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M-estimators of lo
ation

for interval-valued random elements

Beatriz Sinova

a,∗

a

Department of Statisti
s, O.R. and D.M., University of Oviedo, 33007 Oviedo, Spain

Abstra
t

Among the new types of data emerging from real-life experiments, interval-

valued ones are be
oming very prevalent nowadays. In summarizing the lo
ation

of interval-valued datasets, the Aumann mean is the most usual measure. This

measure inherits almost all the ni
e properties of the mean value for real-valued

datasets. Nevertheless, it also inherits a 
riti
al property, whi
h is the one

related to its high sensitivity to data 
hanges or to the presen
e of outliers.

As an approa
h to measure the lo
ation of interval-valued datasets in a more

robust way, the notion of M-estimators will be 
onsidered. Two appli
ations on


hemi
al data will be in
luded to motivate and illustrate the problem. Finally,

an empiri
al 
omparative study will be 
ondu
ted to show the performan
e of

the di�erent types of M-estimators proposed in this work.

Keywords: interval-valued data, M-estimator, robustness, lo
ation measure,


hemi
al data

1. Introdu
tion and motivation

Interval-valued data often emerge from experiments with random elements

asso
iated with many real-life appli
ations. For instan
e, they 
an arise as a 
on-

sequen
e of either un
ertain or in
omplete information (e.g., when one 
an only

establish lower and upper bounds for the a
tual exa
t measurement/observation).5

They 
an also 
orrespond to aggregate information either be
ause of the mag-

nitude of interest being the range or �u
tuation of a real-valued attribute over

a given time period or 
olle
tion of individuals (as happens for many symboli


data) or be
ause of 
on�dentiality reasons. Alternatively, data 
an be essen-

tially interval-valued (like interval-
ensored ones). See [1℄, [2℄, [3℄, [4℄ and [5℄ as10

examples of di�erent studies involving interval-valued data.

This work aims to analyze the lo
ation of interval-valued data robustly. The

best known lo
ation measure in summarizing interval-valued data is the Aumann

mean. This measure, whi
h extends the mean value of a real-valued dataset,
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has been shown to preserve all the valuable properties for real-valued datasets,15

but it also inherits its la
k of robustness.

In this paper, in order to establish robust lo
ation measures for interval-

valued data, the M-estimation approa
h (whi
h has shown a su

essful behavior

when dealing with real-valued data) is to be 
onsidered. For this purpose, two

methodologies will be used:20

• on one hand, interval-valued data 
an be identi�ed through a 
ertain

ve
torial-valued fun
tion with elements of a 
losed 
onvex 
one within

a Hilbert spa
e. Consequently, results and methods from Hilbert spa
e-

valued Data Analysis 
an be parti
ularized provided that one guarantees

that the pro
ess does not move out of the 
one;25

• on the other hand, when either the pre
eding methodology fails or one 
an

design exa
t te
hniques or supply a better approximation, ad ho
 
on
epts

and methods 
an be developed.

As a real-life example motivating this study, we 
an 
onsider the following

one:30

Example 1.1. This example has been 
hosen taking into a

ount the impor-

tan
e of the 
hemi
al di�erentiation of wines in enology. The organi
 and inor-

gani
 
ompounds that are part of wine depend on many fa
tors, e.g., ground,


limate, variety of vine or enologi
al pra
ti
e. The 
onsidered dataset has been

published in [6℄ and 
onsists of 33 Greek red and white 
ommer
ial wines from35

the 1998 vintage. Some tables in [6℄ show numerous mineral, phenol and an-

tho
yanin 
on
entrations in su
h wines. Ea
h 
on
entration is given in terms of

an interval whose mid-point (or 
enter) is the a
hieved mean value and whose

spread (or radius) is the asso
iated standard deviation. Based on this infor-

mation, Kallithraka et al. [6℄ and D'Urso and Giordani [7℄ propose a Prin
ipal40

Component Analysis.

For this study, the 
a�ei
 a
id 
on
entrations have been 
hosen. Figure 1

represents the intervals 
orresponding to this phenol 
on
entration for ea
h of

the 33 wines (ω1, . . . , ω33).
Figure 1 
learly shows that wines with 
odes 1, 6, 9, 10 and 16 
an be viewed45

as `outliers' be
ause their 
a�ei
 a
id mean 
on
entration has been mu
h higher

(wines with 
odes 6, 9, 10 and 16) or the 
orresponding standard deviation has

been mu
h larger (wines with 
odes 1 and 16). The Aumann mean value for the

whole dataset equals

[

1
33

∑33
i=1 inf X(ωi),

1
33

∑33
i=1 supX(ωi)

]

= [64.5, 70.2].

By removing the 5 `outliers' identi�ed above, the Aumann mean value equals50

[

1
28

∑28
j=1 inf X(ω

′
j),

1
28

∑28
j=1 supX(ω

′
j)
]

= [48.4, 52.7], whi
h shows the un-

wanted e�e
t outliers have on the estimate of the Aumann mean and the 
lear

need for a more robust lo
ation measure for interval-valued data.

With the goal of developing M-estimators of lo
ation for interval-valued

datasets, this paper is stru
tured as follows. In Se
tion 2, the 
on
ept of interval-55

valued data will be de�ned and the main preliminary and supporting tools re-

lated to this notion will be re
alled, the distin
tive stru
tural 
hara
teristi
s of

2
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Figure 1: Ca�ei
 a
id 
on
entration (mg/l; mean value±standard deviation) of Greek

red and white wines

the spa
e of study being highlighted. The extension of M-estimators of lo
ation

for interval-valued data will be dealt with in Se
tion 3. Two real-life examples

regarding 
hemi
al data will be detailed and analyzed in Se
tion 4. In Se
-60

tion 5, an empiri
al analysis will be 
arried out to 
ompare the robustness of

the introdu
ed lo
ation measures and to 
he
k how they improve the outputs

with respe
t to the Aumann mean. Finally, some 
on
luding remarks will be

in
luded in Se
tion 6. The proofs of the theoreti
al results 
an be 
he
ked in

the Appendix.65

2. Preliminary tools and supporting results

Let Kc(R) denote the spa
e of nonempty 
ompa
t intervals. The elements

in Kc(R) will be referred to herein as interval-valued data .

Elements in Kc(R) 
an be uniquely 
hara
terized, among others, by the

ve
torial mid/spr representation η. It 
aptures their trend and impre
ision70

asso
iating with ea
h interval K ∈ Kc(R) the ve
tor value η(K) = (midK, sprK)
∈ R× [0,∞), being midK = mid-point/
enter of K and sprK = spread/radius

of K. Another 
ommonly used 
hara
terization is the inf/sup representation ι

given by the ve
tor value ι(K) = (inf K, supK) ∈ {(y, z) ∈ R2 : y ≤ z} for ea
h

K ∈ Kc(R).75

3



Remark 2.1. Although interval-valued data 
an be 
hara
terized as ve
torial

data through η, ι or other representations, the purpose is not to dire
tly ap-

ply multivariate but Hilbert spa
e-valued robust statisti
al ideas and results

whenever it is possible. This is due to the fa
t that multivariate robust de-

velopments 
on
erning M-estimation are usually based on some assumptions80

on the joint distribution of the involved one-dimensional random 
omponents,

these assumptions either not making sense or not being a

eptable, realisti
 or

general enough for the mid and spr of an interval-valued random element. In

this way, the meaning of the random 
omponents of the η or ι 
hara
terizations

of an interval-valued random element and the 
onstraints between them would85

be mostly ignored in 
ase they are treated as simple 
omponents of a random

ve
tor.

2.1. Arithmeti
 with interval-valued data

In developing statisti
s with interval-valued data, one of the key tools is

given by the arithmeti
. The elementary operations to be spe
i�ed are the sum90

and the multipli
ation by s
alars of interval values, and the most natural way

to pro
eed 
onsists of de�ning these operations as the image sets of the involved

interval values through the 
orresponding operation (see [8℄). Thus,

De�nition 2.1. Let K = [a, b],K′ = [a′, b′] ∈ Kc(R). The Minkowski sum of

K and K′
is de�ned as the interval value

K+ K′ = [a+ a′, b+ b′].

