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Abstract
Coccolithophores are a vital part of oceanic phytoplankton assemblages that produce

organic matter and calcium carbonate (CaCO3) containing traces of other elements (i.e. Sr

and Mg). Their associated carbon export from the euphotic zone to the oceans' interior

plays a crucial role in CO2 feedback mechanisms and biogeochemical cycles. The cocco-

lithophore Emiliania huxleyi has been widely studied as a model organism to understand

physiological, biogeochemical, and ecological processes in marine sciences. Here, we

show the inter-strain variability in physiological and biogeochemical traits in 13 strains of E.
huxleyi from various biogeographical provinces obtained from culture collections commonly

used in the literature. Our results demonstrate that inter-strain genetic variability has greater

potential to induce larger phenotypic differences than the phenotypic plasticity of single

strains cultured under a broad range of variable environmental conditions. The range of var-

iation found in physiological parameters and calcite Sr:Ca highlights the need to reconsider

phenotypic variability in paleoproxy calibrations and model parameterizations to adequately

translate findings from single strain laboratory experiments to the real ocean.

Introduction
The coccolithophore species Emiliania huxleyi belongs to a group of unicellular photosynthetic
protists covered by plates of calcite (CaCO3) termed coccoliths [1]. Coccolithophores are
major producers of CaCO3 [2] and key players in the Earth's climate system [3]. They contrib-
ute to the biological carbon pump via the combined effects of calcification, photosynthesis,
and the downward transport of particulate material to the oceans' interior [4]. Although there
are numerous extant coccolithophore species, E. huxleyi is used as a model species in many
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physiological [5], ecological [6], oceanographic [7], paleoceanographic [8], and modelling stud-
ies [9] because of its global importance and the ease to culture it under a broad range of envi-
ronmental conditions [10].

Emiliania huxleyi harbors a genome constituted by core genes plus genes distributed vari-
ably amongst strains, which supports a considerable intra-species variability [11]. This enables
E. huxleyi to form large seasonal blooms in temperate waters and subpolar regions under a
wide variety of environmental conditions [12]. Based on the morphological identity of the coc-
coliths, E. huxleyi is separated in seven morphotypes [13], although the relationship between
geographic origin and morphotype genetic distance is unclear [14]. Within the species concept
of E. huxleyi, numerous diploid non-calcifying cells have been identified which lost the ability
to form calcified scales following prolonged culture [10, 15] or unfavorable experimental con-
ditions [16]. Taking into account the morphological diversity found within the species concept
of E. huxleyi a high physiological variability is expected.

The cosmopolitan distribution and bloom-forming capacity of E. huxleyi [12], its distinct
optical features [17] and sinking properties [18, 19] make E. huxleyi a suitable model organism
for parameterization studies in Earth System modelling. The biogeochemical signature of E.
huxleyi's coccoliths is used to develop paleoproxies because of their abundant fossil record
starting in the Quaternary [20, 21]. The abundance of trace elements replacing Ca ions in cal-
cite, such as strontium (Sr) and magnesium (Mg) is driven by thermodynamic, kinetic, and
biological factors, facilitating the development of paleoproxies based on the ratio between the
element of interest and calcium. The Sr:Ca ratio is used to estimate coccolithophore productiv-
ity [22], and the Mg:Ca ratio is used to reconstruct seawater temperature [23, 24] and track
CO2 [25].Recently, the incorporation of boron (B) in the calcite has been related to seawater
pH [26]. However, phenotypic variability in coccolith elemental ratios is virtually impossible to
address in sediment samples because only morphotypes can be differentiated.

In this study we characterize intra-species phenotypic variation and its implications in 13
strains of E. huxleyimeasuring physiological parameters (growth rate, particulate organic and
inorganic carbon content [POC and PIC], particulate inorganic: organic carbon [PIC:POC],
particulate carbon:nitrogen [C:N]) and coccolith geochemistry (Sr:Ca and Mg:Ca ratios). The
high variability observed in our results highlights the importance of account for inter-strain
variability when using E. huxleyi as a model organism in marine studies ranging from experi-
mental work to past ocean reconstructions and model parameterizations.

Material and Methods

Experimental work
Monoclonal cultures of 13 E. huxleyi strains were obtained from the Provasoli-Guillard
National Center for Marine Algae and Microbiota (NCMA), the Roscoff Culture Collection
(RCC), the Algobank-Caen and the Microalgal Culture Collection and the Plymouth Culture
Collection of Marine Algae. Nine coccolith-bearing strains, including three morphotypes (A, B
and R; see Table 1), and four non-calcifying strains from various latitudes were grown in semi
continuous batch cultures under identical conditions (Table 1). Strain morphotype identifica-
tion followed previously published studies [15, 27, 28, 29]. Cultures were maintained at 19.15
±0.75°C (Table 1), with a 12:12h light:dark cycle under light irradiance of 126.03 ±8.96 μmol
quanta m-2 s-1 supplied by cool-white fluorescent lamps (Osram LUMILUX) and determined
using a LI-COR (LI-189) Quantum Sensor (Q 39308). The cultures were daily agitated by
manual swirling. Culture medium was prepared from coastal Atlantic Ocean filter-sterilized
(0.22 μm) natural seawater. Salinity was determined using a refractometer. Filtered seawater
was enriched with 91.4 μM of NaNO3, 5.3 μM of NaH2PO4 (Table 1) [30–32], and trace metals
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and vitamins were added according to f/2 medium [33]. Triplicate flasks containing medium
were inoculated with cultures in exponential growth phase pre-acclimated for a minimum of 8
generations. Cells were inoculated at ~100 cell ml-1 and harvested at cell densities of 28,000
±5,000 cell ml-1 to minimize changes in carbonate chemistry and nutrient availability that
could potentially lead to CO2 and/or nutrient limitation.

