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M-estimators of location
for interval-valued random elements

Beatriz Sinova®™*

@ Department of Statistics, O.R. and D.M., University of Oviedo, 33007 Oviedo, Spain

Abstract

Among the new types of data emerging from real-life experiments, interval-
valued ones are becoming very prevalent nowadays. In summarizing the location
of interval-valued datasets, the Aumann mean is the most usual measure. This
measure inherits almost all the nice properties of the mean value for real-valued
datasets. Nevertheless, it also inherits a critical property, which is the one
related to its high sensitivity to data changes or to the presence of outliers.

As an approach to measure the location of interval-valued datasets in a more
robust way, the notion of M-estimators will be considered. Two applications on
chemical data will be included to motivate and illustrate the problem. Finally,
an empirical comparative study will be conducted to show the performance of
the different types of M-estimators proposed in this work.

Keywords: interval-valued data, M-estimator, robustness, location measure,
chemical data

1. Introduction and motivation

Interval-valued data often emerge from experiments with random elements
associated with many real-life applications. For instance, they can arise as a con-
sequence of either uncertain or incomplete information (e.g., when one can only
establish lower and upper bounds for the actual exact measurement /observation).
They can also correspond to aggregate information either because of the mag-
nitude of interest being the range or fluctuation of a real-valued attribute over
a given time period or collection of individuals (as happens for many symbolic
data) or because of confidentiality reasons. Alternatively, data can be essen-
tially interval-valued (like interval-censored ones). See [1], [2], [3], [4] and [5] as
examples of different studies involving interval-valued data.

This work aims to analyze the location of interval-valued data robustly. The
best known location measure in summarizing interval-valued data is the Aumann
mean. This measure, which extends the mean value of a real-valued dataset,
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has been shown to preserve all the valuable properties for real-valued datasets,
but it also inherits its lack of robustness.

In this paper, in order to establish robust location measures for interval-
valued data, the M-estimation approach (which has shown a successful behavior
when dealing with real-valued data) is to be considered. For this purpose, two
methodologies will be used:

e on one hand, interval-valued data can be identified through a certain

vectorial-valued function with elements of a closed convex cone within
a Hilbert space. Consequently, results and methods from Hilbert space-
valued Data Analysis can be particularized provided that one guarantees
that the process does not move out of the cone;

e on the other hand, when either the preceding methodology fails or one can
design exact techniques or supply a better approximation, ad hoc concepts
and methods can be developed.

As a real-life example motivating this study, we can consider the following
one:

Example 1.1. This example has been chosen taking into account the impor-
tance of the chemical differentiation of wines in enology. The organic and inor-
ganic compounds that are part of wine depend on many factors, e.g., ground,
climate, variety of vine or enological practice. The considered dataset has been
published in [6] and consists of 33 Greek red and white commercial wines from
the 1998 vintage. Some tables in [6] show numerous mineral, phenol and an-
thocyanin concentrations in such wines. Each concentration is given in terms of
an interval whose mid-point (or center) is the achieved mean value and whose
spread (or radius) is the associated standard deviation. Based on this infor-
mation, Kallithraka et al. [6] and D’Urso and Giordani |7] propose a Principal
Component Analysis.

For this study, the caffeic acid concentrations have been chosen. Figure [
represents the intervals corresponding to this phenol concentration for each of
the 33 wines (w1, ...,wss).

Figure[d clearly shows that wines with codes 1, 6,9, 10 and 16 can be viewed
as ‘outliers’ because their caffeic acid mean concentration has been much higher
(wines with codes 6, 9, 10 and 16) or the corresponding standard deviation has
been much larger (wines with codes 1 and 16). The Aumann mean value for the

whole dataset equals {% S nf X(w;), o5 3252 sup X(wi)} = [64.5,70.2].
By removing the 5 ‘outliers’ identified above, the Aumann mean value equals

LI ifX(W), &Y%, supX(w;)} = [48.4,52.7], which shows the un-
wanted effect outliers have on the estimate of the Aumann mean and the clear

need for a more robust location measure for interval-valued data.

With the goal of developing M-estimators of location for interval-valued
datasets, this paper is structured as follows. In Section 2, the concept of interval-
valued data will be defined and the main preliminary and supporting tools re-
lated to this notion will be recalled, the distinctive structural characteristics of



60

65

70

75

Caffeic acid concentration
100 150
l l

50

L I I B B
1 3 5 7 9 11 13 156 17 19 21 23 25 27 29 31 33

Wine codes

Figure 1: Caffeic acid concentration (mg/l; mean valuetstandard deviation) of Greek
red and white wines

the space of study being highlighted. The extension of M-estimators of location
for interval-valued data will be dealt with in Section 3. Two real-life examples
regarding chemical data will be detailed and analyzed in Section 4. In Sec-
tion 5, an empirical analysis will be carried out to compare the robustness of
the introduced location measures and to check how they improve the outputs
with respect to the Aumann mean. Finally, some concluding remarks will be
included in Section 6. The proofs of the theoretical results can be checked in
the Appendix.

2. Preliminary tools and supporting results

Let K.(R) denote the space of nonempty compact intervals. The elements
in K.(R) will be referred to herein as interval-valued data.

Elements in K.(R) can be uniquely characterized, among others, by the
vectorial mid/spr representation m. It captures their trend and imprecision
associating with each interval K € K.(R) the vector value n(K) = (mid K, spr K)
€ R x [0, 00), being mid K = mid-point/center of K and sprK = spread/radius
of K. Another commonly used characterization is the inf/sup representation ¢
given by the vector value ¢(K) = (inf K, supK) € {(y,2) € R? : y < 2} for each
K e K:(R).
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Remark 2.1. Although interval-valued data can be characterized as vectorial
data through 1, ¢ or other representations, the purpose is not to directly ap-
ply multivariate but Hilbert space-valued robust statistical ideas and results
whenever it is possible. This is due to the fact that multivariate robust de-
velopments concerning M-estimation are usually based on some assumptions
on the joint distribution of the involved one-dimensional random components,
these assumptions either not making sense or not being acceptable, realistic or
general enough for the mid and spr of an interval-valued random element. In
this way, the meaning of the random components of the 1 or ¢ characterizations
of an interval-valued random element and the constraints between them would
be mostly ignored in case they are treated as simple components of a random
vector.

2.1. Arithmetic with interval-valued data

In developing statistics with interval-valued data, one of the key tools is
given by the arithmetic. The elementary operations to be specified are the sum
and the multiplication by scalars of interval values, and the most natural way
to proceed consists of defining these operations as the image sets of the involved
interval values through the corresponding operation (see [8]). Thus,

Definition 2.1. Let K = [a,b],K’ = [d/, V] € K:(R). The Minkowski sum of
K and K’ is defined as the interval value

K+K =[a+d,b+0].