De�nition 2.2. Let K = [a, b] ∈ Kc(R) and γ ∈ R. The produ
t of K by the

s
alar γ is de�ned as the interval value

γ · K =

{

[γ a, γ b] if γ ≥ 0
[γ b, γ a] otherwise.

Remark 2.2. Although a di�eren
e operator 
ould be de�ned by means of

K−K′ = K+(−1) ·K′
, unlike what happens in the real-valued 
ase, the interval95

K−K would not 
oin
ide in general with the neutral element of the sum, [0, 0].
As a 
onsequen
e, one 
an 
on
lude that the spa
e (Kc(R),+) is a 
ommutative

semigroup, although not a group, and (Kc(R),+, ·) is not a linear but a semi-

linear spa
e (in fa
t, a 
losed 
onvex 
one). The semilinearity of the spa
e will

be a 
ru
ial feature when trying to develop statisti
al pro
edures.100

2.2. Metri
s between interval-valued data

In addition to (Kc(R),+, ·) not being linear, one 
an easily verify that there

is no `di�eren
e operation' between interval values that is simultaneously well-

de�ned and preserves the main properties of the di�eren
e between real values

in 
onne
tion with the sum. This drawba
k, whi
h 
learly di�erentiates real-105

from interval-valued 
ases, 
an be over
ome to some extent by in
orporating

suitable distan
es between values in Kc(R) as another basi
 tool.
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De�nition 2.3. [9℄ Let K,K′ ∈ Kc(R). The Hausdor� distan
e between K

and K′
is given by

dH(K,K′) = |midK−midK′|+ |sprK− sprK′|.

De�nition 2.4. [10℄ Let K,K′ ∈ Kc(R). The 1-norm distan
e between K and

K′
is given by

δ1(K,K
′) =

1

2
| inf K− inf K′|+

1

2
| supK− supK′|.

De�nition 2.5. [11, 12℄ Let K,K′ ∈ Kc(R) and θ > 0. The dθ-distan
e

between K and K′
is given by

dθ(K,K
′) =

√

(midK −midK′)2 + θ · (sprK − sprK′)2.

In parti
ular, the d1 metri
 equals the δ2-distan
e, whi
h has been introdu
ed

by Vitale [10℄ and formerly given as

δ2(K,K
′) =

√

(inf K− inf K′)2 + (supK− supK′)2

2
.

The value of θ weighs the relative importan
e assessed to deviations in im-

pre
ision in 
ontrast to deviations in trends. Based on the equivalen
es in [12℄,

the most 
ommon 
hoi
es 
orrespond to θ = 1/3 (whi
h allo
ates a uniform rel-110

evan
e to all the points in ea
h interval) and θ = 1 (whi
h allo
ates a uniform

relevan
e to the extreme points in ea
h interval).

Following ideas similar to those in [13℄, we 
an identify interval- with some

ve
torial-valued data via the η representation and the dθ metri
. This supports

what has been said in Remark 2.1 about the parti
ularization of methods for the115

robust analysis of Hilbert spa
e-valued random elements whenever the outputs

remain within the 
one R× [0,∞).

Remark 2.3. All these metri
s are strongly equivalent. It should be empha-

sized that although an isometri
al embedding 
an be stated through η (or ι)

when Kc(R) is endowed with the dH (or δ1) metri
, the �nal spa
e the 
one is120

in
luded in is not a Hilbert but a Bana
h spa
e.

2.3. Interval-valued random elements

Mathemati
al modeling is another essential tool in developing data analysis,

and data are usually assumed to 
ome from the repeated performan
e of a

random me
hanism. Fré
het [14℄ anti
ipated that future mathemati
s would125

have to in
orporate new and unexpe
ted sorts of obje
ts quite beyond numbers

and ve
tors, so he introdu
ed random elements taking on values in metri
 spa
es.

In a

ordan
e with their 
urrent usage, a random element is de�ned to be a

measurable fun
tion between a sample spa
e and a metri
 spa
e equipped with

its Borel σ-algebra.130
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Compa
t random intervals (see [15℄) determine a well-stated and supported

model for the random me
hanisms generating interval-valued data within the

probabilisti
 setting. They integrate both randomness and impre
ision, so that

the �rst one a�e
ts the generation of experimental data, whereas the se
ond

a�e
ts the nature of the experimental data whi
h, for formal purposes, are135

assumed to be intrinsi
ally interval-valued.

De�nition 2.6. Given a probability spa
e (Ω,A, P ), a mapping X : Ω → Kc(R)
is said to be a 
ompa
t random interval asso
iated with it if X is measurable

with respe
t to A and the Borel σ-algebra generated by the topology indu
ed by

the Hausdor� metri
 on Kc(R) (or any of the topologi
al equivalent metri
s).140

Equivalently, a 
ompa
t random interval X 
an be expressed as X = [inf X, supX],
with inf X and supX being random variables su
h that inf X ≤ supX.

As a 
onsequen
e from the Borel measurability, 
on
epts su
h as the (in-

du
ed) distribution of a (
ompa
t) random interval, some of its relevant param-

eters, as well as the sto
hasti
 independen
e of (
ompa
t) random intervals, 
an145

be immediately obtained.

In this respe
t, if one attempts to summarize the distribution of a 
ompa
t

random interval, one 
an think about formalizing a lo
ation measure as follows:

De�nition 2.7. [16℄ Let (Ω,A, P ) be a probability spa
e and X : Ω → Kc(R) be
an asso
iated 
ompa
t random interval su
h that E(inf X) and E(supX) exist.
The Aumann mean of X is the interval value E[X] ∈ Kc(R) su
h that E[X] =
[E(inf X), E(supX)]. Equivalently,

η (E[X]) = E (η(X)) =
(

E(midX), E(sprX)
)

.

The Aumann mean satis�es several valuable properties similar to those in

the 
lassi
al 
ase (see for reviews [17℄, and also [13℄ in a more general setting),150

it is 
oherent with the usual interval arithmeti
 and it satis�es Strong Laws of

Large Numbers (see, in the more general setting, [18℄).

3. M-estimators of lo
ation for 
ompa
t random

intervals

M-estimators of lo
ation for real-valued data were introdu
ed by Huber [19℄,155

with the aim of limiting the in�uen
e of outliers in approa
hes like least squares.

The 
ru
ial idea was the repla
ement of the squared errors by a (generally less

rapidly in
reasing) loss fun
tion of the data and the parameter estimate. For this

reason, M-estimators are 
onsidered intermediaries between the sample mean

and median, both of them being in
luded as spe
ial 
ases. The extension of this160

idea to the interval setting 
an be stated as follows:

De�nition 3.1. Consider a metri
 spa
e (Kc(R), d) and let (Ω,A, P ) be a prob-
ability spa
e, X : Ω → Kc(R) be an asso
iated 
ompa
t random interval and ρ

6



be a 
ontinuous loss fun
tion. The M-lo
ation measure, if it exists, is the

interval KM
P [X] ∈ Kc(R) de�ned as follows

KM
P [X] = arg min

K∈Kc(R)
JP (K) = arg min

K∈Kc(R)
E[ρ(d(X,K))].

Remark 3.1. The fun
tion ρ in De�nition 3.1 is a generalization of the square

loss fun
tion in the least squares approa
h. Indeed, it is usually assumed to

vanish at 0 and be non-de
reasing. The 
ontinuity of the loss fun
tion ρ is


ommonly assumed (see, e.g., [20℄ or [21℄).165

De�nition 3.2. Consider (Kc(R), d) a metri
 spa
e. Let (Ω,A, P ) be a Polish

probability spa
e, X be an asso
iated 
ompa
t random interval X : Ω → Kc(R),
(X1, . . . ,Xn) be a simple random sample from X and ρ be a 
ontinuous loss

fun
tion. The M-estimator of lo
ation is the Kc(R)-valued statisti
 K̂M [X]n,
if it exists, given by

K̂M [X]n = arg min
K∈Kc(R)

1

n

n
∑

i=1

ρ(d(Xi,K)).

