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M-estimators of loation

for interval-valued random elements

Beatriz Sinova

a,∗

a

Department of Statistis, O.R. and D.M., University of Oviedo, 33007 Oviedo, Spain

Abstrat

Among the new types of data emerging from real-life experiments, interval-

valued ones are beoming very prevalent nowadays. In summarizing the loation

of interval-valued datasets, the Aumann mean is the most usual measure. This

measure inherits almost all the nie properties of the mean value for real-valued

datasets. Nevertheless, it also inherits a ritial property, whih is the one

related to its high sensitivity to data hanges or to the presene of outliers.

As an approah to measure the loation of interval-valued datasets in a more

robust way, the notion of M-estimators will be onsidered. Two appliations on

hemial data will be inluded to motivate and illustrate the problem. Finally,

an empirial omparative study will be onduted to show the performane of

the di�erent types of M-estimators proposed in this work.

Keywords: interval-valued data, M-estimator, robustness, loation measure,

hemial data

1. Introdution and motivation

Interval-valued data often emerge from experiments with random elements

assoiated with many real-life appliations. For instane, they an arise as a on-

sequene of either unertain or inomplete information (e.g., when one an only

establish lower and upper bounds for the atual exat measurement/observation).5

They an also orrespond to aggregate information either beause of the mag-

nitude of interest being the range or �utuation of a real-valued attribute over

a given time period or olletion of individuals (as happens for many symboli

data) or beause of on�dentiality reasons. Alternatively, data an be essen-

tially interval-valued (like interval-ensored ones). See [1℄, [2℄, [3℄, [4℄ and [5℄ as10

examples of di�erent studies involving interval-valued data.

This work aims to analyze the loation of interval-valued data robustly. The

best known loation measure in summarizing interval-valued data is the Aumann

mean. This measure, whih extends the mean value of a real-valued dataset,
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has been shown to preserve all the valuable properties for real-valued datasets,15

but it also inherits its lak of robustness.

In this paper, in order to establish robust loation measures for interval-

valued data, the M-estimation approah (whih has shown a suessful behavior

when dealing with real-valued data) is to be onsidered. For this purpose, two

methodologies will be used:20

• on one hand, interval-valued data an be identi�ed through a ertain

vetorial-valued funtion with elements of a losed onvex one within

a Hilbert spae. Consequently, results and methods from Hilbert spae-

valued Data Analysis an be partiularized provided that one guarantees

that the proess does not move out of the one;25

• on the other hand, when either the preeding methodology fails or one an

design exat tehniques or supply a better approximation, ad ho onepts

and methods an be developed.

As a real-life example motivating this study, we an onsider the following

one:30

Example 1.1. This example has been hosen taking into aount the impor-

tane of the hemial di�erentiation of wines in enology. The organi and inor-

gani ompounds that are part of wine depend on many fators, e.g., ground,

limate, variety of vine or enologial pratie. The onsidered dataset has been

published in [6℄ and onsists of 33 Greek red and white ommerial wines from35

the 1998 vintage. Some tables in [6℄ show numerous mineral, phenol and an-

thoyanin onentrations in suh wines. Eah onentration is given in terms of

an interval whose mid-point (or enter) is the ahieved mean value and whose

spread (or radius) is the assoiated standard deviation. Based on this infor-

mation, Kallithraka et al. [6℄ and D'Urso and Giordani [7℄ propose a Prinipal40

Component Analysis.

For this study, the a�ei aid onentrations have been hosen. Figure 1

represents the intervals orresponding to this phenol onentration for eah of

the 33 wines (ω1, . . . , ω33).
Figure 1 learly shows that wines with odes 1, 6, 9, 10 and 16 an be viewed45

as `outliers' beause their a�ei aid mean onentration has been muh higher

(wines with odes 6, 9, 10 and 16) or the orresponding standard deviation has

been muh larger (wines with odes 1 and 16). The Aumann mean value for the

whole dataset equals

[

1
33

∑33
i=1 inf X(ωi),

1
33

∑33
i=1 supX(ωi)

]

= [64.5, 70.2].

By removing the 5 `outliers' identi�ed above, the Aumann mean value equals50

[

1
28

∑28
j=1 inf X(ω

′
j),

1
28

∑28
j=1 supX(ω

′
j)
]

= [48.4, 52.7], whih shows the un-

wanted e�et outliers have on the estimate of the Aumann mean and the lear

need for a more robust loation measure for interval-valued data.

With the goal of developing M-estimators of loation for interval-valued

datasets, this paper is strutured as follows. In Setion 2, the onept of interval-55

valued data will be de�ned and the main preliminary and supporting tools re-

lated to this notion will be realled, the distintive strutural harateristis of

2



1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

0
5

0
1

0
0

1
5

0
2

0
0

Wine codes

C
a

ff
e

ic
 a

c
id

 c
o

n
c
e

n
tr

a
ti
o

n

Figure 1: Ca�ei aid onentration (mg/l; mean value±standard deviation) of Greek

red and white wines

the spae of study being highlighted. The extension of M-estimators of loation

for interval-valued data will be dealt with in Setion 3. Two real-life examples

regarding hemial data will be detailed and analyzed in Setion 4. In Se-60

tion 5, an empirial analysis will be arried out to ompare the robustness of

the introdued loation measures and to hek how they improve the outputs

with respet to the Aumann mean. Finally, some onluding remarks will be

inluded in Setion 6. The proofs of the theoretial results an be heked in

the Appendix.65

2. Preliminary tools and supporting results

Let Kc(R) denote the spae of nonempty ompat intervals. The elements

in Kc(R) will be referred to herein as interval-valued data .

Elements in Kc(R) an be uniquely haraterized, among others, by the

vetorial mid/spr representation η. It aptures their trend and impreision70

assoiating with eah interval K ∈ Kc(R) the vetor value η(K) = (midK, sprK)
∈ R× [0,∞), being midK = mid-point/enter of K and sprK = spread/radius

of K. Another ommonly used haraterization is the inf/sup representation ι

given by the vetor value ι(K) = (inf K, supK) ∈ {(y, z) ∈ R2 : y ≤ z} for eah

K ∈ Kc(R).75

3



Remark 2.1. Although interval-valued data an be haraterized as vetorial

data through η, ι or other representations, the purpose is not to diretly ap-

ply multivariate but Hilbert spae-valued robust statistial ideas and results

whenever it is possible. This is due to the fat that multivariate robust de-

velopments onerning M-estimation are usually based on some assumptions80

on the joint distribution of the involved one-dimensional random omponents,

these assumptions either not making sense or not being aeptable, realisti or

general enough for the mid and spr of an interval-valued random element. In

this way, the meaning of the random omponents of the η or ι haraterizations

of an interval-valued random element and the onstraints between them would85

be mostly ignored in ase they are treated as simple omponents of a random

vetor.

2.1. Arithmeti with interval-valued data

In developing statistis with interval-valued data, one of the key tools is

given by the arithmeti. The elementary operations to be spei�ed are the sum90

and the multipliation by salars of interval values, and the most natural way

to proeed onsists of de�ning these operations as the image sets of the involved

interval values through the orresponding operation (see [8℄). Thus,

De�nition 2.1. Let K = [a, b],K′ = [a′, b′] ∈ Kc(R). The Minkowski sum of

K and K′
is de�ned as the interval value

K+ K′ = [a+ a′, b+ b′].

