
A Family of Admissible Heuristics for A* to perform
Inference in Probabilistic Classifier Chains

Deiner Mena
Elena Montañés
José Ramón Quevedo
Juan José del Coz

Abstract Probabilistic Classifiers Chains (PCCs) have recently gained inter-
est in multi-label classification, due to their ability to optimally estimate the
joint probability of a set of labels. The main hindrance is the excessive compu-
tational cost of performing inference in the prediction stage. This pitfall has
opened the door to propose efficient inference alternatives that avoid explor-
ing all the possible solutions. The ε−approximate algorithm, beam search and
Monte Carlo sampling are appropriate techniques, but only ε−approximate
algorithm with ε = 0 theoretically guarantees reaching an optimal solution
in terms of subset 0/1 loss. This paper offers another alternative based on
heuristic search that keeps such optimality. It consists of applying the A* al-
gorithm providing an admissible heuristic able to explore fewer nodes than the
ε−approximate algorithm with ε= 0. A preliminary study has already coped
with this goal, but at the expense of the high computational time of evaluating
the heuristic and only for linear models. In this paper, we propose a family
of heuristics defined by a parameter that controls the trade-off between the

Deiner Mena
Artificial Intelligence Center, Campus de Viesques, s/n, 33204, University of Oviedo, Gijón,
Asturias, Spain
Universidad Tecnológica del Chocó, Colombia
E-mail: deiner@aic.uniovi.es/deiner.mena@utch.edu.co

Elena Montañés
Artificial Intelligence Center, Campus de Viesques, s/n, 33204, University of Oviedo, Gijón,
Asturias, Spain
E-mail: elena@aic.uniovi.es

José Ramón Quevedo
Artificial Intelligence Center, Campus de Viesques, s/n, 33204, University of Oviedo, Gijón,
Asturias, Spain
E-mail: quevedo@aic.uniovi.es

Juan José del Coz
Artificial Intelligence Center, Campus de Viesques, s/n, 33204, University of Oviedo, Gijón,
Asturias, Spain
E-mail: juanjo@aic.uniovi.es

2 Deiner Mena et al.

number of nodes explored and the cost of computing the heuristic. Besides, a
certain value of the parameter provides a method that is also suitable for the
non-linear case. The experiments reported over several benchmark datasets
show that the number of nodes explored remains quite steady for different val-
ues of the parameter, although the time considerably increases for high values.
Hence, low values of the parameter give heuristics that theoretically guarantee
exploring fewer nodes than the ε−approximate algorithm with ε=0 and show
competitive computational time. Finally, the results exhibit the good behavior
of the A* algorithm using these heuristics in complex situations such as the
presence of noise.

Keywords Multi-label classification · Probabilistic classifier chains ·
Inference · A* · Admissible heuristics

1 Introduction

Multi-label classification (MLC) is a machine learning problem in which mod-
els are sought that assign a subset of (classes) labels to each instance, unlike
conventional (single-class) classification that involves predicting only a single
class. Multi-label classification problems are ubiquitous and naturally occur,
for instance, in assigning keywords to a paper, tags to resources in a social
network, objects to images or emotional expressions to human faces.

In general, the problem of multi-label learning comes with two fundamental
challenges. The first refers to the computational complexity of the algorithms.
If the number of labels is large, then a complex approach might not be appli-
cable in practice. Therefore, the scalability of algorithms is a key issue in this
field. The second problem is related to the ’own nature’ of multi-label data. Not
only is the number of labels typically large, but each instance also belongs to
a variable-sized subset of labels simultaneously. Moreover, and perhaps even
more importantly, the labels will normally not occur independently of each
other; instead, there are statistical dependencies between them. From a learn-
ing and prediction point of view, these relationships constitute a promising
source of information, in addition to that coming from the mere description
of the instances. Thus, it is hardly surprising that research on MLC has very
much focused on the design of new methods that are able to detect—and
benefit from—interdependencies among labels.

Several approaches have been proposed in the literature to cope with MLC.
Firstly, researchers tried to adapt and extend different state-of-the-art binary
or multi-class classification algorithms [6], [11] and [25]. Secondly, they further
analyzed in depth the label dependence and attempt to design new approaches
that exploit label correlations [4]. In this regard, two kinds of label dependence
have been formally distinguished, namely, conditional dependence [3], [14], [15]
and [20] and marginal (unconditional) dependence [2]. Also, pairwise relations
[6], relations in sets of different sizes [20] and [24], or relations in the whole set
of labels [2] and[14] have also been exploited.