Definition 2.2. Let K = [a,b] € K.(R) and v € R. The product of K by the
scalar v is defined as the interval value

k= haxd ify>0
v [vb,va] otherwise.

Remark 2.2. Although a difference operator could be defined by means of
K—K' =K+ (—1)-K’, unlike what happens in the real-valued case, the interval
K — K would not coincide in general with the neutral element of the sum, [0, 0].
As a consequence, one can conclude that the space (IC.(R), +) is a commutative
semigroup, although not a group, and (K.(R),+,-) is not a linear but a semi-
linear space (in fact, a closed convex cone). The semilinearity of the space will
be a crucial feature when trying to develop statistical procedures.

2.2. Metrics between interval-valued data

In addition to (KC.(R), 4+, -) not being linear, one can easily verify that there
is no ‘difference operation’ between interval values that is simultaneously well-
defined and preserves the main properties of the difference between real values
in connection with the sum. This drawback, which clearly differentiates real-
from interval-valued cases, can be overcome to some extent by incorporating
suitable distances between values in IC;(R) as another basic tool.
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Definition 2.3. [9] Let K,K’ € K (R). The Hausdorff distance between K
and K’ is given by

dp (K, K") = |mid K — mid K'| 4 |spr K — spr K’|.

Definition 2.4. [10] Let K, K’ € K.(R). The 1-norm distance between K and
K’ is given by

1 1
(K, K) = §|ian71an'| + §|supKfsupK'|.

Definition 2.5. [11, 12] Let K,K" € K:(R) and 6 > 0. The dg-distance
between K and K’ is given by

dp(K,K') = \/(mid K — mid K")2 + 6 - (spr K — sprK’)2.

In particular, the d; metric equals the d2-distance, which has been introduced
by Vitale [10] and formerly given as

. I N2 _ N2
52(K,K'):\/(me inf K’) —|—2(supK supK).

The value of # weighs the relative importance assessed to deviations in im-
precision in contrast to deviations in trends. Based on the equivalences in [12],
the most common choices correspond to § = 1/3 (which allocates a uniform rel-
evance to all the points in each interval) and # = 1 (which allocates a uniform
relevance to the extreme points in each interval).

Following ideas similar to those in [13], we can identify interval- with some
vectorial-valued data via the 1 representation and the dg metric. This supports
what has been said in Remark[ZT]about the particularization of methods for the
robust analysis of Hilbert space-valued random elements whenever the outputs
remain within the cone R X [0, 00).

Remark 2.3. All these metrics are strongly equivalent. It should be empha-
sized that although an isometrical embedding can be stated through n (or ¢)
when K.(R) is endowed with the dy (or 41) metric, the final space the cone is
included in is not a Hilbert but a Banach space.

2.3. Interval-valued random elements

Mathematical modeling is another essential tool in developing data analysis,
and data are usually assumed to come from the repeated performance of a
random mechanism. Fréchet [14] anticipated that future mathematics would
have to incorporate new and unexpected sorts of objects quite beyond numbers
and vectors, so he introduced random elements taking on values in metric spaces.
In accordance with their current usage, a random element is defined to be a
measurable function between a sample space and a metric space equipped with
its Borel o-algebra.
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Compact random intervals (see [15]) determine a well-stated and supported
model for the random mechanisms generating interval-valued data within the
probabilistic setting. They integrate both randomness and imprecision, so that
the first one affects the generation of experimental data, whereas the second
affects the nature of the experimental data which, for formal purposes, are
assumed to be intrinsically interval-valued.

Definition 2.6. Given a probability space (2, A, P), a mapping X : Q@ — K.(R)
is said to be a compact random interval associated with it if X is measurable
with respect to A and the Borel o-algebra generated by the topology induced by
the Hausdorff metric on K.(R) (or any of the topological equivalent metrics).
Equivalently, a compact random interval X can be expressed as X = [inf X, sup X],
with inf X and sup X being random variables such that inf X < sup X.

As a consequence from the Borel measurability, concepts such as the (in-
duced) distribution of a (compact) random interval, some of its relevant param-
eters, as well as the stochastic independence of (compact) random intervals, can
be immediately obtained.

In this respect, if one attempts to summarize the distribution of a compact
random interval, one can think about formalizing a location measure as follows:

Definition 2.7. [16] Let (2, A, P) be a probability space and X : Q@ — K.(R) be
an associated compact random interval such that E(inf X) and E(sup X) ezist.
The Aumann mean of X is the interval value E[X] € K (R) such that E[X] =
[E(inf X), E(sup X)]. Equivalently,

n (E[X]) = E (n(X)) = (£(mid X), E(spr X)).

The Aumann mean satisfies several valuable properties similar to those in
the classical case (see for reviews [17], and also [13] in a more general setting),
it is coherent with the usual interval arithmetic and it satisfies Strong Laws of
Large Numbers (see, in the more general setting, [18]).

3. M-estimators of location for compact random
intervals

M-estimators of location for real-valued data were introduced by Huber [19],
with the aim of limiting the influence of outliers in approaches like least squares.
The crucial idea was the replacement of the squared errors by a (generally less
rapidly increasing) loss function of the data and the parameter estimate. For this
reason, M-estimators are considered intermediaries between the sample mean
and median, both of them being included as special cases. The extension of this
idea to the interval setting can be stated as follows:

Definition 3.1. Consider a metric space (K.(R),d) and let (2, A, P) be a prob-
ability space, X : Q — K.(R) be an associated compact random interval and p
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be a continuous loss function. The M-location measure, if it exists, is the
interval K¥[X] € K.(R) defined as follows

KM[X] =arg min Jp(K)=arg min E[p(d(X,K))].
¥1X) = arg min, Jp(K) = arg, min Elp(d(X. K)
Remark 3.1. The function p in Definition B.]is a generalization of the square
loss function in the least squares approach. Indeed, it is usually assumed to
vanish at 0 and be non-decreasing. The continuity of the loss function p is
commonly assumed (see, e.g., [20] or [21]).

