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1 Introduction and summary

An important feature of gauge theories in five dimensions is that they come equipped with

a topologically conserved current (one for each simple gauge group factor)

J =
1

8π2
⋆ TrF ∧ F . (1.1)

The associated conserved charge is carried by solitonic states that correspond to the lift of

BPST instantons in R
4. As such, these states are expected to have a mass of O(1/g2), and

therefore to become important for low energy physics at strong coupling. Alternatively we

can consider a local operator in R
5 such that

1

8π2

∫

S4

TrF ∧ F = n , (1.2)

where the S4 surrounds the location of the operator. This is called an n-instanton operator.

These two objects, corresponding to the gauge field configurations on R
4 and S4, can

be related by a conformal map [1]. Note that this is not the usual state-operator map,

which would relate the local operator in R
5 to a state in S4 × R+, namely in the radially

quantized theory.

Gauge theories in five dimensions are non-renormalizable and therefore do not make

sense, at least in perturbation theory, as microscopic quantum field theories. In general

this is an indication that the theory is not UV complete, and requires the addition of extra

degrees of freedom. However it has become apparent, using both supersymmetric dynamics

and string theory, that supersymmetric gauge theories in five dimensions can in some cases

be UV complete, and possess a UV fixed point corresponding to a superconformal field

theory (SCFT) in either five dimensions [2] or six dimensions [3]. Indeed, we may think

of the set of microscopically well-defined theories in five or six dimensions as the IR the-

ories resulting from relevant deformations of these fixed point theories.1 One particularly

interesting deformation corresponds to turning on a Yang-Mills coupling; this is a mass

deformation triggering a flow to an IR gauge theory.

1Superconformal theories in five and six dimensions have no marginal deformations, and only relevant

deformations are available.
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In many cases instantons play an important role in identifying the fixed point theory,

and in particular its symmetries. For example, the UV fixed point of the maximally

supersymmetric 5d Yang-Mills theory is conjectured to be the 6d (2, 0) SCFT compactified

on a circle in the limit of infinite radius. It has been argued that multi-instanton bound

states in the 5d gauge theory reproduce the entire KK spectrum of the 6d theory [4]. The

corresponding instanton operators should therefore incorporate the currents associated to

the broken 6d spacetime symmetry. Further support for this comes from analyzing the

zero-modes of the 5d instanton [5]. A somewhat similar phenomenon occurs in cases where

the UV fixed point is a 5d SCFT, where the internal global symmetry is enhanced in some

examples by instantons. In some of these examples the enhancement can be explicitly

shown by computing the superconformal index [6], and by a zero-mode analysis [5, 7–9]

(see also [10] for an alternative approach).

Inherent to this discussion is the requirement that the instanton states and operators

come in short (BPS) supersymmetry multiplets, so that their masses and dimensions are

protected. This is indeed true for the solitonic state obtained by lifting the BPST config-

uration to five dimensions. On the other hand it has recently been pointed out that the

5d instanton configuration associated to (1.2) does not preserve any supersymmetry, and

would therefore seem to correspond to a non-BPS operator [11] (see also [12]). This also

appears to be consistent with the counting of fermionic zero modes associated to the space-

time symmetry [5]. But it is clearly in conflict with the computations of 5d superconformal

indices that include crucial contributions of instanton operators.

The purpose of this note is to resolve this apparent contradiction.2 A key observation

is that there is a one parameter family of instanton configurations on S4, labelled by a

dimensionless parameter ρ that determines how the flux is distributed on S4. From the

point of view of four-dimensional N = 2 gauge theory the configuration preserves one-half

of the supersymmetry for all ρ, so ρ is an exact modulus. Embedded in radially-quantized

five-dimensions however, it preserves a different half at different radii, so from the point

of view of the 5d N = 1 gauge theory it breaks all supersymmetries, as observed in [11].

This implies in particular that a potential is generated for ρ. As we will show, in the limit

ρ → 0 (or ρ → ∞) one-half of the supersymmetries are restored. In this limit the flux is

concentrated at the north or south pole of S4, depending on the sign of n.

This makes contact with the supersymmetric property of the instanton state, since the

state created by the operator in this limit is the pointlike limit of the BPST state in the

R
4 tangent to the pole. It also makes contact with the superconformal index computa-

tions, where it was shown that the instanton (anti-instanton) configurations contributing

to the index are necessarily concentrated at the south (north) pole of S4. Moreover, by

regarding the mass deformation to the Yang-Mills theory as spontaneous symmetry break-

ing, the structure of zero modes necessary to find the expected broken current multiplet

naturally follows.