Admissible Heuristics for A* to perform Inference in PCC 3

Regarding conditional label dependence, the approach called Probabilis-
tic Classifier Chains (PCC) has aroused great interest among the multi-label
community, since it offers the excellent property of being able to estimate the
conditional joint distribution of the labels. However, the original PCC algo-
rithm [3] suffers from high computational cost, since it performs an exhaustive
search as inference strategy to obtain optimal solutions in terms of a given loss
function. Several efforts that use different searching and sampling strategies
in order to overcome this drawback are being made currently. This includes
uniform-cost search [5], beam search [8] and [9] and Monte Carlo sampling
[5] and [18]. All of these algorithms successfully estimate an optimal solution
reached by the original PCC [3], at the same time that they reduce the compu-
tational cost in terms of both the number of candidate solutions explored and
execution time. The main contribution of this paper is to propose an alterna-
tive based on an heuristic search strategy. In particular, the proposal consists
of obtaining admissible heuristics for the well-known A* algorithm [7]. In this
respect, we have already started to fill this gap in the literature with a recent
published preliminary work [13], concluding that the proposal guarantees, not
only optimal predictions in terms of subset 0/1 loss, but also that it explores
fewer nodes than all previous methods that also provide optimal predictions.
Unfortunately, and after studying in depth this heuristic, two main drawbacks
can be stated: i) it could only be defined for linear models and ii) its compu-
tation is moderately high. In this direction, the goal of this paper is twofold.
On the one hand, this work goes further by defining a family of heuristics
through a parameter that controls the trade-off between the number of nodes
explored and the cost of computing the heuristic. Besides, a special value of the
parameter leads to an heuristic suitable for non-linear models. On the other
hand, this work also studies and analyzes situations in which the computation
of the heuristic compensates the whole computational cost, showing a steady
behavior with regard to other algorithms. All these methods are analyzed and
experimentally compared over a wide range of multi-label datasets.

The rest of the paper is organized as follows. Section 2 formally describes
the multi-label framework and the principles of PCC. Section 3 describes
and discusses the properties and behavior of the different state-of-the-art ap-
proaches for inference in PCCs. Section 4 details the heuristic search frame-
work and defines admissible heuristics for the A* algorithm. Exhaustive ex-
periments are shown and discussed in Section 5. Finally, Section 6 offers some
conclusions and includes new directions for future work.

2 Probabilistic Classifier Chains in Multi-label Classification

This section formally describes the MLC task and the PCC methods.

4 Deiner Mena et al.

2.1 Formal Settings of Multi-label Classification and Loss Functions

Let be L = {`1, `2, . . . , `m} a finite and non-empty set of m labels and S =
{(x1,y1), . . . , (xn,yn)} a training set independently and randomly drawn ac-
cording to an unknown probability distribution P(X,Y) on X × Y, where X
and Y are the input and the output space, respectively. The former is the space
of the instance description, whereas the latter is given by the power set P(L) of
L. To ease notation, we define yi as a binary vector yi = (yi,1, yi,2, . . . , yi,m)
in which yi,j = 1 indicates the presence (relevance) and yi,j = 0 the ab-
sence (irrelevance) of `j in the labeling of xi. Hence, yi is the realization of
a corresponding random vector Y = (Y1,Y2, . . . ,Ym). Using this conven-
tion, the output space can also be defined as Y = {0, 1}m. The goal in MLC
is to induce from S a hypothesis f : X −→ Y that minimizes the risk in
terms of certain loss function L(·) when it provides a vector of relevant labels
y = f(x) = (f1(x), f2(x), . . . , fm(x)) for unlabeled query instances x. This
risk can be defined as the expected loss over the joint distribution P(X,Y),
that is,

RL(f) = EX,YL(Y,f(X)). (1)

therefore, denoted by P(y |x) the conditional distribution Y = y given X = x,
then the so-called risk minimizer f∗ can be expressed by

f∗(x) = arg min
f

∑
y∈Y

P(y |x)L(y,f(x)). (2)

Let us comment that the conditional distribution P(y |x) presents different
properties which are crucial for optimizing different loss functions. In this
respect, the strategy followed by a certain MLC algorithm for modeling label
dependence determines the loss function that is optimized. But, unfortunately,
for most of the algorithms it is quite complex and confusing to discover the
loss function they attempt to optimize.

With regard to the loss functions, several performance measures have been
taken for evaluating MLC. The most specific ones are the subset 0/1 loss and
the Hamming loss, but there exist other measures that have been taken from
other research fields, as such F1 or the Jaccard index. Here, we will focus on
just the subset 0/1 loss, since it is the measure PCCs are able to optimize. The
subset 0/1 loss checks if the predicted and relevant label subsets are equal or
not and is defined by1

LS0/1
(y,f(x)) = [[y 6= f(x)]]. (3)

In the case of this evaluation measure, it is sufficient to take the mode of
the entire joint conditional distribution for optimizing this loss. Formally, the
risk minimizer adopts the following simplified form

f∗(x) = arg max
y∈Y

P(y |x). (4)

1 For a predicate p, the expression [[p]] evaluates to 1 if p is true and 0 otherwise.

Admissible Heuristics for A* to perform Inference in PCC 5

2.2 Probabilistic Classifier Chains

PCCs [3] (such as CC [19] and [20]) are based on learning a chain of classifiers.
These methods take an order of the label set and train a probabilistic binary
classifier for estimating P(yj |x, y1, . . . , yj−1) for each label `j following this
order. Hence, the probabilistic model obtained for predicting label `j , denoted
by fj is of the form

fj : X × {0, 1}j−1 −→ [0, 1]. (5)

The training data for this classifier is the set Sj = {(x1, y1,j), . . . , (xn, yn,j)}
where xi = (xi, yi,1, . . . , yi,j−1), that is, the features are xi supplemented by
the relevance of the labels `1, . . . , `j−1 preceding `j in the chain and the cate-
gory is the relevance of the label `j .