Definition 3.2. Consider (K.(R),d) a metric space. Let (Q, A, P) be a Polish
probability space, X be an associated compact random interval X : Q@ — K.(R),
(X1,...,Xn) be a simple random sample from X and p be a continuous loss

—

function. The M-estimator of location is the K.(R)-valued statistic KM[X]
if it exists, given by

n’

KM[X], = (Xi,K))
X], = argKeI?CHgR)an i
In particular, given a sample of observations from X, Xy, = (X1,...,%y), the

(sample) M-estimate of location is the interval KM [x,] € K.(R) given by

KM [x,] = Ta(K) = iK
[X7] argKer}lclr(lR) (K) = arg Ker}lclr(lR)an X;

Proposition 3.1. The M-estimator of location is well-defined for the metric
space (K.(R),d) with d € {dp,dm,1}.

An important property of M-estimators of location for compact random in-
tervals, the strong consistency, is now to be analyzed. The following result
presents some suitable choices of p to guarantee the strong consistency, includ-
ing some well-known loss functions like the ones proposed by Huber [22]

z2/2 if [z] <a

pa(x) =
a(|x] —a/2) otherwise,

with @ > 0 a tuning parameter, and Hampel [23]

22 /2 ifo<|z|<a
a(lz] —a/2) ifa<|z|<b
Pape(r) = allzl =0 o —alb+c—a) fo<|z[<c
2(b—c¢) 2 -
alb+c—a)/2 if ¢ < |z,

where the nonnegative parameters a < b < ¢ allow us to control the degree of
supression of the outliers. The smaller their values, the greater this degree.



175

185

190

195

Theorem 3.2. Consider the metric space (K.(R),d) with d € {dg,dm,d1}.
Let X be a compact random interval associated with a Polish probability space
(Q, A, P). Under any of the following assumptions:

e p is non-decreasing, subadditive and unbounded,

e p has linear upper and lower bounds with the same slope (including Huber

loss function),

e p is bounded (including Hampel loss function),
and whenever the M-location measure exists and is unique, the sample M-estimator
of location is a strongly consistent estimator of the M-location measure, i.e.,

lim d(KM[X],, KMIX)=0 a.s. [P].

The measurability and the consistency of the M-estimators of a compact
random interval have been proven assuming their existence. In the next subsec-
tions, we will restrict the study to some loss functions for which the existence of
M-estimators can be certainly guaranteed. Two different methodologies will be
presented: the adaptation of already existing ideas and results in the literature
for Hilbert space-valued data (Subsection [3]) and some ad hoc developments for
a natural choice of the loss function that does not fulfill the conditions required
for the first methodology (Subsection B.2).

3.1. M-estimators of location defined through the Representer Theorem

In this subsection, Kim and Scott’s studies m, ] in the Hilbert space
framework will be adapted, following the first methodology, to deal with interval-
valued data. Their ideas have been developed for reproducing kernel Hilbert
spaces, in the context of robust nonparametric density estimation, combining
a traditional kernel density estimator with ideas from classical M-estimation
through the interpretation of this estimator based on a radial, positive semi-
definite kernel as a sample mean.

To lower the sensitivity of the sample mean to outliers, Kim and Scott sug-
gest that we estimate it robustly via M-estimators yielding a robust kernel
density estimator. Although Kim and Scott generalized their results to other
Hilbert spaces, they have never moved out of the setting of kernel density es-
timation. However, these ideas and proofs can be easily adapted to general
Hilbert spaces and, therefore, applicable to the interval-valued case through the
isometrical embedding of (K.(R),dy) into the cone R x [0, 00), with the corre-
sponding metric induced by the isometry 7. In this section, such adaptation
is to be shown and completed with several properties Kim and Scott have not
examined.

The most crucial result in @] for the particularization of M-estimators to
the interval-valued case is the Representer Theorem, since it guarantees that the
Me-estimator of location associated with a compact random interval will remain
in the corresponding parameter space, K.(R). The Representer Theorem states
that the M-estimate of location can be expressed as a convex linear combination
of the sample components. Since the sample observations obviously belong to
the cone and the linear combination is a closed operator, the implication follows.
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Theorem 3.3. [Adapted from [25]] Consider the metric space (K.(R),dy). Let
(Q, A, P) be a probability space, X : Q& — K.(R) be a compact random interval
and Xp = (X1,...,%,) be a sample of independent observations from X. Under
the assumptions

R1. p is non-decreasing (increasing in a neighborhood of 0) and differentiable,
p(0) =0 and limg_ p(z)/x =0,

R2. Let ¢(z) = p'(x)/x, and assume the convention ¢(0) = limy,_,o ¢(z), where
@(0) is supposed to exist and be finite,

the K.(R)-valued sample M-estimate of location exists and can be expressed as

P n
KM (x,] = Zwi X,
i=1

where w; > 0 and Y, w; = 1. Furthermore, w; < ¢(dg(x;, Kﬂ[x\n])) Indeed,
under the additional assumption
R3. J, is strictly convex (for which sufficient conditions are given by either
e p is strictly convex, or
e p is convex, strictly increasing, n > 3 and A = ((n(x;),n(x;))0); =1 18
positive definite, with (n(x;),n(x;))e = midx; - midx; + 6 - sprx; - sprx;);
the necessary conditions

z) Kﬂ[x\n] = Z:'L:l Wy - Xi,
i) w; o< G(dg(xq, Kﬂ[x\n])),
i) Yo wi =1

are also sufficient for Kﬂ[x\n] to be the minimizer of J,,(K) = 2 37" p(dy(x;, K)).

n

Remark 3.2. Notice that these conditions on p are not uncommon. Apart
from p being non-decreasing and vanishing at 0, M-estimators of location with
differentiable loss functions are usually chosen. On the other hand, p'(0) =0
is a consequence of p’ being odd (see |21]) and, in most interesting cases, ¢(0)
exists and is finite.

Notice that Huber’s and Hampel’s loss functions satisfy R1-R2 (and Huber
may also fulfill R3).

The existence and uniqueness of the sample M-estimate of location for a
sample of independent observations obtained from a compact random interval
are guaranteed under assumptions R1 — R3 in the Representer Theorem. How-
ever, despite the fact that we can express the M-estimate as a weighted mean of
the observations, such weights also depend on the M-estimate, so the problem
does not have an explicit solution in general. To deal with these implicit formu-
las in practice, Kim and Scott [25] proposed an iterative algorithm that is an
extension of the iteratively re-weighted least squares algorithm used in classical
M-estimation (see [19]). Its notation will be now adapted to the interval setting.

Step 1. Take the initial weights wEO’ e R, for i e {1,...,n}, such that wgo) >0
and Y1, wio) = 1, and fix a tolerance ¢.
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Step 2. Generate a sequence {K%}keN by iterating on the following procedure:

Mo\~ () (m __ Hdolxi KE)))
Kk = Zwi Xis W= =a My
1 Zj:l d(do(x;, K(k)))

Step 3. Terminate the algorithm when

[ Ta(KM ) — Ju(KL)|
Tu(KIT)

<eE.

