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Abstract: Remaining useful life (RUL) estimation is considered as one of the most central points in
the prognostics and health management (PHM). The present paper describes a nonlinear hybrid
ABC-MARS-based model for the prediction of the remaining useful life of aircraft engines. Indeed,
it is well-known that an accurate RUL estimation allows failure prevention in a more controllable
way so that the effective maintenance can be carried out in appropriate time to correct impending
faults. The proposed hybrid model combines multivariate adaptive regression splines (MARS),
which have been successfully adopted for regression problems, with the artificial bee colony (ABC)
technique. This optimization technique involves parameter setting in the MARS training procedure,
which significantly influences the regression accuracy. However, its use in reliability applications has
not yet been widely explored. Bearing this in mind, remaining useful life values have been predicted
here by using the hybrid ABC-MARS-based model from the remaining measured parameters
(input variables) for aircraft engines with success. A correlation coefficient equal to 0.92 was obtained
when this hybrid ABC-MARS-based model was applied to experimental data. The agreement of
this model with experimental data confirmed its good performance. The main advantage of this
predictive model is that it does not require information about the previous operation states of the
aircraft engine.

Keywords: multivariate adaptive regression splines (MARS); artificial bee colony (ABC);
aircraft engine; remaining useful life (RUL); prognostics; reliability

1. Introduction

An aircraft engine is the component of the propulsion system for an aircraft that generates
mechanical power. Aircraft engines are almost always either lightweight piston engines or gas
turbines [1,2]. A gas turbine, also called a combustion turbine, is a type of internal combustion engine.
It has an upstream rotating compressor coupled to a downstream turbine, and a combustion chamber
in between. The basic operation of the gas turbine is similar to that of the steam power plant except
that air is used instead of water. Fresh atmospheric air flows through a compressor that brings it to
higher pressure. Energy is then added by spraying fuel into the air and igniting it so the combustion
generates a high-temperature flow. This high-temperature high-pressure gas enters a turbine, where it
expands down to the exhaust pressure, producing a shaft work output in the process. The turbine
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shaft work is used to drive the compressor and other devices such as an electric generator that may
be coupled to the shaft [3,4]. The energy that is not used for shaft work comes out in the exhaust
gases, so these have either a high temperature or a high velocity. The purpose of the gas turbine
determines the design so that the most desirable energy form is maximized. Gas turbines are used to
aircraft engines, trains, ships, electrical generators, and even tanks [3-6]. Indeed, the engine diagram
in Figure 1 shows the main elements of the engine model. Additionally, Figure 2 shows the flowchart
corresponding to the simulation with its modules.

Combustor

Nozzle

Figure 1. Simplified diagram of the engine simulated (LPC: low pressure compressor; HPC: high
pressure compressor; N1: turbine shaft; N2: turbine axis; LPT: low pressure turbine; and HPT: high
pressure turbine).
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Figure 2. Layout showing various modules and their connections as modeled in the simulation.
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A particularly important concept is the prognostics of the aircraft turbine engine components.
Indeed, prognostics is defined as an engineering discipline focused on predicting the time at
which a system or a component will no longer perform its intended function. This lack of
performance is most often a failure beyond which the system can no longer be used to meet desired
performance [7]. Prognostics is a very important aspect of an equipment health management system.
A reliable prognostic system provides some benefits in terms of the financial cost saving and safety.
The prerequisite of the benefit from the prognostics is the correct detection of fault by an efficient
diagnostic system because diagnostic decision triggers the prognostic system [8]. The predicted
time then becomes the remaining useful life (RUL) [9-13], which is an important concept in decision
making for contingency mitigation. Therefore, prognostics is explicitly defined as the estimation of the
remaining useful life (RUL) of any equipment. The science of prognostics is based on the analysis of
failure modes, detection of early signs of wear and aging, and fault conditions.

It is to be noted that the safe and reliable operation of engineering systems such as aircraft engines
is of great significance for modern energy plants, production quality, preservation of human health and
life, etc. [14,15]. In this way, reliability is theoretically defined as the probability of failure, the frequency
of failures, or in terms of availability, a probability derived from reliability and maintainability.
Specifically, the concept of remaining useful life (RUL) is defined here as the number of remaining
time units that the equipment has before it reaches the limit for a safe operation [7-16].

Taking into account that the RUL of any device can be considered as a random variable [17], since
it depends on some variables that are properties of each equipment such as its age, the operation
environment and the operation conditions, a statistical approach of this operation variable would be
a convenient method. Previous studies have tried to predict the RUL based on time series [18,19].
However, nowadays it is more useful to use models based on the monitoring of the operation variables
values during the operation of the equipment [20,21]. Therefore, the present study uses this approach.

The objective of this study is to evaluate the application of the multivariate adaptive regression
splines (MARS) approach in combination with the Artificial Bee Colony (ABC) technique for the
calculation of a predictive model of the RUL for aircraft engines. The MARS technique is based
on the statistical learning theory and is a new class of models that can be used to predict values
in very different areas [22-26]. This study uses multivariate adaptive regression splines (MARS),
a nonlinear and non-parametric regression methodology, to build a RUL forecasting model from
experimental turbines data. It is a nonparametric regression technique and can be seen as an extension
of linear models that automatically model nonlinearities and complex interactions between variables.
The statistical learning theory is the theoretical foundation for the learning algorithm of the MARS
technique [22-27]. Some motivations behind the application of the proposed method with respect
to other already existing techniques are as follows: (1) MARS models are more flexible than linear
regression models; (2) MARS models are simple to understand and interpret; (3) MARS can handle
both continuous and categorical data; (4) MARS models tend to have a good bias-variance trade-off;
and (5) MARS models give us an explicit mathematical formula of the dependent variable as a
function of the independent variables through an expansion of basis functions (hinge functions and
products of two or more hinge functions). This last feature is a fundamental difference compared
to other alternative methods because most of them behave like a black box. In order to carry out
the optimization mechanism corresponding to the optimal hyperparameters setting in the MARS
training, the artificial bee colony (ABC) technique was used here with success. The artificial bee
colony (ABC) technique is an optimization algorithm based on the intelligent foraging behavior
of honeybee swarms [28]. Similar to other evolutionary computation algorithms such as particle
swarm optimization (PSO) [29-31] or ant colony optimization [32], ABC exploits the model of social
sharing of information [28,33,34]. For the above-mentioned purpose, a hybrid ABC optimized MARS
(ABC-MARS) model was used as an automated learning tool, training it in order to predict remaining
useful life (RUL) from other turbine’s operation parameters. According to previous research, the MARS
technique has been proven to be an effective tool to predict natural parameters, being successfully used
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in a wide range of environmental fields: medical applications [35,36], forest modeling [37], prediction
of the air quality [38], water quality studies [39,40], solution of geotechnical problems, particularly
those that lack a precise analytical theory or understanding of the phenomena involved [41], and so on.