In the testing stage of the methods based on learning a chain of classifiers,
the goal is to perform inference for each instance, which consists of estimating
the risk minimizer for a given loss function over the estimated entire joint
conditional distribution. The idea revolves around repeatedly applying the
general product rule of probability to the joint distribution of the labels Y =
(Y1,Y2, . . . ,Ym), that is, computing

P(y |x) =

m∏
j=1

P(yj |x, y1, . . . , yj−1). (6)

Before analyzing this issue in the next section, note that from a theoretical
point of view, this expression holds for any order considered for the labels.
But, in practice, these methods are label order dependent for several reasons.
On the one hand, it is not possible to assure that the models obtained in
the training stage perfectly estimate the joint conditional probability P (y |x).
On the other hand, predicted values instead of true values are successively
taken in the testing stage. This is more serious if the highest errors occur at
the beginning of the chain, since error predictions are successively propagated
[15], [22] and [23]. In any case, in this paper we assume the order of the labels
in the chain to be given, since the goal is just to analyze the performance of
the methods, without taking into account the effect of different orders. Hence,
we do not include any study about which order can be the best.

Before going into the detailed description of the state-of-the-art of the
inference approaches and of our proposal, we note that the training phase is
common to all of them, thus, the models fj induced by the binary classifiers
will be the same. So, in what follows we will focus just on the testing stage.

3 Inference in Probabilistic Classifier Chains

First of all, let us consider the task of performing different inference procedures
as different manners of exploring a probability binary tree in order to facilitate
the explanation and analysis of the inference approaches in the next section.

6 Deiner Mena et al.

In such a tree, the k-th node of level j < m with k ≤ 2j is labeled by ykj =
(v1, v2, . . . , vj) with vi ∈ {0, 1} for i = 1, . . . , j. This node has two children
respectively labeled as y2k−1j+1 = (v1, v2, . . . , vj , 0) and y2kj+1 = (v1, v2, . . . , vj , 1)
and with marginal joint conditional probability P(y1 = v1, . . . , yj = vj , yj+1 =
0 |x) and P(y1 = v1, . . . , yj = vj , yj+1 = 1 |x). The weights of the edges be-
tween both parent and children are respectively P(yj+1 = 0 |x, y1 = v1, . . . , yj =
vj) and P(yj+1 = 1 |x, y1 = v1, . . . , yj = vj), which are respectively esti-
mated by 1 − fj+1(x, v1, . . . , vj) and fj+1(x, v1, . . . , vj). The marginal joint
conditional probability of the children is computed by the product rule of
probability. Then, P(y1 = v1, . . . , yj = vj , yj+1 = 0 |x) = P(yj+1 = 0 |x, y1 =
v1, . . . , yj = vj)·P(y1 = v1, . . . , yj = vj |x) and P(y1 = v1, . . . , yj = vj , yj+1 =
1 |x) = P(yj+1 = 1 |x, y1 = v1, . . . , yj = vj) ·P(y1 = v1, . . . , yj = vj |x). The
root node is labeled by the empty set. Figure 1 illustrates this.

P(yj+1=0|x,y1=v1,…,yj=vj)! P(yj+1=1|x,y1=v1,…,yj=vj)!

(v1,…,vj ,0)!
!

P(y1=v1,…,yj=vj,
yj+1=0|x)!

(v1,…,vj ,1)!
!

P(y1=v1,…,yj=vj,
yj+1=1|x)!

(v1,…,vj)!
!

P(y1=v1,…,yj=vj,
|x)!

Fig. 1 A generic node and its children of the probability binary tree. The top part of each
node contains the combination of labels and the bottom part includes the joint probability
of such a combination. The edges are labeled with the conditional probability.

Several approaches have been proposed for inference in PCCs. The method
the first proposed is the one based on greedy search (GS), being the integral
part of the original CC method [19]. Its successor is the exhaustive search
(ES), called the PCC method [3]. The ε−approximate (ε−A) algorithm [5] is
a uniform-cost (UC) search algorithm that can output optimal predictions in
terms of subset 0/1 loss and also reduces significantly the computational cost
of ES. A more recent approach based on beam search [8] and [9] (BS) presents
good behavior both in terms of performance and computational cost. Finally,
Monte Carlo sampling [5] is an appealing and simpler alternative [5] and [18]
to overcome the high computational cost of ES.

This section copes with the particularities of these inference methods, ex-
cept the Monte Carlo sampling approaches. We have already studied Monte
Carlo approaches [5] and [18] and compared them with the ε−A algorithm and
BS techniques [12]. The conclusions of that work were that, although they are
well suited for minimization of other losses, e.g., Hamming loss or example-

Admissible Heuristics for A* to perform Inference in PCC 7

based F-measure, i) they need to explore many more nodes to be closer to the
optimal, despite the fact that their performance could sometimes be better,
ii) they enlarge as the size of the sample drawn grows and iii) they are quite
slow even for low values of the sample. Hence, we do not consider them as
competitive methods in the present work, although they could sometimes be
appealing.

3.1 Greedy Search

At the testing stage, the GS strategy, originally called CC [19] and [20], pro-
vides an output ŷ = (ŷ1, . . . , ŷm) for a new unlabeled instance x by suc-
cessively querying each classifier fj that estimates the conditional probabil-
ity P(yj |x, y1, . . . , yj−1). This means exploring just one node in each level j.
Given that only the two children of the explored node in level j are taken, their
marginal joint conditional probability only differs in the marginal conditional
probability P(yj |x, y1, . . . , yj−1), since both children have the same parent.
Thus, the path selected is that of the child with the highest marginal condi-
tional probability P(yj |x, y1, . . . , yj−1) and the prediction for an instance x
is of the form

ŷ = (f1(x), f2(x, f1(x)), f3(x, f1(x), f2(x, f1(x))), . . .). (7)

Figure 2(a) shows the path followed by an instance using this strategy.
In this example, only the right node is explored in each level. The optimal
solution is not reached, since the optimal solution is that which ends in the
sixth leaf, whereas the method falls in the last leaf.