In parti
ular, given a sample of observations from X, xn = (x1, . . . , xn), the

(sample) M-estimate of lo
ation is the interval K̂M [xn] ∈ Kc(R) given by

K̂M [xn] = arg min
K∈Kc(R)

Jn(K) = arg min
K∈Kc(R)

1

n

n
∑

i=1

ρ(d(xi,K)).

Proposition 3.1. The M-estimator of lo
ation is well-de�ned for the metri


spa
e (Kc(R), d) with d ∈ {dθ, dH , δ1}.

An important property of M-estimators of lo
ation for 
ompa
t random in-

tervals, the strong 
onsisten
y, is now to be analyzed. The following result

presents some suitable 
hoi
es of ρ to guarantee the strong 
onsisten
y, in
lud-

ing some well-known loss fun
tions like the ones proposed by Huber [22℄

ρa(x) =







x2/2 if |x| ≤ a

a(|x| − a/2) otherwise,

with a > 0 a tuning parameter, and Hampel [23℄

ρa,b,c(x) =























x2/2 if 0 ≤ |x| < a
a(|x| − a/2) if a ≤ |x| < b
a(|x| − c)2

2(b− c)
+

1

2
a(b + c− a) if b ≤ |x| < c

a(b+ c− a)/2 if c ≤ |x|,

where the nonnegative parameters a < b < c allow us to 
ontrol the degree of

supression of the outliers. The smaller their values, the greater this degree.

7



Theorem 3.2. Consider the metri
 spa
e (Kc(R), d) with d ∈ {dθ, dH , δ1}.170

Let X be a 
ompa
t random interval asso
iated with a Polish probability spa
e

(Ω,A, P ). Under any of the following assumptions:

• ρ is non-de
reasing, subadditive and unbounded,

• ρ has linear upper and lower bounds with the same slope (in
luding Huber

loss fun
tion),175

• ρ is bounded (in
luding Hampel loss fun
tion),

and whenever the M-lo
ation measure exists and is unique, the sample M-estimator

of lo
ation is a strongly 
onsistent estimator of the M-lo
ation measure, i.e.,

lim
n→∞

d(K̂M [X]n,K
M
P [X]) = 0 a.s. [P ].

The measurability and the 
onsisten
y of the M-estimators of a 
ompa
t

random interval have been proven assuming their existen
e. In the next subse
-

tions, we will restri
t the study to some loss fun
tions for whi
h the existen
e of

M-estimators 
an be 
ertainly guaranteed. Two di�erent methodologies will be180

presented: the adaptation of already existing ideas and results in the literature

for Hilbert spa
e-valued data (Subse
tion 3.1) and some ad ho
 developments for

a natural 
hoi
e of the loss fun
tion that does not ful�ll the 
onditions required

for the �rst methodology (Subse
tion 3.2).

3.1. M-estimators of lo
ation de�ned through the Representer Theorem185

In this subse
tion, Kim and S
ott's studies [24, 25℄ in the Hilbert spa
e

framework will be adapted, following the �rst methodology, to deal with interval-

valued data. Their ideas have been developed for reprodu
ing kernel Hilbert

spa
es, in the 
ontext of robust nonparametri
 density estimation, 
ombining

a traditional kernel density estimator with ideas from 
lassi
al M-estimation190

through the interpretation of this estimator based on a radial, positive semi-

de�nite kernel as a sample mean.

To lower the sensitivity of the sample mean to outliers, Kim and S
ott sug-

gest that we estimate it robustly via M-estimators yielding a robust kernel

density estimator. Although Kim and S
ott generalized their results to other195

Hilbert spa
es, they have never moved out of the setting of kernel density es-

timation. However, these ideas and proofs 
an be easily adapted to general

Hilbert spa
es and, therefore, appli
able to the interval-valued 
ase through the

isometri
al embedding of (Kc(R), dθ) into the 
one R × [0,∞), with the 
orre-

sponding metri
 indu
ed by the isometry η. In this se
tion, su
h adaptation200

is to be shown and 
ompleted with several properties Kim and S
ott have not

examined.

The most 
ru
ial result in [25℄ for the parti
ularization of M-estimators to

the interval-valued 
ase is the Representer Theorem, sin
e it guarantees that the

M-estimator of lo
ation asso
iated with a 
ompa
t random interval will remain205

in the 
orresponding parameter spa
e, Kc(R). The Representer Theorem states

that the M-estimate of lo
ation 
an be expressed as a 
onvex linear 
ombination

of the sample 
omponents. Sin
e the sample observations obviously belong to

the 
one and the linear 
ombination is a 
losed operator, the impli
ation follows.

8



Theorem 3.3. [Adapted from [25℄℄ Consider the metri
 spa
e (Kc(R), dθ). Let210

(Ω,A, P ) be a probability spa
e, X : Ω → Kc(R) be a 
ompa
t random interval

and xn = (x1, . . . , xn) be a sample of independent observations from X. Under

the assumptions

R1. ρ is non-de
reasing (in
reasing in a neighborhood of 0) and di�erentiable,

ρ(0) = 0 and limx→0 ρ(x)/x = 0,215

R2. Let φ(x) = ρ′(x)/x, and assume the 
onvention φ(0) = limx→0 φ(x), where
φ(0) is supposed to exist and be �nite,

the Kc(R)-valued sample M-estimate of lo
ation exists and 
an be expressed as

K̂M [xn] =
n
∑

i=1

wi · xi,

where wi ≥ 0 and

∑n
i=1 wi = 1. Furthermore, wi ∝ φ(dθ(xi, K̂M [xn])). Indeed,

under the additional assumption

R3. Jn is stri
tly 
onvex (for whi
h su�
ient 
onditions are given by either220

• ρ is stri
tly 
onvex, or

• ρ is 
onvex, stri
tly in
reasing, n ≥ 3 and A = (〈η(xi),η(xj)〉θ)ni,j=1 is

positive de�nite, with 〈η(xi),η(xj)〉θ = mid xi ·mid xj + θ · spr xi · spr xj);
the ne
essary 
onditions

i) K̂M [xn] =
∑n

i=1 wi · xi,225

ii) wi ∝ φ(dθ(xi, K̂M [xn])),

iii)

∑n
i=1 wi = 1

are also su�
ient for K̂M [xn] to be the minimizer of Jn(K) =
1
n

∑n
i=1 ρ(dθ(xi,K)).

Remark 3.2. Noti
e that these 
onditions on ρ are not un
ommon. Apart

from ρ being non-de
reasing and vanishing at 0, M-estimators of lo
ation with230

di�erentiable loss fun
tions are usually 
hosen. On the other hand, ρ′(0) = 0
is a 
onsequen
e of ρ′ being odd (see [21℄) and, in most interesting 
ases, φ(0)
exists and is �nite.

Noti
e that Huber's and Hampel's loss fun
tions satisfy R1-R2 (and Huber

may also ful�ll R3 ).235

The existen
e and uniqueness of the sample M-estimate of lo
ation for a

sample of independent observations obtained from a 
ompa
t random interval

are guaranteed under assumptions R1−R3 in the Representer Theorem. How-

ever, despite the fa
t that we 
an express the M-estimate as a weighted mean of

the observations, su
h weights also depend on the M-estimate, so the problem240

does not have an expli
it solution in general. To deal with these impli
it formu-

las in pra
ti
e, Kim and S
ott [25℄ proposed an iterative algorithm that is an

extension of the iteratively re-weighted least squares algorithm used in 
lassi
al

M-estimation (see [19℄). Its notation will be now adapted to the interval setting.

Step 1. Take the initial weights w
(0)
i ∈ R, for i ∈ {1, . . . , n}, su
h that w

(0)
i ≥ 0245

and

∑n
i=1 w

(0)
i = 1, and �x a toleran
e ε.