Cell density, pH, salinity and irradiance were monitored during the incubations. Daily in-situ
pHtotal and temperature were determined on sub-samples using a pH-meter with a temperature

Table 1. Origin of the Emiliania huxleyi strains and environmental culture conditions.

Strain1 Isolation Lat. Long. Morphotype2 L:D
cycle

Temperature
(°C)

Salinity DIN
(μM)

DIP
(μM)

Irradiance (μmol
quanta m2 s-1)

Reference

CCMP370*
(370*)

E. Paasche
(1959)

59.83 10 un [29] 12:12 19.6 ± 0.1 35.0 ± 0.0 89.6 4.12 122.40 ± 5.83 This study

CCMP2758*
(2758*)

R. Waters 50.3 -145.58 n/a 12:12 19.4 ± 0.1 35.0 ± 0.0 97.9 4.19 127.29 ± 6.99 This study

B92/11 (B11) J. C. Green
(1992)

46.96 5.28 A [15] 12:12 18.5 ± 0.1 36.5 ± 0.1 93.5 4.09 119.86 ± 1.99 This study

M181CCMP88E
(88E)

R. Selvin
(1988)

43 -68 A [15] 12:12 19.4 ± 0.1 35.7 ± 0.2 92.0 3.79 125.86 ± 6.94 This study

AC474 (474) I. Probert
(1998)

41.1 3.38 n/a 12:12 19.6 ± 0.0 35.1 ± 0.1 91.1 4.71 117.08 ± 5.94 This study

RCC1258 (1258) I. Probert
(1998)

40.58 -10 B 12:12 19.6 ± 0.1 35.0 ± 0.1 97.3 2.30 127.85 ± 3.63 This study

M184CCMP1A1
(1A1)

B. Palenik
(1987)

32 -62 A [29] 12:12 19.5 ± 0.2 36.3 ± 0.1 89.5 3.26 124.50 ± 5.56 This study

CCMP2090*
(2090*)

J. Sexton
(1991)

-2.82 -83.01 n/a 12:12 19.5 ± 0.2 34.9 ± 0.1 90.1 4.12 118.78 ± 4.85 This study

CCMP1280*
(1280*)

F. Valois
(1985)

-12 -35 n/a 12:12 18.9 ± 0.1 34.9 ± 0.1 94.6 4.05 120.12 ± 3.75 This study

South Africa (SA) R. Pienaar
(1983)

-29.85 31.05 A [15] 12:12 19.2 ± 0.1 35.0 ± 0.0 98.6 4.27 121.02 ± 5.91 This study

RCC1212 (1212) I. Probert
(2000)

-34.46 17.3 B [27] 12:12 19.7 ± 0.0 35.0 ± 0.1 90.1 1.75 134.99 ± 1.63 This study

NZEH (NZEH) L. Rhodes
(1992)

-46.96 168.08 R [27] 12:12 18.4 ± 0.1 35.3 ± 0.1 95.5 3.94 120.94 ± 4.36 This study

AC472 (472) n/a -48.3 169.83 R [27] 12:12 19.9 ± 0.1 35.1 ± 0.1 89.2 6.31 120.55 ± 4.77 This study

Average 12:12 19.3 ± 0.4 35.3 ± 0.5 93.0 3.9 123.2 ± 4.8 This
study

RCC1238 I. Probert
(2005)

n/a n/a A [27] 16:8 20.0 32.0 100 6.25 400 [27]

CCMP374 Skinner
(1990)

n/a n/a n/a n/a 20.0 35.0 100 6.00 150 [30]

AC481 I. Probert n/a n/a n/a 14:10 18.0 35.6 32 1.00 150 [31]

RCC1212 I. Probert
(2000)

n/a n/a B [27] 16:8 20.0 32.0 100 6.25 400 [27]

NZEH L. Rhodes
(1992)

n/a n/a R [27] 12:12 19.0 34.0 100 6.24 150 [32]

NZEH L. Rhodes
(1992)

n/a n/a R [27] n/a 20.0 35.0 100 6.00 150 [30]

(1) Strain name in backets and italics correspond to the abreviations used in Figs 3 and 4.

*Indicates the non-calcifying strains.
(2) Morphotypes classification extracted from the literature and references.

(un) undetermined. (n/a) no data available.

doi:10.1371/journal.pone.0157697.t001
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probe (EUTECH EcoScan—pH/mV/°C) (S1 Table). During the experiments the medium car-
bon chemistry was measured for each replicate flask. Both, daily monitoring and final harvesting
were performed at the same time of the day within a 3–5 h interval after the start of the light
phase.

Inorganic elemental chemistry
The seawater carbonate system parameters were calculated from temperature, salinity, and the
concentration of dissolved inorganic carbon (DIC), total alkalinity (TA) and phosphate using
the software CO2SYS [34] (S1 Table). Total alkalinity and DIC were determined using the
(Versatile INstrument for the Determination of Tritation Alkalinity) VINDTA, calibrated with
Certified Reference Material (CRM) for oceanic CO2 measurements, Marine Physics Labora-
tory of Scripps Institute of Oceanography, University of San Diego, following Mintrop [35].
Precisions for TA and DIC were ±7.45 μmol kg-1 and ±4.7 μmol kg-1, respectively.