Concerning the optimization of subset 0/1 loss, a rigorous analysis [5] es-
tablishes bounds for the performance of the GS, showing the poor performance
of the method for this loss, although it tends to optimize it.

3.2 Exhaustive Search

Unlike GS that explores only a single label combination, ES estimates the
entire joint conditional distribution P(· |x) for a new unlabeled instance x,
since it provides a Bayes optimal inference. Hence, it explores all possible
paths in the tree. Then, for each h(x), it computes P(y |x) and L(y,f(x))
for all combination of labels y = (y1, y2, . . . , ym) and outputs the combination
ŷ = (ŷ1, . . . , ŷm) = f∗(x) with minimum risk for the given loss L(·, ·). By doing
so, it generally improves in terms of performance, since it perfectly estimates
the risk minimizer, albeit at the cost of a higher computational cost, as it comes
down to summing over an exponential (2m) number of label combinations for
each h(x).

Figure 2(b) illustrates this approach where, by exploring all paths, the
optimal solution is always reached.

8 Deiner Mena et al.

(0,0,0)
0.024

(0,0,1)
0.056

(0,1,0)
0.096

(0,1,1)
0.224

(1,0,0)
0

(1,0,1)
0.24

(1,1,0)
0.144

(1,1,1)
0.216

(0,0)
0.08

0.3 0.7

(0,1)
0.32

0.3 0.7

(1,0)
0.24

0 1

(1,1)
0.36

0.4 0.6

(0)
0.4

0.2 0.8

(1)
0.6

0.4 0.6

()
1

0.4 0.6

(a) Greedy Search (CC)

(0,0,0)
0.024

(0,0,1)
0.056

(0,1,0)
0.096

(0,1,1)
0.224

(1,0,0)
0

(1,0,1)
0.24

(1,1,0)
0.144

(1,1,1)
0.216

(0,0)
0.08

0.3 0.7

(0,1)
0.32

0.3 0.7

(1,0)
0.24

0 1

(1,1)
0.36

0.4 0.6

(0)
0.4

0.2 0.8

(1)
0.6

0.4 0.6

()
1

0.4 0.6

(b) Exhaustive Search (PCC)

Fig. 2 An example of paths followed by an instance using (a) Greedy Search (CC) and (b)
Exhaustive Search (PCC). The dotted arrows show the path followed by the algorithm.

3.3 ε−Approximate Algorithm

The ε−Approximate (ε−A) algorithm [5] arises as an alternative to the high
computational cost of ES and to the poor performance of CC. In terms of the
probability tree defined above, it expands only the nodes whose marginal joint
conditional probability exceeds the threshold ε = 2−k with 1 ≤ k ≤ m (notice
that ε = 0 and all values of ε between 0 and 2−m are in fact the same case
of ε = 2−m). This marginal joint conditional probability for a node in level j,
which deals with the label `j and for an unlabeled instance x is

P(y1, . . . , yj |x) =

j∏
i=1

P(yi |x, y1, . . . , yi−1), (8)

Admissible Heuristics for A* to perform Inference in PCC 9

(0,0,0)
0.024

(0,0,1)
0.056

(0,1,0)
0.096

(0,1,1)
0.224

(1,0,0)
0

(1,0,1)
0.24

(1,1,0)
0.144

(1,1,1)
0.216

(0,0)
0.08

0.3 0.7

(0,1)
0.32

0.3 0.7

(1,0)
0.24

0 1

(1,1)
0.36

0.4 0.6

(0)
0.4

0.2 0.8

(1)
0.6

0.4 0.6

()
1

0.4 0.6

(a) ε−A algorithm with ε=0 (k = m)

(0,0,0)
0.024

(0,0,1)
0.056

(0,1,0)
0.096

(0,1,1)
0.224

(1,0,0)
0

(1,0,1)
0.24

(1,1,0)
0.144

(1,1,1)
0.216

(0,0)
0.08

0.3 0.7

(0,1)
0.32

0.3 0.7

(1,0)
0.24

0 1

(1,1)
0.36

0.4 0.6

(0)
0.4

0.2 0.8

(1)
0.6

0.4 0.6

()
1

0.4 0.6

(b) ε−A algorithm with ε = 0.5 (k = 1)

(0,0,0)
0.024

(0,0,1)
0.056

(0,1,0)
0.096

(0,1,1)
0.224

(1,0,0)
0

(1,0,1)
0.24

(1,1,0)
0.144

(1,1,1)
0.216

(0,0)
0.08

0.3 0.7

(0,1)
0.32

0.3 0.7

(1,0)
0.24

0 1

(1,1)
0.36

0.4 0.6

(0)
0.4

0.2 0.8

(1)
0.6

0.4 0.6

()
1

0.4 0.6

(c) ε−A algorithm with ε = 0.25 (k = 2)
Fig. 3 Several examples of the paths followed by the ε−A algorithm for different values
of ε. The nodes with a cross are those that have a marginal joint conditional probability
lower than ε and, hence, they are not explored any more. The dotted arrows show the path
followed by the algorithm. The solid arrows indicate the path followed by the algorithm
when the marginal joint conditional probability does not exceed the value of ε, and, hence
a GS is applied to this node from here to the bottom of the tree.

where P(yi, |x, y1, . . . , yi−1) is estimated by fi(x, y1, . . . , yi−1).