9



Step 2. Generate a sequen
e {KM
(k)}k∈N by iterating on the following pro
edure:

KM
(k) =

n
∑

i=1

w
(k−1)
i · xi, w

(k)
i =

φ(dθ(xi,K
M
(k)))

∑n
j=1 φ(dθ(xj ,K

M
(k)))

.

Step 3. Terminate the algorithm when

|Jn(KM
(k+1))− Jn(K

M
(k))|

Jn(KM
(k))

< ε.

The following property of M-estimators obtained under the Representer The-

orem 
an be proven.

Proposition 3.4. Consider the metri
 spa
e (Kc(R), dθ). Let xn = (x1, . . . , xn)
denote a sample of independent observations from a 
ompa
t random interval250

X : Ω → Kc(R) on a probability spa
e (Ω,A, P ). Moreover, let ρ be a 
ontinuous

loss fun
tion ful�lling the assumptions R1-R3.

If K ∈ Kc(R), then it holds that the M-estimator is translation equivariant, i.e.,

̂KM [xn + K] = K̂M [xn] + K.

Moreover, if ρ satis�es that φ(k·x) ∝ φ(x) for any k ∈ (0,∞) (i.e., the 
oe�
ient

of proportionality is independent of x), then for all γ ∈ R the M-estimator is

also s
ale equivariant, i.e.,

̂KM [γ · xn] = γ · K̂M [xn].

In general, M-estimators of lo
ation are not s
ale equivariant, sin
e most

loss fun
tions do not satisfy the proportionality assumption in Proposition 3.4.

Therefore, the measurement units will have to be 
hosen 
arefully.255

In order to measure the robustness, the �nite sample breakdown point has

been 
onsidered. Although other tools like the in�uen
e fun
tion 
ould be very

informative, the la
k of realisti
 and easy-to-use models for the distribution of


ompa
t random intervals makes su
h an approa
h non-viable at present. The

intuitive idea behind the 
on
ept of �nite sample breakdown point (denoted by

fsbp) is that it represents the minimum proportion of observations that should be

perturbed enough to make the 
orresponding estimate be arbitrarily far from the

estimate obtained for the original non-
ontaminated sample. The mathemati
al

formalization by Donoho and Huber [26℄ 
an be adapted to 
over estimators

taking values in general metri
 spa
es as follows. The �nite sample breakdown

point of a general M-estimator of lo
ation K̂M [X]n 
orresponding to a sample

xn of size n from a 
ompa
t random interval X : Ω → Kc(R) with (Kc(R), d) a
metri
 spa
e ful�lling that supK,K′∈Kc(R) d(K,K ′) = ∞ is given by

fsbp(K̂M [X]n, xn, d) =
1

n
min

{

k ∈ {1, . . . , n} : sup
yn,k

d(K̂M [xn], ̂KM [yn,k]) = ∞

}

,

10



where yn,k denotes the sample obtained from xn by perturbing up to k of

its elements. The following result shows an upper bound for the fsbp of M-

estimators of lo
ation under the Representer Theorem and gives the exa
t value

of their fsbp under some additional 
onditions on the loss fun
tion.

Theorem 3.5. Consider the metri
 spa
e (Kc(R), dθ) and let X be a 
ompa
t260

random interval asso
iated with a Polish probability spa
e (Ω,A, P ). Moreover,

let ρ be a 
ontinuous loss fun
tion satisfying the assumptions R1-R2 in Theorem

3.3, su
h that the 
orresponding sample M-estimator of lo
ation is unique. Then,

the fsbp of the 
orresponding M-estimator of lo
ation is at most ⌊(n+ 1)/2⌋/n,
where ⌊ ⌋ denotes the �oor fun
tion. Furthermore, under any of the additional265

assumptions:

• ρ admits linear upper and lower bounds with the same slope (e.g. Huber

loss fun
tion)

• ρ has a �nite upper bound C∗
(e.g. Hampel loss fun
tion) and satis�es

ρ

(

max
1≤i,j≤n

dθ(xi, xj)

)

<
n− 2⌊n−1

2 ⌋

n− ⌊n−1
2 ⌋ − 1

· C∗,

then the fsbp is exa
tly equal to ⌊(n+ 1)/2⌋/n.

The su�
ient 
onditions over the loss fun
tion allowing us to guarantee the270

existen
e of sample M-estimates of lo
ation as well as their expression as 
onvex

linear 
ombinations of the sample elements are ful�lled for di�erent interesting


hoi
es of the loss fun
tion ρ, as it has just been veri�ed. However, there are

some other interesting 
hoi
es of ρ for whi
h su
h 
onditions fail and ad ho


developments should be 
onsidered.275

In this respe
t, if one 
hooses ρ(x) = |x|, one 
annot apply the results in

this subse
tion. In Subse
tion 3.2, some ad ho
 developments in the literature

to get the (exa
t) M-estimates asso
iated with this 
hoi
e are to be re
alled.

3.2. Ad-ho
 M-estimators of lo
ation

In this subse
tion, a parti
ular M-estimator of lo
ation on Kc(R) will be280

reviewed: the median. In this 
ase ρ(x) = |x|, and we will 
onsider the three

distan
es introdu
ed in Se
tion 2.2: δ1 and dH as L1
-type metri
s and dθ as

L2
-type.

For the two L1
-type extensions of the 
on
ept of median to the interval-

valued setting, the idea behind them is similar, the properties they ful�ll mostly285


oin
ide and the way of operating with them is analogous. A detailed study of

su
h 
on
epts 
an be found in [27℄, [28℄, and also [29, 30℄ for the more general

setting of random fuzzy numbers.

De�nition 3.3. Given a probability spa
e (Ω,A, P ) and an asso
iated 
om-

pa
t random interval X, the δ1-median(s) (or 1-norm median) and the

dH-median(s) (or Hausdor�-type median) of X are the intervals

Me[X] = arg min
K∈Kc(R)

E
(

δ1
(

X,K
))

and M[X] = arg min
K∈Kc(R)

E
(

dH
(

X,K
))

,

respe
tively, whenever the involved expe
tations exist.

11



The following result guarantees that at least one value for ea
h of these290

medians always exists and it is rather easy to 
ompute.

Theorem 3.6. Given a probability spa
e (Ω,A, P ) and an asso
iated 
ompa
t

random interval X, the intervals Me[X],M[X] ∈ Kc(R) su
h that

Me[X] =
[

Me
(

inf X
)

,Me
(

supX
)]

(whi
h 
orresponds to the median suggested by De Souza and De Carvalho [31℄)

and

M[X] =
[

Me
(

midX
)

−Me
(

sprX
)

,Me
(

midX
)

+Me
(

sprX
)]

,

(whi
h 
orresponds to the median suggested by De Carvalho et al. [32℄) are a

δ1-median and a dH-median of X, respe
tively. In 
ase any of the medians of the

involved real-valued random variables is non-unique, the most usual 
onvention

of 
hoosing the mid-point of the interval of medians is assumed to be 
onsidered.295

From now on, these solutions will be the ones 
onsidered when mentioning

the δ1- and dH -medians to avoid an unne
essary 
umbersome 
he
king and to

ease the study of their properties. Analogously, given a simple random sample

(X1, . . . ,Xn) from a 
ompa
t random interval X asso
iated with a probability

spa
e (Ω,A, P ), the sample δ1-median and the sample dH-median will be

respe
tively given by

M̂e[X]n =
[

̂Me(inf X)n,
̂Me(supX)n

]

,

M̂[X]n =
[

̂Me(midX)n − ̂Me(sprX)n,
̂Me(midX)n + ̂Me(sprX)n

]

,

following the same 
onvention as in Theorem 3.6.