De�nition 2.2. Let K = [a, b] ∈ Kc(R) and γ ∈ R. The produt of K by the

salar γ is de�ned as the interval value

γ · K =

{

[γ a, γ b] if γ ≥ 0
[γ b, γ a] otherwise.

Remark 2.2. Although a di�erene operator ould be de�ned by means of

K−K′ = K+(−1) ·K′
, unlike what happens in the real-valued ase, the interval95

K−K would not oinide in general with the neutral element of the sum, [0, 0].
As a onsequene, one an onlude that the spae (Kc(R),+) is a ommutative

semigroup, although not a group, and (Kc(R),+, ·) is not a linear but a semi-

linear spae (in fat, a losed onvex one). The semilinearity of the spae will

be a ruial feature when trying to develop statistial proedures.100

2.2. Metris between interval-valued data

In addition to (Kc(R),+, ·) not being linear, one an easily verify that there

is no `di�erene operation' between interval values that is simultaneously well-

de�ned and preserves the main properties of the di�erene between real values

in onnetion with the sum. This drawbak, whih learly di�erentiates real-105

from interval-valued ases, an be overome to some extent by inorporating

suitable distanes between values in Kc(R) as another basi tool.
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De�nition 2.3. [9℄ Let K,K′ ∈ Kc(R). The Hausdor� distane between K

and K′
is given by

dH(K,K′) = |midK−midK′|+ |sprK− sprK′|.

De�nition 2.4. [10℄ Let K,K′ ∈ Kc(R). The 1-norm distane between K and

K′
is given by

δ1(K,K
′) =

1

2
| inf K− inf K′|+

1

2
| supK− supK′|.

De�nition 2.5. [11, 12℄ Let K,K′ ∈ Kc(R) and θ > 0. The dθ-distane

between K and K′
is given by

dθ(K,K
′) =

√

(midK −midK′)2 + θ · (sprK − sprK′)2.

In partiular, the d1 metri equals the δ2-distane, whih has been introdued

by Vitale [10℄ and formerly given as

δ2(K,K
′) =

√

(inf K− inf K′)2 + (supK− supK′)2

2
.

The value of θ weighs the relative importane assessed to deviations in im-

preision in ontrast to deviations in trends. Based on the equivalenes in [12℄,

the most ommon hoies orrespond to θ = 1/3 (whih alloates a uniform rel-110

evane to all the points in eah interval) and θ = 1 (whih alloates a uniform

relevane to the extreme points in eah interval).

Following ideas similar to those in [13℄, we an identify interval- with some

vetorial-valued data via the η representation and the dθ metri. This supports

what has been said in Remark 2.1 about the partiularization of methods for the115

robust analysis of Hilbert spae-valued random elements whenever the outputs

remain within the one R× [0,∞).

Remark 2.3. All these metris are strongly equivalent. It should be empha-

sized that although an isometrial embedding an be stated through η (or ι)

when Kc(R) is endowed with the dH (or δ1) metri, the �nal spae the one is120

inluded in is not a Hilbert but a Banah spae.

2.3. Interval-valued random elements

Mathematial modeling is another essential tool in developing data analysis,

and data are usually assumed to ome from the repeated performane of a

random mehanism. Fréhet [14℄ antiipated that future mathematis would125

have to inorporate new and unexpeted sorts of objets quite beyond numbers

and vetors, so he introdued random elements taking on values in metri spaes.

In aordane with their urrent usage, a random element is de�ned to be a

measurable funtion between a sample spae and a metri spae equipped with

its Borel σ-algebra.130
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Compat random intervals (see [15℄) determine a well-stated and supported

model for the random mehanisms generating interval-valued data within the

probabilisti setting. They integrate both randomness and impreision, so that

the �rst one a�ets the generation of experimental data, whereas the seond

a�ets the nature of the experimental data whih, for formal purposes, are135

assumed to be intrinsially interval-valued.

De�nition 2.6. Given a probability spae (Ω,A, P ), a mapping X : Ω → Kc(R)
is said to be a ompat random interval assoiated with it if X is measurable

with respet to A and the Borel σ-algebra generated by the topology indued by

the Hausdor� metri on Kc(R) (or any of the topologial equivalent metris).140

Equivalently, a ompat random interval X an be expressed as X = [inf X, supX],
with inf X and supX being random variables suh that inf X ≤ supX.

As a onsequene from the Borel measurability, onepts suh as the (in-

dued) distribution of a (ompat) random interval, some of its relevant param-

eters, as well as the stohasti independene of (ompat) random intervals, an145

be immediately obtained.

In this respet, if one attempts to summarize the distribution of a ompat

random interval, one an think about formalizing a loation measure as follows:

De�nition 2.7. [16℄ Let (Ω,A, P ) be a probability spae and X : Ω → Kc(R) be
an assoiated ompat random interval suh that E(inf X) and E(supX) exist.
The Aumann mean of X is the interval value E[X] ∈ Kc(R) suh that E[X] =
[E(inf X), E(supX)]. Equivalently,

η (E[X]) = E (η(X)) =
(

E(midX), E(sprX)
)

.

The Aumann mean satis�es several valuable properties similar to those in

the lassial ase (see for reviews [17℄, and also [13℄ in a more general setting),150

it is oherent with the usual interval arithmeti and it satis�es Strong Laws of

Large Numbers (see, in the more general setting, [18℄).

3. M-estimators of loation for ompat random

intervals

M-estimators of loation for real-valued data were introdued by Huber [19℄,155

with the aim of limiting the in�uene of outliers in approahes like least squares.

The ruial idea was the replaement of the squared errors by a (generally less

rapidly inreasing) loss funtion of the data and the parameter estimate. For this

reason, M-estimators are onsidered intermediaries between the sample mean

and median, both of them being inluded as speial ases. The extension of this160

idea to the interval setting an be stated as follows:

De�nition 3.1. Consider a metri spae (Kc(R), d) and let (Ω,A, P ) be a prob-
ability spae, X : Ω → Kc(R) be an assoiated ompat random interval and ρ

6



be a ontinuous loss funtion. The M-loation measure, if it exists, is the

interval KM
P [X] ∈ Kc(R) de�ned as follows

KM
P [X] = arg min

K∈Kc(R)
JP (K) = arg min

K∈Kc(R)
E[ρ(d(X,K))].

Remark 3.1. The funtion ρ in De�nition 3.1 is a generalization of the square

loss funtion in the least squares approah. Indeed, it is usually assumed to

vanish at 0 and be non-dereasing. The ontinuity of the loss funtion ρ is

ommonly assumed (see, e.g., [20℄ or [21℄).165

De�nition 3.2. Consider (Kc(R), d) a metri spae. Let (Ω,A, P ) be a Polish

probability spae, X be an assoiated ompat random interval X : Ω → Kc(R),
(X1, . . . ,Xn) be a simple random sample from X and ρ be a ontinuous loss

funtion. The M-estimator of loation is the Kc(R)-valued statisti K̂M [X]n,
if it exists, given by

K̂M [X]n = arg min
K∈Kc(R)

1

n

n
∑

i=1

ρ(d(Xi,K)).

In partiular, given a sample of observations from X, xn = (x1, . . . , xn), the

(sample) M-estimate of loation is the interval K̂M [xn] ∈ Kc(R) given by

K̂M [xn] = arg min
K∈Kc(R)

Jn(K) = arg min
K∈Kc(R)

1

n

n
∑

i=1

ρ(d(xi,K)).