In the rest of this note we will offer support for our claim. For simplicity we focus on

the N = 1 SU(2) theory.

2Our resolution is briefly mentioned in a revised version of [11].
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2 Instanton operators

Consider a local operator that inserts n units of instanton-flux on an S4 enclosing the point

x = 0 in R
5, eq. (1.2). A classical configuration satisfying this with n = 1 can easily be

constructed starting with the SU(2) BPST solution in R
4 and conformally mapping it to

S4. The BPST solution is given by

Fij =
2µ2ǫijkσk

(|x|2 + µ2)2
, Fi4 =

2µ2σi

(|x|2 + µ2)2
(2.1)

where µ parameterizes the size of the instanton. This satisfies

Tr(F ∧ F )|
R4 = − 96

µ4

(|x|2 + µ2)4
d4x . (2.2)

Conformally mapping the configuration to an S4 with metric

dΩ2
4 = R2

[

dα2
1 + sin2 α1(dα

2
2 + sin2 α2(dα

2
3 + sin2 α3 dα

2
4)
)]

, (2.3)

gives

Tr(F ∧ F )|S4 = 96
ρ4

(

(1 + ρ2) + (1− ρ2) cosα1

)4 ω4 , (2.4)

where ω4 is the volume form of the unit S4, and ρ = µ/R. The dimensionless parameter ρ

determines how the flux is distributed on S4. In particular ρ = 1 corresponds to a uniform

distribution, and in the limits ρ → 0 and ∞ the flux is concentrated at α1 = π and at

α1 = 0, respectively.

Let us now analyze the supersymmetry of this configuration. The supersymmetry

variation of the gaugino is given by (we will follow the conventions in [13])

δΩ = − /F ( l1 ∓ Γr)ǫ . (2.5)

We use polar coordinates, in which the 5d instanton field strength satisfies Fri = 0 and

F |S4 = ±⋆4F |S4 , and ǫ is a 5d background Killing spinor. The vacuum of the 5d SCFT has

two sets of Killing spinors associated to the Poincaré and superconformal supersymmetries.

In polar coordinates these are given respectivley by3

ǫq = e
α1

2
Γr1 e

α2

2
Γ12 e

α3

2
Γ23 e

α4

2
Γ34 ǫq,0 (2.6)

ǫs = r Γr e
α1

2
Γr1 e

α2

2
Γ12 e

α3

2
Γ23 e

α4

2
Γ34 ǫs,0 , (2.7)

where ǫq,0 and ǫs,0 are constant spinors.
4 The supercharges preserved by the instanton con-

figuration will be those for which Γrǫ = ±ǫ. Clearly there is no solution to this everywhere

on the S4. Note however that Γrǫ = +ǫ at α1 = 0, and Γrǫ = −ǫ at α1 = π. Therefore all

supersymmetries are broken by this configuration.

This does not contradict the fact that the 4d configuration on S4 is supersymmetric.

At each fixed value of r ∈ R+, corresponding to the size of the S4, the configuration

preserves one-half of the supersymmetries corresponding to the combination ǫq + r−1ǫs,

3The superconformal Killing spinors arise as solutions to five-dimensional conformal supergravity [14–16].
4The 5d supercharge ǫ transforms as a 4 under Spin(5) = Sp(4) and as a 2 under SU(2)R. However it

satisfies a symplectic Majorana condition (ǫi)⋆ = ǫ
ij
Cǫ

j , where C the charge conjugation matrix, so there

are 8 real supersymmetries.
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with ǫq,0 = ǫs,0. But clearly the unbroken supersymmetries at different values of r are not

commensurate, so the 5d configuration on S4 × R+ breaks all supersymmetries.

We can ask what state does this operator create in temporal quantization. Let us take

the “time” direction to be along the polar axis of the S4, specifically t = − r cosα1, where

the future is in the direction of α1 = π, and r2 = t2 + ~x2. Note that this corresponds to

the natural choice x1 = t in R
5 in cartesian coordinates. Projecting onto a constant future

time slice we find

Tr(F ∧ F )|
R4 = − 96

µ4
eff

(~x2 + µ2
eff)

4
d4~x with µeff = ρ

(

√

t2 + ~x2 + t
)

, (2.8)

namely a BPST-like configuration with a spacetime dependent size parameter µeff . From

this point of view it is natural that the configuration breaks supersymmetry.