Dissolved inorganic nitrate (DIN) and dissolved inorganic phosphate (DIP) were deter-
mined according to Hansen and Koroleff [36] using a HITACHI U-2000 Spectrophotometer at
the GEOMAR, Kiel, Germany. The precisions for DIN and DIP were ±0.1 μM and ±0.02 μM,
respectively.

In order to measure calcite Sr:Ca and Mg:Ca ratios cells were concentrated by centrifugation
of ~1.5 l of culture at 1970 × g for 20 min using a Hettich ROTANTA 460RS Centrifuge, and
subsequent freeze drying of the pellet. Before analysis, the samples were treated to remove
organic-Mg cellular phases with hydroxylamine-hydrochloride (NH2OH�HCl + NH4OH) fol-
lowed by three consecutive oxidation steps (using H2O2) according to Blanco-Ameijeiras et al.
[37]. The samples were dissolved in 50 μl of ultrapure 2% HNO3 and diluted to 500 μl with
Milli-Q. Elemental composition of the samples was determined using the Thermo iCAP 6300
Series ICP Spectrometer, at the Geology Faculty of the University of Oviedo (Spain). All sam-
ples were diluted to a common Ca concentration, seeking the highest possible value within the
range of standard calibration solutions (Ca = 15, 50, 100 ppm). Calibrations were performed
with multi-element standards offline using the intensity ratio method described in de Villiers
et al. [38].

Seawater Sr:Ca and Mg:Ca ratios were determined separately by the method of standards
addition in culture medium samples filtered through 0.22 μm, diluted to 1:200 and 1:10 respec-
tively and measured with a Thermo iCap 6300 Series ICP spectrometer as described above. The
partition coefficients of Sr (DSr) and Mg (DMg) between coccolith calcite and seawater were cal-
culated following Eq 1, where x is the trace element of interest.

Dx ¼
x
Ca

� �
calcite

x
Ca

� �
seawater

ð1Þ

Growth rates and cell morphometrics
Cells were counted using a ZEISS Axioskop 40 light microscope with 200× magnification in a
Neubauer haemocytometer (0.1 mm depth; 0.0025 mm3). Growth rate (μ) was calculated fol-
lowing Eq 2, where c0 and c1 are the cell concentrations at the beginning and at the end of the
experiment, respectively, and Δt is the period of incubation in days. Growth rate was deter-
mined as the average counts on triplicate measurements.

m ¼ ðLoge C1 � Loge C0Þ
Dt

ð2Þ
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Determination of coccosphere and cell volume was performed on a Beckman Coulter Multi-
sizer III, fitted with an aperture tube orifice diameter of 70 μm. Analyses were performed with
the program MULTI 32 program (Beckman Coulter). Coccospheres were decalcified to deter-
mine the cell volume by adding HCl to culture aliquots until pH 5.0 was reached, which results
in coccolith dissolution. After two minutes, the pH was rapidly readjusted to its original
value in the culture by adding of 100 mMNaOH, following a modified version of the method
described by Linschooten et al. [39]. Cell integrity was checked with the optical microscope
with 400× magnification.

Particulate carbon analysis
Samples for total particulate carbon (TPC), particulate organic carbon (POC), total particulate
nitrogen (TPN), and particulate organic nitrogen (PON) were prepared by filtering aliquots
onto pre-combusted 25 mm GF/F filters, followed by storage at -20°C until required for subse-
quent analysis. The samples for POC and PON analysis were fumed with sulfurous acid for 24
h [40] to remove particulate inorganic carbon (PIC) from the filters. The filters were dried at
60°C for 24 h, packaged in pre-combusted aluminum foil [41], and analyzed on a Thermo Fin-
negan flash EA1112 elemental analyzer using acetanilide as the calibration standard. PIC was
calculated as the subtraction of POC from TPC. Inorganic and organic carbon production
(Prod) were calculated according to Eq 3 and expressed in pg C cell-1 d-1.

Prod ¼ m� cellular carbon content ð3Þ
In addition, calcium (from the PIC) was measured using a Thermo iCap 6300 Series ICP

Spectrometer to determine PIC assuming that Ca concentration in organic phases is negligible.
The two methods to measure PIC were compared to each other because both are widely used
in the literature and results are often assumed to be comparable (see details and discussion in
S1 Notes, S1 Fig).

Data analyses
Averaged values are given by the statistical mean and the standard deviation (SD) of three rep-
licate samples per treatment. One-way analysis of variance (ANOVA) was used to test that the
differences in biogeochemical parameters (coccosphere volume, cell volume, growth rate, par-
ticulate carbon and nitrogen cell quotas, particulate carbon production, stoichiometric ratios
and DSr) between strains were statistically different. Correlation of the biogeochemical parame-
ters was determined using the Pearson product-moment correlation coefficient (r). Statistical
analyses were performed using SigmaPlot (Systat Software, San Jose, CA).