Proposition 3.1. The M-estimator of loation is well-de�ned for the metri

spae (Kc(R), d) with d ∈ {dθ, dH , δ1}.

An important property of M-estimators of loation for ompat random in-

tervals, the strong onsisteny, is now to be analyzed. The following result

presents some suitable hoies of ρ to guarantee the strong onsisteny, inlud-

ing some well-known loss funtions like the ones proposed by Huber [22℄

ρa(x) =







x2/2 if |x| ≤ a

a(|x| − a/2) otherwise,

with a > 0 a tuning parameter, and Hampel [23℄

ρa,b,c(x) =























x2/2 if 0 ≤ |x| < a
a(|x| − a/2) if a ≤ |x| < b
a(|x| − c)2

2(b− c)
+

1

2
a(b + c− a) if b ≤ |x| < c

a(b+ c− a)/2 if c ≤ |x|,

where the nonnegative parameters a < b < c allow us to ontrol the degree of

supression of the outliers. The smaller their values, the greater this degree.

7



Theorem 3.2. Consider the metri spae (Kc(R), d) with d ∈ {dθ, dH , δ1}.170

Let X be a ompat random interval assoiated with a Polish probability spae

(Ω,A, P ). Under any of the following assumptions:

• ρ is non-dereasing, subadditive and unbounded,

• ρ has linear upper and lower bounds with the same slope (inluding Huber

loss funtion),175

• ρ is bounded (inluding Hampel loss funtion),

and whenever the M-loation measure exists and is unique, the sample M-estimator

of loation is a strongly onsistent estimator of the M-loation measure, i.e.,

lim
n→∞

d(K̂M [X]n,K
M
P [X]) = 0 a.s. [P ].

The measurability and the onsisteny of the M-estimators of a ompat

random interval have been proven assuming their existene. In the next subse-

tions, we will restrit the study to some loss funtions for whih the existene of

M-estimators an be ertainly guaranteed. Two di�erent methodologies will be180

presented: the adaptation of already existing ideas and results in the literature

for Hilbert spae-valued data (Subsetion 3.1) and some ad ho developments for

a natural hoie of the loss funtion that does not ful�ll the onditions required

for the �rst methodology (Subsetion 3.2).

3.1. M-estimators of loation de�ned through the Representer Theorem185

In this subsetion, Kim and Sott's studies [24, 25℄ in the Hilbert spae

framework will be adapted, following the �rst methodology, to deal with interval-

valued data. Their ideas have been developed for reproduing kernel Hilbert

spaes, in the ontext of robust nonparametri density estimation, ombining

a traditional kernel density estimator with ideas from lassial M-estimation190

through the interpretation of this estimator based on a radial, positive semi-

de�nite kernel as a sample mean.

To lower the sensitivity of the sample mean to outliers, Kim and Sott sug-

gest that we estimate it robustly via M-estimators yielding a robust kernel

density estimator. Although Kim and Sott generalized their results to other195

Hilbert spaes, they have never moved out of the setting of kernel density es-

timation. However, these ideas and proofs an be easily adapted to general

Hilbert spaes and, therefore, appliable to the interval-valued ase through the

isometrial embedding of (Kc(R), dθ) into the one R × [0,∞), with the orre-

sponding metri indued by the isometry η. In this setion, suh adaptation200

is to be shown and ompleted with several properties Kim and Sott have not

examined.

The most ruial result in [25℄ for the partiularization of M-estimators to

the interval-valued ase is the Representer Theorem, sine it guarantees that the

M-estimator of loation assoiated with a ompat random interval will remain205

in the orresponding parameter spae, Kc(R). The Representer Theorem states

that the M-estimate of loation an be expressed as a onvex linear ombination

of the sample omponents. Sine the sample observations obviously belong to

the one and the linear ombination is a losed operator, the impliation follows.

8



Theorem 3.3. [Adapted from [25℄℄ Consider the metri spae (Kc(R), dθ). Let210

(Ω,A, P ) be a probability spae, X : Ω → Kc(R) be a ompat random interval

and xn = (x1, . . . , xn) be a sample of independent observations from X. Under

the assumptions

R1. ρ is non-dereasing (inreasing in a neighborhood of 0) and di�erentiable,

ρ(0) = 0 and limx→0 ρ(x)/x = 0,215

R2. Let φ(x) = ρ′(x)/x, and assume the onvention φ(0) = limx→0 φ(x), where
φ(0) is supposed to exist and be �nite,

the Kc(R)-valued sample M-estimate of loation exists and an be expressed as

K̂M [xn] =
n
∑

i=1

wi · xi,

where wi ≥ 0 and

∑n
i=1 wi = 1. Furthermore, wi ∝ φ(dθ(xi, K̂M [xn])). Indeed,

under the additional assumption

R3. Jn is stritly onvex (for whih su�ient onditions are given by either220

• ρ is stritly onvex, or

• ρ is onvex, stritly inreasing, n ≥ 3 and A = (〈η(xi),η(xj)〉θ)ni,j=1 is

positive de�nite, with 〈η(xi),η(xj)〉θ = mid xi ·mid xj + θ · spr xi · spr xj);
the neessary onditions

i) K̂M [xn] =
∑n

i=1 wi · xi,225

ii) wi ∝ φ(dθ(xi, K̂M [xn])),

iii)

∑n
i=1 wi = 1

are also su�ient for K̂M [xn] to be the minimizer of Jn(K) =
1
n

∑n
i=1 ρ(dθ(xi,K)).

Remark 3.2. Notie that these onditions on ρ are not unommon. Apart

from ρ being non-dereasing and vanishing at 0, M-estimators of loation with230

di�erentiable loss funtions are usually hosen. On the other hand, ρ′(0) = 0
is a onsequene of ρ′ being odd (see [21℄) and, in most interesting ases, φ(0)
exists and is �nite.

Notie that Huber's and Hampel's loss funtions satisfy R1-R2 (and Huber

may also ful�ll R3 ).235

The existene and uniqueness of the sample M-estimate of loation for a

sample of independent observations obtained from a ompat random interval

are guaranteed under assumptions R1−R3 in the Representer Theorem. How-

ever, despite the fat that we an express the M-estimate as a weighted mean of

the observations, suh weights also depend on the M-estimate, so the problem240

does not have an expliit solution in general. To deal with these impliit formu-

las in pratie, Kim and Sott [25℄ proposed an iterative algorithm that is an

extension of the iteratively re-weighted least squares algorithm used in lassial

M-estimation (see [19℄). Its notation will be now adapted to the interval setting.

Step 1. Take the initial weights w
(0)
i ∈ R, for i ∈ {1, . . . , n}, suh that w

(0)
i ≥ 0245

and

∑n
i=1 w

(0)
i = 1, and �x a tolerane ε.

9



Step 2. Generate a sequene {KM
(k)}k∈N by iterating on the following proedure:

KM
(k) =

n
∑

i=1

w
(k−1)
i · xi, w

(k)
i =

φ(dθ(xi,K
M
(k)))

∑n
j=1 φ(dθ(xj ,K

M
(k)))

.

Step 3. Terminate the algorithm when

|Jn(KM
(k+1))− Jn(K

M
(k))|

Jn(KM
(k))

< ε.

The following property of M-estimators obtained under the Representer The-

orem an be proven.