The following property of M-estimators obtained under the Representer The-
orem can be proven.

Proposition 3.4. Consider the metric space (Kc(R),dg). Let Xy, = (X1,...,%p)
denote a sample of independent observations from a compact random interval
X: Q= K.(R) on a probability space (2, A, P). Moreover, let p be a continuous
loss function fulfilling the assumptions RI-R3.

If K € K.(R), then it holds that the M-estimator is translation equivariant, i.e.,

—

KM[x, + K] = KM[x,,] + K.

Moreover, if p satisfies that ¢(k-x) < ¢(x) for any k € (0,00) (i.e., the coefficient
of proportionality is independent of x), then for all v € R the M-estimator is
also scale equivariant, i.e.,

—_—

KMy - xp] =7 - KM[xp].

In general, M-estimators of location are not scale equivariant, since most
loss functions do not satisfy the proportionality assumption in Proposition 3.4
Therefore, the measurement units will have to be chosen carefully.

In order to measure the robustness, the finite sample breakdown point has
been considered. Although other tools like the influence function could be very
informative, the lack of realistic and easy-to-use models for the distribution of
compact random intervals makes such an approach non-viable at present. The
intuitive idea behind the concept of finite sample breakdown point (denoted by
fsbp) is that it represents the minimum proportion of observations that should be
perturbed enough to make the corresponding estimate be arbitrarily far from the
estimate obtained for the original non-contaminated sample. The mathematical
formalization by Donoho and Huber [26] can be adapted to cover estimators
taking values in general metric spaces as follows. The finite sample breakdown

o

point of a general M-estimator of location KM[X],, corresponding to a sample
Xp, of size n from a compact random interval X : Q@ — K.(R) with (K.(R),d) a
metric space fulfilling that supg g, () (K, K') = oo is given by

— 1 —
fsbp(KM[X],, X, d) = - min {kz € {1,...,n} : supd(KM[x,], KMy, k]) = oo} ,

Yn,k

10
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where y,, . denotes the sample obtained from x,, by perturbing up to k of
its elements. The following result shows an upper bound for the fsbp of M-
estimators of location under the Representer Theorem and gives the exact value
of their fsbp under some additional conditions on the loss function.

Theorem 3.5. Consider the metric space (K.(R),dp) and let X be a compact
random interval associated with a Polish probability space (2, A, P). Moreover,
let p be a continuous loss function satisfying the assumptions R1-R2 in Theorem
[Z3, such that the corresponding sample M-estimator of location is unique. Then,
the fsbp of the corresponding M-estimator of location is at most |(n+1)/2]/n,
where | | denotes the floor function. Furthermore, under any of the additional
assumptions:

e p admits linear upper and lower bounds with the same slope (e.g. Huber

loss function)
e p has a finite upper bound C* (e.g. Hampel loss function) and satisfies

_9|n=1
p( max d@(Xi,Xj)) < M-C*

1<i,j<n n—|%2t -1 ’
then the fsbp is exactly equal to [(n+1)/2]/n.

The sufficient conditions over the loss function allowing us to guarantee the
existence of sample M-estimates of location as well as their expression as convex
linear combinations of the sample elements are fulfilled for different interesting
choices of the loss function p, as it has just been verified. However, there are
some other interesting choices of p for which such conditions fail and ad hoc
developments should be considered.

In this respect, if one chooses p(x) = |z|, one cannot apply the results in
this subsection. In Subsection [3.2] some ad hoc developments in the literature
to get the (exact) M-estimates associated with this choice are to be recalled.

3.2. Ad-hoc M-estimators of location

In this subsection, a particular M-estimator of location on IC.(R) will be
reviewed: the median. In this case p(z) = |z|, and we will consider the three
distances introduced in Section 0, and dy as L'-type metrics and dy as
L2-type.

For the two L'-type extensions of the concept of median to the interval-
valued setting, the idea behind them is similar, the properties they fulfill mostly
coincide and the way of operating with them is analogous. A detailed study of
such concepts can be found in [27], [28], and also [29, [30] for the more general
setting of random fuzzy numbers.

Definition 3.3. Given a probability space (2, A, P) and an associated com-
pact random interval X, the 61-median(s) (or 1-norm median) and the
di-median(s) (or Hausdorff-type median) of X are the intervals

Me[X] = arg Ker?cicnR E (51 (X, K)) and MIX] = arg KeI;lcicI(lR) E (dH (X7 K)) ,

(R)

respectively, whenever the involved expectations ezist.
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The following result guarantees that at least one value for each of these
medians always exists and it is rather easy to compute.

Theorem 3.6. Given a probability space (2, A, P) and an associated compact
random interval X, the intervals Me[X], M[X] € K.(R) such that

Me[X] = [Me( inf X), Me(sup X)]

(which corresponds to the median suggested by De Souza and De Carvalho [31])
and
M[X] = [Me(mid X) — Me(spr X),Me(mid X) + Me(spr X)} ,

(which corresponds to the median suggested by De Carvalho et al. [32]) are a
61-median and a dg-median of X, respectively. In case any of the medians of the
involved real-valued random variables is non-unique, the most usual convention
of choosing the mid-point of the interval of medians is assumed to be considered.

From now on, these solutions will be the ones considered when mentioning
the §;- and dy-medians to avoid an unnecessary cumbersome checking and to
ease the study of their properties. Analogously, given a simple random sample
(X1,...,X;,) from a compact random interval X associated with a probability
space (2, A, P), the sample §1-median and the sample dg-median will be
respectively given by

o — — — i|
)

Me[X],, = |Me(inf X), , Me(sup X),,

— o — — — o — :|
)

M[X],, = [Me(mid X),, — Me(spr X),,, Me(mid X),, + Me(spr X),,
following the same convention as in Theorem

Remark 3.3. It should be pointed out that the use of the convention in The-
orem has a different mission when applied to the d;-median and the dg-
median. In the first case, if we do not consider some valid conventions, the
result can fail and not determine an interval. For example, consider the com-
pact random interval X taking on the values x; = [0,2] and x3 = [3,4], both
with induced probabilities P(X = x;) = P(X = x2) = 0.5. Then, we have that
Me(inf X) is any value in [0, 3], whereas Me(sup X) is any value in [2,4], so a
choice of the kind Me(inf X) = 2.5 and Me(sup X) = 2 would lead to an empty
interval. On the other hand, any possible choice for the medians Me(mid X)
and Me(spr X) would lead to a valid solution of dy-median, so the convention
in Theorem serves to provide uniqueness.

