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1 Introduction

Even in cases when a weakly coupled Lagrangian is not available, it is possible to make

precise statements about Quantum Field Theories (QFTs). When the theory is in a confor-

mal phase, the constraints imposed by the symmetries allow to calculate and obtain exact

results. In two dimensions for example, the so called minimal models allow various analytic

computations without any reference to a Lagrangian. Four-dimensional Conformal Field

Theories (4d CFTs) are not as constrained as those in two dimensions, but it is also possible

to have an analytic understanding of the dynamics without a weakly coupled description,

as long as there is some amount of supersymmetry. A second way to deal with the problem

of calculating observables for a CFT at strong coupling (without the help of a Lagrangian)

is to use a weakly coupled string theory on an Anti de-Sitter space AdS [1–3]. Different

dualities — like SL(2, Z), T-duality — characteristic of string theory, have become in this

way common tools in the field theoretical understanding of CFTs.
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In this paper we will study the interplay between T-duality and the AdS/CFT corre-

spondence. Abelian T-duality in AdS string theory backgrounds is known to provide a map-

ping between different realisations of the same dual CFT, but a clear understanding of this

for its non-Abelian counterpart [4–6] is still missing. Since it is not proven that non-Abelian

T-duality is a full string theory symmetry [6], this opens the exciting possibility to construct

new CFTs dual to AdS string theory backgrounds, by the action of non-Abelian T-duality.

In the past four years, starting with the seminal paper [7], there has been quite some

interest on the applications of non-Abelian T-duality to backgrounds with a well under-

stood QFT dual. Roughly, the procedure adopted was to consider a background with a

well-known dual pair, where a non-Abelian T-duality on a-typically SU(2) — isometry

was performed, generating a new solution to the supergravity equations of motion. The

calculation of various field theoretical quantities with the new background, allowed for a

partial exploration of the QFT associated to it. This was complemented with an analysis

of SUSY preservation and G-structures, for the initial and final solutions. This procedure

was adopted in various works [8]–[33]. A more precise description of the QFT in terms of

a quiver and a super-potential, was however mostly missing from these proposals. One of

the technical points preventing a clear QFT interpretation of non-Abelian T-duality is the

infinite range of the dual coordinates [6].

In this paper we come back to the simple example of AdS5 × S5 to deal with this

problem. The outcome of our study will be a proposal for a 4d N = 2 SUSY CFT dual to

the background obtained by applying non-Abelian T-duality. Exploiting the fact that this

geometry fits in the (Type IIA) classification given by Lin, Lunin, Gaiotto and Maldacena in

the papers [34, 35] we will make important use of the formalism developed there to propose

a field theoretic description. Reversing the logic, we will be able to identify the explicit

Gaiotto-Maldacena geometry dual to a 4d N = 2 superconformal linear quiver with gauge

groups of increasing rank in terms of the non-Abelian T-dual of AdS5 × S5 constructed

in [7]. We will explore as well different issues of the (Hopf) Abelian T-dual of AdS5 × S5.

We will show that it fits in the previous classification of N = 2 geometries, thus providing

a realisation of Zn orbifolds of AdS5 × S5 (including the trivial case n = 1) as Gaiotto-

Maldacena geometries, related to wrapped M5-branes. An interesting connection between

Abelian and non-Abelian T-dualities, mirrored by certain observables in the associated

dual CFTs will be proposed. This will be crucial in testing the dual CFTs. Even if both

Abelian and non-Abelian T-dual solutions obtained starting from AdS5 × S5 are singular,

this does not prevent our analysis to go through — the observables we compute are not

afflicted by the singularity. Our analysis can be repeated in other smooth backgrounds

such as the ones studied in [8]–[33].

As will be explained in detail below, our results indicate that T-duality (Abelian and

non-Abelian), produces (as a generating technique) backgrounds in the Gaiotto-Maldacena

class. These are dual to CFTs involving long linear quivers at strong coupling. Hence, we

could apply non-abelian T-duality to a given Type II solution obtained as a flow from a

Gaiotto-Maldacena background, to generate a new one. This must be thought of as a dual

description to a flow from a Gaiotto CFT. This idea is also applicable to solutions with

less SUSY and smaller isometry group (in cases where the Gaiotto-Maldacena formalism
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does not apply). This points to a way to understand QFT phenomena in cases where the

modern field theoretical techniques do not apply.

The paper is organised as follows. In section 2, we present the Abelian and non-

Abelian T-dual backgrounds used in our investigations. We analyse quantised charges

and large gauge transformations. While most of the material in this section is present in

the bibliography, we will also point out an interesting new relation between the Abelian

and non-Abelian T-dual solutions. In section 3, we present the Hanany-Witten brane

set-up that encodes and summarises the brane configurations associated to the charges.

In section 4 we show that both backgrounds fit the LLM-classification [34], and write

the potentials associated to their Gaiotto-Maldacena descriptions [35]. Making use of the

formalism in [35] we then propose a quiver that describes the field theory dual of the non-

Abelian T-dual background. We comment on a field-theory inspired way of supplementing

this background to have a finite range for the T-dual coordinate r, that otherwise would

be unbounded. Then, in section 5, we discuss field theory aspects that can be read from

our backgrounds. We focus the attention on the central charge, entanglement entropy and

’t Hooft coupling of our CFTs. The quivers that we propose are shown to precisely match

the values of these observables. Finally, in section 5.4, we relate our 4d quivers with those

used in deconstructing six dimensional CFTs [36, 37]. Conclusions and possible lines to

develop in the future are given in section 6.

2 Geometry

In this section, we lay out the two Type IIA backgrounds that motivate this investigation.

We start by presenting the well-known IIB AdS5 × S5 background, to fix notation and

conventions. The vielbein, metric and Ramond five-form read,

exi =
2R

L
dxi, eR =

2L

R
dR, eα = 2Ldα, eβ = 2L sinαdβ, ei = L cosαωi,

√
2ω1 = cosψdθ + sinψ sin θdϕ,

√
2ω2 = − sinψdθ + cosψ sin θdϕ,

√
2ω3 = dψ + cos θdϕ.

ds2 =
4R2

L2
dx2

1,3 +
4L2

R2
dR2 + L2

[
4dα2 + 4 sin2 αdβ2 + 2 cos2 α(ω2

1 + ω2
2 + ω2

3)
]
,

F5 =
2

gsL4
(etx1x2x3R + eαβ123) =

64

gsL
R3(1 + ∗10)dR ∧ dt ∧ dx1 ∧ dx2 ∧ dx3. (2.1)

The ranges of the angular coordinates are [0, π2 ] for α; both β and ϕ vary in [0, 2π], θ ranges

in [0, π] and ψ in [0, 4π]. We define the generic polyform F̂ , the quantised Page charges

and the constants needed for their calculation as,

F̂ = Fe−B2 , QPage,Dp =
1

2κ2
10TDp

∫
F̂8−p; 2κ2

10TDp = (2π)7−pgsα
′ (7−p)

2 . (2.2)

In the following, we set gs = 1. We impose the D3-brane charge to be an integer N3, which

implies a quantisation for the size of the space L,

QD3 =
1

2κ2
10TD3

∫
Σ5

F̂5 = N3 →
L4

α′2
=
πN3

4
. (2.3)
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2.1 The Abelian T-dual

The first type IIA background that will feature in our discussion is the Abelian T-dual, in

the direction ψ, of the AdS5 × S5 background in eq. (2.1). The T-dual coordinate, that

we still denote by ψ, has now periodicity π.1 Renaming (θ, ϕ) → (χ, ξ) and following the

rules in [38], we find,

ds2 =
4R2

L2
dx2

1,3 +
4L2

R2
dR2 + 4L2

[
dα2 + sin2 αdβ2

]
+

α′2dψ2

L2 cos2 α
+ L2 cos2 α(dχ2 + sin2 χdξ2).

B2 = α′ψ sinχdχ ∧ dξ, e−2Φ =
L2 cos2 α

α′
, F4 =

8L4

√
α′

cos3 α sinα sinχdα ∧ dβ ∧ dχ ∧ dξ. (2.5)

Here we have chosen a particular gauge for B2. This gauge will prove to be very useful

for our discussion below. The dilaton and the gψψ component of the metric show that

the background is singular at 2α = π, where the original S3 in eq. (2.1) shrinks to a

point. The supersymmetry is reduced. Indeed, the background in eq. (2.5) is known to

be N = 2 supersymmetric [39], and dual to the N = 2 realisation of N = 4 SYM with a

hypermultiplet in the adjoint [40, 41].

Quantising the Page charge of D4 branes one obtains,

QD4 =
1

2κ2
10TD4

∫
Σ4

F̂4 = N4 →
L4

α′2
=
πN4

2
. (2.6)

The factor of two compared to eq. (2.3) is due to the different periodicities of the original

and T-dual variables. It is common to absorb it through a redefinition of Newton’s constant.