Remark 3.3. It should be pointed out that the use of the 
onvention in The-

orem 3.6 has a di�erent mission when applied to the δ1-median and the dH -
median. In the �rst 
ase, if we do not 
onsider some valid 
onventions, the

result 
an fail and not determine an interval. For example, 
onsider the 
om-300

pa
t random interval X taking on the values x1 = [0, 2] and x2 = [3, 4], both
with indu
ed probabilities P (X = x1) = P (X = x2) = 0.5. Then, we have that
Me(inf X) is any value in [0, 3], whereas Me(supX) is any value in [2, 4], so a


hoi
e of the kind Me(inf X) = 2.5 and Me(supX) = 2 would lead to an empty

interval. On the other hand, any possible 
hoi
e for the medians Me(midX)305

and Me(sprX) would lead to a valid solution of dH -median, so the 
onvention

in Theorem 3.6 serves to provide uniqueness.

Remark 3.4. In 
ontrast to the median of random variables, both the δ1-
median and the dH -median do not ne
essarily 
orrespond to one of the values

of the 
ompa
t random interval, even when the 
onvention is not needed. Con-310

sider the 
ompa
t random interval Y taking on values y1 = [0, 2], y2 = [2, 3]
and y3 = [1, 5], all of them with probability 1/3. Then, Me[Y] = [1, 3] and
M[Y] = [1.5, 3.5].
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In addition to the use of L1
-type metri
s, it should be noted that a well-

known generalization of the median of real-valued random variables to the mul-315

tivariate settings is the spatial median or median
enter (see, for example, [33℄

or [34℄), whi
h is based on an L2
-type metri
.

Inspired by the spatial median as extension of the median to higher dimen-

sional Eu
lidean spa
es and even Bana
h spa
es (see [35℄), Sinova et al. [36℄

introdu
ed the population and sample dθ-medians on Kc(R).320

De�nition 3.4. Given a probability spa
e (Ω,A, P ) and an asso
iated 
ompa
t

random interval X : Ω → Kc(R), the dθ-median(s) of X is (are) the interval

value(s) Mθ[X] ∈ Kc(R) su
h that

Mθ[X] = arg min
K∈Kc(R)

E
(

dθ
(

X,K
))

,

whenever the involved expe
tation exists.

De�nition 3.5. Given a probability spa
e (Ω,A, P ), an asso
iated 
ompa
t ran-

dom interval X : Ω → Kc(R), and a simple random sample (X1, . . . ,Xn) from
X, the sample dθ-median(s) of X is (are) the interval-valued statisti
(s)

M̂θ[X]n = arg min
K∈Kc(R)

1

n

n
∑

i=1

dθ
(

Xi,K
)

= arg min
(y,z)∈R×[0,∞)

1

n

n
∑

i=1

√

(midXi − y)2 + θ · (sprXi − z)2,

where the target values of K, y and z depend in fa
t on (X1, . . . ,Xn) (although,
for the sake of simpli
ity, this has been omitted from the notation).

The existen
e and uniqueness of the sample dθ-median has been dis
ussed

in [37℄ and the strong 
onsisten
y in [38℄.325

Theorem 3.7. Given a simple random sample (X1, . . . ,Xn) from a 
ompa
t

random interval X : Ω → Kc(R), the 
orresponding sample dθ-median always

exists and, moreover, it is unique for any sample realization xn = (x1, . . . , xn)
for whi
h the two-dimensional sample points {(mid xi, spr xi)}ni=1 are not all


ollinear.330

In 
ontrast to the L1
-type medians for random intervals, the solution for the

dθ-median is impli
it. In order to approximate it, a similar algorithm to the one

proposed for M-estimators under the Representer Theorem (see Se
tion 3.1) 
an

be 
onsidered.

Regarding the inferential behavior of these medians, all of them are strongly335


onsistent whenever the 
orresponding population medians Me[X], M[X] and
Mθ[X] exist and are a
tually unique (i.e., they are unique without applying the


onvention in Theorem 3.6), and their �nite sample breakdown point equals the

value ⌊(n+ 1)/2⌋/n.
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Indeed, the sample mean has the lowest possible breakdown point while the340

sample median 
an withstand up to 50% of 
ontamination. In 
onsequen
e, the

de�nition of these three medians su

eeds in inheriting the robustness properties

of the real-valued sample median.

4. Illustrative real-life examples

4.1. Greek wine data345

In this subse
tion, we will 
ome ba
k to Example 1.1 introdu
ed in Se
tion 1.

It has already been shown that the Aumann mean was in�uen
ed by the atypi
al

values 
on
erning the 
a�ei
 a
id 
on
entrations in wine. Therefore, the robust

lo
ation measures for random intervals proposed/re
alled along this work will be

now 
omputed to avoid the sensitivity to outliers when summarizing the 
entral350

tenden
y of su
h a phenol 
on
entration. The (rounded) obtained estimates for

the 
omplete dataset (1) are the following:

E(1)[X] = [64.47, 70.17],

(

KM
Huber

)(1)
[X] = [48.45, 52.73],

(

KM
Hampel

)(1)
[X] = [47.25, 51.02],

Me(1)[X] = [48.2, 53.8], M(1)[X] = [47.8, 52.2], M
(1)
1/3[X] = [48.07, 52.46].

The M-estimates of lo
ation have been 
omputed by means of both Huber

and Hampel loss fun
tions when the parameter θ involved in the dθ metri


has been assumed to be equal to 1/3. The 
hoi
e of the values for the tuning355

parameters in the Huber (a = 1.345) and Hampel (a = 2, b = 4, c = 8) loss
fun
tions is 
ommon in the literature (see e.g. [39℄ and [40℄).

By removing the most extreme values (
orresponding to the wines with 
odes

1, 6, 9, 10 and 16), dataset (2), the Aumann mean is not so far from the

remaining lo
ation estimates:360

E(2)[X] = [48.36, 52.66],

(

KM
Huber

)(2)
[X] = [46.77, 50.46],

(

KM
Hampel

)(2)
[X] = [47.25, 51.02],

Me(2)[X] = [46.8, 49.8], M(2)[X] = [47.15, 50.75], M
(2)
1/3[X] = [47.65, 50.10].

It 
an be 
he
ked that, although outliers make all the measures have a larger

mid-point, the Aumann mean value is the estimate whi
h has been the most

perturbed by them:

d1/3(E
(1)[X],E(2)[X]) = 16.80, d1/3

(

(

KM
Huber

)(1)
[X],

(

KM
Huber

)(2)
[X]
)

= 1.99,

d1/3

(

(

KM
Hampel

)(1)
[X],

(

KM
Hampel

)(2)
[X]
)

= 2.77 · 10−4,

d1/3(Me(1)[X],Me(2)[X]) = 2.80, d1/3(M
(1)[X],M(2)[X]) = 1.08,
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d1/3(M
(1)
1/3[X],M

(2)
1/3[X]) = 1.50.

The di�eren
e between the original estimate and the estimate after the re-

moval of the outliers is 
learly smaller than the one for the Aumann mean in all


ases.

4.2. Water quality data

The se
ond real-life example deals with water quality data. As Ongley [41℄365


ommented, detailed (real-valued) data in problems related with in-stream 
al-


ulations or environmental quality issues that require temporal extrapolation

(e.g. 
hemi
al loads) are of limited pra
ti
al use, although they 
ontain mu
h

information about the variability. Therefore, in pra
ti
e many 
hemi
al pa-

rameters are represented by the whole range of individual re
ords (that is to370

say, interval-valued data) observed daily, su
h as ammonia, 
hloride, nitrate,

phosphorus or suspended sediment 
on
entrations, spe
i�
 
ondu
tan
e and

turbidity (see, for example, [42℄). Among them, pH and dissolved oxygen are

frequently measured when 
ontrolling the water quality, as in [43℄.

The 
onsidered dataset 
ontains the interval-valued information (that is,375

the minima and maxima values a
hieved daily) related to the dissolved oxygen

(mg/L) and the pH (standard units) measured in Delaware River at Chester

(agen
y USGS, site 1477050, Pennsylvania, United States) from May 15, 2014

till June 15, 2014. A 
omplete des
ription, dataset and more detailed infor-

mation 
an be found in the webpage of the United States Geologi
al Survey380

(USGS) http://waterdata.usgs.gov. Colle
ted data are shown in Table 1

and Figures 2 and 3.
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Figure 2: Dissolved oxygen (mg/L) measured in Delaware River at Chester

The mid-points/
enters and spreads/radius of all the interval-valued lo
ation

measures de�ned/re
alled before have been 
omputed and in
luded in Table 2.