The nodes are expanded in the order established by this probability, cal-
culating the marginal joint conditional probability for their children. So, the
algorithm does not follow a specific path, otherwise it changes from one path
to another depending on the marginal joint conditional probabilities. In the

10 Deiner Mena et al.

end, two situations can be found: i) the node expanded is a leaf or ii) there are
no more nodes that exceed the threshold. If the former situation happens, the
prediction for the unlabeled instance x will be ŷ = (ŷ1, . . . , ŷm) corresponding
to the combination of the leaf reached (see Figure 3(a)). Conversely, if situ-
ation ii) takes place, then GS is applied to the nodes whose children do not
exceed the threshold, and the prediction ŷ = (ŷ1, . . . , ŷm) for the unlabeled
instance x in this case will be that with the highest entire joint conditional
probability P(y1, . . . , ym |x) (see Figures 3(b) and 3(c)).

The parameter ε plays an important role in the algorithm. The particular
case of ε=0 (or any value in the interval [0, 2−m], that is, k = m) is of special
interest, since the algorithm performs a UC that always finds the optimal
solution. Figure 3(a) illustrates this situation.

Conversely, the method is looking to GS as ε grows, being the GS in the
case of ε = 0.5 (or equivalently ε = 2−1, that is, k = 1). This is so because
in this case two situations are possible: i) only one node has a marginal joint
conditional probability greater than ε, in which case the algorithm follows one
path, or ii) no nodes have a marginal joint conditional probability greater than
ε, in which case a GS is applied from here to the bottom of the tree. Figure
3(b) shows an example of this particular case.

Notice that this method provides an optimal prediction if the entire joint
conditional probability of the corresponding label combination is greater than
ε. The interpretation of the method for a generic value of ε = 2−k is that the
method guarantees reaching a partial optimal solution at least until the k− th
level on the tree. Figure 3(c) shows the particular case of ε = 0.25.

Consequently, this algorithm estimates the risk minimizer for the subset
0/1 loss to a greater or lesser extend, depending on the value of ε. Moreover,
a theoretical analysis of this estimation [5] allows bounding its goodness as a
function of the number of iterations, which in turn depends on ε.

3.4 Beam Search

Beam Search (BS) [8] and [9] also explores more than one path in the proba-
bilistic tree. This method includes a parameter b called the beam width that
limits the number of combinations of labels explored. The idea is to explore b
possible candidate sets of labels at each level of the tree. Hence, depending on
such a value, a certain number of the top levels are exhaustively explored, par-
ticularly a total of k∗− 1 levels, k∗ being the lowest integer such that b < 2k

∗
.

Then, only b number of possibilities are explored for each of the remainder lev-
els. The combinations explored from the level k∗ to the bottom are those with
the highest marginal joint conditional probability seen thus far. This marginal
joint conditional probability for a node of level j for an unlabeled instance x
is the same as for the ε−A algorithm. Hence, such a probability is

P(y1, . . . , yj |x) =

j∏
i=1

P(yi |x, y1, . . . , yi−1), (9)

Admissible Heuristics for A* to perform Inference in PCC 11

(0,0,0)
0.024

(0,0,1)
0.056

(0,1,0)
0.096

(0,1,1)
0.224

(1,0,0)
0

(1,0,1)
0.24

(1,1,0)
0.144

(1,1,1)
0.216

(0,0)
0.08

0.3 0.7

(0,1)
0.32

0.3 0.7

(1,0)
0.24

0 1

(1,1)
0.36

0.4 0.6

(0)
0.4

0.2 0.8

(1)
0.6

0.4 0.6

()
1

0.4 0.6

Fig. 4 An example of paths followed by an instance using Beam Search (BS) with b = 2. The
nodes with a cross mean that this node has none of the highest marginal joint conditional
probabilities and, hence, it is not explored any more. The dotted arrows show the path
followed by the algorithm.

where P(yi, |x, y1, . . . , yi−1) is estimated by fi(x, y1, . . . , yi−1).

In the end, the algorithm outputs ŷ = (ŷ1, . . . , ŷm) with the highest entire
joint conditional probability P(y1, . . . , ym |x).

BS differs from GS in that i) BS explores more than one combination
whereas GS just explores one and also in ii) the probability taken for deciding a
path to follow in the tree is different from one method to the other. Concerning
ii), both take the marginal joint conditional probability P(y1, . . . , yj |x), but in
the case of GS, that is equivalent to taking the marginal conditional probability
P(yj , |x, y1, . . . , yj−1) since the two nodes explored in each level of the tree
have the same parent, as explained before. However, in the case of BS, the b
nodes explored do not have to have the same parent, even in the case of b = 2.
Of course, if b > 2, this is impossible to happen in a binary tree.