Results

Culture conditions
The average seawater pHtotal for all the strains was 7.97 ± 0.04, pCO2 was 479.82 ± 37.96 μatm,
total alkalinity (TA) was 2272.40 ± 18.04 μmol kg-1, dissolved inorganic carbon (DIC) was
2055.39 ± 13.16 μmol kg-1 and O-Calcite was 3.75 ± 0.25 (S1 Table). The shift in DIC due to
cells consumption and production of inorganic carbon was<2.5%. Average nitrate concentra-
tion was 93.0 ± 3.4 μM and average phosphate concentration was 3.9 ± 1.1 μM (Table 1). Irra-
diance during the incubation oscillated between 117.08 ±5.94 and 134.99 ±1.63 μmol quanta
m2 s-1 and the average temperature during the incubation was 19.32 ±0.45°C.

Phenotypic Variability in the Coccolithophore Emiliania huxleyi
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Physiological parameters
Cellular volume. Coccosphere (cell + coccoliths) volume was statistically different

between strains (P<0.001) varying between 46.18 ±3.58 μm3 (M184CCMP1A1) and 121.45
±25.82 μm3 (RCC1212) (Table 2). After coccoliths dissolution, the cell volume varied between
34.13 ±0.10 (B92/11) and 92.18 ±12.48 μm3 (RCC1212) (Fig 1). Inter-strain differences in cell
volume were statistically different between strains (P<0.001).

Growth rate (μ). The growth rate of E. huxleyi strains was significantly different between
strains (P<0.001). It ranged from 0.53 ±0.01 d-1 to 1.45 ±0.01 d-1 (Fig 1). The fastest growth
rate was observed in NZEH and the lowest in the non-calcifying strain CCMP1280. Non-calci-
fying strains showed lower growth rates between 0.53 ±0.01 d-1 and 0.93 ±0.02 d-1, whilst those
of calcifying strains varied between 0.67 ±0.01 and 1.45 ±0.01 d-1 (Table 2). Growth rate of
non-calcifying strains was on average 19.28% lower than in calcifying strains (P = 0.015).
Growth rate was inversely correlated with coccosphere volume, cell volume and PIC cell quota
(r = -0.522, -0.479 and -0.481, respectively; P<0.05) (S2 Table).

Particulate carbon. POC cell quota ranged from 4.56 ±0.28 to 23.04 ±1.80 pg C cell-1 in
the strains South Africa and RCC1212, respectively (Fig 1). Amongst the calcifying strains, PIC
cell quota ranged from 0.59 ±0.64 to 12.49 ±1.54 pg C cell-1 in strains M184CCMP1A1 and
RCC1212, respectively. These two parameters were directly correlated (r = 0.727; P<0.05).
PIC cell quotas showed a direct correlation with coccosphere size and cell volume (r = 0.788
and 0.847, respectively; P<0.05). Similarly, POC cell quota was positively correlated with coc-
cosphere volume and cell volume (r = 0.691 and 0.725; P< 0.05). Production of POC ranged

Table 2. Physiological parameters measured in this study and collected from the literature.

Strain μ (d-1) Volume (μm3) Cell Quota (pg cell-1) Cell Ratios (pmol/pmol) Reference

Coccosphere Cell TPC PIC POC PON PIC:POC C:N

CCMP370* 0.93 ±0.02 - 45.23 ±2.63 15.38 ±2.12 - 11.52 ±1.02 1.74 ±0.15 - 10.29 ±0.62 This study

CCMP2758* 0.61 ±0.03 - 57.48 ±0.45 11.13 ±0.78 - 9.97 ±0.00 1.46 ±0.20 - 8.96 ±0.65 This study

B92/11 1.12 ±0.03 46.82 ±0.00 34.12 ±0.00 12.36 ±2.21 2.38 ±0.43 9.97 ±1.78 1.26 ±0.19 0.23 ±0.01 8.99 ±0.63 This study

M181CCMP88E 1.13 ±0.03 46.77 ±6.26 43.86 ±2.22 12.21 ±2.68 4.09 ±2.23 8.12 ±1.03 1.28 ±0.21 0.50 ±0.25 7.30 ±0.73 This study

AC474 0.79 ±0.02 48.81 ±6.48 43.20 ±0.00 10.27 ±1.46 4.06 ±1.99 6.20 ±0.69 0.63 ±0.22 0.65 ±0.40 12.37 ±2.69 This study

RCC1258 0.70 ±0.01 89.90 ±5.12 74.82 ±8.09 24.88 ±1.21 11.91 ±0.40 12.63 ±0.82 1.18 ±0.03 0.94 ±0.02 12.07 ±0.05 This study

M184CCMP1A1 0.78 ±0.01 46.18 ±3.58 37.78 ±0.93 7.85 ±2.16 0.59 ±0.64 7.25 ±1.54 1.16 ±0.14 0.12 ±0.05 5.48 ±0.73 This study

CCMP2090* 0.78 ±0.02 - 37.27 ±0.00 7.66 ±0.41 - 7.18 ±2.46 1.06 ±0.15 - 8.27 ±0.90 This study

CCMP1280* 0.53 ±0.01 - 85.28 ±0.00 15.64 ±1.45 - 13.94 ±2.10 1.51 ±0.14 - 10.76 ±0.84 This study

South Africa 0.79 ±0.01 50.08 ±4.93 47.30 ±0.00 7.56 ±1.52 3.00 ±1.69 4.56 ±0.28 0.74 ±0.03 0.66 ±0.40 7.22 ±0.68 This study

RCC1212 0.67 ±0.01 121.45 ±25.82 92.18 ±12.48 35.53 ±0.58 12.49 ±1.22 23.04 ±1.80 2.43 ±0.23 0.54 ±0.10 10.96 ±0.44 This study