There is also NS-five brane charge, obtained via the integration of H3 = dB2 on the three

manifold spanned by S2(χ, ξ) and the ψ-direction,

QNS5 =
1

2κ2
10TNS5

∫
Σ3

H3 =
1

4π2α′

∫ 2π

0
dξ

∫ π

0
dχ sinχ

∫ π

0
dψ = 1. (2.7)

Here we have used that (2π)5g2
sα
′3TNS5 = 1. Also, notice that the three manifold Σ3 =

[ψ, χ, ξ] does not shrink at ψ = 0 or ψ = π. If, on the other hand, we allow the ψ-coordinate

to vary in [0, nπ], going n-times over the circle of length π, we find that N5 = n, which tells

us that one unit of NS5-brane charge is created in each of these turns. We can link this to

the existence of large gauge transformations, as we will discuss in the next subsection. The

resulting theory is the Abelian T-dual of AdS5 × S5/Zn, which has been shown to arise as

the near horizon limit of a semi-localised M5, M5’ system [39, 43] (with N4 M5 and n M5’,

in our notation) followed by reduction to IIA.

1In the σ-model derivation of Abelian T-duality the periodicity of the dual variable is fixed by the

condition [42] ∫
dθ ∧ dθ̃ = (2π)2. (2.4)

This implies that a θ variable with periodicity 2π is mapped to a θ̃ with the same periodicity. When the

dualisation is performed on a Hopf-fibre direction of periodicity 4π the dual variable has periodicity π.
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2.2 The non-Abelian T-dual

The second type IIA background that we will discuss is the non-Abelian T-dual of eq. (2.1),

first worked out in [7]. In the notation and conventions of [30] it reads,

ds2 =
4R2

L2
dx2

1,3 +
4L2

R2
dR2 + L2

[
4dα2 + 4 sin2 αdβ2

]
+

α′2

L2 cos2 α
dr2 +

+
α′2L2 cos2 αr2

α′2r2 + L4 cos4 α
(dχ2 + sin2 χdξ2).

B2 =
α′3r3

α′2r2 + L4 cos4 α
sinχdχ ∧ dξ; e−2Φ =

L2 cos2 α

α′3
(L4 cos4 α+ α′2r2).

F2 =
8L4

α′3/2
sinα cos3 αdα ∧ dβ, F4 = B2 ∧ F2. (2.8)

As in the previous background both the dilaton and the grr component of the metric are sin-

gular at the point where the original S3 shrinks, 2α = π. We expect once more a reduction

of supersymmetry. Indeed, this background preserves N = 2 SUSY, as shown in [7].

The Page charges read,

QD6 =
1

2κ2
10TD6

∫
α,β

F2 = N6 →
L4

α′2
=
N6

2
; (2.9)

QD4 =
1

2κ2
10TD4

∫
F̂4 = 0.

As usual, after a non-Abelian T-duality transformation, the value of L2

α′ in eq. (2.9) is

incompatible with that in eq. (2.6). The radius of AdS5 must then take a different value.2

According to eq. (2.9), D3-branes should be replaced by D6-branes after the non-Abelian

T-duality. As we discuss below, extending [33] (see also [31, 32]), there is however more to

this interpretation.

As before, there is also NS5-brane charge associated to H3 = dB2. In order to properly

define this charge we need to know the range of the r-coordinate. However, in the absence

of global information coming from the sigma model derivation (there is no analogue to the

condition in eq. (2.4) in the non-Abelian case), the coordinate r ranges in R+. This poses

an obvious problem to the interpretation of the number N5.

In the papers [31, 32] an argument was proposed to determine the range of the coor-

dinate r in backgrounds like the one of eq. (2.8). It uses the boundedness of the action for

a fundamental Euclidean string that wraps a non-trivial two cycle. It amounts to impose

that the quantity,

b0 =
1

4π2α′

∮
Σ2

B2, (2.10)

is bounded, b0 ∈ [0, 1]. In the case of the background in eq. (2.8), a non-trivial cycle

is [30, 31],

Σ2 = [χ, ξ], α =
π

2
, (2.11)

2In this example we could absorb the different factor through a redefinition of Newton’s constant, as in

the Abelian case. But this is not possible in general when there are more charges involved, as it is the case

for instance in the AdS6 and AdS4 backgrounds discussed in [31, 32].
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since the geometry spanned by α and S2(χ, ξ) close to 2α = π is conformal to a singular

cone with S2(χ, ξ) boundary. Imposing that the integral in eq. (2.10) is quantised, b0 = n,

for some integer n, implies the existence of special values rn = nπ for the r-coordinate, such

that when r varies in intervals [rn, rn+1], a piece-wise continuous large gauge transformation

on the B2 potential

B2 → B2 − nπα′ sinχdχ ∧ dξ, (2.12)

should be performed, bringing b0 back to be valued in the [0, 1] interval. This large gauge

transformation of the B2-field, has an important effect on the Page charges, that change

as,

∆QD6 = 0, ∆QD4 = −nN6, (2.13)

implying that D4 brane charge is created, N4 = nN6, in absolute value, when we pass

through rn = nπ points. Hence, the charge of D4 branes is not globally defined, but

depends on the interval [rn, rn+1] where we measure it. Coming back to the quantisation

of NS-five brane charge, we can take the manifold Σ3 = [r, χ, ξ] to integrate H3 = dB2 —

in this case, we will also let the r-coordinate vary in [0, nπ]. We find,

QNS5 =
1

2κ2
10TNS5

∫
Σ3

H3 =
1

4π2α′

∫ 2π

0
dξ

∫ π

0
dχ sinχ

∫ nπ

0
dr = n = N5. (2.14)

So, every time we cross a rn point a unit of NS-five brane charge is added. We will use

and give a gauge theoretic interpretation to these results for the quantised charges in the

next section.

Note that the present analysis of large gauge transformations holds as well in the

Abelian T-dual background of eq. (2.5). Indeed, in the gauge taken there for the B2 field,

there is also a non-trivial 2-cycle Σ2 = [χ, ξ] at 2α = π where large gauge transformations

can be defined. Thus, if we go n-times over the circle of length π on which the ψ variable

ranges, a continuous transformation of parameter n, as in eq. (2.12), must be performed

every time we cross a [nπ, (n + 1)π] interval. In each of these turns a unit of NS5-brane

charge is added, as we mentioned around eq. (2.7). The difference with the non-Abelian case

is that the D4-brane charge remains the same in each interval. This will be an important

observation when we compare the quivers associated to the Abelian and non-Abelian T-

dual backgrounds in section 4.

2.3 Relation between the Abelian and non-Abelian T-duals

As observed in [33] in a more general context, the r →∞ limit of the NS-NS sector of the

non-Abelian T-dual solution in eq. (2.8), reduces to that of the Abelian T-dual solution of

eq. (2.5), with the identification r = ψ. In this section we make more concrete this relation,

which will be very inspiring in order to elucidate the field theory dual to the non-Abelian

solution.

First, one should notice that in the r → ∞ limit the dilaton fields of both solutions

differ by a factor of r2. Recalling that the dilaton is determined by a 1-loop effect in T-

duality, this factor is there to account precisely for the different integration measures that

– 6 –
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enter in the definition of the partition functions of the Abelian and non-Abelian T-dual σ-

models, namely the measures sinχDψDχDξ and r2 sinχDrDχDξ, respectively. Secondly,

the observation above that r must be divided in intervals of length π in order to properly

account for large gauge transformations, allows us to identify r and ψ globally for r →∞ if

we take r in a [nπ, (n+1)π] interval and then send n to infinity. We will see in section 5 that

different quantities associated to the field theories dual to both Abelian and non-Abelian

backgrounds ( when computed with r in the [nπ, (n + 1)π] interval for the non-Abelian

solution) will indeed agree in this limit.

Let us turn to the analysis of the RR sector. Clearly, the fluxes of the Abelian and

non-Abelian T-dual solutions in eqs. (2.5) and (2.8), are not the same in the r →∞ limit.

There is however a neat relation between the associated quantised charges, that allows to

conclude that both backgrounds are still physically equivalent in this limit.

To be concrete, consider the non-Abelian T-dual background and look at the quantised

charges defined in the r ∈ [nπ, (n + 1)π] interval, where the matching with the Abelian

T-dual solution is expected to occur. In this interval, using eqs. (2.9) and (2.13), we have

N6 = 2
L4

α′2
, N4 = nN6. (2.15)

For the Abelian background we have, in turn

N4 =
2

π

L4

α′2
. (2.16)

Thus,

NNATD
4 = nπNATD

4 , (2.17)

and the factor of difference can be safely absorbed through a redefinition of Newton’s

constant. We have checked that this same type of rescaling relates the charges of the non-

Abelian and Abelian T-duals of other AdS backgrounds where more quantized charges are

present. The expectation is that this relation will hold more generally, and that we will be

able to always absorb the nπ factor through a redefinition of Newton’s constant [44].