Let consider the case of b = 1. In this case, BS expands just one node
in each level, the one with the highest marginal joint conditional probability
that coincides with the highest marginal conditional probability, so BS when
b = 1 follows just one path that coincides with the one followed by GS. Also,
if b = 2m, BS performs an ES. Hence, BS encapsulates both GS and ES
respectively considering b = 1 and b = 2m. This makes it possible to control
the trade-off between computational cost and performance of the method by
tuning b between 1 and 2m.

As a final remark, the fact that BS considers marginal joint conditional
probabilities makes the method tend to estimate the risk minimizer for the
subset 0/1 loss. The authors of the method [8] and [9] do not include any
theoretical analysis about the goodness of the estimation of the risk minimizer,
but they empirically show that by taking certain values of b (b < 15), the risk
minimizer provided by the method converges to the one obtained using ES.

12 Deiner Mena et al.

Figure 4 shows an example of the paths explored by the BS algorithm when
b = 2.

4 A* Algorithm for Inference in PCC

The algorithm A* is the most widely-known form of best-first search [16], in
which the best node at each iteration, according to an evaluation function e,
is expanded. The particularity of the A* algorithm is that e can be seen as a
function E of the other two functions g and h, e(k) = E(g(k), h(k)), where g(k)
evaluates the cost of reaching node k from the root and h(k) evaluates the cost
of reaching a solution (a leaf) from k. Hence, e(k) evaluates the total cost of
reaching a solution from the root through k. In general, it is possible to obtain
the exact value of the known information (g), but the unknown information
must be estimated through an heuristic (h). To obtain an optimal solution, h
must not overestimate the actual cost of reaching a solution, that is, it must
be an admissible heuristic. These kinds of heuristics are optimistic, because
they estimate that the cost of obtaining a solution is less than it actually is.
Also, the A* algorithm is optimally efficient for any heuristic, because no other
optimal algorithm using the same heuristic guarantees to expand fewer nodes
than A*.

4.1 Building an Admissible Heuristic

In order to adapt A* for inference in PCC, we must take into account that
we have probabilities instead of costs. So, 1) A* must select the node with
the highest estimated probability, 2) h must not underestimate the proba-
bility from the node to a leaf, that is, h must be an admissible heuristic2

and 3) E must be the product function, e = g · h. Considering all these as-
pects, e will provide an estimation of the entire joint conditional probability
P(y1, . . . , ym |x) for optimizing subset 0/1 loss. In order to derive g and h,
let us say that the product rule of probability to the joint distribution of the
labels Y=(Y1,Y2, . . . ,Ym) can be rewritten as

P(y1, . . . , ym |x) = P(y1, . . . , yj |x)× (10)

P(yj+1, . . . , ym |x, y1, . . . , yj).

Hence, for a node at level j, let us consider g to be the marginal joint condi-
tional probability P(y1, . . . , yj |x) and h an heuristic that does not underesti-
mate the marginal joint conditional probability P(yj+1, . . . , ym |x, y1, . . . , yj).
Let us remember that the values of y1, . . . , yj are known at level j.

Before discussing the heuristic h proposed here, let us notice that g is
the same marginal joint conditional probability that both the ε-A algorithm

2 An heuristic h is admissible for our search problem if and only if it satisfies that h∗(k) ≤
h(k) for any node k, where h∗(k) is the highest (and unknown) probability from the node k
to a leaf.

Admissible Heuristics for A* to perform Inference in PCC 13

and the BS calculate to select the nodes to be expanded. Even more, ε-A
with ε= 0 is not only equivalent to the UC search, but also to A* with the
constant heuristic h=1. This heuristic is admissible too, since no probability is
greater than 1. But, on the other hand, it is also the worst admissible heuristic,
since any other admissible heuristic will dominate it3 and consequently the A*
algorithm using such an heuristic will never expand more nodes than the A*
algorithm using h=1.

Let us go now to discuss the heuristic proposed in this paper. Since our
heuristic must not underestimate the marginal joint conditional probability
P(yj+1, . . . , ym |x, y1, . . . , yj) in order to be admissible, it is quite straightfor-
ward to pick the maximum value of such probability for obtaining an optimal
heuristic h∗:

h∗ = max(yj+1,...,ym)∈{0,1}m−j P(yj+1, . . . , ym |x, y1, . . . , yj) (11)

= max(yj+1,...,ym)

∈{0,1}m−j

∏m
i=j+1 P(yi |x, y1, . . . , yj , yj+1, . . . , yi−1).

However, obtaining such a maximum is, in fact, applying an ES over the
set of labels L = {`j+1, . . . , `m}. Hence, this optimal heuristic is not compu-
tationally applicable. So, we need to obtain a tractable heuristic in exchange
for renouncing such optimality. This leads to design an heuristic ĥ also admis-
sible, but less dominant than h∗ (h∗ ≺ ĥ). For this purpose, let us consider
(yj+1, . . . , ym) the values that define h∗, that is

h∗ =

m∏
i=j+1

P(yi |x, y1, . . . , yj , yj+1, . . . , yi−1), (12)

and let us notice that values (yj+1, . . . , ym) which maximize the product do
not have to maximize each individual term, then

P(yi |x, y1, . . . , yj , yj+1, . . . , yi−1) ≤ (13)

max
(yj+1,...,yi−1)

∈{0,1}i−1−j

P(yi |x, y1, . . . , yj , yj+1, . . . , yi−1).