Proposition 3.4. Consider the metri spae (Kc(R), dθ). Let xn = (x1, . . . , xn)
denote a sample of independent observations from a ompat random interval250

X : Ω → Kc(R) on a probability spae (Ω,A, P ). Moreover, let ρ be a ontinuous

loss funtion ful�lling the assumptions R1-R3.

If K ∈ Kc(R), then it holds that the M-estimator is translation equivariant, i.e.,

̂KM [xn + K] = K̂M [xn] + K.

Moreover, if ρ satis�es that φ(k·x) ∝ φ(x) for any k ∈ (0,∞) (i.e., the oe�ient

of proportionality is independent of x), then for all γ ∈ R the M-estimator is

also sale equivariant, i.e.,

̂KM [γ · xn] = γ · K̂M [xn].

In general, M-estimators of loation are not sale equivariant, sine most

loss funtions do not satisfy the proportionality assumption in Proposition 3.4.

Therefore, the measurement units will have to be hosen arefully.255

In order to measure the robustness, the �nite sample breakdown point has

been onsidered. Although other tools like the in�uene funtion ould be very

informative, the lak of realisti and easy-to-use models for the distribution of

ompat random intervals makes suh an approah non-viable at present. The

intuitive idea behind the onept of �nite sample breakdown point (denoted by

fsbp) is that it represents the minimum proportion of observations that should be

perturbed enough to make the orresponding estimate be arbitrarily far from the

estimate obtained for the original non-ontaminated sample. The mathematial

formalization by Donoho and Huber [26℄ an be adapted to over estimators

taking values in general metri spaes as follows. The �nite sample breakdown

point of a general M-estimator of loation K̂M [X]n orresponding to a sample

xn of size n from a ompat random interval X : Ω → Kc(R) with (Kc(R), d) a
metri spae ful�lling that supK,K′∈Kc(R) d(K,K ′) = ∞ is given by

fsbp(K̂M [X]n, xn, d) =
1

n
min

{

k ∈ {1, . . . , n} : sup
yn,k

d(K̂M [xn], ̂KM [yn,k]) = ∞

}

,

10



where yn,k denotes the sample obtained from xn by perturbing up to k of

its elements. The following result shows an upper bound for the fsbp of M-

estimators of loation under the Representer Theorem and gives the exat value

of their fsbp under some additional onditions on the loss funtion.

Theorem 3.5. Consider the metri spae (Kc(R), dθ) and let X be a ompat260

random interval assoiated with a Polish probability spae (Ω,A, P ). Moreover,

let ρ be a ontinuous loss funtion satisfying the assumptions R1-R2 in Theorem

3.3, suh that the orresponding sample M-estimator of loation is unique. Then,

the fsbp of the orresponding M-estimator of loation is at most ⌊(n+ 1)/2⌋/n,
where ⌊ ⌋ denotes the �oor funtion. Furthermore, under any of the additional265

assumptions:

• ρ admits linear upper and lower bounds with the same slope (e.g. Huber

loss funtion)

• ρ has a �nite upper bound C∗
(e.g. Hampel loss funtion) and satis�es

ρ

(

max
1≤i,j≤n

dθ(xi, xj)

)

<
n− 2⌊n−1

2 ⌋

n− ⌊n−1
2 ⌋ − 1

· C∗,

then the fsbp is exatly equal to ⌊(n+ 1)/2⌋/n.

The su�ient onditions over the loss funtion allowing us to guarantee the270

existene of sample M-estimates of loation as well as their expression as onvex

linear ombinations of the sample elements are ful�lled for di�erent interesting

hoies of the loss funtion ρ, as it has just been veri�ed. However, there are

some other interesting hoies of ρ for whih suh onditions fail and ad ho

developments should be onsidered.275

In this respet, if one hooses ρ(x) = |x|, one annot apply the results in

this subsetion. In Subsetion 3.2, some ad ho developments in the literature

to get the (exat) M-estimates assoiated with this hoie are to be realled.

3.2. Ad-ho M-estimators of loation

In this subsetion, a partiular M-estimator of loation on Kc(R) will be280

reviewed: the median. In this ase ρ(x) = |x|, and we will onsider the three

distanes introdued in Setion 2.2: δ1 and dH as L1
-type metris and dθ as

L2
-type.

For the two L1
-type extensions of the onept of median to the interval-

valued setting, the idea behind them is similar, the properties they ful�ll mostly285

oinide and the way of operating with them is analogous. A detailed study of

suh onepts an be found in [27℄, [28℄, and also [29, 30℄ for the more general

setting of random fuzzy numbers.

De�nition 3.3. Given a probability spae (Ω,A, P ) and an assoiated om-

pat random interval X, the δ1-median(s) (or 1-norm median) and the

dH-median(s) (or Hausdor�-type median) of X are the intervals

Me[X] = arg min
K∈Kc(R)

E
(

δ1
(

X,K
))

and M[X] = arg min
K∈Kc(R)

E
(

dH
(

X,K
))

,

respetively, whenever the involved expetations exist.
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The following result guarantees that at least one value for eah of these290

medians always exists and it is rather easy to ompute.

Theorem 3.6. Given a probability spae (Ω,A, P ) and an assoiated ompat

random interval X, the intervals Me[X],M[X] ∈ Kc(R) suh that

Me[X] =
[

Me
(

inf X
)

,Me
(

supX
)]

(whih orresponds to the median suggested by De Souza and De Carvalho [31℄)

and

M[X] =
[

Me
(

midX
)

−Me
(

sprX
)

,Me
(

midX
)

+Me
(

sprX
)]

,

(whih orresponds to the median suggested by De Carvalho et al. [32℄) are a

δ1-median and a dH-median of X, respetively. In ase any of the medians of the

involved real-valued random variables is non-unique, the most usual onvention

of hoosing the mid-point of the interval of medians is assumed to be onsidered.295

From now on, these solutions will be the ones onsidered when mentioning

the δ1- and dH -medians to avoid an unneessary umbersome heking and to

ease the study of their properties. Analogously, given a simple random sample

(X1, . . . ,Xn) from a ompat random interval X assoiated with a probability

spae (Ω,A, P ), the sample δ1-median and the sample dH-median will be

respetively given by

M̂e[X]n =
[

̂Me(inf X)n,
̂Me(supX)n

]

,

M̂[X]n =
[

̂Me(midX)n − ̂Me(sprX)n,
̂Me(midX)n + ̂Me(sprX)n

]

,

following the same onvention as in Theorem 3.6.

Remark 3.3. It should be pointed out that the use of the onvention in The-

orem 3.6 has a di�erent mission when applied to the δ1-median and the dH -
median. In the �rst ase, if we do not onsider some valid onventions, the

result an fail and not determine an interval. For example, onsider the om-300

pat random interval X taking on the values x1 = [0, 2] and x2 = [3, 4], both
with indued probabilities P (X = x1) = P (X = x2) = 0.5. Then, we have that
Me(inf X) is any value in [0, 3], whereas Me(supX) is any value in [2, 4], so a

hoie of the kind Me(inf X) = 2.5 and Me(supX) = 2 would lead to an empty

interval. On the other hand, any possible hoie for the medians Me(midX)305

and Me(sprX) would lead to a valid solution of dH -median, so the onvention

in Theorem 3.6 serves to provide uniqueness.