We will now discuss aspects of the CFTs dual to each of our backgrounds. We will

start by pointing out the relation with Hanany-Witten set-ups [45].

3 Brane realisation

In this section, we elaborate on a brane picture consistent with our previous findings for the

quantised charges. Let us first recall that the brane set-up describing the Abelian T-dual

of AdS5 × S5 is known in the literature. It consists on a set of N4 D4-branes stretched

between two NS5-branes that are identified [41]. The Abelian T-dual of AdS5 × S5/Zn is

in turn associated to a periodic array of NS5 and D4 branes [41, 43] as depicted in figure 1.

Let us now move to the more interesting non-Abelian case. It was discussed in [33]

— see eq. (3.16) of that paper — that the non-Abelian T-dual of AdS5 × S5 should be

related to a D4/NS5 brane set-up. Indeed, the analysis of the fluxes in eq. (2.8) and the

quantised charges in eq. (2.9) suggests that we are dealing with D4 branes extended on

– 7 –
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1

2n
NS5

 D4◆✹

Figure 1. Brane set-up for the Abelian T-dual of AdS5 × S5/Zn. At each interval there are N4

D4-branes.

✸✦✷✦✦ ♥� ✭♥ ✰ ✶✁�

. . . . . . . . . . . .
.
.

r

Figure 2. Brane set-up for the non-Abelian T-dual background. Parallel vertical branes are NS5-

branes and horizontal branes are D4-branes suspended between them. At each [nπ, (n+1)π] interval

there are nN6 D4-branes.

(R1,3, r) and NS-five branes extended along (R1,3, α, β). The NS5 branes are localised at

positions rn = nπ, as we learnt in eq. (2.14). At each interval [rn, rn+1] there are nN6

D4-branes stretched in the r-direction. These branes can generate N6 D6 branes extended

along (R1,3, r, χ, ξ) through Myers dielectric effect [46]. Here we will use D4-branes as

colour branes. This will fit the Gaiotto-Maldacena description in section 4, and will also

allow the matching with the Abelian result. In the [0, π] interval the description should be,

in turn, in terms of D6 branes, which could be thought of as a strong coupling effect, as we

discuss in section 5. The D4/NS5 brane set-up from π onwards is summarised in figure 2.

The previous configuration is very resemblant of Witten’s D4/NS5 brane set-up in [41],

that we briefly summarise. Witten presented a Type IIA and M-theoretic brane picture

for 4d N = 2 field theories with a given number of gauge groups connected by bifunda-

mental fields. The set-up contains NS-five branes extended in the directions (R1,3, x4, x5)

at different positions x6,n in the x6-direction, D4 branes extending in (R1,3, x6) in between

the five branes and, possibly, D6 branes that cover the (R1,3, x7, x8, x9) directions. A five

dimensional gauge theory is realised on the four branes, but having these finite extension

in the x6-direction, there is a suitable low-energy limit (small energies compared to the

– 8 –
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inverse size of the D4 along x6) in which this field theory is effectively four dimensional.

The effective gauge coupling behaves as 1
g2
4
∼ x6,n+1−x6,n

gs
√
α′

. In [41], it was explained how

the branes bend, making x6 a function of the coordinates (x4, x5). The beta function is

encoded in this functional dependence of x6 = f(x4 + ix5), which is obtained by solving a

Laplace equation. The open strings connecting D4 branes stretched between different sets

of NS5-branes represent bifundamental matter. The strings connecting these D4’s to either

D6 branes or semi-infinite D4 branes (in the low energy limit above these have their exci-

tations ‘decoupled’, acting like a global SU(N6) group), represent the fundamental matter.

For ln D4-branes stretched between the nth and (n+ 1)th NS5-branes, with n = 1, . . . , N ,

the gauge group is
∏N
n=1 SU(ln) ( the U(1)′s are actually frozen, as discussed in [41]), and

there are (ln, ln+1) hypermultiplets, that contribute to the SU(ln) β-function as ln−1 + ln+1

flavors. Each SU(ln) gauge group has thus associated a coefficient for the β-function,

b0,n = −2ln + ln+1 + ln−1. (3.1)

This vanishes at each interval if 2ln = ln+1 + ln−1. Note that it is necessary to intro-

duce semi-infinite D4 branes ending at the limiting NS5 branes, or D6-branes extended

in (R1,3, x7, x8, x9), to account for the necessary fundamentals of the SU(l1) and SU(lN )

gauge groups.

Many interesting developments came from this brane picture and its lift to M-theory.

For example, in eleven dimensions, the theta-angle is realised as periodic translations in

x11, that is Θ ∼ (x11,n+1 − x11,n). Higgs branches can be studied and a correspondence

between the Seiberg-Witten curve and the ‘shape’ of the branes was developed.

If we compare the previous set-up with our proposed brane configuration for the non-

Abelian T-dual of AdS5 × S5 (see figure 2), we see that both are clearly the same if we

identify the r-coordinate of our non-Abelian configuration with the x6-direction of Witten’s

brane set-up. The NS5 branes are localised at positions rn = x6,n = nπ and we can also

identify (x4, x5) ∼ (α, β). The number of D4 branes at each [rn, rn+1] interval is ln = nN6,

and the beta function coefficient in eq. (3.1) clearly vanishes.

In section 4, we will propose a conformal quiver that can be put in correspondence

with this brane set-up. An intuitive way to describe our brane set-up and quiver is to start

with an array of parallel NS-five branes, with a D6 flavour brane on one of the ends of the

array and move this D6 brane across the five branes towards the other end. Defining a

linking number associated with the NS-five brane that has r6 (l6) D6 branes to its right

(left) and R4 (L4) D4 branes to its right (left) respectively,

LNS =
1

2
(r6 − l6) + L4 −R4,

we find that LNS = −1/2 for all NS5-branes. Thus, the Hanany-Witten brane creation

effect [45], associated with moving a flavour D6 across the different NS-five branes, can be

used to give an explanation for the n (created) D4-branes in a nth interval.

We will now make contact between our geometries in eqs. (2.5), (2.8) and the formalism

developed by Gaiotto and Maldacena in [35], to study the CFTs presented by Gaiotto

in [47]. This formalism was developed to study N = 2 CFTs associated to the brane

set-up discussed above.
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4 Abelian and non-Abelian T-duals as Gaiotto-Maldacena geometries

In this section we show that both N = 2 backgrounds in eqs. (2.5) and (2.8) are examples

of Gaiotto-Maldacena backgrounds [35]. In the Abelian case this provides an explicit

realisation of a Zn orbifold of N = 4 SYM as a Gaiotto-Maldacena geometry in Type IIA.

In the non-Abelian case it will give an important hint for constructing the quiver describing

its dual CFT.

In general, these N = 2 SUSY-preserving backgrounds with an AdS5 factor, can be

written in terms of a potential function V (σ, η). In particular, denoting V ′ = ∂ηV and

V̇ = σ∂σV , one can write the Type IIA generic Gaiotto-Maldacena solution as [48, 49],

ds2
IIA,st = α′

(
2V̇ − V̈
V ′′

)1/2 [
4AdS5 + µ2 2V ′′V̇

∆
dΩ2

2(χ, ξ) + µ2 2V ′′

V̇
(dσ2 + dη2) + µ2 4V ′′σ2

2V̇ − V̈
dβ2

]
,

A1 = 2µ4
√
α′

2V̇ V̇ ′

2V̇ − V̈
dβ, e4Φ = 4

(2V̇ − V̈ )3

µ4V ′′V̇ 2∆2
, ∆ = (2V̇ − V̈ )V ′′ + (V̇ ′)2 ,

B2 = 2µ2α′

(
V̇ V̇ ′

∆
− η

)
dΩ2, C3 = −4µ4α′3/2 V̇

2V ′′

∆
dβ ∧ dΩ2. (4.1)

The radius of the space is µ2α′ = L2. The two-sphere dΩ2
2(χ, ξ) is parametrised by the

angles χ and ξ with corresponding volume form dΩ2 = sinχdχ ∧ dξ. The usual definition

F4 = dC3 + A1 ∧H3 is also used. The problem of writing IIA/M-theory solutions in this

class, reduces to finding the function V (σ, η) that solves a Laplace equation with a given

charge density λ(η),

∂σ[σ∂σV ] + σ∂2
ηV = 0, λ(η) = σ∂σV (σ, η)|σ=0 .

Interestingly, the background and fluxes depend on V̇ , V̇ ′, ˙̇V and V ′′ = −σ−2V̈ . Hence,

given V̇ , we have all that is needed to write the Type IIA background. Like in any other

problem described by a differential equation in partial derivatives, boundary conditions

must be imposed. Gaiotto and Maldacena found these conditions by enforcing a correct

quantisation of charges and the smooth-shrinking of some sub-manifolds. These conditions

have been nicely summarised in [48, 49], they are

• V̇ (σ = 0, η) = λ(η) must vanish at η = 0.

• λ(η) must be a piecewise linear continuous function, composed of segments of the

form λ = aiη + qi, with ai an integer.