In summary, the present study is structured as follows: firstly, the materials, methods and dataset
used are explained; secondly, the results of the new hybrid ABC-MARS-based model trained are
presented and discussed; and finally, the main conclusions of this research work are drawn. Therefore,
the aim of this research work was to obtain a predictive model for the RUL as well as the contribution
degree of each input operation parameter.

2. Materials and Methods

2.1. Experimental Dataset

The present study uses a dataset corresponding to an aircraft engine of 90,000 lbs. thrust class.
Indeed, this dataset includes working conditions with heights from sea conditions to 40,000 feet and
temperatures from —51 °C to 39 °C. Specifically, the above dataset was obtained through a software
application known as MAPSS (Modular Aero-Propulsion System Simulation) [42]. This is a simulation
environment for aeronautical turbines that allows access to a range of monitoring parameters
controlling the operating state of the system through a graphical user interface. This provides the user
with a simulation environment that is able to develop advanced algorithms for control and diagnosis
that can be tested on a generic aircraft engine simulator. Additionally, MAPSS is able to generate linear
state space models from which the user can create linear controls. Furthermore, MAPSS is also able to
perform simulations of transient states. These capabilities allow the user to verify the performance of
the control algorithms and its validation in a generic engine model [42]. The MAPSS program has two
well-known versions for both civil and military applications. As a final note, the military version is
able to perform realistic simulations within the FADEC (Full Authority Digital Engine Controllers) [43]
standard and it will be used for the present research.

The database of the study consists of data for a total of 100 turbines, with a number of observations
that ranges from 128 to 362 for each one, being the dependent variable in the RUL. The total number
of observations for all of the turbines amounts to 20,631 observations. The database contains input
parameters that simulate the effects of faults and deterioration in any of the rotating components of the
engine (fan, LPC, HPC, HPT, and LPT). Data belong to a fleet of similar aircrafts with the same engines.
It is important to emphasize that each engine starts with a different health status but at the beginning
all are inside the operational range and the dataset convers since that moment to the engine failure.

Note that each record of the engine state is formed by a set of 24 variables, three of them are
operational settings and the other 21 represent values for engine performance measurements, which are
contaminated with noise. A complete list of variables is presented in Table 1. The operability margins,
such as stall and temperature margins, define the safe operation region for the engine [44]. Six different
flight conditions are contained in the database, with altitudes from 0 to 42,000 feet, speeds from 0 to
0.84 Mach and throttle resolver angle from 20° to 100°. For further information about how the engine
run-to-failure simulation is performed, the readers can consult the reference [42].

After a first exploratory analysis, it was found that the measurements of the variables Total
temperature at fan inlet, Pressure at fan inlet, Engine pressure ratio, Burner fuel-air ratio, Demanded fan
speed and Demanded corrected fan speed are constant and that variable Total pressure in bypass-duct
oscillates between 21.6 and 21.61 psia. Therefore, these variables will not be used in the calculations.
Additionally, the absolute value of the correlation coefficients between each pair of variables is
graphically represented by the correlation matrix [25,26] in Figure 3. Two additional variables, Physical
core speed (C_sp) and Corrected core speed (C_csp), were discarded due to their low correlation with
the independent variable RUL. Indeed, only the remaining twelve variables are used as independent
variables in the modeling of the dependent variable RUL and its simulation. As an example, Figure 4
shows the 189 observations of the independent and dependent variables for the turbine 4.
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Table 1. MAPSS input variables of the simulated engine to simulate the remaining useful life (RUL)
with their mean and standard deviation.

Input Variables Symbol Mean Standard Deviation
Total temperature at fan inlet (°R) T f 5.19 x 102 6.54 x 10~ 11
Total temperature at LPC outlet (°R) T_LPC 6.43 x 102 5.00 x 107!
Total temperature at HPC outlet (°R) T_HPC 1.59 x 10° 6.13
Total temperature at LPT outlet (°R) T_LPT 1.41 x 103 9.00
Pressure at fan inlet (psia) P_f 1.46 x 10! 3.39 x 10712
Total pressure in bypass-duct (psia) TP_by 2.16 x 10 1.39 x 1073
Total pressure at HPC outlet (psia) TP_HPC 5.53 x 102 8.85 x 101
Physical fan speed (rpm) F_sp 2.39 x 10° 7.10 x 1072
Physical core speed (rpm) C_sp 9.07 x 10° 2.21 x 10!
Engine pressure ratio E_pr 1.30 4.66 x 10713
Static pressure at HPC outlet (psia) SP_HPC 4.75 x 101 2.67 x 1071
Ratio of fuel flow to Ps30 (pps/psi) R_ff 5.21 x 102 7.38 x 1071
Corrected fan speed (rpm) C_fsp 2.39 x 103 7.19 x 102
Corrected core speed (rpm) C_csp 8.14 x 10° 1.91 x 10!
Bypass ratio By_r 8.44 3.75 x 1072
Burner fuel-air ratio B_far 3.00 x 102 1.56 x 1014
Bleed enthalpy B_e 3.93 x 102 1.55
Demanded fan speed (rpm) D_fsp 2.39 x 103 0.00
Demanded corrected fan speed (rpm) D_cfsp 1.00 x 10? 0.00
HPT coolant bleed (Ibm/s) HPT_cb 3.88 x 10! 1.81 x 1071
LPT coolant bleed (Ibm/s) LPT_cb 2.33 x 101 1.08 x 10~1
1
TLPC
THPC 0.9
TLPT
TP HPC 08
Fsp ro10.7
Csp
SP HPC - 106
Rff b o5
Cftsp
Ccsp 04
By r 03
Be
HPT cb 02
LPT cb
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Figure 3. Correlation matrix of this problem with the two discarded independent variables: Physical
core speed (C_sp) and Corrected core speed (C_csp).
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Figure 4. Independent variables vs. dependent variable (RUL) for turbine 4. This turbine contains
189 observations for each variable (red line represents the fitted third degree polynomial or cubic

polynomial).