The only di�eren
e with respe
t to the 
al
ulations in the previous example of385
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Table 1: Interval-valued information related to the dissolved oxygen (mg/L) and the pH

(standard units) measured in Delaware River at Chester from May 15, 2014 till June 15, 2014

Date O2 pH Date O2 pH

15/05/2014 [7.0, 9.2℄ [6.9, 7.2℄ 31/05/2014 [7.0, 8.1℄ [7.0, 7.1℄

16/05/2014 [7.1, 8.4℄ [7.0, 7.2℄ 01/06/2014 [6.6, 8.2℄ [7.0, 7.1℄

17/05/2014 [7.0, 8.7℄ [6.9, 7.1℄ 02/06/2014 [6.9, 8.6℄ [7.0, 7.2℄

18/05/2014 [5.9, 8.1℄ [6.9, 7.1℄ 03/06/2014 [7.0, 9.2℄ [7.0, 7.3℄

19/05/2014 [5.7, 8.3℄ [6.9, 7.1℄ 04/06/2014 [7.3, 9.8℄ [7.0, 7.4℄

20/05/2014 [6.5, 8.5℄ [7.0, 7.1℄ 05/06/2014 [7.5, 9.8℄ [7.1, 7.3℄

21/05/2014 [6.2, 8.0℄ [6.9, 7.1℄ 06/06/2014 [7.7, 10.9℄ [7.1, 7.6℄

22/05/2014 [5.7, 8.0℄ [6.9, 7.1℄ 07/06/2014 [8.2, 11.7℄ [7.1, 7.9℄

23/05/2014 [5.9, 8.3℄ [6.8, 7.0℄ 08/06/2014 [8.9, 12.1℄ [7.3, 8.2℄

24/05/2014 [6.2, 8.3℄ [6.8, 7.0℄ 09/06/2014 [8.8, 10.4℄ [7.2, 7.6℄

25/05/2014 [6.5, 8.6℄ [6.8, 7.1℄ 10/06/2014 [8.0, 9.2℄ [7.2, 7.3℄

26/05/2014 [6.8, 8.5℄ [6.8, 7.0℄ 11/06/2014 [7.1, 8.0℄ [7.1, 7.2℄

27/05/2014 [6.7, 8.2℄ [6.8, 7.1℄ 12/06/2014 [6.2, 7.3℄ [7.0, 7.2℄

28/05/2014 [6.2, 7.9℄ [6.8, 7.1℄ 13/06/2014 [5.1, 7.1℄ [7.0, 7.1℄

29/05/2014 [7.3, 8.0℄ [7.0, 7.1℄ 14/06/2014 [4.8, 6.7℄ [7.0, 7.1℄

30/05/2014 [6.9, 8.2℄ [7.0, 7.2℄ 15/06/2014 [4.8, 6.8℄ [6.9, 7.1℄
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Figure 3: pH (standard units) measured in Delaware River at Chester

Greek wine data is that, due to the small distan
es between the observations,

tuning parameters a, b and c have been �xed following Kim and S
ott's sugges-

tions (see [25℄ for more details). Noti
e that the values a = 1.345 (for Huber)

and a = 2, b = 4 and c = 8 (Hampel) are too large to distinguish between

16



Table 2: Mid-points and spreads of the Aumann mean, Huber and Hampel M-estimators,

the 1-norm, Hausdor�-type and dθ=1/3 medians of the dissolved oxygen and pH values in

Delaware River

E[X] KM
Huber[X] KM

Hampel[X] Me[X] M[X] M1/3[X]

Oxygen

Mid 7.697 7.551 7.487 7.575 7.550 7.551

Spr 0.963 0.904 0.877 0.725 0.975 0.843

pH

Mid 7.102 7.054 7.030 7.050 7.050 7.053

Spr 0.127 0.098 0.093 0.050 0.100 0.083

`normal' and `atypi
al' distan
es between observations in this 
ase, sin
e all the390

distan
es would be 
lassi�ed as `normal' and these two M-estimators would 
o-

in
ide with the Aumann mean. On the other hand, Kim and S
ott show how to

�x the parameters depending on the sample distan
es. The values used in this

example have been 0.558 (Huber), a = 0.558, b = 1.046 and c = 1.787 (Hampel)

for the dissolved oxygen data, and 0.058 (Huber), a = 0.058, b = 0.153 and395

c = 0.183 (Hampel) for the pH data.

Outliers are not so 
learly identi�ed when looking at the dissolved oxygen

data, but we 
an 
he
k in Table 2 how the three observations with larger spread

and a bit higher mid-point (June, 6 to June, 8 2014) have more in�uen
e on the


omputation of (both the mid and spr of) the Aumann mean than for the rest400

of lo
ation measures, whi
h present a more robust behavior.

The pH values measured on June, 7 and 8 2014 are 
learly identi�ed as

outliers taking into a

ount their large spread. This is re�e
ted in the larger

spread of the Aumann mean in 
ontrast to the spread of the M-estimators.

Noti
e that all the spreads are quite small, so the di�eren
e in spread between405

the Aumann mean and the M-estimators is proportionally large.

5. Comparative empiri
al studies

A 
omparative simulation is set up to 
he
k the robustness of all the M-

estimators proposed in this work when dealing with interval-valued data. Four

di�erent studies have been 
ondu
ted, varying the sample size (small sample410

size n = 100 or large sample size n = 10000) and the distributions (the original

distribution being symmetri
 or asymmetri
).

For ea
h of the four studies, the 
omparisons have 
on
erned the following

lo
ation estimates: Aumann mean, Huber and Hampel M-estimates using the dθ
distan
e, δ1-median, dH -median and dθ-median, with θ ∈ {1/3, 1}. When n =415

100, the medians and trimmed means based on the well-known halfspa
e and

simpli
ial depths (see [44, 45℄ and [46℄, respe
tively) have also been 
onsidered.

The reason not to in
lude them in the 
omparisons when n = 10000 is that the

omputation of depths is usually hard when the sample size in
reases.
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For ea
h of the lo
ation measures/estimates L, the Monte Carlo approxi-

mation of the estimate, L[X], has been 
omputed. This information has been


ompleted with the Monte Carlo approximation of the bias d(E[L̂[X]n], L[X]),

the varian
e E(d2(L̂[X]n,E[L̂[X]n])) and the mean square error of the estimate

E(d2(L̂[X]n, L[X])) for d ∈ {δ1, dH , d1/3, δ2}, whi
h have been obtained through

the formulas

d

(

∑N
i=1 L̂[X]

i
N

N
, L[X]

)

,
1

N

N
∑

i=1

d2

(

L̂[X]iN ,

∑N
i=1 L̂[X]

i
N

N

)

,
1

N

N
∑

i=1

d2
(

L̂[X]iN , L[X]
)

respe
tively, where N denotes the number of Monte Carlo iterations and L̂[X]iN420

represents the sample estimate of the ith sample, i ∈ {1, . . . , N}.
The general s
heme of the four studies has been as follows:

Step 1. A sample of n interval-valued data has been simulated from a 
ompa
t

random interval X for ea
h of several di�erent situations in su
h a way

that425

• to generate the interval-valued data, we have 
onsidered two real-

valued random variables as follows: X = [X1 −X2, X1 + X2], with
X1 = midX and X2 = sprX or, alternatively, two order real-valued

statisti
s X(1) and X(2) su
h that X = [X(1), X(2)], i.e., X(1) = inf X,
X(2) = supX;430

• ea
h sample is assumed to be split into a subsample of size n(1− cp),
where cp denotes the proportion of 
ontamination and is supposed to

range in {0, 0.1, 0.2, 0.4}, asso
iated with a non-
ontaminated distri-

bution and a subsample of size n · cp asso
iated with a 
ontaminated

one. CD plays an additional 
ontamination role, measuring how far435

the distribution of the 
ontaminated subsample is from the distribu-

tion of the non-
ontaminated one (and ranges in {0, 1, 5, 10, 100});

• 16 situations for di�erent values of cp and CD have been 
onsidered

and for ea
h of them some 
ases have been sele
ted, namely, ones in

whi
h the random variables Xi (or X(i)) are independent (CASES 1440

and 3) and others in whi
h they are dependent (CASES 2 and 4).