Remark 3.4. In ontrast to the median of random variables, both the δ1-
median and the dH -median do not neessarily orrespond to one of the values

of the ompat random interval, even when the onvention is not needed. Con-310

sider the ompat random interval Y taking on values y1 = [0, 2], y2 = [2, 3]
and y3 = [1, 5], all of them with probability 1/3. Then, Me[Y] = [1, 3] and
M[Y] = [1.5, 3.5].
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In addition to the use of L1
-type metris, it should be noted that a well-

known generalization of the median of real-valued random variables to the mul-315

tivariate settings is the spatial median or medianenter (see, for example, [33℄

or [34℄), whih is based on an L2
-type metri.

Inspired by the spatial median as extension of the median to higher dimen-

sional Eulidean spaes and even Banah spaes (see [35℄), Sinova et al. [36℄

introdued the population and sample dθ-medians on Kc(R).320

De�nition 3.4. Given a probability spae (Ω,A, P ) and an assoiated ompat

random interval X : Ω → Kc(R), the dθ-median(s) of X is (are) the interval

value(s) Mθ[X] ∈ Kc(R) suh that

Mθ[X] = arg min
K∈Kc(R)

E
(

dθ
(

X,K
))

,

whenever the involved expetation exists.

De�nition 3.5. Given a probability spae (Ω,A, P ), an assoiated ompat ran-

dom interval X : Ω → Kc(R), and a simple random sample (X1, . . . ,Xn) from
X, the sample dθ-median(s) of X is (are) the interval-valued statisti(s)

M̂θ[X]n = arg min
K∈Kc(R)

1

n

n
∑

i=1

dθ
(

Xi,K
)

= arg min
(y,z)∈R×[0,∞)

1

n

n
∑

i=1

√

(midXi − y)2 + θ · (sprXi − z)2,

where the target values of K, y and z depend in fat on (X1, . . . ,Xn) (although,
for the sake of simpliity, this has been omitted from the notation).

The existene and uniqueness of the sample dθ-median has been disussed

in [37℄ and the strong onsisteny in [38℄.325

Theorem 3.7. Given a simple random sample (X1, . . . ,Xn) from a ompat

random interval X : Ω → Kc(R), the orresponding sample dθ-median always

exists and, moreover, it is unique for any sample realization xn = (x1, . . . , xn)
for whih the two-dimensional sample points {(mid xi, spr xi)}ni=1 are not all

ollinear.330

In ontrast to the L1
-type medians for random intervals, the solution for the

dθ-median is impliit. In order to approximate it, a similar algorithm to the one

proposed for M-estimators under the Representer Theorem (see Setion 3.1) an

be onsidered.

Regarding the inferential behavior of these medians, all of them are strongly335

onsistent whenever the orresponding population medians Me[X], M[X] and
Mθ[X] exist and are atually unique (i.e., they are unique without applying the

onvention in Theorem 3.6), and their �nite sample breakdown point equals the

value ⌊(n+ 1)/2⌋/n.
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Indeed, the sample mean has the lowest possible breakdown point while the340

sample median an withstand up to 50% of ontamination. In onsequene, the

de�nition of these three medians sueeds in inheriting the robustness properties

of the real-valued sample median.

4. Illustrative real-life examples

4.1. Greek wine data345

In this subsetion, we will ome bak to Example 1.1 introdued in Setion 1.

It has already been shown that the Aumann mean was in�uened by the atypial

values onerning the a�ei aid onentrations in wine. Therefore, the robust

loation measures for random intervals proposed/realled along this work will be

now omputed to avoid the sensitivity to outliers when summarizing the entral350

tendeny of suh a phenol onentration. The (rounded) obtained estimates for

the omplete dataset (1) are the following:

E(1)[X] = [64.47, 70.17],

(

KM
Huber

)(1)
[X] = [48.45, 52.73],

(

KM
Hampel

)(1)
[X] = [47.25, 51.02],

Me(1)[X] = [48.2, 53.8], M(1)[X] = [47.8, 52.2], M
(1)
1/3[X] = [48.07, 52.46].

The M-estimates of loation have been omputed by means of both Huber

and Hampel loss funtions when the parameter θ involved in the dθ metri

has been assumed to be equal to 1/3. The hoie of the values for the tuning355

parameters in the Huber (a = 1.345) and Hampel (a = 2, b = 4, c = 8) loss
funtions is ommon in the literature (see e.g. [39℄ and [40℄).

By removing the most extreme values (orresponding to the wines with odes

1, 6, 9, 10 and 16), dataset (2), the Aumann mean is not so far from the

remaining loation estimates:360

E(2)[X] = [48.36, 52.66],

(

KM
Huber

)(2)
[X] = [46.77, 50.46],

(

KM
Hampel

)(2)
[X] = [47.25, 51.02],

Me(2)[X] = [46.8, 49.8], M(2)[X] = [47.15, 50.75], M
(2)
1/3[X] = [47.65, 50.10].

It an be heked that, although outliers make all the measures have a larger

mid-point, the Aumann mean value is the estimate whih has been the most

perturbed by them:

d1/3(E
(1)[X],E(2)[X]) = 16.80, d1/3

(

(

KM
Huber

)(1)
[X],

(

KM
Huber

)(2)
[X]
)

= 1.99,

d1/3

(

(

KM
Hampel

)(1)
[X],

(

KM
Hampel

)(2)
[X]
)

= 2.77 · 10−4,

d1/3(Me(1)[X],Me(2)[X]) = 2.80, d1/3(M
(1)[X],M(2)[X]) = 1.08,
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d1/3(M
(1)
1/3[X],M

(2)
1/3[X]) = 1.50.

The di�erene between the original estimate and the estimate after the re-

moval of the outliers is learly smaller than the one for the Aumann mean in all

ases.

4.2. Water quality data

The seond real-life example deals with water quality data. As Ongley [41℄365

ommented, detailed (real-valued) data in problems related with in-stream al-

ulations or environmental quality issues that require temporal extrapolation

(e.g. hemial loads) are of limited pratial use, although they ontain muh

information about the variability. Therefore, in pratie many hemial pa-

rameters are represented by the whole range of individual reords (that is to370

say, interval-valued data) observed daily, suh as ammonia, hloride, nitrate,

phosphorus or suspended sediment onentrations, spei� ondutane and

turbidity (see, for example, [42℄). Among them, pH and dissolved oxygen are

frequently measured when ontrolling the water quality, as in [43℄.

The onsidered dataset ontains the interval-valued information (that is,375

the minima and maxima values ahieved daily) related to the dissolved oxygen

(mg/L) and the pH (standard units) measured in Delaware River at Chester

(ageny USGS, site 1477050, Pennsylvania, United States) from May 15, 2014

till June 15, 2014. A omplete desription, dataset and more detailed infor-

mation an be found in the webpage of the United States Geologial Survey380

(USGS) http://waterdata.usgs.gov. Colleted data are shown in Table 1

and Figures 2 and 3.

15/05/2014 23/05/2014 31/05/2014 08/06/2014

4
6

8
1
0

1
2

Date

D
is

s
o
lv

e
d
 o

x
y
g
e
n
 (

m
g
/L

)

Figure 2: Dissolved oxygen (mg/L) measured in Delaware River at Chester

The mid-points/enters and spreads/radius of all the interval-valued loation

measures de�ned/realled before have been omputed and inluded in Table 2.

