O 00 N O U1 A WIN -

R R R R R R R R R
0 N U A WN RO

N =
o

Focus Article
Marine litter as a vector for non-native species: what we need to know

Sabine Rech?, Yaisel Borrell?, Eva Garcia-Vazquez3*

Department of Functional Biology, University of Oviedo, 33006 Oviedo, Asturias, Spain
! rechsabine@uniovi.es; *borrellyaisel @ uniovi.es; *egv@uniovi.es

*corresponding author

Keywords: Alien invasive species, anthropogenic marine litter, rafting, source and sink, biological
invasion

Abstract

Plastic debris and other floating materials endanger severely marine ecosystems. When they carry
attached biota they can be a cause of biological invasions which extent and intensity is not known yet.
This article focuses on knowledge gaps and research priorities needed for, first, understanding and then
preventing dispersal of alien invasive species attached to marine litter.
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Alien invasive species (AIS) are a major threat to biodiversity and ecosystem services, as well as
human health and economy (Regulation (EU) No 1143/2014). Plastic debris and other floating materials
contribute to the transfer of non-native species (Vegter et al.,, 2014). Although there are frequent
anecdotal reports of rafting non-native biota on marine anthropogenic litter, the extent of this
phenomenon and its impact on ecosystems and biodiversity is not well known yet. Here we revise
current literature and identify knowledge gaps by addressing four main questions. Based on this, we
suggest urgent research needs for the close future, with the final objective of enhancing management
actions to prevent the spreading of AlS by floating litter (Figure 1).

1) How important is marine litter in the transport of non-native species?

Floating debris is a vector for both first introductions (long distance transport) in a new region, and
secondary spread (short-distance transport) within an already affected region. However, as rafting is
usually referred to as “other routes of introduction” (Katsanevakis and Crocetta, 2014), the actual
contribution of floating litter to the introduction and spreading of AlS is largely unknown (Vegter et al.,
2014). Katsanevakis and Crocetta (2014) suggest rafting to be a potentially important vector of both
primary AlS introductions via corridors in the Mediterranean, as well as of secondary spread of already
introduced species, meaning that its importance might be seriously underestimated. In fact, more than
80% of alien species in the Mediterranean might have arrived on floating debris or used this vector for
further dispersal (Galgani et al., 2014).

Floating debris is the third most common vector of alien species introductions in British brackish and

marine waters (Minchin et al., 2013). There are many examples of long and medium-distance transport
of biota along the prevailing oceanic currents in different regions (Thiel and Haye, 2006; Gregory, 2009;
Kiessling et al., 2015), like successful kelp-rafting occurring between islands about 500 km distance
(Nikula et al., 2012); exotic molluscs and barnacles reaching British and Irish waters by trans-Atlantic
rafting on anthropogenic litter (Minchin et al., 2013; Holmes et al., 2015); big anthropogenic rafts,
detached by a tsunami, transporting non-native species from Japanese to North American western
coasts (Calder et al., 2014). On floating litter close to Brazil, the vast majority of taxa were exotic and
cryptic species (Farrapeira, 2011).
The importance of marine litter for near-shore AIS dispersal, where the first introduction occurred due to
another vector (secondary spread) has also been emphasized by several authors (e.g. Winston et al.,
1997). The relative frequency of each type of transport (long- or short- distance), and especially the
contribution of litter on regional AIS spread remains to be quantified.

2) Which litter items are the main carriers of biota?

Barnes (2002) estimates that anthropogenic litter more than doubles rafting opportunities. Biota can
attach to glass, metal and paper surfaces, and indeed to more frequent and persistent plastic items
(Kiessling et al., 2015). The type of artificial polymer seems to influence the composition of the bacterial
fouling community (Carson et al., 2013b; Zettler et al., 2013). Positively buoyant polypropylene (PP),
polyethylene (PE) and expanded polystyrene (EPS), commonly used in food packaging and single-use
everyday items, are the main polymers found in marine litter (e.g. Carson et al., 2013b; Zettler et al.,
2013). EPS is often used in aquaculture and a known carrier of attached biota (Hinojosa and Thiel, 2009).

Buoyancy and persistence are key characteristics of potential rafts. Initially, the attached fouling
community may enhance these traits on rather porous or unstable objects, but with increasing weight it
reduces the buoyancy, especially of smaller objects (Bryan et al.,, 2012; Engler, 2012; Kiessling et al.,
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2015; Fazey and Ryan, 2016). Surface roughness and size, and floating behaviour of an object seem to
influence its biotic colonization (Carson et al., 2013b; Goldstein et al., 2014), as well as the species or
taxonomic group preferentially attached (Bravo et al., 2011; Kiessling et al., 2015). It is then necessary to
assess the influence of artificial polymers, surfaces and buoyancies of marine litter items on the
successful patterns of invasions mediated by them, and learn from case studies to improve risk
predictions and to establish effective prevention campaigns.

3) Which areas are donors of litter and attached biota?

The identification of source areas is a priority for the prevention of debris input and subsequent
rafting by AIS (Goldstein et al., 2014). How much litter is released from a certain area depends on the
type and intensity of anthropogenic activities (e.g. industry, fishing, aquaculture), on the efficiency of
waste disposal and treatment facilities, and on the frequency of accidental releases caused by natural or
anthropogenic disasters (hurricanes, shipwrecks etc.) (Ebbesmeyer and Ingraham, 1994; Derraik, 2002;
Doong et al. 2011; Browne, 2015).