Remark 3.4. In contrast to the median of random variables, both the §;-
median and the dy-median do not necessarily correspond to one of the values
of the compact random interval, even when the convention is not needed. Con-
sider the compact random interval Y taking on values y; = [0,2], y2 = [2, 3]
and y3 = [1,5], all of them with probability 1/3. Then, Me[Y] = [1,3] and
M[Y] = [1.5,3.5].

12
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In addition to the use of L!-type metrics, it should be noted that a well-
known generalization of the median of real-valued random variables to the mul-
tivariate settings is the spatial median or mediancenter (see, for example, [33]
or [34]), which is based on an L?-type metric.

Inspired by the spatial median as extension of the median to higher dimen-
sional Euclidean spaces and even Banach spaces (see [35]), Sinova et al. [36]
introduced the population and sample dp-medians on K.(R).

Definition 3.4. Given a probability space (2, A, P) and an associated compact
random interval X : Q — K.(R), the dg-median(s) of X is (are) the interval
value(s) Mg[X] € K.(R) such that

Mg[X] = arg KEI?CiI(l]R) E (d@ (X, K)) ,

whenever the involved expectation exists.

Definition 3.5. Given a probability space (2, A, P), an associated compact ran-
dom interval X :  — K (R), and a simple random sample (X1,...,X,) from
X, the sample dg-median(s) of X is (are) the interval-valued statistic(s)

My[X],, = arg min Zda X, K

KEK(R) M

= ar (mid X; —y)2 + 6 - (sprX; — 2)2,
g(yz)eRx[Ooo)nZ\/ (p )

where the target values of K, y and z depend in fact on (Xq,...,X,) (although,
for the sake of simplicity, this has been omitted from the notation).

The existence and uniqueness of the sample dg-median has been discussed
in [37] and the strong consistency in [3&].

Theorem 3.7. Given a simple random sample (X1,...,X,) from a compact
random interval X : Q@ — K.(R), the corresponding sample dp-median always
exists and, moreover, it is unique for any sample realization Xy, = (X1,...,Xy)
for which the two-dimensional sample points {(midx;,sprx;)}? , are not all
collinear.

In contrast to the L'-type medians for random intervals, the solution for the
dg-median is implicit. In order to approximate it, a similar algorithm to the one
proposed for M-estimators under the Representer Theorem (see Section [B1]) can
be considered.

Regarding the inferential behavior of these medians, all of them are strongly
consistent whenever the corresponding population medians Me[X], M[X] and
Mp[X] exist and are actually unique (i.e., they are unique without applying the
convention in Theorem [3.6), and their finite sample breakdown point equals the
value [(n+1)/2]/n.

13
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Indeed, the sample mean has the lowest possible breakdown point while the
sample median can withstand up to 50% of contamination. In consequence, the
definition of these three medians succeeds in inheriting the robustness properties
of the real-valued sample median.

4. Illustrative real-life examples

4.1. Greek wine data

In this subsection, we will come back to Example[T Ilintroduced in Section [l
It has already been shown that the Aumann mean was influenced by the atypical
values concerning the caffeic acid concentrations in wine. Therefore, the robust
location measures for random intervals proposed /recalled along this work will be
now computed to avoid the sensitivity to outliers when summarizing the central
tendency of such a phenol concentration. The (rounded) obtained estimates for
the complete dataset (1) are the following:

EMW[X] = [64.47,70.17],
(KM o) IX) = [48.45,52.73], (Kifaper) " [X] = [47.25,51.02],

MeM [X] = [48.2,53.8], MM[X] = [47.8,52.2], M{")

[5X] = [48.07,52.46].

The M-estimates of location have been computed by means of both Huber
and Hampel loss functions when the parameter 6 involved in the dy metric
has been assumed to be equal to 1/3. The choice of the values for the tuning
parameters in the Huber (a = 1.345) and Hampel (a = 2,b = 4,¢ = 8) loss
functions is common in the literature (see e.g. [39] and [40)]).

By removing the most extreme values (corresponding to the wines with codes
1, 6, 9, 10 and 16), dataset (2), the Aumann mean is not so far from the
remaining location estimates:

E@[X] = [48.36,52.66],

(KM )P X = [46.77,50.46), (KL, X] = [47.25,51.02],

Hampel

Me®) [X] = [46.8,49.8], MP)[X] = [47.15,50.75], M\

3IX] = [47.65,50.10].

It can be checked that, although outliers make all the measures have a larger
mid-point, the Aumann mean value is the estimate which has been the most
perturbed by them:

dy/3(EVX, ED[X]) = 16.80,  dizs ((Kifuper) " X, (Kier) ™ X]) = 1.99,

dl/S ((K%mpel)(l) [X]’ (K%mpel) @) [X]) =2.77- 10747

d1/3(MeM[X],Me@[X]) = 2.80, d;/53(MP[X],MP[X]) = 1.08,

14
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X], ML [X]) = 1.50.

1
d1/3(M( ) 1/3

1/3
The difference between the original estimate and the estimate after the re-

moval of the outliers is clearly smaller than the one for the Aumann mean in all
cases.

4.2. Water quality data

The second real-life example deals with water quality data. As Ongley [41]
commented, detailed (real-valued) data in problems related with in-stream cal-
culations or environmental quality issues that require temporal extrapolation
(e.g. chemical loads) are of limited practical use, although they contain much
information about the variability. Therefore, in practice many chemical pa-
rameters are represented by the whole range of individual records (that is to
say, interval-valued data) observed daily, such as ammonia, chloride, nitrate,
phosphorus or suspended sediment concentrations, specific conductance and
turbidity (see, for example, [42]). Among them, pH and dissolved oxygen are
frequently measured when controlling the water quality, as in [43].