NZEH 1.45 ±0.01 53.10 ±1.97 50.88 ±0.00 10.50 ±0.78 2.42 ±1.81 8.07 ±1.05 1.36 ±0.07 0.43 ±0.05 6.90 ±0.55 This study

AC472 0.95 ±0.01 67.34 ±4.71 52.48 ±0.00 14.11 ±3.66 2.42 ±1.89 11.69 ±1.95 1.28 ±0.17 0.20 ±0.14 10.60 ±0.39 This study

Global average 0.86 ±0.25 63.38 ±26.06 53.99 ±18.65 13.81 ±7.98 4.82 ±4.31 10.74 ±4.85 1.31 ±0.45 0.48 ±0.26 9.40 ±1.90 This study
RCC1238 1.65 ±0.02 - - - 7.99 ±0.41 10.99 ±0.82 - 0.72 ±0.09 - [27]

CCMP374 1.34 ±0.01 - - [30]

AC481 0.13 ±0.02 61.58 ±0.00 - - 9.231 12.462 - 0.74 ±0.16 - [31]

RCC1212 0.98 ±0.01 - - - 9.35 ±0.51 11.41 ±1.12 - 0.81 ±0.04 - [27]

NZEH 0.61 ±0.13 55.43 ±9.59 - - - 11.34 ±5.81 - - 7.29 ±0.41 [32]

NZEH 1.35 ±0.00 - - - 5.76 ±0.24 7.08 ±0.48 - 0.80 ±0.03 8.60 ±0.00 [30]

(*) Non-calcifying strains

doi:10.1371/journal.pone.0157697.t002
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Fig 1. Histogram of three physiological parameters. (A) Cell size; cell volume (grey area) and coccolith
layer (white area), which includes the attached coccoliths; (B) Growth rate (μ) and particulate organic and
inorganic carbon cell quota; and (C) particulate organic and inorganic carbon production, comparing the13
strains grown under identical environmental conditions. (*) Indicates non-calcifying strains. Characters at the
base of the bars indicate the morphotype corresponding to each strain. “n/a” indicates that there is not an
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from 3.62 ±0.22 pg C cell-1 d-1 in South Africa strain to 15.62 ±1.25 in RCC1212, and PIC pro-
duction ranged from 0.69 ±0.45 pg C cell-1 d-1 in M184CCMP1A1to 8.46 ±0.81 pg C cell-1 d-1

in RCC1212 (Fig 1). The average PIC:POC ratio for the calcifying strains was 0.48 ±0.26 (Fig
2). The highest values of PIC:POC were observed in RCC1258 (0.94 ±0.02) and South Africa
(0.66 ±0.40) strains (Fig 3). All the particulate carbon parameters tested for the E. huxleyi were
statistically different between strains (P<0.001), with exception of PIC/POC were P = 0.127
(S2 Table).

Particulate Nitrogen. Average PON was 1.31 ±0.45 pg N cell-1 for the 13 strains used in
this study. The range of variation was between 0.63 ±0.22 and 2.43 ±0.23 pg N cell-1. The
PON showed a direct significant correlation with POC and PIC cell quota, and cell volume
(r = 0.917; 0.559 and 0.583, respectively; P<0.05). The carbon to nitrogen ratio (C:N) ranged
between 5.48 ±0.73 to 12.37 ±2.69, observed in NZEH and AC474, respectively. Average C:N
for all the E. huxleyi strains was 9.40 ±1.90 pmol:pmol (Fig 3). The C:N ratio was inversely cor-
related with growth rate (r = -0.451; P<0.05). Both, PON and C:N were statistically different
between strains (P<0.001).

Biogeochemical variation in calcite composition
Calcite Sr:Ca ratio was measured in triplicates in the 9 calcifying strains of E. huxleyi
(NZEH, RCC1212, South Africa, AC474, AC472, RCC1258, B92/11, M184CCMP1A1 and
M181CCMP88E). Average Sr:Ca was 3.28 ± 0.32 mmol:mol (Table 3) and the individual sam-
ples ranged from 2.75 ± 0.06 to 3.71 ± 0.03 mmol:mol (Fig 4). The strontium-partitioning

available morphotype classification for that strain. Values were calculated as averages of three replicates.
Error bars represent standard deviation between replicates.

doi:10.1371/journal.pone.0157697.g001

Fig 2. Particulate organic and inorganic carbon cell quota proportions for the 13 strains. Each value
includes three replicates while the error bars represent the standard deviation. The numbers next to the
symbols indicate the strain code. (*) indicates non-calcifying strains. Grey lines indicate the different
particulate inorganic to organic carbon ratios (PIC:POC).

doi:10.1371/journal.pone.0157697.g002
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coefficient (DSr) ranged from 0.350 ± 0.007 to 0.475 ± 0.004. Both, Sr:Ca and DSr were statisti-
cally different between strains (P<0.001 and P = 0.034, respectively). The average calcite Mg:
Ca was 0.39 ± 0.06 mmol:mol (Table 2). The indicators of organic phase’s contamination
(phosphorus (P):Ca and iron (Fe):Ca) [37] were below 6.5 and 41 mmol:mol, respectively.

Fig 3. Particulate carbon to particulate nitrogen ratio (C:N) cell quotas. Each value includes three
replicates (error bars represent the standard deviation). The numbers next to the symbols indicate the strain
code. (*) indicates non-calcifying strains. Continuous grey lines indicate the different C:N.

doi:10.1371/journal.pone.0157697.g003

Table 3. Magnesium (Mg) and strontium (Sr) concentrations in culture medium and in coccolithophore calcite, and the corresponding partitioning
coefficients (Drx).