Hence, by defining ĥ as

ĥ =

m∏
i=j+1

max
(yj+1,...,yi−1)

∈{0,1}i−1−j

P(yi |x, y1, . . . , yj , yj+1, . . . , yi−1). (14)

it is easy to deduce that ĥ is admissible and less dominant than h∗ (h∗ ≺ ĥ).

But again, ĥ is not computationally applicable in general. However, this is not
the case if we restrict ourselves to the case of linear models, for instance using
logistic regression. Remember that P(yi |x, y1, . . . , yi−1) is estimated through

3 In our case, an heuristic h1 dominates another heuristic h2 (denoted by h1 ≺ h2) if and
only if it satisfies that h1(k) ≤ h2(k) for any node k.

14 Deiner Mena et al.

the model fi(x, y1, . . . , yi−1) using a sigmoid function to transform the output
of fi(x, y1, . . . , yi−1) into a probability. Particularly,

P(yi = 1 |x, y1, . . . , yi−1) =
1

1 + exp−fi(x,y1,...,yi−1)
(15)

P(yi = 0 |x, y1, . . . , yi−1) = 1− 1

1 + exp−fi(x,y1,...,yi−1)
. (16)

In order to obtain the maximum value between P(yi = 1 |x, y1, . . . , yi−1)
and P(yi = 0 |x, y1, . . . , yi−1), we need first to obtain the maximum value
of both terms on their own. In this direction and according to the above
expressions of both probabilities, P(yi = 1 |x, y1, . . . , yi−1) will be maximum if
fi(x, y1, . . . , yi−1) is the maximum and analogously P(yi = 0 |x, y1, . . . , yi−1)
will be maximum when fi(x, y1, . . . , yi−1) is the minimum. Hence, let us now
focus on obtaining the maximum and the minimum of fi(x, y1, . . . , yi−1).

From now on, let us consider that fi is a linear model, then fi adopts the
following form

fi(x, y1, . . . , yi−1) = 〈wi
x,x〉+ 〈wi

y, (y1, . . . , yi−1)〉+ βi, (17)

that splitting the second term in the known part (from `1 to `j) and unknown
part (from `j+1 to `i) it leads to

fi(x, y1, . . . , yj , yj+1, . . . , yi−1) = 〈wi
x,x〉+

j∑
k=1

wi
y,kyk +

i−1∑
k=j+1

wi
y,kyk +βi. (18)

Since x is given and y1, . . . , yj are fixed, the second summation contains the
variables for which the maximum and the minimum must be obtained. Let
Ci be the constant part of fi with regard obtaining the maximum and the
minimum, that is,

Ci(x, y1, . . . , yj) = 〈wi
x,x〉+

j∑
k=1

wi
y,kyk + βi. (19)

Then fi can be rewritten as

fi(x, y1, . . . , yj , yj+1, . . . , yi−1) = Ci(x, y1, . . . , yj) +

i−1∑
k=j+1

wi
y,kyk. (20)

Consequently, the function whose maximum must be obtained is

i−1∑
k=j+1

wi
y,kyk = wi

y,j+1yj+1 + . . .+ wi
y,i−1yi−1. (21)

Let us now denote by K+
i,j and K−i,j the positive and negative indexes of the

coefficients wi
y,k with j + 1 ≤ k ≤ i− 1, that is,

K+
i,j = {k | j + 1 ≤ k ≤ i− 1, wi

y,k ≥ 0}
K−i,j = {k | j + 1 ≤ k ≤ i− 1, wi

y,k < 0}. (22)

Admissible Heuristics for A* to perform Inference in PCC 15

Hence, (21) is maximum when yk for j + 1 ≤ k ≤ i− 1 are

yk =

{
1 if k ∈ K+

i,j

0 if k ∈ K−i,j
(23)

and (21) is minimum when yk for j + 1 ≤ k ≤ i− 1 are

yk =

{
1 if k ∈ K−i,j
0 if k ∈ K+

i,j

(24)

Hence,

i) Let yi,1j+1, . . . , y
i,1
i−1 ∈ {0, 1} be the values which maximize (21), that is, the

values that maximize fi(x, y1, . . . , yj , yj+1, . . . , yi−1) and hence, the values
which makes P(yi = 1 |x, y1, . . . , yj , yj+1, . . . , yi−1) be maximum and,

ii) Let yi,0j+1, . . . , y
i,0
i−1 ∈ {0, 1} be the values that minimize (21), that is, the

values that minimize fi(x, y1, . . . , yj , yj+1, . . . , yi−1) and hence, the values
which makes P(yi = 0 |x, y1, . . . , yj , yj+1, . . . , yi−1) be maximum.

Hence, max(yj+1,...,yi−1)

∈{0,1}i−1−j

P(yi |x, y1, . . . , yj , yj+1, . . . , yi−1) will be

max
v∈{0,1}

{P(yi = v |x, y1, . . . , yj , yi,vj+1, . . . , y
i,v
i−1)}. (25)

Notice that yi,1k = 1 − yi,0k for j + 1 ≤ k ≤ i − 1 and that according to the

above definition of the sigmoid function, if fi(x, y1, . . . , yj , y
i,1
j+1, . . . , y

i,1
i−1) ≥

−fi(x, y1, . . . , yj , yi,0j+1, . . . , y
i,0
i−1), then the maximum of P(yi = v |x, y1, . . . , yj ,

yi,vj+1, . . . , y
i,v
i−1) is reached when v = 1 and otherwise when v = 0.