The considered dataset contains the interval-valued information (that is,
the minima and maxima values achieved daily) related to the dissolved oxygen
(mg/L) and the pH (standard units) measured in Delaware River at Chester
(agency USGS, site 1477050, Pennsylvania, United States) from May 15, 2014
till June 15, 2014. A complete description, dataset and more detailed infor-
mation can be found in the webpage of the United States Geological Survey
(USGS) http://waterdata.usgs.gov. Collected data are shown in Table [
and Figures 2 and Bl

Dissolved oxygen (mg/L)
8 10
| |

< 4

15/05/2014 23/05/2014 31/05/2014 08/06/2014

Date

Figure 2: Dissolved oxygen (mg/L) measured in Delaware River at Chester
The mid-points/centers and spreads/radius of all the interval-valued location

measures defined /recalled before have been computed and included in Table
The only difference with respect to the calculations in the previous example of
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Table 1: Interval-valued information related to the dissolved oxygen (mg/L) and the pH
(standard units) measured in Delaware River at Chester from May 15, 2014 till June 15, 2014

Date O2 pH Date O2 pH

15/05/2014 [7.0,9.2] [6.9, 7.2] | 31/05/2014 [7.0,8.1] [7.0, 7.1]
16/05/2014 [7.1,84] [7.0,7.2] | 01/06/2014 [6.6,8.2] [7.0, 7.1]
17/05/2014 [7.0,8.7] [6.9, 7.1] | 02/06/2014  [6.9,8.6] [7.0, 7.2]
18/05/2014 [5.9, 8.1] [6.9, 7.1] | 03/06/2014  [7.0,9.2] [7.0, 7.3]
19/05/2014 [5.7,8.3] [6.9, 7.1] | 04/06/2014 [7.3,9.8] [7.0, 7.4]
20/05/2014 [6.5,8.5] [7.0, 7.1] | 05/06/2014  [7.5,9.8] [7.1, 7.3]
21/05/2014 [6.2,8.0] [6.9, 7.1] | 06/06/2014 [7.7, 10.9] [7.1, 7.6]
22/05/2014 [5.7,8.0] [6.9, 7.1] | 07/06/2014 [8.2,11.7] [7.1, 7.9]
23/05/2014 [5.9,8.3] [6.8, 7.0] | 08/06/2014 [8.9, 12.1] [7.3, 8.2]
24/05/2014 [6.2,8.3] [6.8, 7.0] | 09/06/2014 [8.8, 10.4] [7.2, 7.6]
25/05/2014 [6.5,8.6] [6.8, 7.1] | 10/06/2014  [8.0,9.2] [7.2, 7.3]
26/05/2014 [6.8,8.5] [6.8, 7.0] | 11/06/2014 [7.1,8.0] [7.1, 7.2]
27/05/2014 [6.7,8.2] [6.8, 7.1] | 12/06/2014  [6.2, 7.3]  [7.0, 7.2|
28/05/2014 [6.2,7.9] [6.8, 7.1] | 13/06/2014 [5.1,7.1]  [7.0, 7.1]
29/05/2014 [7.3,8.0] [7.0, 7.1] | 14/06/2014  [4.8,6.7] [7.0, 7.1]
30/05/2014 [6.9,8.2] [7.0,7.2] | 15/06/2014 [4.8,6.8] [6.9, 7.1]

8.0

7.5

pH (standard units)

7.0

T T T
15/05/2014 23/05/2014 31/05/2014 08/06/2014

Date

Figure 3: pH (standard units) measured in Delaware River at Chester

Greek wine data is that, due to the small distances between the observations,
tuning parameters a, b and ¢ have been fixed following Kim and Scott’s sugges-
tions (see [25] for more details). Notice that the values a = 1.345 (for Huber)
and a = 2, b = 4 and ¢ = 8 (Hampel) are too large to distinguish between
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Table 2: Mid-points and spreads of the Aumann mean, Huber and Hampel M-estimators,
the 1-norm, Hausdorff-type and dg—;,3 medians of the dissolved oxygen and pH values in
Delaware River

EX] KifperX] Kifampa Xl MeX]  M[X] - My 5[X]

Hampel
Oxveen Mid 7.697 7.551 7.487 7.575 7.550 7.551
e Spr  0.963 0.904 0.877 0.725 0.975 0.843
H Mid 7.102 7.054 7.030 7.050 7.050 7.053
P Spr  0.127 0.098 0.093 0.050 0.100  0.083

‘normal’” and ‘atypical’ distances between observations in this case, since all the
distances would be classified as ‘normal’ and these two M-estimators would co-
incide with the Aumann mean. On the other hand, Kim and Scott show how to
fix the parameters depending on the sample distances. The values used in this
example have been 0.558 (Huber), a = 0.558, b = 1.046 and ¢ = 1.787 (Hampel)
for the dissolved oxygen data, and 0.058 (Huber), a = 0.058, b = 0.153 and
¢ = 0.183 (Hampel) for the pH data.

Outliers are not so clearly identified when looking at the dissolved oxygen
data, but we can check in Table[2 how the three observations with larger spread
and a bit higher mid-point (June, 6 to June, 8 2014) have more influence on the
computation of (both the mid and spr of) the Aumann mean than for the rest
of location measures, which present a more robust behavior.

The pH values measured on June, 7 and 8 2014 are clearly identified as
outliers taking into account their large spread. This is reflected in the larger
spread of the Aumann mean in contrast to the spread of the M-estimators.
Notice that all the spreads are quite small, so the difference in spread between
the Aumann mean and the M-estimators is proportionally large.

5. Comparative empirical studies

A comparative simulation is set up to check the robustness of all the M-
estimators proposed in this work when dealing with interval-valued data. Four
different studies have been conducted, varying the sample size (small sample
size n = 100 or large sample size n = 10000) and the distributions (the original
distribution being symmetric or asymmetric).

For each of the four studies, the comparisons have concerned the following
location estimates: Aumann mean, Huber and Hampel M-estimates using the dy
distance, §;-median, dy-median and dyg-median, with 6 € {1/3,1}. When n =
100, the medians and trimmed means based on the well-known halfspace and
simplicial depths (see [44, 45] and [46], respectively) have also been considered.
The reason not to include them in the comparisons when n = 10000 is that the
computation of depths is usually hard when the sample size increases.
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For each of the location measures/estimates L, the Monte Carlo approxi-
mation of the estimate, L[X], has been computed. This information has been

completed with the Monte Carlo approximation of the bias d(E[@], L[X]),
the variance E(d?(L[X],,E[L[X],])) and the mean square error of the estimate

E(d*(L[X]n, L[X])) for d € {61,dp,d1 3,02}, which have been obtained through
the formulas

N /\z N — N /\'L N o1
d (% L[X]> SO (L[X]év, W) v o (6B )

—

respectively, where N denotes the number of Monte Carlo iterations and L[X]%
represents the sample estimate of the i*" sample, i € {1,..., N}.
The general scheme of the four studies has been as follows:

Step 1. A sample of n interval-valued data has been simulated from a compact
random interval X for each of several different situations in such a way
that

e to generate the interval-valued data, we have considered two real-
valued random variables as follows: X = [X; — X5, X7 + X5], with
X1 =mid X and X5 = spr X or, alternatively, two order real-valued
statistics X (1) and X(9) such that X = [X (1), X(9)], i.e., X1y = inf X,
X(2) = supX;

o each sample is assumed to be split into a subsample of size n(1 —c,),
where ¢, denotes the proportion of contamination and is supposed to
range in {0,0.1,0.2,0.4}, associated with a non-contaminated distri-
bution and a subsample of size n - ¢, associated with a contaminated
one. Cp plays an additional contamination role, measuring how far
the distribution of the contaminated subsample is from the distribu-
tion of the non-contaminated one (and ranges in {0, 1,5,10, 100});

o 16 situations for different values of ¢, and Cp have been considered
and for each of them some cases have been selected, namely, ones in
which the random variables X; (or X(;)) are independent (CASES 1
and 3) and others in which they are dependent (CASES 2 and 4).