• The change in the slope of two consecutive kinks must be a negative integer, ai −
ai−1 < 0. A kink in which the gradient changes by k units is associated with D6

branes or Ak singularities in the M-theory lift.

• The positions of the kinks must be at integer values in the η-axis.

• Some solutions satisfy λ(N∗) = 0. In this case, the η-coordinate is bounded in [0, N∗].

The associated electrostatic problem consists of a line of charge density λ(η), bounded

by two ‘conducting plates’ at the points η = 0, η = N∗.

– 10 –
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From the previous electrostatic problem it is possible to read-off the quiver associated to

the N = 2 dual CFT. As summarised in [48, 49],

• An SU(ni) gauge group is associated to each integer value of η = ηi, with the rank

ni given by the value of the charge density at that point, λ(ηi) = ni.

• A kink in the line profile corresponds to extra ki fundamentals attached to the gauge

group at the node ni.

Finally, let us recall the Maldacena-Núñez background written in [50]. It was shown

in [48] that this background can be considered as a fundamental building block from which

many N = 2 Type IIA solutions can be constructed. We will show that this is the case for

both our Abelian and non-Abelian T-dual solutions. In the Gaiotto-Maldacena formalism,

the Maldacena-Núñez background is described by a potential VMN (σ, η) whose derivative

and associated charge density take the simple expression,

σ∂σVMN = V̇MN (σ, η) =
1

2

[√
(Nc + η)2 + σ2 −

√
(Nc − η)2 + σ2

]
, (4.2)

λMN (η) =
1

2

(
|η +Nc| − |η −Nc|

)
.

With these pieces of the formalism in place, we will show that our Abelian and non-

Abelian T-dual backgrounds fit in. We shall also discuss the connection between VMN and

the potentials describing the Abelian and non-Abelian T-dual backgrounds. To this we

turn now.

4.1 The case of the Abelian T-dual of AdS5 × S5

For the Abelian T-dual background in eq. (2.5), after redefining

ψ = r =
2L2

α′
η, σ = sinα, (4.3)

the potential V (σ, η) and charge density λ(η) are found to be,

VATD = log σ − σ2

2
+ η2; λ(η) = 1. (4.4)

Scaling the metric as in [35] we find λ(η) = N4, with N4 the number of D4-branes that

create the background. It corresponds to the charge profile (a) in figure 3. Though this

charge density does not satisfy the boundary condition λ(η = 0) = 0, this case is still

compatible with the quivers depicted in figure 4, describing the Zn orbifold of N = 4 SYM

using N = 2 language [41]. Indeed, in this case the η-direction is periodic, hence we do not

need to impose the conditions mentioned above, in particular, we do not have to impose

the condition λ(0) = 0.

Note that the number of flavours and the number of colours satisfy Nf = 2N4 = 2Nc

for each node in the circular quiver depicted in figure 4, leading to a vanishing beta function

in correspondence with the AdS5 factor in the geometry.
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Figure 3. λ(η) for the Abelian, non-Abelian and Maldacena-Núñez solutions in (a),(b),(c).
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✁✂✄☎✆✝

Figure 4. N = 2 quivers associated to N = 4 SYM and its Zn orbifold.

4.2 The case of the non-Abelian T-dual of AdS5 × S5

For the non-Abelian T-dual background in eq. (2.8), redefining variables again as in

eq. (4.3), the potential function and charge density are found to be [7, 33],

VNATD = η

(
log σ − σ2

2

)
+
η3

3
; λ(η) = η. (4.5)

Notice that this background, does satisfy the condition λ(0) = 0. The charge density λ(η)

gives the profile (b) in figure 3, which, following the rules summarised in the previous

subsection, is in correspondence with a long quiver with gauge group U(1) × SU(2) ×
SU(3)×SU(4)× . . . and bifundamental hyper-multiplets connecting the nodes, as depicted

in figure 5. Interestingly, it describes the “tail” quiver that appears in the Argyres-Seiberg

dual of the N = 2 conformal quiver with (N − 1) SU(N) gauge groups discussed in [35].

It is associated to a dual CFT with infinite ordinary punctures.

This quiver is in full agreement with the brane set-up that we described in the previous

section, depicted in figure 2. Indeed, rescaling the metric as in [35] we find that the charge

density becomes λ(η) = ηN6 and the gauge group SU(N6)×SU(2N6)×SU(3N6)×SU(4N6)×
. . ., which is in correspondence with a configuration of nN6 D4-branes stretched between

NS5-branes located at rn = nπ, consistently with our analysis. As in [35] the elementary

punctures are associated to the NS fivebranes, of which there are strictly an infinite number,

for r ∈ R+.

Next, we propose two possible ways of completing this quiver that give the right answer

for the central charge (that we shall compute in section 5). As we will comment, completing
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SU(2) SU(3) SU(4)U(1)

Figure 5. Quiver associated to the non-Abelian T-dual background.
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Figure 6. Completed non-Abelian quiver.

Figure 7. (a): λ(η) for the completed quiver depicted in figure 6; (b) ((c)): λ(η) for the completed

quiver in figure 8 for k > 1 (k = 0).

the quiver implies an analog ‘completion’ in the geometry, that is, a way to effectively work

with an η or r-coordinate with finite range. This is a nice example of the CFT ‘informing’

the dual geometry.

The first completion is given by a linear quiver consisting on a long chain of gauge

groups SU(N6) × SU(2N6) × SU(3N6) × . . . . × SU
(
(p − 1)N6

)
, finishing with a flavour

group SU(pN6) as in figure 6. This corresponds to the profile (a) in figure 7. Notice that

at the point η = p−1 we have a change of slope of size pN6, which represents the SU(pN6)

flavour group, as summarized above. The number of flavours and the number of colours are

such that Nf = 2N4 = 2Nc is satisfied for each node in the quiver, leading to a vanishing

beta function in correspondence with the AdS5 factor in the geometry. This quiver can

be put in correspondence with the brane set-up that we proposed in section 3. Indeed, a

long array of NS-five branes with a given number of D4 branes, N4 = nN6, in the n-th

interval describes our conformal quiver. The flavour group that we proposed to complete

the quiver can be thought of as a set of pN6 semi-infinite D4-branes or D6 branes on the

right of the pth NS5 brane.

We stress that our addition of the flavour group should be thought of (via holography)

as a way of ending the space or giving a finite range to the r-coordinate. The consequence

of this will be reflected in the holographic calculation of observables, that will involve

integrals and sums in a finite range as we show in section 5.

We can be more precise regarding the geometry associated with this completed quiver.

Following the Gaiotto-Maldacena rules [35] and the content of the papers [48, 49] we can
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Figure 8. Completed non-Abelian quiver.

write the charge density λ(η) associated with it as

λ(η)

N6
=

{
η 0 ≤ η ≤ p− 1

(1− p)η + (p2 − p) (p− 1) ≤ η ≤ p

As in [48], the idea is to write the V̇ , and the respective charge density λ(η) associated

with our quiver in figure 6, as a superposition of V̇MN (and λMN ) in eq. (4.2). Following

the treatment in [48, 49], we find the precise V̇ , in terms of which (and its derivatives) the

background is written,

V̇ (σ, η) =
1

2

∞∑
m=−∞

(p− 1)N6

[√
σ2 + (η − 2mp− p)2 −

√
σ2 + (η − 2mp+ p)2

]
−pN6

[√
σ2 + (η − 2mp−N6)2 −

√
σ2 + (η − 2mp+N6)2

]
. (4.6)

Again, note that at the point η = p, we have a change in the slope of λ(η) of size pN6.

This is in correspondence with the SU(pN6) global symmetry realised on the D6-flavour

branes, which provide the boundary condition to end the space at η = p.

A second possibility to complete the non-Abelian quiver in figure 5 is to consider its

Z2 orbifold in figure 8. This completed orbifold makes full use of the idea, discussed in

section 2.3 and further stressed at the end of this section, that the Abelian theory functions

as a sort of completion for r → ∞ of the non-Abelian one. The orbifold in figure 8 has

associated a charge density

λ(η)

N6
=


η 0 ≤ η ≤ p
p p ≤ η ≤ p+ k

2p+ k − η p+ k ≤ η ≤ 2p+ k,

which corresponds to the profile (b) (or (c) for k = 0) in figure 7. The associated V̇ (σ, η)

potential is given by

V̇ (σ, η) =
N6

2

∞∑
m=−∞

3∑
l=1

√
σ2 +

(
νl + 2m(2P + k)− η

)2 −√σ2 +
(
νl − 2m(2p+ k) + η

)2
,

ν1 = p, ν2 = p+ k, ν3 = −(2p+ k). (4.7)

We wish to point out an interesting feature, relating the solution characterised by V̇MN

in eq. (4.2), with the analog derivatives V̇ATD and V̇NATD (this relation is cleaner for the

derivatives of the potentials V̇ , but holds also without performing the σ-derivative). As
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Figure 9. In this figure we see the three functions V̇MN (in orange), V̇ATD (in blue) and V̇NATD

(in green) superposed. For small values of the coordinate σ ∼ 0, V̇MN approximates V̇NATD in the

interval 0 ≤ η ≤ 1, while it fits V̇ATD for η > 1.