400

The RUL prognosis is a complex and highly nonlinear problem. Figure 4 shows that RUL is a
multivariate function of the operating parameters of the turbofan engines. In general, there are two
major approaches to prognostics: physics-based and data-driven models. In the first case one needs
to build an accurate physical model of system behavior either in normal state or in faulty conditions.
Comparing the data captured from the sensors to the model predictions, one can obtain the health
indicator of the system. In the second case, there is no physical model but the data with relevant
events are available. On the one hand, physics-based models require the presence of a mathematical
representation of the physics of failure degradation and the parameters used in degradation modeling.
On the other hand, data-driven models require statistically sufficient run-to-failure samples, due to the
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fact that RUL of turbofan engine can be considered as a random variable [17], since it depends on the
properties of the equipment such as its age, the operation environment and the operation conditions.

The dataset that has been analyzed is adequate for data-driven approach since sufficient data and
RUL values are available with dataset. The ABC-MARS-based model is suitable for this case in order
to achieve an effective approach to nonlinearities present in this regression problem. Additionally, it is
not appropriate for physics-based modeling since the health index parameters are not given, and no
physics-based model found for whole engine system degradation. Accordingly, the database referred
previously will be used for the training and validation of the hybrid model proposed in this paper
using a random 90% of the information for training and the remaining 10% for validation.

2.2. Multivariate Adaptive Regression Splines (MARS)

Multivariate adaptive regression splines (MARS) is a multivariate nonparametric
classification/regression technique [22-24]. Its main purpose is to predict the values of a
continuous dependent variable, y (n x 1), from a set of independent explanatory variables, X (n x p).
The MARS model can be represented as:

y=f(X)+e )

where f is a weighted sum of basis functions that depend on X and e is an error vector of
dimension (n x 1).

MARS model does not require any a priori assumptions about the underlying functional
relationship between dependent and independent variables. Instead, this relation is uncovered from a
set of coefficients and piecewise polynomials of degree g (basis functions) that are entirely “driven”
from the regression data (X, y). The MARS regression model is constructed by fitting basis functions to
distinct intervals of the independent variables. Generally, piecewise polynomials, also called splines,
have pieces smoothly connected together. In MARS terminology, the joining points of the polynomials
are called knots, nodes or breakdown points. These will be denoted by the small letter t. For a spline
of degree g each segment is a polynomial function. MARS uses two-sided truncated power functions
as spline basis functions, described by the following equations [22-24,27,35-40]:

I N (e )T if x <t

=0k = { 0 otherwise @)
=0T if x>t

[+ t)]+ B { 0 otherwise ©)

where g (> 0) is the power to which the splines are raised and which determines the degree of

smoothness of the resultant function estimate. When q = 1, which is the case in this study, only simple

linear splines are considered. A pair of splines for g4 = 1 at the knot ¢t = 3.5 is presented in Figure 5.
The MARS model of a dependent variable y with M basis functions (terms) can be written

as [22-24,27,35-40]:
M

§=fm(x) =co+ D cmBu (%) (4)
m=1
where ¥ is the dependent variable predicted by the MARS model, ¢ is a constant, By, (x) is the m-th
basis function, which may be a single spline basis functions, and ¢, is the coefficient of the m-th
basis functions.
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Figure 5. A graphical representation of a spline basis function. The left spline (x < t, — (x —t)) is
shown as a dashed line; and the right spline (x > ¢, + (x — t)) as a solid line.

Both the variables to be introduced into the model and the knot positions for each individual
variable have to be optimized. For a dataset X containing 7 objects and p explanatory variables,
there are N = n x p pairs of spline basis functions, given by Equations (2) and (3), with knot locations
xij(i =1,2,...,n,j=1,2,...,p).

A two-step procedure is followed to construct the final model. First, in order to select the
consecutive pairs of basis functions of the model, a two-at-a-time forward stepwise procedure is
implemented [22-24,27,35-40]. This forward stepwise selection of basis function leads to a very
complex and overfitted model. Such a model, although it fits the data well, has poor predictive abilities
for new objects. To improve the prediction, the redundant basis functions are removed one at a time
using a backward stepwise procedure. To determine which basis functions should be included in
the model, MARS utilizes the generalized cross-validation (GCV) [27,35-40]. In this way, the GCV is
the mean squared residual error divided by a penalty dependent on the model complexity. The GCV
criterion is defined in the following way [22-24,27,35-40]:

(]/z‘ — fm (Xi)>2
—C(M) /n)?

1
n .

GCV (M) = -

©)

= |Lbg=

where C (M) is a complexity penalty that increases with the number of basis functions in the model
and is defined as [22-24,27,35-40]:

CM)=M+1)+dM (6)

where M is the number of basis functions in Equation (4), and the parameter d is a penalty for each
basis function included into the model. It can be also regarded as a smoothing parameter. Large values
of d lead to fewer basis functions and therefore smoother function estimates.

Once the MARS model is constructed, it is possible to evaluate the importance of the explanatory
variables used to construct the basis functions. Establishing predictor importance is in general a
complex problem, which in general requires the use of more than one criterion. In order to obtain
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reliable results, it is convenient the use of the GCV parameter explained before together with the
parameters Nsubsets (criterion counts the number of model subsets in which each variable is included)
and the residual sum of squares RSS [22-24,27,35-40].

2.3. The Artificial Bee Colony (ABC) Algorithm

The algorithm Artificial Bee Colony (ABC) is an evolutionary optimization algorithm inspired in
the behavior of bees foraging food sources [28,33,34]. Indeed, in the ABC technique, the colony consists
of three groups of bees: employed bees, onlookers and scouts. The N food sources are the possible
set of solutions and are represented by the vectors p;. It represents its position in the search space
of possible solutions. The food source dimension is the number of parameters of the optimization
problem. The algorithm initializes the food sources or possible solutions of the problem randomly
in a plausible hypercube and the fitness of each food source is evaluated. The relation between the
objective function F and the fitness of a food source is given by (see Figure 6):

—~  if F(p;)>0
Fitness (F (p;)) = { THEe) (P i=1,...,N @)
1+|F(pi)| if F(pi) <0

Fitness

-1 0o 1 2 3 4 5 6 7 8 9 10
Obijective function value F(x)

Figure 6. Relation between the fitness of a food source and objective function.