The only di�erene with respet to the alulations in the previous example of385
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Table 1: Interval-valued information related to the dissolved oxygen (mg/L) and the pH

(standard units) measured in Delaware River at Chester from May 15, 2014 till June 15, 2014

Date O2 pH Date O2 pH

15/05/2014 [7.0, 9.2℄ [6.9, 7.2℄ 31/05/2014 [7.0, 8.1℄ [7.0, 7.1℄

16/05/2014 [7.1, 8.4℄ [7.0, 7.2℄ 01/06/2014 [6.6, 8.2℄ [7.0, 7.1℄

17/05/2014 [7.0, 8.7℄ [6.9, 7.1℄ 02/06/2014 [6.9, 8.6℄ [7.0, 7.2℄

18/05/2014 [5.9, 8.1℄ [6.9, 7.1℄ 03/06/2014 [7.0, 9.2℄ [7.0, 7.3℄

19/05/2014 [5.7, 8.3℄ [6.9, 7.1℄ 04/06/2014 [7.3, 9.8℄ [7.0, 7.4℄

20/05/2014 [6.5, 8.5℄ [7.0, 7.1℄ 05/06/2014 [7.5, 9.8℄ [7.1, 7.3℄

21/05/2014 [6.2, 8.0℄ [6.9, 7.1℄ 06/06/2014 [7.7, 10.9℄ [7.1, 7.6℄

22/05/2014 [5.7, 8.0℄ [6.9, 7.1℄ 07/06/2014 [8.2, 11.7℄ [7.1, 7.9℄

23/05/2014 [5.9, 8.3℄ [6.8, 7.0℄ 08/06/2014 [8.9, 12.1℄ [7.3, 8.2℄

24/05/2014 [6.2, 8.3℄ [6.8, 7.0℄ 09/06/2014 [8.8, 10.4℄ [7.2, 7.6℄

25/05/2014 [6.5, 8.6℄ [6.8, 7.1℄ 10/06/2014 [8.0, 9.2℄ [7.2, 7.3℄

26/05/2014 [6.8, 8.5℄ [6.8, 7.0℄ 11/06/2014 [7.1, 8.0℄ [7.1, 7.2℄

27/05/2014 [6.7, 8.2℄ [6.8, 7.1℄ 12/06/2014 [6.2, 7.3℄ [7.0, 7.2℄

28/05/2014 [6.2, 7.9℄ [6.8, 7.1℄ 13/06/2014 [5.1, 7.1℄ [7.0, 7.1℄

29/05/2014 [7.3, 8.0℄ [7.0, 7.1℄ 14/06/2014 [4.8, 6.7℄ [7.0, 7.1℄

30/05/2014 [6.9, 8.2℄ [7.0, 7.2℄ 15/06/2014 [4.8, 6.8℄ [6.9, 7.1℄
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Figure 3: pH (standard units) measured in Delaware River at Chester

Greek wine data is that, due to the small distanes between the observations,

tuning parameters a, b and c have been �xed following Kim and Sott's sugges-

tions (see [25℄ for more details). Notie that the values a = 1.345 (for Huber)

and a = 2, b = 4 and c = 8 (Hampel) are too large to distinguish between
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Table 2: Mid-points and spreads of the Aumann mean, Huber and Hampel M-estimators,

the 1-norm, Hausdor�-type and dθ=1/3 medians of the dissolved oxygen and pH values in

Delaware River

E[X] KM
Huber[X] KM

Hampel[X] Me[X] M[X] M1/3[X]

Oxygen

Mid 7.697 7.551 7.487 7.575 7.550 7.551

Spr 0.963 0.904 0.877 0.725 0.975 0.843

pH

Mid 7.102 7.054 7.030 7.050 7.050 7.053

Spr 0.127 0.098 0.093 0.050 0.100 0.083

`normal' and `atypial' distanes between observations in this ase, sine all the390

distanes would be lassi�ed as `normal' and these two M-estimators would o-

inide with the Aumann mean. On the other hand, Kim and Sott show how to

�x the parameters depending on the sample distanes. The values used in this

example have been 0.558 (Huber), a = 0.558, b = 1.046 and c = 1.787 (Hampel)

for the dissolved oxygen data, and 0.058 (Huber), a = 0.058, b = 0.153 and395

c = 0.183 (Hampel) for the pH data.

Outliers are not so learly identi�ed when looking at the dissolved oxygen

data, but we an hek in Table 2 how the three observations with larger spread

and a bit higher mid-point (June, 6 to June, 8 2014) have more in�uene on the

omputation of (both the mid and spr of) the Aumann mean than for the rest400

of loation measures, whih present a more robust behavior.

The pH values measured on June, 7 and 8 2014 are learly identi�ed as

outliers taking into aount their large spread. This is re�eted in the larger

spread of the Aumann mean in ontrast to the spread of the M-estimators.

Notie that all the spreads are quite small, so the di�erene in spread between405

the Aumann mean and the M-estimators is proportionally large.

5. Comparative empirial studies

A omparative simulation is set up to hek the robustness of all the M-

estimators proposed in this work when dealing with interval-valued data. Four

di�erent studies have been onduted, varying the sample size (small sample410

size n = 100 or large sample size n = 10000) and the distributions (the original

distribution being symmetri or asymmetri).

For eah of the four studies, the omparisons have onerned the following

loation estimates: Aumann mean, Huber and Hampel M-estimates using the dθ
distane, δ1-median, dH -median and dθ-median, with θ ∈ {1/3, 1}. When n =415

100, the medians and trimmed means based on the well-known halfspae and

simpliial depths (see [44, 45℄ and [46℄, respetively) have also been onsidered.

The reason not to inlude them in the omparisons when n = 10000 is that the
omputation of depths is usually hard when the sample size inreases.
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For eah of the loation measures/estimates L, the Monte Carlo approxi-

mation of the estimate, L[X], has been omputed. This information has been

ompleted with the Monte Carlo approximation of the bias d(E[L̂[X]n], L[X]),

the variane E(d2(L̂[X]n,E[L̂[X]n])) and the mean square error of the estimate

E(d2(L̂[X]n, L[X])) for d ∈ {δ1, dH , d1/3, δ2}, whih have been obtained through

the formulas

d

(

∑N
i=1 L̂[X]

i
N

N
, L[X]

)

,
1

N

N
∑

i=1

d2

(

L̂[X]iN ,

∑N
i=1 L̂[X]

i
N

N

)

,
1

N

N
∑

i=1

d2
(

L̂[X]iN , L[X]
)

respetively, where N denotes the number of Monte Carlo iterations and L̂[X]iN420

represents the sample estimate of the ith sample, i ∈ {1, . . . , N}.
The general sheme of the four studies has been as follows:

Step 1. A sample of n interval-valued data has been simulated from a ompat

random interval X for eah of several di�erent situations in suh a way

that425

• to generate the interval-valued data, we have onsidered two real-

valued random variables as follows: X = [X1 −X2, X1 + X2], with
X1 = midX and X2 = sprX or, alternatively, two order real-valued

statistis X(1) and X(2) suh that X = [X(1), X(2)], i.e., X(1) = inf X,
X(2) = supX;430

• eah sample is assumed to be split into a subsample of size n(1− cp),
where cp denotes the proportion of ontamination and is supposed to

range in {0, 0.1, 0.2, 0.4}, assoiated with a non-ontaminated distri-

bution and a subsample of size n · cp assoiated with a ontaminated

one. CD plays an additional ontamination role, measuring how far435

the distribution of the ontaminated subsample is from the distribu-

tion of the non-ontaminated one (and ranges in {0, 1, 5, 10, 100});

• 16 situations for di�erent values of cp and CD have been onsidered

and for eah of them some ases have been seleted, namely, ones in

whih the random variables Xi (or X(i)) are independent (CASES 1440

and 3) and others in whih they are dependent (CASES 2 and 4).