Step 2. N = 1000 replications of Step 1 have been considered for the situation
¢p = Cp = 0 in order to approximate the population measures by using
a Monte Carlo approach.

Step 3. N = 1000 replications of Step 1 have been considered for all the sit-
uations (c¢p, Cp) and the approximated estimates, bias, variance and
mean square error have been computed for each location measure.

The following sample sizes and distributions have been used:

Study 1 n = 100 and the assumptions for CASE 1 are
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Study 2
Study 3

Study 4

X1 ~N(0,1) and X5 ~ x? for the non-contaminated subsample,
X1 ~ N(0,3) + Cp and/or Xo ~ x2 + Cp for the contaminated
subsample,

whereas CASE 2 assumes that

X1 ~N(0,1) and X5 ~ 1/(X%+1)2++/X? for the non-contaminated
subsample,

X; ~ N(0,3) 4+ Cp and/or Xy ~ 1/(X? + 1)% 4+ /X3 + Cp for the
contaminated subsample,

being x? independent from X; and, obviously, 1/(X? + 1)2.

n = 10000 and same CASES 1 and 2 than in Study 1.

n = 100 and we vary the distributions considered in Study 1, in order
to bound the generated intervals, as commonly happens in real-life
applications related to surveys or ratings, and manage asymmetric
contamination. CASE 3 assumes that

Xy, X(2) ~ Beta(5,1) (they are simply chosen at random and or-
dered) for the non-contaminated subsample,

Xy, X(2) ~ Beta(1,Cp + 1) for the contaminated subsample,
whereas CASE 4 assumes that

X1 ~ Beta(5,1) and X3 ~ Uniform[0, min{X1,1 — X;}] for the non-
contaminated subsample,

X1 ~ Beta(1l,Cp+1) and/or X3 ~ min{X;,1—X;}-Beta(1,Cp+1)
for the contaminated subsample.

n = 10000 and the same CASES 3 and 4 as in Study 3.

To avoid excessive information in the outputs of the simulations, the details

about bias, variance and mean square error can be found in the supplementary
material. The conclusions for the four studies have been summarized in Table[3]
As a measure of the variation of the choice of the optimal location estimate, the
index of qualitative variation (IQV) has been computed for each case as follows
(see [47]):

k k
o o 2
IQV—k_1<1 ;f>

where k is the number of different categories (i.e., the number of different loca-
tion estimates considered in each case: k = 13 in Studies 1 and 3 and £k =9 in
Studies 2 and 4) and f; represents the relative frequency of the i-th category.
Therefore, the IQV is equal to 1 for uniformly distributed variables and, on
the other hand, coincides with 0 when the variable only takes one value (and,
consequently, the relative frequency of the corresponding category is 1).
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On the basis of the conclusions gathered in Table[3] one can realize that there
is no uniformly most appropriate location estimate and that the outputs seem
to depend more on the considered non-contaminated and contaminated distri-
butions than on the sample size. However, it is beyond doubt that the Hampel
M-estimator of location usually behaves better than the other location measures
in relation to either the bias, the variance or the mean square error. It is also
interesting to highlight that the d;-median is also chosen in several situations
(mostly for smaller contamination proportions) and recall that its computation
is even more straightforward and fast than that for the M-estimators based on
the Representer Theorem. Finally, regarding the qualitative variation, it should
be remarked that, in most of the analyzed situations, the index IQV increases
when a larger sample size is considered.

6. Concluding remarks

In this work, several robust alternatives to summarize the location of a com-
pact random interval have been proposed. Although some (ad hoc) extensions
of the concept of median to the interval-valued case had already been stated in
the literature, the more general approach of M-estimators of location (of which
such medians are a particular case) has been adopted. M-estimators of location
for compact random intervals have been proven to inherit the main properties
that make them a successful choice in the real settings. Apart from studying
the measurability and consistency of general M-estimators, a particular class of
M-estimators - those defined under the Representer Theorem - has been ana-
lyzed in detail. Their existence and uniqueness, their translational and scale
equivariance, their algorithmic solution and their robustness in terms of the fi-
nite sample breakdown point have been shown. Finally, all these measures have
been applied to two real-life examples and have been empirically compared by
means of some simulations.

It should be highlighted that the search of robust location measures to sum-
marize the central tendency of compact random intervals is crucial, in order
to avoid that outliers, atypical observations, errors or data changes invalidate
the statistical conclusions obtained from the analysis of interval-valued data.
Nowadays, most of the existing methodology developed to treat such data is
based on the Aumann mean as location measure. Due to its high sensitivity, it
is reasonable to predict that the Aumann mean could be replaced in these tech-
niques by other location measures with a more robust behavior, like the ones
presented in this work, in order to guarantee the validity of the corresponding
statistical conclusions.

When analyzing contaminated datasets, two different approaches could be
followed. The goal of this paper is to remove the outliers’ influence on the
outputs and to study the behavior of the majority of the data. Nevertheless, the
opposite view of focusing on the outlier identification also offers an interesting
research topic. In that sense, once an internal cross-validation were employed
to evaluate how the removals of individual samples and/or groups of samples
would affect the outputs in Table 2], those results could be reconsidered as an
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automated outlier detection tool: the observations that have a large impact on
the computation of the Aumann mean, but a small influence on the output of
the M-estimator (of any kind), would be classified as outliers.