Strain na Ca testb Seawater Calcite (mmol/mol) Contamination proxy (mmol/mol) Partitioning coeficient

Mg:Cac Sr:Cad Mg:Caa Sr:Cae P:Caa Fe:Caa DMg
a DSr

e

NZEH 2 19 ± 1 5.52 7.66 0.15 ± 0.01 2.86 ± 0.03 0.80 ± 0.23 8.34 ± 5.64 0.027 ± 0.003 0.374 ± 0.004

RCC1212 2 21 ± 2 5.59 7.71 0.45 ± 0.11 3.17 ± 0.06 1.28 ± 0.14 40.53 ± 6.54 0.081 ± 0.027 0.394 ± 0.007

South Africa 1 17 ± 0 5.60 7.74 0.55 ± 0.00 2.75 ± 0.06 6.10 ± 1.16 30.37 ± 4.03 0.099 ± 0.000 0.350 ± 0.007

AC474 3 23 ± 21 5.62 7.81 11.76 ± 6.25 3.71 ± 0.03 250.56 ± 164.49 723.37 ± 474.17 2.091 ± 1.298 0.475 ± 0.004

AC472 2 115 ± 18 5.63 7.87 5.46 ± 0.64 3.37 ± 0.06 114.30 ± 14.15 190.88 ± 16.13 0.970 ± 0.149 0.428 ± 0.008

RCC1258 3 130 ± 25 5.58 7.75 6.17 ± 0.30 3.26 ± 0.03 40.70 ± 11.40 221.34 ± 75.75 1.102 ± 0.061 0.421 ± 0.004

B92/11 2 16 ± 1 5.59 7.68 8.01 ± 2.01 3.29 ± 0.23 266.40 ± 60.70 755.41 ± 165.53 1.434 ± 0.475 0.428 ± 0.029

M184CCMP1A1 3 14 ± 9 5.62 7.74 13.11 ± 4.38 3.56 ± 0.40 261.15 ± 141.57 836.15 ± 430.74 2.333 ± 0.867 0.460 ± 0.051

M181CCMP88E 3 6 ± 6 5.59 7.71 17.57 ± 3.99 3.55 ± 0.54 240.69 ± 122.57 1107.04 ± 141.92 3.143 ± 0.452 0.460 ± 0.070

Average 5.59 ±0.03 7.74 ±0.07 0.39 §± 0.06 3.28 ± 0.32 - - 0.069 §± 0.037 0.421 §± 0.042

(a) number the of samples considered after removal of organic phases for Mg/Ca, P/Ca, Fe/Ca and DMg;
(b) Indicates the concentration of calcium in the sample (ppm) after removal of organic phases;
(c) mol/mol;
(d) mmol/mol;
(e) values calculated from 3 replicates;
(§) Mean value of the strains NZEH, RCC1212 and South Africa, accepted as effectively clean of organic phases.

doi:10.1371/journal.pone.0157697.t003
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Discussion

Experimental set-up considerations
Many experiments have investigated the physiological response of E. huxleyi under future
ocean acidification scenarios obtaining contrasting results (summary in [9]) but recently a
unifying concept was developed [43], showing that the shifting in optimal pCO2 observed in
different strains is also affected by culture conditions such as light and temperature [43].
Intra-species variability has been suggested as key factor for the recorded variability in physio-
logical responses [9, 27, 44]. However, the large variety of experimental set ups, environmental
conditions and different investigated strains hamper any attempt to estimate the magnitude
of this phenotypic variability. Our approach suggests that phenotypic variability of physiologi-
cal and biogeochemical traits between strains grown under identical environmental condi-
tions may reflect genotypic differences. Thus, we examined phenotypic variability amongst 13
strains representative of different ocean biogeographic provinces grown under identical cul-
ture conditions.

We acknowledge that the chosen environmental conditions do not reflect strain specific
optimal conditions neither do they represent the biogeographic conditions at the site of isola-
tion. Some of the investigated strains have been maintained in culture collections for decades.
For example, strain “South Africa” (Table 1) has been kept in culture for 30 years. In these
cases, the genetic drift and adaptation to culture conditions over time represents a potential
bias given that the phenotype of the strains investigated may no longer accurately represent the
initially isolated cells. In general, older cultures are more likely to have departed from their
“natural state” than newer isolates, especially in terms of traits that are not under selection
under culture conditions [45]. Yet, most of the strains were widely used in many research stud-
ies during the last 20 years (Table 1). Therefore, our results (S2 Table) are relevant for compari-
son of literature strain-specific responses.

Fig 4. Comparison of the strontium to calcium ratios (Sr:Ca) from the 9 calcifying strains with the Sr:Ca from a single strain cultured under
different irradiance levels.White symbols represent single values compiled from Stoll et al. [42]. Colored symbols represent mean values of three
replicates obtained from our laboratory cultures. Error bars are standard deviation of three replicates.

doi:10.1371/journal.pone.0157697.g004
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Biogeographic considerations
Despite several studies showing a genetic separation between strains originating in the north-
ern and southern hemisphere [12, 14, 13], physiological and biogeochemical parameters mea-
sured in our experiments do not separate between strains from the two hemispheres. For
instance, the two B morphotypes included in this study, strain 1212 (from southern hemi-
sphere) and 1258 (from northern hemisphere), showed similar biogeochemical properties (S2
Table). The morphometric analysis performed here suggests that A type strains have typically
small volumes and that B type strains possess the largest cell volumes (Fig 1). However, the
small number of strains used in this study might prevent us from drawing conclusive results in
relation to the biogeographic origin of the strains.