The lower the objective function value, the higher the fitness. As the algorithm searches for the
highest fitness of a food source, it minimizes. The ABC technique has three phases [28,33,34]:

e  The Employee Bee Phase

In the first phase, the employee bees forage the food sources and tries to introduce a variation of
every i food source according with the equation [28,33,34]:

vij = pij + Rjj (ij - Pz’j) ®)

where j is the randomly chosen parameter we are modifying, k a randomly chosen food source different
from i and R;; a number chosen randomly in [-1,1]. Once v;; is calculated, its fitness is obtained. If
this is higher than fitness (F (pj;)), its value is changed to v;j and the trial counter set to one. If not,
the value of the food source does not change and the trial counter is increased.

e  The Onlooker Bee Phase
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For each food source p;, we draw a number r; in [0, 1]. If r; < prob;, we try again to change one
parameter in the food source. The quantity prob; is obtained from the fitness of this food source as
follows [28,33,34]:

0.9 Fitness(F (p;))

X (Fitness (F (pk))>

prob; = +0.1 9)

e  The Scout Bee Phase

If, after a determined number of trials, a food source is not improved, it is discarded and a new
one is randomly chosen from the initial searching space. The food source with the highest fitness is
the temporal optimum in this iteration [28,33,34]. This cycle is continued until a stop condition is met.
In the present case, the stop condition has been a maximum number of iterations and the repetition of
the optimum for a determined number of iterations. If this occurs, it is assumed that the algorithm has
already converged.

2.4. Algorithm Goodness-of-Fit Measurement

To estimate remaining useful life from other parameters measured in the aircraft engines,
it is important to select the model that best fits the experimental data. The criterion considered in this
research to measure the goodness-of-fit was the coefficient of determination R? [45-47]. This ratio
indicates the proportion of total variation in the dependent variable explained by the model (inside-bark
volume in our case). A dataset takes values t;, each of which has an associated modeled value y;.
The former are called the observed values and the latter are often referred to as the predicted values.
Variability in the dataset is measured through different sums of squares [45—47]:

n
o SSwr= (ti— f)zz The total sum of squares, proportional to the sample variance.
i=1
n
o  SSne=> (vi— f)z: The regression sum of squares, also called the explained sum of squares.
i=1
n
o SSyr=> (t— yi)z: The residual sum of squares.

1

In the previous sums,  is the mean of the n observed data:

Zn] ti (10)
i-1

Bearing in mind the above sums, the general definition of the coefficient of determination is:

=

S| =

_ SSEV}'

RP=1-2"27
SSiot

(11)

A coefficient of determination value of 1.0 indicates that the regression curve fits the data perfectly.

3. Analysis of Results and Discussion

The total number of predicting variables used to build the hybrid ABC-MARS model was 12.
The output predicted variable was the remaining useful life.

Furthermore, it is well known that the MARS technique is strongly dependent on the following
hyperparameters [22-24,27,35-40]:

e  Maximum number of basis functions (Maxfuncs): Maximum number of model terms before
pruning, i.e., the maximum number of terms created by the forward pass.

e  Penalty parameter (d): The Generalized Cross Validation (GCV) penalty per knot. A value of
0 penalizes only terms, not knots. The value —1 means no penalty.
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e Interactions: Maximum degree of interaction between variables.

Some methods often used to determine suitable hyperparameters are [22-24,27,35-40]: grid
search, random search, Nelder-Mead search, heuristic search, genetic algorithms, pattern search, etc.
In this research work, the Artificial Bee Colony (ABC) technique was applied [28,33,34].

Therefore, a hybrid ABC-MARS-based model was applied to predict the RUL (output variable)
from the other twelve remaining variables (input variables) studying their influence in order to
optimize its calculation through the analysis of the determination coefficient R? with success. Figure 7
shows the flowchart of this hybrid ABC-MARS-based model developed in this research work.

Initialize randomly
MaxFunc, Penalty, Interactions
\ 7

f MaxFunc, Penalty, Interactions
MARS training process
. v
4 3
MARS validating process ABC searching
. W
y
{ N

Coefficient of determination
(fitness function)

n=n+1

Termination criteria

[ Optimized parameters ]

Figure 7. Flowchart of the hybrid ABC-MARS-based model.

The determination coefficient is a statistical measure of how well a regression curve approximates
real data points. Furthermore, it is a descriptive measure ranging from zero to one, indicating how
good one term is predicted by another one. Thus, R? = 1 indicates the best approximation and R? = 0
the worst one.

Cross validation was the standard technique used here for finding the real coefficient of
determination (R?) for the turbines analyzed [48,49]. The dataset is randomly divided into ! disjoint
subsets of equal size, and each subset is used once as a validation set, whereas the other I — 1 subsets
are put together to form a training set. In the simplest case, the average accuracy of the [ validation
sets is used as an estimator for the accuracy of the method. The combination of the hyperparameters
with the best performance is chosen [37-40,45-49]. In this way, 10-fold cross-validation was used.

In order to guarantee the prediction ability of the ABC-MARS-based model, an exhaustive
cross-validation algorithm was used. The referred algorithm consists in splitting the sample into
10 parts and using 9 of them for training and the remaining one for testing. This process was performed
10 times using each of the parties of the 10 divisions for testing and calculating the average error.
Therefore, all of the possible variability of ABC-MARS-based model parameters has been evaluated
in order to get the optimum point, looking for those parameters that minimize the average error.
With these optimal hyperparameters, the error criterion was calculated from the built model using 90%
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of the sample for training and validated with the remaining 10%. In this way, we are able to simulate
as much as possible the real conditions under which the model would be built in order to later fit it to
new observation data unrelated to the construction of the model.