Figure 10. The plot of V̇MN (in orange), V̇ATD (in blue) and V̇NATD (in green) superposed,

for values of σ ∼ 1. While both V̇ATD, V̇NATD vanish, V̇MN does not. This is what resolves the

singularity in the backgrounds obtained by both T-dualities.

it can be inferred from the charge densities displayed in figure 3, VMN should interpolate

between the Abelian (for large η) and the non-Abelian (for small η) backgrounds. This is

indeed the case. Expanding V̇MN close to (σ, η) ∼ (0, 0), one finds, up to order O(ηaσb),

with a+ b < 4, that V̇MN ≈ V̇NATD. This was already observed in [33]. More interestingly,

one can perform an expansion for σ ∼ 0 and large values of η, whose result is a V̇MN ≈ V̇ATD
— up to the same order in the expansion as above.

Further to this, the solution characterised by VMN is smooth, while both backgrounds

obtained by T-duality are singular at σ = 1. A 3-d plot (in figures 9, 10) of the three

potentials shows a very good matching between V̇MN with V̇NATD (for small η) and between

V̇MN and V̇ATD (for large η), both for σ ∼ 0. For values of σ ∼ 1, V̇MN differs from both

V̇ATD and V̇NATD, that lead to a singularity at σ = 1. Hence, using the superpositions

in eqs. (4.6), (4.7) smoothes-out the singular spaces obtained through Abelian and non-

Abelian T-duality. Indeed, notice that the summation of V̇MN functions has two effects:

on one side, it bounds the range of the radial coordinate η or r. On the other hand, as we

explained, it smoothes out the T-dual geometries at σ = 1, where the backgrounds were

singular.
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Let us discuss another interesting feature of the backgrounds we have presented. Once

completed as indicated by the associated quivers, and encoded by the functions V̇ (σ, η)

given in eqs. (4.6)–(4.7), these solutions correspond to the “one NS5-stack” class of back-

grounds, according to the classification of [49]. This implies that the couplings of each of the

gauge groups are arbitrarily large. The parameters associated with the marginal coupling of

each gauge group are only visible in the “many NS5 stacks” backgrounds of [49]. Our solu-

tions, obtained via a generating technique from AdS5×S5 do not contain those parameters

to begin with, so they are dual to the quivers we proposed in the limit of very large gauge

couplings (the NS5 branes have sub-stringy separations when the σ-coordinate grows large).

To close this section we make a couple of comments that will be useful when comparing

observables of the CFT calculated with the Abelian and non-Abelian T-dual backgrounds.

The expressions for the potentials and charge densities for the Abelian and non-Abelian T-

duals show that these quantities in the Abelian T-dual background, eq. (4.4), give place to

those in the non-Abelian T-dual one, in eq. (4.5), by superposition (or integration) in the η-

direction. Intuitively, this suggests that non-Abelian T-duality can be thought of as a form

of ‘superposition’ of Abelian T-dualities. It is also interesting to replace nN6 → N4 in each

interval [nπ, (n+ 1)π] and see that our quiver dual to the non-Abelian T-dual background

is identical to the quiver describing the Abelian background with 0 ≤ ψ ≤ nπ. The main

difference is that the linear quiver dual to the background of eq. (2.8) does not close in a

circle. There is in fact more to this intuitive view, as we will stress in the next section.

In summary, inspired by the Gaiotto-Maldacena formalism and the brane realisations

of 4d N = 2 CFTs studied by Witten, we have proposed a particular quiver as dual

to the non-Abelian AdS5 solution. We have discussed possible ways of ‘completing’ this

quiver, read the profiles λ(η) associated to them, attained the boundary conditions and

smoothed-out the backgrounds.

We wish to check now our proposal against some field theory observables. These will

be calculated in the gravitational and the CFT descriptions of our system. To this we turn

now.

5 Observables in the quantum field theory

In this section we compute important physical quantities of the quantum field theories as-

sociated with the quivers proposed in the previous section as duals to the Abelian and non-

Abelian backgrounds. We show that they are perfectly consistent with the holographic re-

sults. This provides crucial complementary information to understand the field theoretical

operation associated with non-Abelian T-duality. We start analysing the central charges.

5.1 Central charges

We can calculate holographically the central charges of the conformal theories associated

to the Abelian and non-Abelian geometries using the formalism developed in [30, 51, 52].

Briefly and to set notation, for a string-theory dual to a (d + 1)-dimensional QFT, with

line element

ds2 = a(R, θi)
[
dx2

1,d + b(R)dR2
]

+ gij(R, θ
i)dθidθj , (5.1)
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and dilaton Φ(R, θi), two quantities V̂int, Ĥ can be defined,

V̂int =

∫
dθi
√

det[gij ]e−4Φad, Ĥ = V̂ 2
int, (5.2)

in terms of which, the central charge for the (d+ 1)-dimensional QFT reads,

c = dd
bd/2Ĥ

2d+1
2

GN,10(Ĥ ′)d
. (5.3)

Let us first compute the central charge for the original AdS5×S5 background in eq. (2.1).

In this case, we have

a(R, θi) =
4R2

L2
, b(R) =

L4

R4
, d = 3, Ĥ = 32243π6L4R6 = N 2

AdS5R
6, (5.4)

and

c =
4L8

π2α′4
=
N2

3

4
, (5.5)

where we have used the quantisation condition in eq. (2.3), the value GN,10 = 8π5g2
sα
′4,

and we set gs = 1.

5.1.1 The central charge for the Abelian T-dual of AdS5 × S5

For the Abelian T-dual background in eq. (2.5) we have the same values of a(R, θi), b(R)

and d as in AdS5 × S5. Using the quantisation condition in eq. (2.6) we find,

Ĥ = 212π6L4R6 = N 2
AdS5ATDR

6

c =
L8

π2α′4
=
N2

4

4
, (5.6)

which is the expected result, as the central charge is invariant under T-duality. Note

that even if there is a rescaling by a factor of 2 in the conserved charges associated to

the original and T-dual backgrounds, the central charges are the same in terms of the

respective conserved charges, showing the equivalence of the associated CFTs. We would

like to stress that this background provides an example of a Gaiotto-Maldacena geometry,

related to M5-branes, whose central charge does not scale with N3. We will elaborate more

on this in section 6.

For field theories with N = 2 SUSY, the central charge is written in terms of the

number of degrees of freedom contained in vector multiplets, nv, and the analog number

for hyper-multiplets, nh, as [53],

c =
1

12
(2nv + nh). (5.7)

Using this, we can check that the quiver consisting of one gauge group SU(N4) with one vec-

tor multiplet and one adjoint hypermultiplet, depicted in figure 4, gives the central charge

c =
2(N2

4 − 1) +N2
4

12
, (5.8)
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that in the limit of large number of four branes coincides with the holographic result in

eq. (5.6).

In turn, if we let ψ cover the [0, π] interval n times, that is ψ ∈ [0, nπ], the central

charge reads

c = n
L8

π2α′4
= n

N2
4

4
, (5.9)

which is precisely that of the Zn orbifold of N = 4 SYM with gauge group SU(N4),

c = (nN4)2

4n , see [43].

We now check that the circular quiver in figure 4 matches the holographic result. We

can count the number of degrees of freedom present in vector and hyper-multiplets,

nv = n(N2
4 − 1), nh = nN2

4 , (5.10)

to finally obtain

c =
3nN2

4 − 2n

12
= n

N2
4

4

(
1− 2

3N2
4

)
≈ nN

2
4

4
. (5.11)

In agreement with eq. (5.9) and reference [43]. Let us now study our non-Abelian T-dual

system.

5.1.2 The central charge for the non-Abelian T-dual of AdS5 × S5

Here, we analyse the non-Abelian T-dual case. The central charge of the geometry in

eq. (2.8) was calculated in [33]. We have the same values of a(R, θi), b(R) and d as in the

previous backgrounds. Using now the quantisation condition in eq. (2.9) and a range for

the r-coordinate between 0 and nπ we find,

Ĥ =

[
64L2π2

∫ nπ

0
r2dr

]2

R6 = N 2
AdS5NATDR

6,

c =
N2

6

4π3

∫ nπ

0
r2dr =

N2
6N

3
5

12
(5.12)

where N5 = n is the number of NS5-branes in the [0, nπ] interval. Interestingly, in this

calculation we see the N3
5 scaling with the number of NS5-branes in Type IIA (or M5-

branes in the eleven dimensional lift) appearing due to the integration range in the whole

[0, nπ] interval. We now check that the completed quivers proposed to describe the CFT

dual to this background, see figures 6 and 8, reproduce the result of eq. (5.12).