High-risk areas are those where intense littering coincides with a high occurrence of potential
invasive species. Estuaries typically suffer from a high burden of litter, both from land-based as well as
from marine sources (e.g. Acha et al., 2003). Aquaculture, often located in estuaries, is economically and
ecologically affected by fouling organisms and plastic pollution (Williams and Grosholz, 2008; Rius et al.,
2011; Sussarellu et al.,, 2016). At the same time it is a major source of AlS, due to escapes -and
sometimes active releases- of exotic farmed individuals (Rius et al., 2011; Crego-Prieto et al., 2015;
Habtemariam et al., 2015; Semeraro et al., 2015). The floating devices used in aquaculture often provide
optimal conditions for fouling AIS (Rius et al., 2011), especially when they are detached (Katsanevakis et
al., 2013; James and Shears, 2016). Considerable amounts of detached buoys with attached AlS, as well
as floating litter from aquaculture activities was reported from some locations, especially related to
extreme climatic events (Astudillo et al., 2009; Hinojosa and Thiel, 2009; Macfadyen et al., 2009; Liu et
al., 2015).

Other AIS shelters are ports and marinas, especially those located in densely populated zones with a
high amount of litter (Ashton et al., 2006; Seebens et al., 2013; Peters et al., 2014; Wells et al., 2014;
Pejovic et al., 2016). They receive biota from vessels and recreational boats and their artificial structures
are a suitable habitat for AIS (Glasby et al., 2007; Tyrrell and Byers, 2007). Ports are frequently disturbed
habitats which offer permanent and sheltered spaces to AlS, especially if they are partially enclosed
(Peters et al., 2014). Therefore ports are at the same time recipients of AlS coming from outside regions,
and donors for neighboring areas (Ardura et al., 2015).

Once afloat, rafts and attached organisms accumulate in marine convergence areas, most
importantly the five subtropical marine convergence zones, known as oceanic gyres, where they may
interact or change rafts (Thiel and Haye, 2006; Cdzar et al., 2014; Eriksen et al., 2014; Goldstein et al.,
2014; Ryan, 2014). Some rafting species may be travelling within these gyres for several years before
reaching land (Hoeksema et al., 2012). Determining the contribution of ports and aquaculture zones to
regional AIS dispersion of floating litter, as well as the role of oceanic accumulation areas in trans-
oceanic litter rafting are urgent research needs.

4) Which areas are at special risk to receive floating litter and host its attached biota?
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All natural sink areas receive floating litter and, if present, attached biota. The long-distance
transport of floating marine debris is determined offshore by the prevailing upper-ocean currents and
winds. Ekman currents direct the litter towards the five gyres and their neighbouring coastal areas and
oceanic islands (Barnes, 2005; Lebreton et al., 2012; Maximenko et al., 2012; Cdzar et al., 2014; Eriksen
et al., 2014), where dense accumulations of floating or stranded litter have been reported (eg. Hidalgo-
Ruz and Thiel, 2013). Storm events aggravate the deposition of marine debris in sink areas (Doong et al.,
2011; Lebreton and Borrero, 2013; Holmes et al., 2015).

Along coastlines, near-shore currents and winds, tidal dynamics, wave motion and the coastal
geomorphology are the main drivers of litter accumulation (Aradjo and Costa, 2007a, 2007b; Browne et
al., 2010; Doong et al., 2011; Carson et al., 2013a; Critchell and Lambrechts, 2016). Drift models help to
estimate the pathways and sinks of floating litter (e.g. http://www.adrift.org.au/). However, AlS arrivals
are not synonymous of biological invasions in a location. Several factors determine the vulnerability of a
habitat to invasion, like the habitat’s species richness (both native and non-native) and cover (Marraffini
and Geller, 2015), and the propagule pressure (Lockwood et al., 2005). Marine spatial protection may
thus mitigate the problem, either by decreasing debris accumulation and/or conferring protection
against biological invasions (due to preserved native biodiversity and/or less degraded habitats).
However, this aspect has rarely been considered in marine and coastal spatial planning, and should be
investigated. There is a serious need for an international system to scoring coastal areas in terms of
habitat conservation (or degradation), similar to the current European blue flags allocated to clean
beaches.

Conclusions

This short review identifies several research needs for evaluating and preventing the imminent,
biodiversity-threatening problem of AIS carried by marine litter. Donor and vulnerable recipient areas,
high-risk litter items, and the relative contribution of marine litter to global biological invasions are main
issues that need to be addressed, in order to design efficient management strategies.
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Figure legends

Figure 1. Schematic overview of the questions addressed in this review, consequential research
needs and management actions.
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- How important is marine litter in the transport of non-native species?

Central - Which litter items are the main carriers of attached biota?
questions - Which areas are donors of litter and attached biota?
- Which areas are at special risk to receive floating litter and host its attached biota?

- Global estimation of floating litter's impact on small- and large scale AlS spreading.
Research - Identification of physicochemical characteristics of high-risk litter materials and items.
priorities - Identification of source sites of rafting AlS.

- Localization of litter-attractive natural sinks, vulnerable to AlS.

- Reduce production, deployment and disposal of floating litter items.
Management - Concentrate actions on high-risk items/materials = raising companies' and public awareness,
. promotion of alternatives, taxation, banning.
actions

- Reinforce policies for litter reduction, disposal and treatment, as well as isolation of AlS in source areas.
- Development of surveillance and protection plans for vulnerable sink zones.