The dependent variable is the RUL and twelve independent variables x;‘ were used in this research
work. The variable numberisi =1,...,12and k = 1,...,100 is the turbine number. For each variable
and turbine, the independent variables have been fitted with cubic polynomials:

() =af, +aktvak > ok i=1,...,12, k=1,...,100, t=1,...,m (12)

where t is the observation number and nj is the total number of observations for turbine k.
These polynomials have been represented previously as red lines in Figure 3. The observed data
are substituted by the fitted data from here and will be called . It must be noted that the independent
variable RUL has not been changed, only the independent data.

The regression modeling has been performed with Multivariate adaptive regression splines, using
the Earth package [50] and the parameters have been optimized with the ABC technique using the
ABCoptim package [51] from the R Project. The bounds (initial ranges) of the space of solutions used in
ABC technique are shown in Table 2. The number of particles used has been 10. The stopping criterion
has been a maximum number of iterations of 100 and the repetition of the optimum for 10 of iterations.

Table 2. Initial ranges of the three hyperparameters of the ABC-MARS-based model fitted in this study.

MARS Hyperparameters Lower Limit Upper Limit
Maximum number of basis functions (MaxFuncs) 3 200
Penalty parameter (d) -1 4
Interactions 1 4

To optimize the MARS parameters, the ABC module is used. The ABC searches for the best
Maxfuncs, Penalty, and Interactions parameters by comparing the cross-validation error in every
iterations. The search space is organized in three dimensions, one for each parameter. Main fitness
factor is the coefficient of determination (R?).

Table 3 shows the optimal hyperparameters of the best-fitted ABC-MARS-based model found
with the artificial bee colony (ABC) technique.

Table 3. Optimal hyperparameters of the best-fitted MARS model found with the ABC technique.

Hyperparameter Values of Optimal Hyperparameters
Maximum number of basis functions (MaxFuncs) 164
Penalty parameter (d) 2
Interactions 4

The results of the best fitted ABC-MARS-based model computed using all of the available data
observations are shown in the supplementary appendix (see Table A1), with a list of 139 main basis
functions for fitted ABC-MARS-based model and their coefficients, respectively. Therefore, the MARS
model is a form of non-parametric regression technique and can be seen as an extension of linear
models that automatically models nonlinearities and interactions as a weighted sum of basis functions
called hinge functions [22-24,27,35-40].

Additionally, the coefficient of determination and correlation coefficient for the ABC-MARS-based
model are 0.84 and 0.92, respectively. An important goodness of fit, that is to say, a good agreement
between the model and the experimental data, can be infered from these results. Additionally, a linear
model was also constructed for reference pursposes and its goodness of fit with a 10-fold cross
validation was R? = 0.61, significatively lower than the obtained for the ABC-MARS model.
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The significance ranking for the twelve input variables predicting the RUL (output variable) in
this high nonlinear complex problem is shown in Table 4. Thus, for this hybrid MARS model the most
significant variable in RUL prediction is the Total temperature at HPC outlet, followed by Corrected
fan speed, Total temperature at LPC outlet, Total pressure at HPC outlet, Physical fan speed, Ratio of
fuel flow to Ps30, LPT coolant bleed, Total temperature at LPT outlet, Bypass ratio, HPT coolant bleed,
Bleed enthalpy and finally Static pressure at HPC outlet.

Table 4. Significance ranking for the variables involved in the best fitted ABC-MARS-based model for
the RUL prediction according to criteria Nsubsets, GCV and RSS.

Input Variable Nsubsets GCV RSS
T_HPC 122 100.0 100.0
C_fsp 122 98.2 98.2
T_LPC 120 62.5 62.8
TP_HPC 120 62.5 62.8
F_sp 120 62.5 62.8
R_ff 120 62.5 62.8
LPT_cb 120 62.5 62.8
T_LPT 117 56.6 56.9
By_r 115 52.5 52.9
HPT _cb 109 46.1 46.5
B_e 106 43.8 443
SP_HPC 100 409 41.3

This research work was able to predict the remaining useful life (RUL) for aircraft engines in
agreement with the real experimental values of remaining useful life observed with a big accurateness.
Indeed, Figure 8 shows the remaining useful life observed experimentally versus the remaining useful
life predicted by means of the hybrid model. One may observe immediately that there is a good
agreement between both values that corresponds to a high Pearson’s correlation coefficient of 0.92.

S —— predicted
b —— observed
(=)
g -
— [=]
n &
>
(1]
= [=
- B -
-
2
¥ g
o _|
w
o 4
T T T T T T
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Observation number

Figure 8. Comparison between the remaining useful life observed and predicted by the hybrid
ABC-MARS-based model for aircraft engines (r = 0.92) for the first 3200 observations.

Therefore, the use of an ABC-MARS-based model is necessary in order to achieve an effective
approach to nonlinearities present in this regression problem. Obviously, these results coincide again
with the outcome criterion of “quality of the fit” (R?) so that the MARS model with the ABC technique
has been the best fitting. The predictive ability of machine learning data-driven models, as the
model developed here, depends on the proper training. Therefore, it is necessary to have statistically



Energies 2016, 9, 409 14 of 19

representative samples of their conditions of service (run-to-failure samples) to apply these models to
predict the RUL of turbofan engines.

4. Conclusions

The proposed hybrid model accurately predicts the RUL of the turbines. Furthermore, the model
performed requires no knowledge of the previous status of the aircraft engine, as it only requires
information of the current situation of the same data. This model provides the advantage of system
robustness against possible failures in the memory registers. As a future line of research, the authors
propose the performance of models taking into account the values of the input variables at earlier time
points, in order to determine the remaining useful life of the aircraft engines. From the point of view
of the authors, these models should provide a better fit but suffer from the need to have in memory
the values at previous time points of the variables included in the model. These models would be
of interest only if they could be trained with fewer variables than the model that does not require
information of the previous state.