For the completed quiver consisting on a long chain of gauge groups SU(N6) ×
SU(2N6)× . . .× SU((p− 1)N6) and finishing with a flavour group SU(pN6) in figure 6, we

can count the number of degrees of freedom in vector multiplets and hyper-multiplets,

nv =

p−1∑
k=1

k2N2
6 − 1 = N2

6

[
p3

3
− p2

2
+
p

6
+

1− p
N2

6

]
,

nh =

p−1∑
k=1

k(k + 1)N2
6 = N2

6

(
p3 − p

3

)
, (5.13)
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obtaining for the central charge,

c =
N2

6 p
3

12

[
1− 1

p
− 2

p2N2
6

+
2

N2
6 p

3

]
≈ N2

6 p
3

12
.

Hence reproducing eq. (5.12), in the limit of large N6 and large number of NS-five branes

p — a limit justified when working with long quivers, in the approximations imposed by

supergravity. Notice that the finite range of the r-integral in eq. (5.12) is in correspondence

with the finite sum in eq. (5.13). This is an effect of the completion of the quiver with the

flavour group at its end.

Our quiver in figure 8 provides in turn a completion of the infinite quiver in figure 5

by orbifolding it by Z2 after adding a finite (and thus of higher order in 1
p) number of

SU(pN6)-nodes. Accordingly it should have associated a central charge:

c =
(2N6)2p3

24
+O

(
1

p

)
. (5.14)

Indeed, we find that,

nv = 2

( p−1∑
j=1

j2N2
6 − 1

)
+ k(p2N2

6 − 1) =
2

3
N2

6 p
3 +N2

6 p
2(k − 1) +

N2
6 p

3
+ 2− 2p− k,

nh = 2

p−1∑
j=1

j(j + 1)N2
6 + (k − 1)p2N2

6 + 2pN2
6 =

2

3
N2

6 p
3 +N2

6 p
2(k − 1)− 2

3
N2

6 p+ 2pN2
6 ,

and thus

c =
2nv + nh

12
≈ N2

6 p
3

6
+O

(
1

p

)
, (5.15)

in agreement with (5.14).

There is a third possibility to recover the right value for the central charge in eq. (5.12),

in terms of ‘Abelian’ quivers. It corresponds to the quiver depicted in figure 11. This quiver

starts with a flavour group SU(pN6), followed by a long string of p
3 SU(pN6) gauge groups,

finishing with another flavour group SU(pN6). Following [48, 49], we find that the charge

density λ(η) and V̇ for the background dual to this CFT are,

λ(η)

pN6
=


η 0 ≤ η ≤ 1

1 1 ≤ η ≤ p
3

1 + p
3 − η

p
3 ≤ η ≤ 1 + p

3

and

V̇ (σ, η) =
N6

2

∞∑
m=−∞

3∑
l=1

√
σ2 +

(
νl + 2m

(p
3

+ 1
)
− η
)2

−

√
σ2 +

(
νl − 2m

(
1 +

p

3

)
+ η

)2

,

ν1 = 1, ν2 =
p

3
, ν3 = −1− p

3
. (5.16)

The number of vector multiplets, hypermultiplets and central charge are

nv = (p2N2
6 − 1)

p

3
, nh = p2N2

6

(
1 +

p

3

)
.
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Figure 11. Completed non-Abelian quiver.

c =
2nv + nh

12
=
N2

6 p
3

12

(
1 +

1

p
− 2

3N2
6 p

2

)
≈ N2

6 p
3

12
, (5.17)

thus matching the result in eq. (5.12).

Finally, we wish to discuss a possible strong coupling realisation of the central charge

obtained in eq. (5.12), that tries to highlight the fact that it seems to be the result of an

orbifold by ZN6 of a theory of n NS5-branes:

c =
N2

6n
3

12
=

(N6n)3

12N6
. (5.18)

To be more precise, using as building block the Tn in [35, 47], depicted in figure 12, which

has associated a number of vector multiplets and hypermultiplets given by

nv = 2

(
2n3

3
− 3n2

2
− n

6
+ 1

)
+ 3(n2 − 1) (5.19)

nh = 2

(
2n3

3
− 2n

3

)
, (5.20)

one obtains a central charge [35]

c =
n3

3
+O

(
1

n

)
. (5.21)

Orbifolding now by ZN6/2, as depicted in figure 13, we recover N6 SU(n) nodes and a

central charge

c =
(nN6/2)3

3N6/2
=
n3N2

6

12
, (5.22)

as in eq. (5.12). Note that a configuration of NS5-branes stretched between D6-branes is

related by a chain of T-S-T dualities to a D4/NS5 brane set-up. Our NS5-branes would lie in

the (R1,3, α, β) directions and would be stretched between D6-branes lying on (R1,3, r, χ, ξ).

The S-duality operation involved in this relation would imply that this configuration would

be strongly coupled, which could be in correspondence with this description in terms of

strongly coupled Tn building blocks.

These different CFTs we have proposed here can be distinguished by either sub-leading

corrections in 1
N ,

1
P or by other observables calculated in the Supergravity approximation.

5.1.3 Relation between Abelian and non-Abelian T-duals

Let us now check how the relation between Abelian and non-Abelian T-dual backgrounds

previously discussed, is satisfied in the field theory side. In light of our previous discussion,
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Figure 12. Tn building block. The SU(n) global symmetries are gauged.

❙�✭♥✮ ✁✂✄☎✆❚✝ ❚✝

✞✟✠✡☛

✞✟✠✡☛
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✞✟✠✡☛
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Figure 13. ZN6/2 ‘orbifolding’ of the basic Tn building block.

we should be able to relate eq. (5.6) with eq. (5.12). For this we compute the central charge

as in eq. (5.12) but with r varying in the [nπ, (n+ 1)π] interval. We obtain

c =
N2

6

12
(3n2 + 3n+ 1) =

N2
4

4

(
1 +

1

n
+

1

3n2

)
, (5.23)

where we have used that in this interval N4 = nN6. The Abelian limit of this expression

amounts to taking n→∞ — in correspondence with the large r limit discussed in section

2.3. In this limit eq. (5.23) indeed reduces to eq. (5.6).

This suggests that the CFT dual to the non-Abelian solution in the r ∈ [0, (n − 1)π]

interval, which, as already mentioned, contains a vector multiplet and a bifundamental of

SU(kN6) in each [kπ, (k + 1)π] interval, for k = 0, . . . , (n − 2), behaves effectively in the

limit n→∞, as a hypermultiplet in the adjoint of SU(nN6).

Moreover, this calculation also suggests that non-Abelian T-duality in an interval of

length π is a ‘corrected’ (that is, capturing O( 1
n)-finite size effects) version of Abelian

T-duality.

A further interesting observation is that the Abelian T-dual central charge c =
N2

4
4

arises as the derivative with respect to n of the non-Abelian central charge in the [0, nπ]

interval, given in eq. (5.12), recall that here N5 = n. This happens because we can

calculate the derivative of c as the limit when n goes to infinity of the difference of its

values in the [0, (n + 1)π] and [0, nπ] intervals, which is exactly what is done to obtain

eq. (5.23). Again, non-Abelian T-duality seems to arise as a sort of superposition of

Abelian T-dualities, as we already observed when we computed the potentials and charge

densities associated to both solutions.

Another observable that behaves similarly to the central charge is the entanglement

entropy, that we study next.

5.2 Entanglement entropy

A very similar behaviour to that of the central charge is found for the entanglement entropy.

Indeed, considering a strip geometry of size l and after regularisation (see [54] for the precise
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general expressions), we have that the entanglement entropy and the size of the strip for

the different four dimensional CFTs is given by,

2GN,10

V2
SEE(R∗) = NL2

[ ∫ ∞
R∗

R4√
R6 −R6

∗
dR−

∫ ∞
RΛ

dRR

]
= NL2R2

∗

[ ∫ ∞
1

x4dx√
x6 − 1

−
∫ ∞

0

xdx

]
.

l(R∗) = 2R3
∗L

2

∫ ∞
R∗

dR√
R4(R6 −R6

∗)
=

2L2
√
πΓ( 2

3 )

Γ( 1
6 )

1

R∗
.

The information about the CFT in question is encoded in the different values of N calcu-

lated for each of the backgrounds. These quantities can be read from eqs. (5.4), (5.6), (5.12).

Inverting the relation l(R∗) we can write,

SEE(l)

V2
=

2πµ(Γ(2
3))2

GN,10(Γ(1
6))2l2

NL6, µ =

∫ ∞
1

x4dx√
x6 − 1

−
∫ ∞

0
xdx.

It is useful to calculate the quotients

L6NAdS5

α′4
= 16π5N2

3 ,
L6NAdS5ATD

α′4
= 16π5N2

4 ,
L6NAdS5NATD

α′4
= 16π2N2

6

∫ nπ

0
r2dr.