Latitudinal origin of isolation was not reflected in the variation of physiological parameters
or morphotype identities. Thus, at ~19°C we would expect to find strains from mid-latitudes
growing at optimum conditions, while the same temperature for strains isolated at high lati-
tudes might be the upper or lower threshold for growth depending on the average annual tem-
perature at the site of isolation [46, 47]. However, other physico-chemical parameters such as
light regimes and seawater CO2 concentrations could shift the maximum peaks of the physio-
logical and biogeochemical properties under the same temperature [25, 43, 48]. Our results
are in line with those obtained by Reid et al. [49], where functional diversity based on enzyme
activity assays of 52 strains of E. huxleyi showed no significant effects of strains grouped
according to biogeographic origin.

Strain-specific significance in biogeochemical cycling of elements
Amechanistic relationship between particulate organic and inorganic carbon, and growth
rates was suggested by Buitenhuis et al. [50]. However, we only find a moderate inverse correla-
tion between growth rate and cell volume (r = -0.479; P = 0.002), POC production (r = -0.59;
P<0.001) and C:N (r = -0.441; P = 0.005). Our results suggest that strains with higher cell vol-
ume entail lower growth rate and higher carbon production (r>0.73; P<0.001) (S2 Table).
Therefore, the PIC and POC production are strongly determined by cell volume, and hence
PIC and POC cell quota. The variation of PIC and POC production, and the PIC:POC ratios
are in agreement with values previously reported in the literature [27, 32].

It is surprising that the range of strain-specific phenotypic variability for the different
parameters determined here is much higher than the maximum variation registered in previ-
ous studies for a single strain growing under increasing concentrations of seawater CO2 [27].
For instance, the maximum variation of growth rate, POC and PIC cell quota, within a range of
about 900 μatm of CO2, determined by Langer et al. [27], corresponds to only 49, 25, and 23%,
respectively, of the variation determined in the present study for 9 strains under identical envi-
ronmental conditions. This suggests that the inter-strain genetic variability has greater poten-
tial to induce larger phenotypic differences than the phenotypic plasticity of a single strain
cultured under a broad range of variable environmental conditions. In the ocean, the shifts in
PIC:POC ratios in a population are likely to be more strongly controlled by the changes in pop-
ulation composition (dominating strains) than the plasticity of PIC:POC of a given strain as
suggested by the results obtained by Beaufort et al. [51]. Thus, the combination of strain-spe-
cific values of organic and inorganic carbon cell quotas, and growth rates represent the strain-
specific biogeochemical signature with potential to specifically contribute to the biological car-
bon pump when it dominates large blooms (Fig 1).

The range of C:N variability determined in this study (between 5.48 and 12.37) covers the
systematic variation between phytoplankton groups reported in Quigg et al. [52]. Interestingly,
the direct correlation between C:N ratios and cell volume (r = 0.47, P<0.005), along with the
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inverse correlation with growth rate (r = -0.44, P = 0.005), reveals hints on the implication of
cell size on biogeochemical cycling of elements [53]. Thus, the nitrogen remineralization rate
in the water column could be largely affected by cell volume, which is strain-specific. The
strain-specific stoichiometric variations have implications on the export of carbon and other
elements (N, P, etc.) to the deep ocean.

Coccolithophores are commonly integrated in biogeochemical models because they domi-
nate pelagic PIC production and export. Models largely rely on the limited experimental data-
sets available for PIC production. Extrapolations from experimental work on single strains
might lead to over/underestimated results when not taking into account the genetic diversity
and ecophysiological plasticity within the species [43, 48]. For instance, if we compare the
range variation of PIC:POC ratios recorded in our study (between 0.12±0.05 and 0.94±0.02)
with the parameterization used by Gehlen et al. [54] this issue becomes evident. The range of
PIC:POC variation registered in our study with saturation state with respect to calcite (OCalcite)
= 3.75±0.25 was 1.2-fold larger than that recorded for a single strain of E. huxleyi (0.3–1.0 [55])
within range from 2 to 10 OCalcite, and for a mesocosm bloom dominated by the same species
(0.3–0.9 [56]). Therefore, finding a way to include E. huxleyi's functional diversity in biogeo-
chemical models is essential to improve our understanding about the role of this species on
global biogeochemical cycling of elements and the effect of climate change-driven selection on
the populations. However, the lack of systematic biogeographic information on physiological
parameters complicates the integration into models.