Based on the experimental and numerical results, the main findings of this research work can be
summarized as follows:

e Firstly, the hypothesis that RUL diagnosis can be accurately modeled using a hybrid
ABC-MARS-based model was confirmed. Indeed, a correlation coefficient equal to 0.92 was
obtained when this hybrid ABC-SVM-based model with a radial basis function (RBF) as kernel
was applied to experimental. Indeed, the predicted results for this model have been proved to be
consistent with the observed RUL (see Figure 8).

e  Secondly, this study has developed a hybrid ABC-MARS-based model in which ABC technique
was used to optimize the hyperparameters corresponding to the best MARS model for the RUL
prediction from the other measured quality variables with success, in order to lower costs in the
prediction of RUL.

e  Finally, another additional contribution of this research work was how the parameters setting
of the MARS approach in the RUL regression affects the performance. From the obtained
predicted results for the RUL, we can suggest the use of the MARS approach in combination
with ABC technique for predicting the RUL values on account of its superior generalization
capability compared to traditional regression techniques. The results verify that the ABC-MARS
regression method significantly improves the generalization capability achievable with only the
MARS-based regressor.

In summary, this innovative methodology could be applied to other sets of turbines with success.
Additionally, authors of this research work have confidence that the results obtained in this study will
be useful to promote new future research works in this direction.
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Appendix

Table A1 shows below a list of 139 main basis functions for the fitted ABC-MARS-based model
and their coefficients, respectively. Please note that /1 (x) = xif x > 0and h (x) = 0if x < 0.
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Table A1. List of basis functions of the best fitted ABC-MARS-based model for the RUL and their

coefficients c;.

B; Definition Ci
B, 1 24.0
B, h(1597.13—T_HPC) —38
Bs WT_HPC-1597.13) -3
By h(2388.1—F_sp) 3181
Bs h(2388.12—C_fsp) —3337
Bg h(C_fsp—2388.12) 118
By W(T_LPC—642.787) x h(LPT_cb—23.2394) —1850
Bg h(1597.13—T_HPC) x h(T_LPT—1406.23) —6
By h(1597.13—T_HPC) x hi(TP_HPC—554.245) -19
B11 h(1597.13—T_HPC) x h(554.245—TP_HPC) 8
B11 h(1587.11-T_HPC) xh(2388.1—F_sp) —1056
By h(T_HPC—1587.11) x h(2388.1—F_sp) 1069
B h(1597.13—T_HPC) x h(SP_HPC—47.3243) 79
Biy h(1597.13—T_HPC) x h(47.3243—SP_HPC) —66
Bis h(1597.13—T_HPC) x h(R_ff—522.297) ~118
Bia h(1597.13—T_HPC) xh(522.297—R_ff) 63
Bis h(1590.19—T_HPC) x h(2388.12—C_fsp) 1426
Bis h(T_HPC—1590.19) x h(2388.12—C_fsp) —984
By h(1597.13—T_HPC) x h(C_fsp—2388.12) —249
Big h(1597.13—T_HPC) x h(2388.12—C_fsp) —243
Bio h(1597.13—T_HPC) x h(LPT_cb—23.3384) 253
Bao h(1597.13—T_HPC) x h(23.3384—LPT_cb) 440
By h(1399.42—T_LPT) xh(2388.12—C_fsp) —158
By h(T_LPT—1399.42)x h(2388.12—C_fsp) 560
B3 h(TP_HPC—552.966) x h(F_sp—2388.1) 3728
By h(553.367—TP_HPC) x h(C_fsp—2388.12) —94
Bss h(TP_HPC—553.367) x h(C_fsp—2388.12) 194,839
Bog h(2388.1—F_sp) x h(R_ff—522.264) 4672
By h(2388.1—F_sp) x h(522.264—R_{f) —10,382
Bog h(2388.1—F_sp) x h(C_fsp—2388.04) 37,628
By h(2388.1F_sp) x h(LPT_cb—23.3955) 32,232
Bso h(642.298—T_LPC) xh(1597.13—T_HPC) xh(1406.23—T_LPT) -2
Bs; W(T_LPC—642.298) x h(1597.13—T_HPC) xh(1406.23—T_LPT) 8
Bs» h(642.787—T_LPC) xh(1597.13—T_HPC) x h(SP_HPC—47.3243) —604
Bss h(T_LPC—642.787) xh(1597.13—T_HPC) x h(SP_HPC—47.3243) ~138
By h(642.787—T_LPC) xh(B_e—393.013) x hi(LPT_cb—23.2394) 2316
Bss h(642.787—T_LPC)xh(393.013—B_e) x h(LPT_cb—23.2394) 1673
Bgg h(1587.11—T_HPC) x h(T_LPT—1398.34) x 1(2388.1—F_sp) 99
B3y h(1587.11—T_HPC) xh(1398.34—T_LPT) xh(2388.1—F_sp) —356
Bsg h(1587.11—T_HPC) x h(T_LPT—1402.38) x1(2388.1—F_sp) 905
Bso h(1597.13—T_HPC) x h(1406.23—T_LPT) x i(F_sp—2388.08) 187
Byo h(1597.13—T_HPC) xh(1406.23—T_LPT) x h(2388.08—F_sp) 129
By h(1597.13—T_HPC) x h(1406.23—T_LPT) x h(SP_HPC—47.2194) -8
By h(1597.13—T_HPC) xh(1406.23—T_LPT) xh(47.2194—SP_HPC) -9
By h(1597.13—T_HPC) x h(T_LPT—1410.83) x h(SP_HPC—47.3243) 13
By h(1597.13—T_HPC) xh(1410.83—T_LPT) x h(SP_HPC—47.3243) -5
Bys h(1597.13—T_HPC) x h(1406.23—T_LPT) x h(C_fsp—2388.05) 52
Bas h(1587.11-T_HPC) x hi(TP_HPC—554.349) x h(2388.1—F_sp) 1926
Byy h(1587.11-T_HPC) x h(554.349—TP_HPC) x h(2388.1—F_sp) —1900
Byg h(1597.13—T_HPC) x h(553.358 —TP_HPC) x h(SP_HPC—47.3243) 153
By h(1597.13—T_HPC) x h(TP_HPC—554.245) x h(B_e—391.853) -77
Bsg h(1597.13—T_HPC) x h(TP_HPC—554.245) x 1(391.853—B_e) —51
Bsi h(1597.13—T_HPC) x hi(TP_HPC—553.505) x 1(23.3384—LPT_cb) 236
Bsp h(1597.13—T_HPC) x h(554.245—TP_HPC) x h(LPT_cb—23.375) 2360
Bs3 h(1597.13—T_HPC) x h(554.245—TP_HPC) x h(23.375—LPT_cb) —399
Bsy h(1597.13—T_HPC) x h(F_sp—2388.01) x h(R_{f—522.297) 8036
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Bss h(1597.13—T_HPC) x h(2388.01—F_sp) x h(R_{f—522.297) —643
Bsg h(1597.13—T_HPC) x h(F_sp—2388.08) x h(2388.12—C_fsp) —7110
Bsy h(1597.13—T_HPC) x h(2388.08 —F_sp) x h(2388.12—C_fsp) —1875
Bsg h(T_HPC—1587.11) x h(2388.1—F_sp) x h(LPT_cb—23.3398) —17,936
Bsg h(1597.13—T_HPC) x h(F_sp—2388.06) x i(LPT_cb—23.3384) -11,761
Bgo h(1597.13—T_HPC) x h(2388.06—F_sp) x h(LPT_cb—23.3384) —11,664
Bg1 h(1597.13—T_HPC) x h(SP_HPC—47.3243) x h(R_ff—521.611) 533
Bgo h(1597.13—T_HPC) x h(SP_HPC—47.3243) x h(521.611—R_f{f) —249
Bgs h(1597.13—T_HPC) x h(522.297 —R_{f) x h(HPT_cb—38.894) —81
Bes h(1597.13—T_HPC) x h(522.297—R_{f) x h(38.894—HPT _cb) 74
Bgs h(1597.13—T_HPC) x h(R_ff—522.315) x h(LPT_cb—23.3384) 261
Beg h(1597.13—T_HPC) x h(522.315—R_{f) x h(LPT_cb—23.3384) 164
Bgy h(1597.13—T_HPC) x h(By_r—8.41459) x h(LPT_cb—23.3384) —23,851
Bes h(1597.13—T_HPC) x h(B_e—392.68) x h(LPT_cb—23.3384) 5485
Beo h(1597.13—T_HPC) x h(392.68—B_e) x h(LPT_cb—23.3384) 98
Bro h(1399.42—T_LPT) xh(SP_HPC—47.1847) x h(2388.12—C_fsp) —16,641
B7 h(1399.42—T_LPT) x h(47.1847—SP_HPC) x h(2388.12—C_fsp) 5308
By h(1399.42—T_LPT) xh(2388.12—C_fsp) x h(By_r—8.39473) 17,357
Bys h(TP_HPC—553.934) x h(2388.1—F_sp) x h(C_fsp—2388.04) —539,229
By h(2388.1—F_sp) x h(C_fsp—2388.04) x h(HPT_cb—38.8679) —1,599,185
Bys h(2388.1—F_sp) x h(C_fsp—2388.04) x h(LPT_cb—23.3088) 649,885
Byg h(642.298—T_LPC)xh(1597.13—T_HPC) x h(1406.23—T_LPT) xh(B_e—392.1) 55
By h(642.298—T_LPC)xh(1597.13—T_HPC) x h(1406.23—T_LPT)xh(392.1—B_e) 2