Step 2. N = 1000 repli
ations of Step 1 have been 
onsidered for the situation

cp = CD = 0 in order to approximate the population measures by using

a Monte Carlo approa
h.

Step 3. N = 1000 repli
ations of Step 1 have been 
onsidered for all the sit-445

uations (cp, CD) and the approximated estimates, bias, varian
e and

mean square error have been 
omputed for ea
h lo
ation measure.

The following sample sizes and distributions have been used:

Study 1 n = 100 and the assumptions for CASE 1 are

18



• X1 ∼ N (0, 1) and X2 ∼ χ2
1 for the non-
ontaminated subsample,450

• X1 ∼ N (0, 3) + CD and/or X2 ∼ χ2
4 + CD for the 
ontaminated

subsample,

whereas CASE 2 assumes that

• X1 ∼ N (0, 1) and X2 ∼ 1/(X2
1+1)2+

√

χ2
1 for the non-
ontaminated

subsample,455

• X1 ∼ N (0, 3) + CD and/or X2 ∼ 1/(X2
1 + 1)2 +

√

χ2
1 + CD for the


ontaminated subsample,

being χ2
1 independent from X1 and, obviously, 1/(X

2
1 + 1)2.

Study 2 n = 10000 and same CASES 1 and 2 than in Study 1.

Study 3 n = 100 and we vary the distributions 
onsidered in Study 1, in order460

to bound the generated intervals, as 
ommonly happens in real-life

appli
ations related to surveys or ratings, and manage asymmetri



ontamination. CASE 3 assumes that

• X(1), X(2) ∼ Beta(5, 1) (they are simply 
hosen at random and or-

dered) for the non-
ontaminated subsample,465

• X(1), X(2) ∼ Beta(1, CD + 1) for the 
ontaminated subsample,

whereas CASE 4 assumes that

• X1 ∼ Beta(5, 1) and X2 ∼ Uniform[0,min{X1, 1−X1}] for the non-

ontaminated subsample,

• X1 ∼ Beta(1, CD+1) and/or X2 ∼ min{X1, 1−X1}·Beta(1, CD+1)470

for the 
ontaminated subsample.

Study 4 n = 10000 and the same CASES 3 and 4 as in Study 3.

To avoid ex
essive information in the outputs of the simulations, the details

about bias, varian
e and mean square error 
an be found in the supplementary

material. The 
on
lusions for the four studies have been summarized in Table 3.

As a measure of the variation of the 
hoi
e of the optimal lo
ation estimate, the

index of qualitative variation (IQV) has been 
omputed for ea
h 
ase as follows

(see [47℄):

IQV =
k

k − 1

(

1−
k
∑

i=1

f2
i

)

,

where k is the number of di�erent 
ategories (i.e., the number of di�erent lo
a-

tion estimates 
onsidered in ea
h 
ase: k = 13 in Studies 1 and 3 and k = 9 in

Studies 2 and 4) and fi represents the relative frequen
y of the i-th 
ategory.475

Therefore, the IQV is equal to 1 for uniformly distributed variables and, on

the other hand, 
oin
ides with 0 when the variable only takes one value (and,


onsequently, the relative frequen
y of the 
orresponding 
ategory is 1).
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On the basis of the 
on
lusions gathered in Table 3, one 
an realize that there

is no uniformly most appropriate lo
ation estimate and that the outputs seem480

to depend more on the 
onsidered non-
ontaminated and 
ontaminated distri-

butions than on the sample size. However, it is beyond doubt that the Hampel

M-estimator of lo
ation usually behaves better than the other lo
ation measures

in relation to either the bias, the varian
e or the mean square error. It is also

interesting to highlight that the δ1-median is also 
hosen in several situations485

(mostly for smaller 
ontamination proportions) and re
all that its 
omputation

is even more straightforward and fast than that for the M-estimators based on

the Representer Theorem. Finally, regarding the qualitative variation, it should

be remarked that, in most of the analyzed situations, the index IQV in
reases

when a larger sample size is 
onsidered.490

6. Con
luding remarks

In this work, several robust alternatives to summarize the lo
ation of a 
om-

pa
t random interval have been proposed. Although some (ad ho
) extensions

of the 
on
ept of median to the interval-valued 
ase had already been stated in

the literature, the more general approa
h of M-estimators of lo
ation (of whi
h495

su
h medians are a parti
ular 
ase) has been adopted. M-estimators of lo
ation

for 
ompa
t random intervals have been proven to inherit the main properties

that make them a su

essful 
hoi
e in the real settings. Apart from studying

the measurability and 
onsisten
y of general M-estimators, a parti
ular 
lass of

M-estimators - those de�ned under the Representer Theorem - has been ana-500

lyzed in detail. Their existen
e and uniqueness, their translational and s
ale

equivarian
e, their algorithmi
 solution and their robustness in terms of the �-

nite sample breakdown point have been shown. Finally, all these measures have

been applied to two real-life examples and have been empiri
ally 
ompared by

means of some simulations.505

It should be highlighted that the sear
h of robust lo
ation measures to sum-

marize the 
entral tenden
y of 
ompa
t random intervals is 
ru
ial, in order

to avoid that outliers, atypi
al observations, errors or data 
hanges invalidate

the statisti
al 
on
lusions obtained from the analysis of interval-valued data.

Nowadays, most of the existing methodology developed to treat su
h data is510

based on the Aumann mean as lo
ation measure. Due to its high sensitivity, it

is reasonable to predi
t that the Aumann mean 
ould be repla
ed in these te
h-

niques by other lo
ation measures with a more robust behavior, like the ones

presented in this work, in order to guarantee the validity of the 
orresponding

statisti
al 
on
lusions.515

When analyzing 
ontaminated datasets, two di�erent approa
hes 
ould be

followed. The goal of this paper is to remove the outliers' in�uen
e on the

outputs and to study the behavior of the majority of the data. Nevertheless, the

opposite view of fo
using on the outlier identi�
ation also o�ers an interesting

resear
h topi
. In that sense, on
e an internal 
ross-validation were employed520

to evaluate how the removals of individual samples and/or groups of samples

would a�e
t the outputs in Table 2, those results 
ould be re
onsidered as an

21



automated outlier dete
tion tool: the observations that have a large impa
t on

the 
omputation of the Aumann mean, but a small in�uen
e on the output of

the M-estimator (of any kind), would be 
lassi�ed as outliers.525

Finally, some open problems will be now enumerated. First, the robustness

has been stated in terms of the �nite sample breakdown point due to the la
k of

realisti
 parametri
 families of distributions in the spa
e of 
ompa
t intervals.

