worse to optimize subset 0/1 loss, they offer some interesting benefits.
First, these methods can be adapted to optimize other loss functions. Additionally, Monte Carlo sampling succeeds in discovering
efficiently good label orders.
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8 K. Dembczyński, W. Waegeman, W. Cheng, and E. Hüllermeier, “On label dependence and loss minimization in multi-label classifi-

cation,” Machine Learning, vol. 88, no. 1-2, pp. 5–45, 2012.
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