3 Pointlike instantons

There are two exceptions to the above result, ρ = 0 and ρ → ∞. In these limits the flux is

concentrated at a single point on the S4, at α1 = π for ρ = 0 and at α1 = 0 for ρ → ∞.

Therefore one only needs to satisfy the chirality condition locally at these points. As noted

above, the Killing spinors satisfy Γrǫ = ǫ at α1 = 0 and Γrǫ = −ǫ at α1 = π. Therefore

the instanton operator with F = ⋆S4F is supersymmetric for ρ → ∞, and the instanton

operator with F = − ⋆S4 F is supersymmetric for ρ = 0. This is consistent with what

was found in the supersymmetric localization procedure for computing the superconformal

index [6]. It was shown there that instanton operators contribute to the index, but only if

the flux is concentrated at one pole for self-dual configurations, and at the opposite pole

for anti-self-dual configurations. The corresponding states in temporal quantization are

point-like supersymmetric BPST configurations.

More generally if we consider an operator corresponding to a distribution in ρ, say with

F = − ⋆S4 F , then at very late time the ρ > 0 components will spread out and dissolve,

and only the point-like supersymmetric ρ = 0 state will remain. This is in line with the

point made in [11], that the BPS state can be extracted from the action of the instanton

operator on the vacuum in the late time limit as

|n〉 = lim
τ→∞

e−(H−Q)τIn(0)|0〉 , (3.1)

where τ is the time in radial quantization.

4 Fermionic zero modes

Fermionic fields in the presence of instantons have zero modes which determine the global

and gauge symmetry representation of the instanton state. In particular the gaugino zero

modes determine the supermultiplet structure. These arise generically from the broken

supersymmetries in (2.5). A BPS state, the point-like instanton in our case, preserves

a fraction (half in this case) of the supersymmetry and therefore transforms in a short

supermultiplet. For the pure SU(2) theory this gives a broken current multiplet, consisting

of an SO(5) vector Jµ, two spinors ψi transforming as a doublet of SU(2)R, and three scalars

µ(ij) in the triplet of SU(2)R [5]. This supermultiplet is generated by eight fermionic zero

– 4 –
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modes corresponding to four broken Poincaré supersymmetries, ǫq with Γrǫq = ∓ǫq, and

four broken superconformal supersymmetries, ǫs with Γrǫs = ∓ǫs. We can demonstrate

this explicitly as follows. In the pointlike limit we can approximate the S4 instanton

configuration created by the instanton operator as an instanton configuration in the tangent

R
4. In this case the background Killing spinors are given by

ǫq = ǫq,0 , ǫs = /xǫs,0 . (4.1)

The fermionic zero modes of the instanton configuration should be given by the broken

supersymmetries as

δΩq = /Fǫq = /Fǫq,0 , Γ5ǫq,0 = ∓ǫq,0 , (4.2)

and

δΩs = /Fǫs = /F /xǫs,0 , Γ5ǫs,0 = ∓ǫs,0 . (4.3)

One can then easily check that these two spinors satisfy the massless Dirac equation.

This appears somewhat strange from the point of view of the IR gauge theory, since

the entire superconformal symmetry is explicitly broken by the Yang-Mills action. Never-

theless, the conditions on the fermionic zero modes (4.2) and (4.3) continue to hold in the

IR gauge theory. This is understood from the fact that the the mass deformation leading

to the gauge theory can be thought of as the VEV of a scalar in a background vector

multiplet associated to the topological U(1) symmetry. In this sense the superconformal

symmetry is broken spontaneously. Since the gauginos are neutral under this symmetry

the VEV does not affect their Dirac equation and therefore does not affect the analysis of

fermionic zero modes.

An interesting complementary point of view can be obtained by performing the state-

operator conformal transformation from R
5 to S4 ×R. Regarding the YM coupling as the

VEV of a scalar field in a background vector multiplet, it should map as g0 → g0e
−τ/2,

where τ is the coordinate along R. This is consistent with the observation made in [16],

that in S4 × R only a position-dependent gauge coupling “constant” gYM = g0e
−τ/2 can

be turned on in a supersymmetric way. This is a position-space version of the RG flow

interpolating between the UV SCFT at early time and the IR supersymmetric gauge theory

at late time. Moreover, as shown in [16], the supersymmetries preserved by this position-

dependent YM coupling are the same as in the fixed point theory. Indeed, this would be

the natural way to regularize the index computation of [6].
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