Brg h(T_LPC—642.298) x h(1597.13—T_HPC) x h(1406.23—T_LPT) x h(F_sp—2388.06) —960
Brg h(T_LPC—642.298) x h(1597.13—T_HPC) x h(1406.23—T_LPT) x h(2388.06—F_sp) —418
Bsgo h(T_LPC—642.298) x h(1597.13—T_HPC) x h(1406.23—T_LPT) x h(R_ff—521.725) 20

Bg1 W(T_LPC—642.298) x h(1597.13—T_HPC) x h(1406.23—T_LPT) x h(521.725—R_f{f) 165
Bgo h(T_LPC—642.298) x h(1597.13—T_HPC) x 1(1406.23—T_LPT) x h(B_e—392.604) —44
Bgs h(T_LPC—642.298) x h(1597.13—T_HPC) x h(1406.23—T_LPT) x 1(392.604—B_e) 20
Bgy h(642.787—T_LPC) xh(T_HPC—1584.11) x h(TP_HPC—554.005) x h(LPT_cb—23.2394) —210
Bgs h(642.787—T_LPC) xh(T_HPC—1584.11) x h(554.005—TP_HPC) x h(LPT_cb—23.2394) 1848
Bgg h(642.787—T_LPC) xh(1597.13—T_HPC) x h(SP_HPC—47.3243) x h(B_e—392.72) 197
Bgy h(642.787—T_LPC) xh(1597.13—T_HPC) x h(SP_HPC—47.3243) x h(392.72—B_e) —407
Bgs h(642.787—T_LPC) xh(T_HPC—1584.11) x 1(522.147—R_ff) x h(LPT_cb—23.2394) 1530
Bgg h(642.787—T_LPC) x h(T_HPC—1584.11) x h(By_r—8.4459) x h(LPT_cb—23.2394) 211,345
Bgo h(642.787—T_LPC) x h(T_HPC—1588.92) x 1(393.013—B_e) x h(LPT_cb—23.2394) —6066
Bgp h(642.787—T_LPC) xh(1588.92—T_HPC) x h(393.013—B_e) x h(LPT_cb—23.2394) —247
By h(T_LPC—642.15)xh(2388.1—F_sp) x h(C_fsp—2388.04) x hi(LPT_cb—23.3088) 23,278,307
Bos h(T_LPC—642.39) x h(2388.1—F_sp) x h(C_fsp—2388.04) x h(LPT_cb—23.3088) —21,335,093
Boy h(1597.13—T_HPC) x h(T_LPT—1401.3) x h(554.245—TP_HPC) x h(LPT_cb—23.375) 7823
Bos h(T_HPC—1587.11) xh(T_LPT—1402.61) x h(2388.1—F_sp) x h(LPT_cb—23.3398) —76,722
Bog h(1597.13—T_HPC) xh(1406.23—T_LPT) x h(SP_HPC—47.326) x h(2388.05—C_fsp) 2947
Bgy h(1597.13—T_HPC) x h(1406.23—T_LPT) x h(C_fsp—2388.05) x h(HPT_cb—38.931) 1070
Bog h(1597.13—T_HPC) x h(1406.23—T_LPT) x h(C_fsp—2388.05) x 1(38.931 —HPT_cb) 1091
Bgg h(1597.13—T_HPC) x h(T_LPT—1404.49) x h(392.68—B_e) x h(LPT_cb—23.3384) —10,156
B1oo h(T_HPC—1587.11) x h(TP_HPC —553.743) x h(2388.1—F_sp) x h(LPT_cb—23.3398) 60,136
B1o1 h(1597.13—T_HPC) x h(TP_HPC—554.245) x h(F_sp—2387.99) x h(B_e—391.853) 15,571
Bio2 h(1597.13—T_HPC) x h(TP_HPC—554.056) x h(522.297 —R_ff) x h(HPT_cb—38.894) 706
B1os h(1597.13—T_HPC) x h(554.056 —TP_HPC) x h(522.297 —R_{f) x h(HPT_cb—38.894) 1170
B1ioa h(1597.13—T_HPC) x h(553.505—TP_HPC) x h(HPT_cb—38.7938) x 1(23.3384—LPT_cb) 9516
B1os h(1597.13—T_HPC) x h(553.505—TP_HPC) x 1(38.7938 —HPT_cb) x 1(23.3384—LPT_cb) —882
B1oe h(1597.13—T_HPC) x h(F_sp—2388.13) x 1(522.297 —R_£f) x h(38.894—HPT_cb) 686
B1oy h(1597.13—T_HPC) xh(2388.13—F_sp) x 1(522.297—R_£f) x h(38.894—HPT_cb) —1888
Bios h(T_HPC—1585.11) x h(2388.1—F_sp) x h(C_fsp—2388.04) x hi(LPT_cb—23.3088) —1,906,032
B1gg h(T_HPC—1586.75) x h(2388.1—F_sp) x h(C_fsp—2388.04) x i(LPT_cb—23.3088) 3,083,141