Therefore, the use of in�uen
e fun
tions has been left as open problem. Se
-

ondly, noti
e that the development of robust s
ale measures will be required for530

the extension of the M-estimators of lo
ation with unknown dispersion, whi
h

present 
onvenient properties like the s
ale equivarian
e and are generally used

in multivariate spa
es. To 
on
lude, hypothesis testing pro
edures about the

proposed lo
ation measures 
ould be established and analyzed.
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Appendix A: Proofs

Proof of Proposition 3.1545

It will be shown that the M-estimator of lo
ation is a Borel measurable fun
tion

and, therefore, it is well-de�ned. The following fa
ts are taken into a

ount:

• X ≡ Ω is separable and 
omplete sin
e (Ω,A, P ) is a Polish probability

spa
e. Re
all that either η or ι embed the metri
 spa
es (Kc(R), dθ),550

(Kc(R), dH) and (Kc(R), δ1) isometri
ally into a 
one, U , of a Hilbert

(when dθ is used) or a Bana
h spa
e (when either dH or δ1 are 
ho-

sen). In 
ase dθ or dH are used, U = R × [0,∞), and when δ1 is 
hosen,

U = {(y, z) ∈ R2 : y ≤ z}. Sin
e all the distan
es de�ned in R2
by means

of su
h isometries are strongly equivalent among them and w.r.t. the Eu-555


lidean distan
e, they all indu
e the same topologies, U always being a


losed subset. Thus, the 
ompleteness of the Hilbert or Bana
h spa
e is

inherited by the 
one. On the other hand, the isometri
al embedding pre-

serves the separability of the metri
 spa
es (Kc(R), dθ), (Kc(R), dH) and
(Kc(R), δ1), what has already been 
ommented in Remark 2.3. Consider560

Y ≡ U . Then Y is a 
omplete separable metri
 spa
e.
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• f : Ω× U → R su
h that f(ω, (y, z)) = 1
n

∑n
i=1 ρ (d(Xi(ω), [y − z, y + z]))

or alternatively f(ω, (y, z)) = 1
n

∑n
i=1 ρ (d(Xi(ω), [y, z])), depending on the

expression of U , is a real-valued measurable fun
tion irrespe
tive of the

distan
e d ∈ {dθ, dH , δ1}.565

First, D = Ω × U is a Borel set, sin
e it is the universal set we are


onsidering and, therefore, it belongs to any σ-algebra. Se
ondly, the

measurability of f derives from the following fa
ts:

◦ the addition, produ
t and 
omposition of Borel measurable fun
tions

are also Borel measurable;570

◦ midXi, sprXi, inf Xi and supXi, i = 1, . . . , n, are Borel measurable

be
ause of the equivalent de�nition of 
ompa
t random intervals.

Thus, the mappings fi : Ω × U → U with fi(ω, (y, z)) representing
(midXi(ω), sprXi(ω)) or (inf Xi(ω), supXi(ω)) are also Borel mea-

surable with respe
t to the σ-algebra on the produ
t spa
e Ω × U575

and the Borel σ-algebra generated by the topology indu
ed by the


orresponding norm on the 
one of the Bana
h (Hilbert for dθ) spa
e
U .

◦ f0 : Ω×U → U su
h that f(ω, (y, z)) = (y, z) is also Borel measurable

following an analogous reasoning to that for fi, sin
e the identity is580

measurable;

◦ the square root, the square fun
tion, the absolute value fun
tion and

ρ are 
ontinuous and, therefore, Borel measurable;

• U is σ-
ompa
t, sin
e a lo
ally 
ompa
t Polish spa
e is equivalent to a

lo
ally 
ompa
t σ-
ompa
t metri
 spa
e.585

• For ea
h metri
 d ∈ {dθ, dH , δ1} and ea
h ω ∈ Ω, the following fun
tion

is 
ontinuous (and, therefore, lower semi-
ontinuous) with respe
t to the

relative topology on U

fω : U −→ R

(y, z) 7−→ f(ω, (y, z)).

For ea
h ω ∈ Ω, let (y∗, z∗) be any element of U . It is su�
ient to 
he
k

that, given any sequen
e {(yn, zn)}n∈N ⊂ U su
h that (yn, zn) −→
n

(y∗, z∗),

i.e.,

d([yn − zn, yn + zn], [y
∗ − z∗, y∗ + z∗]) −→

n
0,

then limn fω((yn, zn)) = fω((y
∗, z∗)).

For any n ∈ N and i = 1, . . . , n, the triangular inequality allows us to

ensure that d(Xi(ω), [y
∗−z∗, y∗+z∗])−d([yn−zn, yn+zn], [y

∗−z∗, y∗+z∗])

≤ d(Xi(ω), [yn − zn, yn + zn])

≤ d(Xi(ω), [y
∗ − z∗, y∗ + z∗]) + d([yn − zn, yn + zn], [y

∗ − z∗, y∗ + z∗]).
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Sin
e d([yn − zn, yn + zn], [y
∗ − z∗, y∗ + z∗]) −→

n
0, we then 
on
lude that

d(Xi(ω), [yn−zn, yn+zn])−→
n

d(Xi(ω), [y
∗−z∗, y∗+z∗]). By the 
ontinuity

of ρ, ρ(d(Xi(ω), [yn−zn, yn+zn])) −→
n

ρ(d(Xi(ω), [y
∗−z∗, y∗+z∗])) and,

obviously, the result follows be
ause the 
ontinuity is preserved by the590

addition and the produ
t of 
ontinuous fun
tions.

Applying the result in [48℄, it is possible to guarantee that the fun
tion ϕ below

is Borel-measurable, where

ϕ : I −→ U
ω 7−→ (y0, z0) s.t. f(ω, (y0, z0)) = inf

(y,z)∈U
f(ω, (y, z))

with I =
{

ω ∈ Ω : for some (y0, z0) ∈ U, f(ω, (y0, z0)) = inf
(y,z)∈U

f(ω, (y, z))
}

.

Noti
e that ϕ(ω) = (y0, z0) su
h that

1

n

n
∑

i=1

ρ(d(Xi(ω), [y0 − z0, y0 + z0])) = inf
(y,z)∈U

1

n

n
∑

i=1

ρ(d(Xi(ω), [y − z, y + z])),

or, of 
ourse, U formalized alternatively when δ1 is 
hosen, i.e., ϕ is the fun
tion

that assigns to ea
h ω ∈ Ω for whi
h the M-estimate of lo
ation exists, the


orresponding value of the M-estimate of lo
ation.595

Sket
h of the proof of Theorem 3.2

These assumptions are su�
ient to ensure Huber's 
onditions for 
onsisten
y

(see [49℄). Noti
e that the lo
ally 
ompa
tness and the se
ond 
ountability600

required for the spa
e R× [0,∞) in [38℄ involve dθ. However, these topologi
al
properties are also ful�lled when using dH or δ1 be
ause all these metri
s are

strongly equivalent. The proof follows the same s
heme as in [38℄ (where the

loss fun
tion was ρ(x) = |x|), taking into a

ount that

• When ρ is subadditive apart from non-de
reasing, it is possible to preserve605

the relations and the way of reasoning with distan
es.

• When ρ is the Huber loss fun
tion ρa, for any a > 0, it 
an be bounded

by means of two lines with the same slope for all x > 0

ax− a2/2 ≤ ρa(x) ≤ ax.

If ρ has linear upper and lower bounds with the same slope, then it is also

possible to preserve the relations and the way of reasoning with distan
es.

• When ρ is the Hampel loss fun
tion ρa,b,c, for any c > b > a > 0, it is
possible to bound it as follows

0 ≤ ρa,b,c(x) ≤ a(b + c− a)/2.
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When ρ is bounded, it is also ne
essary to noti
e that there is a 
ompa
t

set C in the parameter spa
e su
h that the sequen
e of M-estimators of610

lo
ation almost ultimately stays in C, thanks to the parameter spa
e being

lo
ally 
ompa
t and Hausdor� and the Strong Laws of Large Numbers.

Sket
h of the proof of Theorem 3.5

M-estimators de�ned through the Representer Theorem are translation equiv-615

ariant by Proposition 3.4. Therefore, the proof of the upper bound 
an be


arefully extended from the real-valued settings taking 
are of the semilinear-

ity of Kc(R). It is possible to prove the equality when ρ has linear upper and

lower bounds, following a reasoning like in [37, 50℄, or when ρ has a �nite up-

per bound C∗
satisfying ρ (max1≤i,j≤n dθ(xi, xj)) <

n−2⌊n−1

2
⌋

n−⌊n−1

2
⌋−1

· C∗
, 
he
king620

that the M-estimator will always belong to a 
ompa
t set unless the perturbed

sample 
ontains more than ⌊(n+ 1)/2⌋/n observations.

Appendix B: Supplementary data

Supplementary data to this arti
le, 
on
erning the bias, varian
e and mean

square error of the lo
ation measures 
onsidered for the simulation study in Se
-625

tion 5, 
an be found online at http://dx.doi.org/10.1016/j.
hemolab.2016.05.003
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