Step 2. N = 1000 repliations of Step 1 have been onsidered for the situation

cp = CD = 0 in order to approximate the population measures by using

a Monte Carlo approah.

Step 3. N = 1000 repliations of Step 1 have been onsidered for all the sit-445

uations (cp, CD) and the approximated estimates, bias, variane and

mean square error have been omputed for eah loation measure.

The following sample sizes and distributions have been used:

Study 1 n = 100 and the assumptions for CASE 1 are

18



• X1 ∼ N (0, 1) and X2 ∼ χ2
1 for the non-ontaminated subsample,450

• X1 ∼ N (0, 3) + CD and/or X2 ∼ χ2
4 + CD for the ontaminated

subsample,

whereas CASE 2 assumes that

• X1 ∼ N (0, 1) and X2 ∼ 1/(X2
1+1)2+

√

χ2
1 for the non-ontaminated

subsample,455

• X1 ∼ N (0, 3) + CD and/or X2 ∼ 1/(X2
1 + 1)2 +

√

χ2
1 + CD for the

ontaminated subsample,

being χ2
1 independent from X1 and, obviously, 1/(X

2
1 + 1)2.

Study 2 n = 10000 and same CASES 1 and 2 than in Study 1.

Study 3 n = 100 and we vary the distributions onsidered in Study 1, in order460

to bound the generated intervals, as ommonly happens in real-life

appliations related to surveys or ratings, and manage asymmetri

ontamination. CASE 3 assumes that

• X(1), X(2) ∼ Beta(5, 1) (they are simply hosen at random and or-

dered) for the non-ontaminated subsample,465

• X(1), X(2) ∼ Beta(1, CD + 1) for the ontaminated subsample,

whereas CASE 4 assumes that

• X1 ∼ Beta(5, 1) and X2 ∼ Uniform[0,min{X1, 1−X1}] for the non-
ontaminated subsample,

• X1 ∼ Beta(1, CD+1) and/or X2 ∼ min{X1, 1−X1}·Beta(1, CD+1)470

for the ontaminated subsample.

Study 4 n = 10000 and the same CASES 3 and 4 as in Study 3.

To avoid exessive information in the outputs of the simulations, the details

about bias, variane and mean square error an be found in the supplementary

material. The onlusions for the four studies have been summarized in Table 3.

As a measure of the variation of the hoie of the optimal loation estimate, the

index of qualitative variation (IQV) has been omputed for eah ase as follows

(see [47℄):

IQV =
k

k − 1

(

1−
k
∑

i=1

f2
i

)

,

where k is the number of di�erent ategories (i.e., the number of di�erent loa-

tion estimates onsidered in eah ase: k = 13 in Studies 1 and 3 and k = 9 in

Studies 2 and 4) and fi represents the relative frequeny of the i-th ategory.475

Therefore, the IQV is equal to 1 for uniformly distributed variables and, on

the other hand, oinides with 0 when the variable only takes one value (and,

onsequently, the relative frequeny of the orresponding ategory is 1).
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On the basis of the onlusions gathered in Table 3, one an realize that there

is no uniformly most appropriate loation estimate and that the outputs seem480

to depend more on the onsidered non-ontaminated and ontaminated distri-

butions than on the sample size. However, it is beyond doubt that the Hampel

M-estimator of loation usually behaves better than the other loation measures

in relation to either the bias, the variane or the mean square error. It is also

interesting to highlight that the δ1-median is also hosen in several situations485

(mostly for smaller ontamination proportions) and reall that its omputation

is even more straightforward and fast than that for the M-estimators based on

the Representer Theorem. Finally, regarding the qualitative variation, it should

be remarked that, in most of the analyzed situations, the index IQV inreases

when a larger sample size is onsidered.490

6. Conluding remarks

In this work, several robust alternatives to summarize the loation of a om-

pat random interval have been proposed. Although some (ad ho) extensions

of the onept of median to the interval-valued ase had already been stated in

the literature, the more general approah of M-estimators of loation (of whih495

suh medians are a partiular ase) has been adopted. M-estimators of loation

for ompat random intervals have been proven to inherit the main properties

that make them a suessful hoie in the real settings. Apart from studying

the measurability and onsisteny of general M-estimators, a partiular lass of

M-estimators - those de�ned under the Representer Theorem - has been ana-500

lyzed in detail. Their existene and uniqueness, their translational and sale

equivariane, their algorithmi solution and their robustness in terms of the �-

nite sample breakdown point have been shown. Finally, all these measures have

been applied to two real-life examples and have been empirially ompared by

means of some simulations.505

It should be highlighted that the searh of robust loation measures to sum-

marize the entral tendeny of ompat random intervals is ruial, in order

to avoid that outliers, atypial observations, errors or data hanges invalidate

the statistial onlusions obtained from the analysis of interval-valued data.

Nowadays, most of the existing methodology developed to treat suh data is510

based on the Aumann mean as loation measure. Due to its high sensitivity, it

is reasonable to predit that the Aumann mean ould be replaed in these teh-

niques by other loation measures with a more robust behavior, like the ones

presented in this work, in order to guarantee the validity of the orresponding

statistial onlusions.515

When analyzing ontaminated datasets, two di�erent approahes ould be

followed. The goal of this paper is to remove the outliers' in�uene on the

outputs and to study the behavior of the majority of the data. Nevertheless, the

opposite view of fousing on the outlier identi�ation also o�ers an interesting

researh topi. In that sense, one an internal ross-validation were employed520

to evaluate how the removals of individual samples and/or groups of samples

would a�et the outputs in Table 2, those results ould be reonsidered as an
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automated outlier detetion tool: the observations that have a large impat on

the omputation of the Aumann mean, but a small in�uene on the output of

the M-estimator (of any kind), would be lassi�ed as outliers.525

Finally, some open problems will be now enumerated. First, the robustness

has been stated in terms of the �nite sample breakdown point due to the lak of

realisti parametri families of distributions in the spae of ompat intervals.