Finally, some open problems will be now enumerated. First, the robustness
has been stated in terms of the finite sample breakdown point due to the lack of
realistic parametric families of distributions in the space of compact intervals.
Therefore, the use of influence functions has been left as open problem. Sec-
ondly, notice that the development of robust scale measures will be required for
the extension of the M-estimators of location with unknown dispersion, which
present, convenient properties like the scale equivariance and are generally used
in multivariate spaces. To conclude, hypothesis testing procedures about the
proposed location measures could be established and analyzed.
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Appendix A: Proofs

Proof of Proposition [3.1]

It will be shown that the M-estimator of location is a Borel measurable function
and, therefore, it is well-defined. The following facts are taken into account:

e X = () is separable and complete since (2,4, P) is a Polish probability
space. Recall that either  or ¢ embed the metric spaces (K.(R),dp),
(Kc(R),dmr) and (KCo(R),d1) isometrically into a cone, U, of a Hilbert
(when dy is used) or a Banach space (when either dy or §; are cho-
sen). In case dy or dy are used, U = R x [0,00), and when 4; is chosen,
U={(y,2) € R? : y < z}. Since all the distances defined in R? by means
of such isometries are strongly equivalent among them and w.r.t. the Eu-
clidean distance, they all induce the same topologies, U always being a
closed subset. Thus, the completeness of the Hilbert or Banach space is
inherited by the cone. On the other hand, the isometrical embedding pre-
serves the separability of the metric spaces (K.(R),dp), (K.(R),dy) and
(Kc(R), 1), what has already been commented in Remark 23] Consider
Y =U. Then Y is a complete separable metric space.
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o [:9QxU = Rsuch that f(w, (y,2)) = 3 301, p (d(Xi(w), [y — 2,y + 2]))

n

or alternatively f(w, (y,2)) = 2 31", p (d(X;(w), [y, 2])), depending on the
expression of U, is a real-valued measurable function irrespective of the
distance d € {dy,dm, 61}

First, D = Q x U is a Borel set, since it is the universal set we are
considering and, therefore, it belongs to any o-algebra. Secondly, the
measurability of f derives from the following facts:

o the addition, product and composition of Borel measurable functions
are also Borel measurable;

o mid X;, sprX;, inf X; and supX;, ¢ = 1,...,n, are Borel measurable
because of the equivalent definition of compact random intervals.
Thus, the mappings f; : Q@ x U — U with f;(w, (y, 2)) representing
(mid X;(w), sprX;(w)) or (inf X;(w), sup X;(w)) are also Borel mea-
surable with respect to the o-algebra on the product space Q x U
and the Borel o-algebra generated by the topology induced by the
corresponding norm on the cone of the Banach (Hilbert for dy) space
U.

o fo:QxU — U such that f(w, (y,2)) = (v, 2) is also Borel measurable
following an analogous reasoning to that for f;, since the identity is
measurable;

o the square root, the square function, the absolute value function and
p are continuous and, therefore, Borel measurable;

e U is o-compact, since a locally compact Polish space is equivalent to a

locally compact o-compact metric space.

For each metric d € {dy,dp,01} and each w € Q, the following function
is continuous (and, therefore, lower semi-continuous) with respect to the
relative topology on U

fo: U — R
(y,2) — f(w,(y,2)).

For each w € , let (y*,2*) be any element of U. It is sufficient to check
that, given any sequence {(yn, 2n) }nen C U such that (yn, z,) — (y*, 2%),
n

i.e.,
d([yn — Zn,Yn + Zn]? [y* - 25y + Z*]) 7 0,

then limy, fo,((yn, 2n)) = fu((y", 27)).
For any n € N and ¢ = 1,...,n, the triangular inequality allows us to
ensure that d(X; (w), [y*—2", y" +2"]) =d([yn —2n, yn+ 20, [y —2", y" +27])

< dXi (W), [Yn — 2ns Yn + 2n))

<d(Xi(w), [y — 25 y" + 27]) + d([Yn — 20, yn + 20l [y" — 25,97 + 27)).
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Since d([yn — 2n, Yn + 2nl, [v* — 2%,y + 2*]) — 0, we then conclude that
d(X; (W), [Yyn—2n, Yn+2n)) — d(X;(w), [y*—z*r,ly*—i—z*]) By the continuity
of p, p(d(Xi (W), [yn = 2, yn + 20])) — p(d(Xi(w), [y" — 2", y" +27])) and,
obviously, the result follows because the continuity is preserved by the
addition and the product of continuous functions.

Applying the result in [48], it is possible to guarantee that the function ¢ below
is Borel-measurable, where

p: I — U
o (o) it o nz0) = inf S (4:2)
with I = {w € Q: for some (yo,20) € U, f(w, (Yo, 20)) = inf f(w, (v, ))}
(y,2)€U
Notice that ¢(w) = (yo, 20) such that

n

%Zp(d(x( ), [Yo — 20, Y0 + 20])) = (yz)eUan y—z,y+2)),

i=1

or, of course, U formalized alternatively when d; is chosen, i.e., ¢ is the function
that assigns to each w € Q for which the M-estimate of location exists, the
corresponding value of the M-estimate of location.

Sketch of the proof of Theorem 3.2

These assumptions are sufficient to ensure Huber’s conditions for consistency
(see [49]). Notice that the locally compactness and the second countability
required for the space R x [0, 00) in [38] involve dy. However, these topological
properties are also fulfilled when using dy or d; because all these metrics are
strongly equivalent. The proof follows the same scheme as in [38] (where the
loss function was p(z) = |z|), taking into account that

e When p is subadditive apart from non-decreasing, it is possible to preserve
the relations and the way of reasoning with distances.

e When p is the Huber loss function p,, for any a > 0, it can be bounded
by means of two lines with the same slope for all z > 0

ar —a*/2 < pa(z) < ax.

If p has linear upper and lower bounds with the same slope, then it is also
possible to preserve the relations and the way of reasoning with distances.

e When p is the Hampel loss function pg ., for any ¢ > b > a > 0, it is
possible to bound it as follows

0 < papec(x) <ald+c—a)/2
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When p is bounded, it is also necessary to notice that there is a compact
set C in the parameter space such that the sequence of M-estimators of
location almost ultimately stays in C, thanks to the parameter space being
locally compact and Hausdorff and the Strong Laws of Large Numbers.

Sketch of the proof of Theorem

M-estimators defined through the Representer Theorem are translation equiv-
ariant by Proposition [3.4l Therefore, the proof of the upper bound can be
carefully extended from the real-valued settings taking care of the semilinear-
ity of K.(R). It is possible to prove the equality when p has linear upper and
lower bounds, following a reasoning like in |37, 50], or when p has a finite up-

n—1
% - C*, checking
2
that the M-estimator will always belong to a compact set unless the perturbed

sample contains more than |(n + 1)/2]/n observations.

per bound C* satisfying p (maxi<; j<n dg(xi,%;)) <

Appendix B: Supplementary data

Supplementary data to this article, concerning the bias, variance and mean
square error of the location measures considered for the simulation study in Sec-
tion 5, can be found online at http://dx.doi.org/10.1016/j.chemolab.2016.05.003
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