A very similar argument to that explained with the central charge around eq. (5.23) can

be made for the entanglement entropy using the results above. Indeed, using that GN,10 =

8π5g2
sα
′4 and setting gs = 1 as above, we have that the entanglement entropy per unit

volume follows an area-law in each of the CFTs, with theory-dependent coefficients,

SEE(l)

V2
=

4πµ

l2

(
Γ(2

3)

Γ(1
6)

)2

N2

3 AdS5 × S5

N2
4 ATD

N2
6N

3
5

3 NATD.

Once again, we can make a correspondence between the entanglement entropy of the

Abelian T-dual and that of the non-Abelian one, by considering the very last calculation

in the interval [nπ, (n+ 1)π] followed by the large n limit.

5.3 Couplings

In this section we calculate the couplings associated to the 4d CFTs dual to both the

Abelian and non-Abelian T-dual backgrounds. To do so we switch on an electromagnetic

field on a colour brane probe in these theories and compute the value of the coupling of

the F 2
µν-operator. For the Abelian T-dual background, we consider a BPS probe D4-brane

wrapped on ψ. For the non-Abelian T-dual we take a probe D4-brane wrapped on r. In

this case, we find that the D4-probes are BPS only when located at the singularity 2α = π.

This is consistent with the fact that D4-branes have associated a non-vanishing charge

N4 = nN6 only in the presence of large gauge transformations, and these are defined in a

2-cycle that sits at the singularity.

First, to set notation, we compute the gauge coupling of the original AdS5 × S5 back-

ground. In this case we consider a probe D3 brane, whose world-volume is on R1,3 —

the Minkowski directions — and stands at some fixed value of the R-coordinate. The RR
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potential C4 that follows from eq. (2.1) is C4 = 16R4

L4 dt ∧ dx1 ∧ dx3 ∧ dx3. Switching on an

electromagnetic field on the brane (that for simplicity we take to be F2 = Ftxdt ∧ dx1) we

obtain the BIWZ-action,

−SBIWZ = TD3

∫
d4x

[
e−Φ

√
det[g + 2πα′F ]−C4

]
= TD3

∫
d4x

(
4R2

L2

)2
[√

1− 4π2α′2
(
L2

4R2

)2

F 2
tx−1

]
.

(5.24)

When the combination 4π2α′2F 2
tx is small, we can Taylor expand and find that the effective

Maxwell coupling is,

SBIWZ ≈ −TD32π2α′2
∫
d4xFtxF

tx = − 1

4g2
D3

∫
d4xFtxF

tx → 1

g2
D3

=
1

π
. (5.25)

We have raised indexes with the Minkowski metric and used that for a Dp-brane

(2π)pgs(α
′)

p+1
2 TDp = 1. We also set gs = 1 as above.

Let us now move to the T-dual examples. In the Abelian background of eq. (2.5), we

consider the motion of a probe D4-brane that extends in the Minkowski and ψ-directions,

for a fixed value of the R-coordinate. We also switch on an electromagnetic field Ftx. We

find that the relevant RR potential is in this case, C5 = 16
√
α′R

4

L4 dt∧ dx1 ∧ dx2 ∧ dx3 ∧ dψ.

The BIWZ action takes a simple expression, after a cancellation between the dilaton and

the gψψ component of the metric,

− SBIWZ = TD4

(
4R2

L2

)2√
α′
∫
d5x

[√
1− 4π2α′2

(
L2

4R2

)2

F 2
tx − 1

]
. (5.26)

Expanding for small values of α′Ftx, and using a range for the ψ-coordinate in [0, nπ], we

find
2π2

g2
D4,A

=

∫ nπ

0
dψ → 1

g2
D4,A

=
n

2π
. (5.27)

Hence, the larger the number of nodes n in the quiver, the weaker this coupling becomes.

For the Abelian T-dual of AdS5 × S5 (n = 1) this gives

1

g2
D4,A

=
1

2π
=
N4α

′2

4L4
, (5.28)

in terms of the quantised charge N4 in (2.6). The usefulness of writing this coupling in

terms of N4 will be justified below.

We now move to the more interesting calculations in the non-Abelian T-dual back-

ground of eq. (2.8). The RR potential that couples to the D4 brane in this background is,

C5 = 16
√
α′
(
R

L

)4

rdt ∧ dx1 ∧ dx2 ∧ dx3 ∧ dr. (5.29)

Let us consider the case of D4 branes that extend in R1,3 × r, as in the Abelian case. The

result for the BIWZ action is

− SBIWZ = TD4

∫
d5x

16R4
√
α′

L4
r

[(
1 +

L4

α′2r2
cos4 α

)1/2
√

1− 4π2α′2
(
L2

4R2

)2

F 2
tx − 1

]
.

(5.30)
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The presence of the factor
(
1+ L4

α′2r2 cos4 α
)

— coming from the dilaton — indicates that this

brane does not preserve SUSY unless cosα = 0. This is consistent with the fact that these

branes have only associated a quantised charge in the presence of large gauge transforma-

tions, defined in non-trivial 2-cycles that must sit at the singularity 2α = π. Locating the

brane at this point and expanding for small values of the electromagnetic field α′Ftx, we find

2π2

g2
D4,NA

=

∫ nπ

0
rdr =

n2π2

2
. (5.31)

To make the correspondence between the couplings in the Abelian and the non-Abelian

backgrounds, we calculate the coupling gD4,NA in the interval [nπ, (n+ 1)π]. The result is,

1

g2
D4,NA

=
1

4
(2n+ 1) =

n

2
+O(1/n) =

N4α
′2

4L4
+O(1/n), (5.32)

with N4 the non-Abelian D4 brane charge, given by N4 = nN6, with N6 as in (2.9). This

gives us the gauge coupling for each of the SU(nN6) gauge groups in the non-Abelian

quiver. It clearly shows that the coupling decreases as we approach the ‘Abelian’ region,

n → ∞, leaving a strongly coupled theory in the [0, π] interval. Note that eq. (5.32)

fully agrees with the Abelian result, given in eq. (5.28), in the large n limit. This

calculation suggests, once more, that non-Abelian T-duality in a length π interval captures

O(1/n)-finite size effects of its Abelian counterpart. Note as well that the observables

associated with these gauge couplings, namely, the ’t Hooft couplings, satisfy

λA = g2
D4,AN4,A = 2πN4,A. λNA = g2

D4,NAN4,NA = 2πN4,A, (5.33)

(here we have made explicit that in each case we have to multiply by the respective

quantised charge) and so both ’t Hooft coupling are exactly the same in both theories.

Finally, in order to complete this picture, we show that it is possible to construct BPS

D6-branes in the non-Abelian T-dual background that can be used as colour branes in the

r ∈ [0, π] interval, where there are no large gauge transformations and thus no D4-branes

present. As we have shown in the previous analysis of the couplings, this region corresponds

to a strongly coupled region in which our description in terms of D4-branes stretched

between NS5-branes may not apply. It may be possible that a suitable description of the

theory in this region is in terms of the Tn building blocks in figure 13 that we have discussed.

The RR potentials that couple to the D6 branes in this background are

C7 − C5 ∧B2 =
16R4

L4
α′3/2r2 sinχdx1,3 ∧ dr ∧ dχ ∧ dξ. (5.34)

For the BI part of the Action, we find (setting Ftx = 0 in this calculation),

SBI,NATD = TD6α
′3/2

∫
dξdχ sinχ

∫
drr2

∫
d4x

(
4R2

L2

)2

(5.35)

which clearly cancels against the integrated WZ contribution in eq. (5.34). Note that these

branes need not be placed at the 2α = π singularity in order to be BPS. This is consistent

with the fact that they exist even in the case of vanishing large gauge transformations.
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SU(N) SU(N)
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Figure 14. Circular quiver for SU(N)k.

5.4 Relation with deconstruction

The expressions for the couplings of the Abelian and non-Abelian T-dual theories are very

suggestive of deconstructed extra dimensions.

In the spirit of [36, 37] a 4d N = 2 CFT can be seen as the UV completion, at distances

shorter than the lattice spacing, of a latticised 5d N = 2 CFT compactified on a circle.

The connection between these 4d and 5d theories is made concrete through the study of

a 4d N = 2 CFT described by a circular quiver, depicted in figure 14, with k SU(N)

gauge groups, all with gauge coupling G, connected by bi-fundamentals. At low energies

compared to the energy scale set by the expectation values of the bifundamental fields,

ΦI, the action describes a 5d N = 2 field theory with a latticised extra dimension with

lattice spacing a = 1/(GΦ), and 5d gauge coupling g2
5 = G/Φ [37]. The radius of the fifth

dimension is given by 2πR5 = ka. For E � 1/R5 the theory reduces instead to a 4d N = 4

CFT, with gauge group SU(N) and gauge coupling

g2
4 =

G2

k
=

g2
5

2πR5
. (5.36)

It was also shown in [36] that a sixth extra dimension arises at distances large compared

to a as a result of the S-duality symmetry of the 4d N = 4 theory: g4 ↔ 1/g4, which,

using eq. (5.36), implies that G ↔ N/G. Applying this to the spectrum of massive gauge

bosons in the latticised 5d theory (also approximated for large k):

m2
n = 4G2Φ2 sin2 πn

k
∼ n2

R2
5

, (5.37)

new states arise with masses

m2
n = 4

N2Φ2

G2
sin2 nπ

k
∼ n2

R2
6

(5.38)

for 2πR6 = G/Φ = g2
5. Note that under S-duality R5 ↔ R6. For finite a � R5, R6 the

quiver in figure 14 provides then a discretisation of a 6d theory, which turns out to be the

(2, 0) CFT living in N M5-branes [37].