B11o h(1597.13—T_HPC) x h(522.297—R_{f) x h(By_r—8.4177) x h(HPT_cb—38.894) 54,655
Bi11 h(1597.13—T_HPC) x h(R_ff—522.42) x h(392.68—B_e) x h(LPT_cb—23.3384) 395
Bi12 h(T_LPC—642.15)xh(2388.1—F_sp) x h(C_fsp—2388.04) x hi(LPT_cb—23.3088) 23,278,307
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Bi13 h(T_LPC—642.39) x 1(2388.1—F_sp) x h(C_fsp—2388.04) x h(LPT_cb—23.3088) —21,335,093
Bi14 h(1597.13—T_HPC) x i(T_LPT—1401.3) x h(554.245—TP_HPC) x h(LPT_cb—23.375) 7823
Bi1s h(T_HPC—1587.11) x h(T_LPT—1402.61) x h(2388.1—F_sp) x h(LPT_cb—23.3398) —76,722
Bie h(1597.13—T_HPC) x 1i(1406.23—T_LPT) x h(SP_HPC—47.326) xh(2388.05—C_fsp) 2947
B117 h(1597.13—T_HPC) xh(1406.23—T_LPT) x h(C_fsp—2388.05) x h(HPT_cb—38.931) 1070
Bi1s h(1597.13—T_HPC) xh(1406.23—T_LPT) x h(C_fsp—2388.05) x 1(38.931 —HPT _cb) 1091
Bi119 h(1597.13—T_HPC) x h(T_LPT—1404.49) x h(392.68—B_e) x h(LPT_cb—23.3384) —10156
By h(T_HPC—1587.11) x h(TP_HPC—553.743) x h(2388.1—F_sp) x h(LPT_cb—23.3398) 60,136
Bin h(1597.13—T_HPC) x h(TP_HPC—554.245) x h(F_sp—2387.99) x i(B_e—391.853) 15,571
Bi2 h(1597.13—T_HPC) x hi(TP_HPC —554.056) x h(522.297—R_f) x h(HPT_cb—38.894) 706
Bi2s h(1597.13—T_HPC) x 1i(554.056—TP_HPC) x h(522.297—R_f) x h(HPT_cb—38.894) 1170
Biog h(1597.13—T_HPC) x h(553.505—TP_HPC) x h(HPT_cb—38.7938) x h(23.3384—LPT_cb) 9516
Bios h(1597.13—T_HPC) x h(553.505—TP_HPC) x h(38.7938—HPT_cb) x h(23.3384—LPT_cb) —882
By h(1597.13—T_HPC) x h(F_sp—2388.13) x 1(522.297 —R_{f) x h(38.894—HPT_cb) 686
By h(1597.13—T_HPC) x h(2388.13—F_sp) x 1(522.297 —R_{f) x h(38.894—HPT_cb) —1888
Biog h(T_HPC—1585.11) x h(2388.1—F_sp) x h(C_fsp—2388.04) x h(LPT_cb—23.3088) —1,906,032
Biag h(T_HPC—1586.75) x 1(2388.1—F_sp) x h(C_fsp—2388.04) x h(LPT_cb—23.3088) 3,083,141
EN) h(1597.13—T_HPC) x h(522.297—R_{f) x h(By_r—8.4177) x h(HPT_cb—38.894) 54,655
Bi31 h(1597.13—T_HPC) x h(R_ff—522.42) x h(392.68—B_e) x h(LPT_cb—23.3384) 395
Bi3n h(1597.13—T_HPC) x h(522.42—R_£f) x h(392.68—B_e) x h(LPT_cb—23.3384) —712
B33 h(1597.13—T_HPC) x h(522.297 —R_£f) x h(38.894—HPT _cb) x h(LPT_cb—23.3154) 13,920
B34 h(1597.13—T_HPC) x h(522.297 —R_£f) x h(38.894—HPT _cb) x 1(23.3154—LPT_cb) 805
Biss h(TP_HPC—554.065) x 1(2388.1—F_sp) x h(C_fsp—2388.04) x i(LPT_cb—23.3088) 11,978,365
B13s h(2388.1—F_sp) x h(R_ff—521.936) x h(C_fsp—2388.04) x h(LPT_cb—23.3088) 12,019,857
Biz7 h(2388.1—F_sp) x h(C_fsp—2388.04) x h(By_r—8.42486) x h(LPT_cb—23.3088) —805,713,430
Biss h(2388.1—F_sp) x h(C_fsp—2388.04) x h(By_r—8.41503) x h(LPT_cb—23.3088) —337,807,089
B139 h(2388.1—F_sp) x h(C_fsp—2388.04) x h(By_r—8.4216) x h(LPT_cb—23.3088) 517,391,406
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