Therefore, the use of in�uene funtions has been left as open problem. Se-

ondly, notie that the development of robust sale measures will be required for530

the extension of the M-estimators of loation with unknown dispersion, whih

present onvenient properties like the sale equivariane and are generally used

in multivariate spaes. To onlude, hypothesis testing proedures about the

proposed loation measures ould be established and analyzed.
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Appendix A: Proofs

Proof of Proposition 3.1545

It will be shown that the M-estimator of loation is a Borel measurable funtion

and, therefore, it is well-de�ned. The following fats are taken into aount:

• X ≡ Ω is separable and omplete sine (Ω,A, P ) is a Polish probability

spae. Reall that either η or ι embed the metri spaes (Kc(R), dθ),550

(Kc(R), dH) and (Kc(R), δ1) isometrially into a one, U , of a Hilbert

(when dθ is used) or a Banah spae (when either dH or δ1 are ho-

sen). In ase dθ or dH are used, U = R × [0,∞), and when δ1 is hosen,

U = {(y, z) ∈ R2 : y ≤ z}. Sine all the distanes de�ned in R2
by means

of suh isometries are strongly equivalent among them and w.r.t. the Eu-555

lidean distane, they all indue the same topologies, U always being a

losed subset. Thus, the ompleteness of the Hilbert or Banah spae is

inherited by the one. On the other hand, the isometrial embedding pre-

serves the separability of the metri spaes (Kc(R), dθ), (Kc(R), dH) and
(Kc(R), δ1), what has already been ommented in Remark 2.3. Consider560

Y ≡ U . Then Y is a omplete separable metri spae.
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• f : Ω× U → R suh that f(ω, (y, z)) = 1
n

∑n
i=1 ρ (d(Xi(ω), [y − z, y + z]))

or alternatively f(ω, (y, z)) = 1
n

∑n
i=1 ρ (d(Xi(ω), [y, z])), depending on the

expression of U , is a real-valued measurable funtion irrespetive of the

distane d ∈ {dθ, dH , δ1}.565

First, D = Ω × U is a Borel set, sine it is the universal set we are

onsidering and, therefore, it belongs to any σ-algebra. Seondly, the

measurability of f derives from the following fats:

◦ the addition, produt and omposition of Borel measurable funtions

are also Borel measurable;570

◦ midXi, sprXi, inf Xi and supXi, i = 1, . . . , n, are Borel measurable

beause of the equivalent de�nition of ompat random intervals.

Thus, the mappings fi : Ω × U → U with fi(ω, (y, z)) representing
(midXi(ω), sprXi(ω)) or (inf Xi(ω), supXi(ω)) are also Borel mea-

surable with respet to the σ-algebra on the produt spae Ω × U575

and the Borel σ-algebra generated by the topology indued by the

orresponding norm on the one of the Banah (Hilbert for dθ) spae
U .

◦ f0 : Ω×U → U suh that f(ω, (y, z)) = (y, z) is also Borel measurable

following an analogous reasoning to that for fi, sine the identity is580

measurable;

◦ the square root, the square funtion, the absolute value funtion and

ρ are ontinuous and, therefore, Borel measurable;

• U is σ-ompat, sine a loally ompat Polish spae is equivalent to a

loally ompat σ-ompat metri spae.585

• For eah metri d ∈ {dθ, dH , δ1} and eah ω ∈ Ω, the following funtion

is ontinuous (and, therefore, lower semi-ontinuous) with respet to the

relative topology on U

fω : U −→ R

(y, z) 7−→ f(ω, (y, z)).

For eah ω ∈ Ω, let (y∗, z∗) be any element of U . It is su�ient to hek

that, given any sequene {(yn, zn)}n∈N ⊂ U suh that (yn, zn) −→
n

(y∗, z∗),

i.e.,

d([yn − zn, yn + zn], [y
∗ − z∗, y∗ + z∗]) −→

n
0,

then limn fω((yn, zn)) = fω((y
∗, z∗)).

For any n ∈ N and i = 1, . . . , n, the triangular inequality allows us to

ensure that d(Xi(ω), [y
∗−z∗, y∗+z∗])−d([yn−zn, yn+zn], [y

∗−z∗, y∗+z∗])

≤ d(Xi(ω), [yn − zn, yn + zn])

≤ d(Xi(ω), [y
∗ − z∗, y∗ + z∗]) + d([yn − zn, yn + zn], [y

∗ − z∗, y∗ + z∗]).
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Sine d([yn − zn, yn + zn], [y
∗ − z∗, y∗ + z∗]) −→

n
0, we then onlude that

d(Xi(ω), [yn−zn, yn+zn])−→
n

d(Xi(ω), [y
∗−z∗, y∗+z∗]). By the ontinuity

of ρ, ρ(d(Xi(ω), [yn−zn, yn+zn])) −→
n

ρ(d(Xi(ω), [y
∗−z∗, y∗+z∗])) and,

obviously, the result follows beause the ontinuity is preserved by the590

addition and the produt of ontinuous funtions.

Applying the result in [48℄, it is possible to guarantee that the funtion ϕ below

is Borel-measurable, where

ϕ : I −→ U
ω 7−→ (y0, z0) s.t. f(ω, (y0, z0)) = inf

(y,z)∈U
f(ω, (y, z))

with I =
{

ω ∈ Ω : for some (y0, z0) ∈ U, f(ω, (y0, z0)) = inf
(y,z)∈U

f(ω, (y, z))
}

.

Notie that ϕ(ω) = (y0, z0) suh that

1

n

n
∑

i=1

ρ(d(Xi(ω), [y0 − z0, y0 + z0])) = inf
(y,z)∈U

1

n

n
∑

i=1

ρ(d(Xi(ω), [y − z, y + z])),

or, of ourse, U formalized alternatively when δ1 is hosen, i.e., ϕ is the funtion

that assigns to eah ω ∈ Ω for whih the M-estimate of loation exists, the

orresponding value of the M-estimate of loation.595

Sketh of the proof of Theorem 3.2

These assumptions are su�ient to ensure Huber's onditions for onsisteny

(see [49℄). Notie that the loally ompatness and the seond ountability600

required for the spae R× [0,∞) in [38℄ involve dθ. However, these topologial
properties are also ful�lled when using dH or δ1 beause all these metris are

strongly equivalent. The proof follows the same sheme as in [38℄ (where the

loss funtion was ρ(x) = |x|), taking into aount that

• When ρ is subadditive apart from non-dereasing, it is possible to preserve605

the relations and the way of reasoning with distanes.

• When ρ is the Huber loss funtion ρa, for any a > 0, it an be bounded

by means of two lines with the same slope for all x > 0

ax− a2/2 ≤ ρa(x) ≤ ax.

If ρ has linear upper and lower bounds with the same slope, then it is also

possible to preserve the relations and the way of reasoning with distanes.

• When ρ is the Hampel loss funtion ρa,b,c, for any c > b > a > 0, it is
possible to bound it as follows

0 ≤ ρa,b,c(x) ≤ a(b + c− a)/2.
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When ρ is bounded, it is also neessary to notie that there is a ompat

set C in the parameter spae suh that the sequene of M-estimators of610

loation almost ultimately stays in C, thanks to the parameter spae being

loally ompat and Hausdor� and the Strong Laws of Large Numbers.

Sketh of the proof of Theorem 3.5

M-estimators de�ned through the Representer Theorem are translation equiv-615

ariant by Proposition 3.4. Therefore, the proof of the upper bound an be

arefully extended from the real-valued settings taking are of the semilinear-

ity of Kc(R). It is possible to prove the equality when ρ has linear upper and

lower bounds, following a reasoning like in [37, 50℄, or when ρ has a �nite up-

per bound C∗
satisfying ρ (max1≤i,j≤n dθ(xi, xj)) <

n−2⌊n−1

2
⌋

n−⌊n−1

2
⌋−1

· C∗
, heking620

that the M-estimator will always belong to a ompat set unless the perturbed

sample ontains more than ⌊(n+ 1)/2⌋/n observations.

Appendix B: Supplementary data

Supplementary data to this artile, onerning the bias, variane and mean

square error of the loation measures onsidered for the simulation study in Se-625

tion 5, an be found online at http://dx.doi.org/10.1016/j.hemolab.2016.05.003
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