After this brief summary of the ideas of [36, 37], we will provide an explicit string

theoretical realisation of them. Indeed, the N = 2 quiver in [37] is the circular quiver that
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we proposed as dual to our Abelian geometry in eq. (2.5), for ψ in a [0, kπ] interval. The

4d field theories with gauge coupling G live in the worldvolumes of D4-branes stretched

between NS5-branes, which are therefore wrapped on ψ-intervals of length π. The effective

lattice spacing is a = π. Using eq. (5.27), we find for G, the gauge coupling of each of the

SU(N) nodes,

1

G2
=

1

2π2

∫ (k+1)π

kπ
dψ =

1

2π
. (5.39)

This is the coupling of each node in the microscopic theory. At low energies compared to

the inverse lattice spacing, the theory should reduce to a 4d CFT with coupling g2
4 = G2/k.

This corresponds to the gauge coupling of the 4d theory living on the world-volume of

D4-branes wrapped on the whole circular dimension of length ka = kπ. Indeed, at low

energies after the Higgs mechanism occurred, the gauge group is a diagonal combination

of all of the microscopic gauge groups. We can then calculate this coupling from eq. (5.27)

for n = k to be,
1

g2
4

=
1

2π2

∫ kπ

0
dψ =

k

2π
=

k

G2
, (5.40)

in agreement with eq. (5.36). The five dimensional CFT at intermediate energies, appears

when considering a mode expansion of the fundamental fields (vector and hypers in the

quiver of figure 14), that will have periodic boundary conditions on the ψ-coordinate, a

calculation that was carefully explained in [55]. This also suggests that in the Abelian

case, the ψ-direction represents the ‘theory space’ of the quiver in figure 14.

Let us now try to find a similar interpretation for the non-Abelian quiver in figure 6.

The situation is a bit more complicated, because our proposed quiver is not periodically

identified. But a similar reasoning suggests that a higher dimensional theory emerges. In-

deed, each of the gauge groups in the linear quiver in figure 6 has a different gauge coupling

that can be computed from the fluctuations of D4-branes wrapped on r ∈ [kπ, (k + 1)π],

as in eq. (5.32):

1

g2
D4,NA

=
1

G2
k

=
1

2π2

∫ (k+1)π

kπ
rdr =

1

4
(2k + 1) ≈ k

2
. (5.41)

This is associated with the coupling of each of the nodes of the microscopic CFT. If we

now let r vary in the whole [0, kπ] interval we find that, in the same spirit as above, after

Higgsing, the theory would reduce, at low energies, to a 4d CFT. The gauge group is a

diagonal combination of the microscopic ones, and the gauge coupling of this IR CFT is,

1

g2
4

=
1

2π2

∫ kπ

0
rdr =

k2

4
≈ k

2G2
k

(5.42)

Again, this follows the same logic as the Abelian quiver, in this case the r-direction

should be the theory space direction. Similar to the Abelian case, one might also argue

that the non-Abelian quiver deconstructs two extra directions, hence relating them to the

theory on five-branes.

Related ideas that are likely to be useful in a more careful treatment of the material

in this section, have been discussed in [56].
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6 Conclusions and future directions

Let us briefly summarise, draft some conclusions and speculate about further directions to

develop.

We have presented a proposal for the dual CFT to the background obtained by non-

Abelian T-duality on AdS5×S5. Our CFT preservesN = 2 SUSY and fits in the description

of [34, 35], as a ‘long quiver’ CFT. We have put forward an interesting relation between

the Abelian and non-Abelian backgrounds that also works on the field theory side, as a

mapping between observables. The intuition is that a non-Abelian observable is related to

its Abelian counterpart by a ‘discrete differentiation’ along the T-dual coordinate (called

ψ or r in this work). This connection is valid to leading order for large values of r. It

suggests that non-Abelian T-duality can be ‘continued’ at large distances by its Abelian

counterpart. The solution in [50] provides an explicit expression for this ‘continuation’. We

have also shown that the Gaiotto-Maldacena formalism can be used on our backgrounds

to provide this continuation and smooth them out.

We applied this logic to important observables in the 4d CFT: central charge, En-

tanglement Entropy and ’t Hooft couplings. They follow the connection above mentioned

between the Abelian and non-Abelian results. We found precise four dimensional N = 2

SUSY preserving quivers matching the values of these observables.

Reversing the logic, the field theory we proposed suggests a picture in which Abelian

T-duality could be ‘completed’ for small values of the dual coordinate by its non-Abelian

counterpart. This is in line with what we discussed in section 4, where the solution in [50]

was shown to interpolate between the non-Abelian (small η) and the Abelian (large η)

backgrounds for σ = 0. This can be seen as a realisation of the idea in [57], that non-

Abelian T-duality provides a zoom-in on some part of a globally well-defined background,

in this case the one in reference [50]. We presented precise formulas showing this.

In the purely Abelian set-up we showed that the (Hopf) Abelian T-dual of AdS5 × S5

fits in the classification in [35] of N = 2 geometries, thus providing a connection between

Zn orbifolds (including the trivial case n = 1) of N = 4 SYM and field theories living in

M5-branes. This solution provides an explicit example in which the central charge scales

with a N2 power even if associated to M5-branes. Nα scalings with α 6= 3 in candidate dual

field theories living in M5-branes have been reported before in the non-Abelian T-duality

literature (see for instance [29]). Here we have shown that it is a common feature also

present in more standard Abelian T-dual backgrounds, that remains to be fully understood.

We have completed our analysis of the Abelian T-dual solution with a precise realisation

of the theory space in [36], from where the 6d N = (2, 0) CFT is deconstructed, in terms

of the Type IIA quiver describing the Abelian T-dual of AdS5 × S5/Zn.

In the non-Abelian set up, we have seen that different possible quivers match precisely

the central charge in eq. (5.12). It is very likely that these descriptions are related through

dualities as it happens for some of the quivers proposed in [35]. This is currently under

investigation [44]. Similarly, we believe that it would be worth to further study the de-

construction of a 6d CFT from the non-Abelian T-dual solution, where a six dimensional

theory seems to emerge directly at low energies, after Higgsing our proposed quiver.
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An interesting outcome of our studies is the mapping between backgrounds generated

by T-duality and Gaiotto-Maldacena geometries. The strongly coupled conformal dynamics

of these long linear quivers as well as their deformations and ensuing RG-flow can then be

studied using the dual description that non-Abelian T-duality provides. In cases of flows

to confining field theories or CFTs with less SUSY, modern field theoretical techniques do

not apply and the dual geometry seems to be the only present tool to tack these problems.

Let us present now, a set of interesting open problems that could be addressed

following the developments in this paper.

It would be interesting to find a precise CFT description for the backgrounds obtained

via non-Abelian T-duality in other AdS geometries. The AdS5× T 1,1 case seems the most

accessible and promising, but extensions to AdS4×Σ6, AdS3×Σ7, AdS6×Σ4 cases should

also work out nicely. It is expected that the relations between non-Abelian and Abelian

T-dual solutions found in this work, as well as our field theory interpretation for the non-

Abelian T-dual in terms of a long quiver, will also be applicable in these cases. This

would allow to explain in more generality the interplay between non-Abelian T-duality

and AdS/CFT. Indeed, the reader familiar with the papers [58, 59], should appreciate the

parallelism between their AdS7 case study and our AdS5 example. It is then clear that it

should exist a common formalism in these and many other examples.

It would also be interesting to extend our field theoretical study to geometries that

flow to a ‘confining background’ (or backgrounds representing a flow between CFTs). This

would provide a holographic description of the low-energy confining (or conformal) phase

that appears by deforming some of the CFTs above. The ‘geometric’ side of the work was

done in some of the papers in [8–13, 24–28]. The present work gives tools to complement

that study with a more precise QFT description. This will also suggest how to extend the

CFTs to the confining phase, this is something quite hard to achieve with present field

theoretical techniques.

Furthermore, it would be nice to study the spectra of the fluctuations of our probe

D4 branes (mesons). Particularly interesting would be to check if the connection with

deconstruction we have explained, implies that the strongly coupled spectrum gets a KK-

like behaviour or more interestingly even a sin2(kπN ), as predicted by the weak-coupling

analysis done in deconstruction.

We hope to report on these and other subtle problems in the future.
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