Strain-specific elemental chemistry
The calcite Sr:Ca ratio for each strain was well within the range of reported values from other
culture experiments [42, 57]. No correlation was found between calcite Sr:Ca ratios, growth
rates, cell and coccosphere volume, and calcification rates (P> 0.05). However, it should be
noted that six strains (excluding the three outermost calcite Sr:Ca of strains AC474, SA and
NZEH) follow a positive trend of increasing calcite Sr:Ca along with increasing growth rate, as
previously described by Stoll et al. [58]. The range of variation of calcite Sr:Ca for the 9 calcify-
ing strains used for elemental analyses (from 2.75 to 3.57 mmol:mol) was 3 times higher than
the Sr:Ca range (2.78 to 3.05 mmol:mol) detected in a single strain of E. huxleyi (CCMP374)
cultured at different light levels [42] (Fig 4). The strains displaying the smallest and largest
ratios (SA and AC474, respectively) were not isolated at high latitudes, therefore, we can dis-
card the effect of adaptation to a baseline temperature lower than the 19.3°C used in this study.
Since all the strains were cultured under nutrient replete conditions, and harvested during the
exponential growth phase, physiological control is assumed to be similar for all strains. Differ-
ences in the calcite Sr:Ca ratio may be due to inherent genomic properties controlling seawater
Sr transport mechanisms, both, at the level of extracellular membrane and the coccolith vesicle,
where calcification takes place [59]. Thus the incorporation of Sr into the calcite lattice of E.
huxleyi is strain-specific.

The wide calcite Mg:Ca ratio variation was influenced by incomplete removal of organic
matter that can bias intra-species comparisons (Table 2) when calcite content is low in relation
to POC, i.e., in low calcifying strains [37]. Given that the organic phases of phytoplankton con-
tain an order of magnitude more Mg (~560 mmol:mol of P) than, for example, Sr (~54 mmol:
mol of P) [60], removal of organic phases is critical in determining Mg in E. huxleyi [43] owing
to the small size of the samples and the low calcite content (~40 ppm Ca; see Table 2). In our
study, only the highest calcifying strains displayed relatively low organic matter content as
indicated by the P:Ca and Fe:Ca ratios, which were used as indicators of organic contamination
in the calcite samples [37] (Table 2). After the cleaning pre-treatment only 5 samples from 3
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strains (SA, 1212 and NZEH) satisfied the requirements established to consider the measure-
ment of calcite Mg:Ca ratio as acceptable: (1) Fe:Ca ratio< 50 mmol:mol, and (2) P:Ca< 6
mmol:mol [37]. We conclude that Mg/Ca ratios cannot be used with confidence for E. huxleyi
due to the difficulties to remove organic phases from the samples. We suggest that E. huxleyi is
not a good candidate for measuring calcite Mg:Ca, and thus should not be used to reconstruct
any property using the geological record. However, in larger species such as Gephyrocapsa
oceanica, Coccolithus pelagicus, or Calcidiscus leptoporus the Mg organic phases are easier to
clean, and thus calcite Mg:Ca measurements are more reliable for applications in paleo-recon-
structions [25, 37].

We show a relationship between intra-species diversity and variability in coccolith geo-
chemistry, which is an important factor in proxy calibration of primary productivity (Sr:Ca) [8,
24, 25]. In addition, organic biomarker proxies (alkenone-derived carbon isotopes fraction-
ation) to determine ancient pCO2 scenarios [61] are affected by strain-specific variability on
cell volumes and POC quotas [62]. In order to obtain an accurate calibration of productivity,
temperature, and pCO2, strain biogeochemical identity within the species concept of E. huxleyi
needs to be considered. Therefore, inter-strain variability will have to be incorporated into the
palaeopoxy calibration and its error margins.

Inter-strain complexity driven by strain functional diversity has the potential to mask varia-
tions in elemental composition associated to interactions with environmental conditions due
to strain-specific acclimation patterns and element discrimination capacity [63]. This complex-
ity might limit the direct use of elemental ratios as paleoproxies. However, changes on calcite
Sr:Ca could be used to detect and characterize climate driven changes in dominant strains,
which could shed light on determining what and how climatic events drive changes in cocco-
lithophore community composition and evolution [53].

Implications for climate change and ocean acidification research
The impact of climate change on coccolithophores predicted for the next 100 years as a result
of anthropogenic activity will ultimately depend on their capability to adapt. The frequency of
environmental changes will determine adaptation; i.e., new beneficial mutations, horizontal
gene transfer, or recombination [64, 65]. The genetic variability and different metabolic reper-
toires of E. huxleyi have the potential to make this species particularly resilient in novel envi-
ronments [11]. Additionally, the phenotypic variability of E. huxleyi showed in this study
constitutes an enormous advantage to mitigate the effects of rapid climate change, since physi-
ological functioning of phytoplankton is expected to be phenotypically buffered against such
environmental heterogeneity [66]. Thus, high diversity of environmentally induced responses
[27, 67] has the potential to lead to different evolutionary outcomes [68]. As a counterpoint,
the complexity in intra-species resilience, adaptation and competition of E. huxleyimight com-
plicate the application of paleoproxies to reconstruct ancient climate scenarios, predictions
of the ocean carbon pump strength and efficiency, the biogeochemical cycles and ecological
impacts in future climate scenarios.

Conclusion
Phytoplankton intra-species genetic variability is well studied [69, 70]. Yet, this study provides
additional evidence of intra-species physiological variability of the coccolithophore species
E. huxleyi, revealing strain-specific elemental signatures and growth rates. Thus, it can be
expected that blooms dominated by a certain strain have different signatures in the biological
pump and the elements they export. Most of the strains included in this study have previously
been used in laboratory experiments investigating the response of coccolithophores to
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projected global change (increase in seawater CO2, temperature, nutrients) showing variable
responses [9]. Our results provide a frame of comparison for the phenotypes that have been
used in many laboratory and model studies. In addition, the great variability reflected in the
calcite elemental composition and the physiological parameters highlight the need to take in
account the intra-species for the calibration of paleo-proxies.
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