Therefore, the final expression for the heuristic will be

ĥ =

m∏
i=j+1

max
v∈{0,1}

{P(yi = v |x, y1, . . . , yj , yi,vj+1, . . . , y
i,v
i−1)}. (26)

Remember that h∗ and ĥ only differ on the values of yj+1, . . . , yi−1. In
the former, the same values are common for all the factors of the product,
whereas in the latter these values depend on each term i of the product, and
hence, they can be different, which makes ĥ not be an optimal heuristic. On
the other hand, the cost of computing ĥ is of polynomial order, unlike h∗

which is of exponential order. Figure 5 exemplifies ĥ. Let us focus on the root
node of the subtree in Figure 5. The marginal joint conditional probability
until this node is g = 0.6. For computing ĥ, first we evaluate the maximum
marginal conditional probabilities P (y2 |x, y1 = 1) provided by f2(x, y1) and
P (y3 |x, y1 = 1, y2) provided by f3(x, y1, y2) which respectively are 0.6 and
1.0. Then we carry out their product by applying the product rule of the
probability to estimate the marginal joint conditional probability from that
node to a leaf. Notice that the maximum at each level does not correspond to
the same branch of the tree. In other words, the maximum in the first level

16 Deiner Mena et al.

(1,0,0)
0

(1,0,1)
0.24

(1,1,0)
0.144

(1,1,1)
0.216

(1,0)
0.24

0 1

(1,1)
0.36

0.4 0.6

(1)
g=0.6

0.4 0.6

h=0.6·1=0.6 e=g ·h=0.36

max!

max!

=0.6

=1

^ ! ^ !

Fig. 5 An example of the computation of heuristic ĥ

(0,0,0)
0.024

(0,0,1)
0.056

(0,1,0)
0.096

(0,1,1)
0.224

(1,0,0)
0

(1,0,1)
0.24

(1,1,0)
0.144

(1,1,1)
0.216

(0,0)
0.08

0.3 0.7

(0,1)
0.32

0.3 0.7

(1,0)
0.24

0 1

(1,1)
0.36

0.4 0.6

(0)
0.4

0.2 0.8

(1)
0.6

0.4 0.6

()
1

0.4 0.6

h =0.56
e =0.224

h =0.6
e =0.36

h =0.7
e =0.056

h =0.7
e =0.224

h =1
e =0.24

h =0.6
e =0.216

 ˆ ˆ

 ˆ ˆ ˆ ˆ

Fig. 6 An example of A* using the heuristic ĥ. The dotted arrows show the path followed
by the algorithm. The values of g are provided inside each node

corresponds to y2 = 1, whereas the maximum in the second level is obtained
by P (y3 |x, y1 = 1, y2 = 0) when y3 = 1 fixing y2 = 0. This is what makes the

heuristic ĥ not to be the optimal h∗.

Figure 6 shows the path followed by A* using ĥ. It reaches the optimal leaf
as is theoretically expected. Comparing this graph with the one in Figure 3(a)
that illustrates ε-A with ε= 0, and taking into account the properties of the
heuristics related to the dominance, ε-A, ε= 0 (equivalent to A* using h = 1

or UC search) explores more nodes than A* using ĥ.

As a final remark, the A* algorithm using ĥ perfectly estimates the risk
minimizer for the subset 0/1 loss, as both ε-A with ε= 0 and ES do it. Even

more, A* with ĥ expands equal or fewer nodes, since ĥ is more dominant than
the heuristic h = 1 (ĥ ≺ h = 1). Obviously, computing ĥ is more costly than
computing h = 1 or applying just a UC search. The question is then if this

Admissible Heuristics for A* to perform Inference in PCC 17

additional computing time compensates the theoretical guarantee it has of
expanding fewer nodes.

4.2 A General Admissible Heuristic for Trading off the Number of Nodes
Explored and its Computing Time

The previous section pointed out that both ĥ and h = 1 are admissible heuris-
tics. Besides, using the former theoretically guarantees that the A* algorithm
explores fewer nodes than using the latter. But the cost of computing ĥ could
be high in comparison to just considering a constant heuristic h = 1. This
trade-off sheds light on including a parameter d for limiting the depth of the
heuristic. Hence, for a node of level j and a value of d with 0 ≤ d ≤ m − j,
only the terms P(yi |x, y1, . . . , yj , yij+1, . . . , y

i
i−1) of ĥ are evaluated using fi

for nodes from level j + 1 to level j + k whereas these terms are estimated by
the constant 1 for nodes from level j + k + 1 to level m, that is,

ĥd =

j+d∏
i=j+1

P(yi |x, y1, . . . , yj , yij+1, . . . , y
i
i−1) ·

m∏
i=j+d+1

1, (27)

or equivalently

ĥd =

j+d∏
i=j+1

P(yi |x, y1, . . . , yj , yij+1, . . . , y
i
i−1). (28)

It is clear that ĥ is more dominant than ĥd (ĥ ≺ ĥd) and it continues being

admissible. In turn, ĥd is more dominant than h = 1 (ĥd ≺ h = 1). Hence, it

is expected that using the heuristic ĥd with 0 ≤ d ≤ m− j and 1 ≤ j ≤ m− 1,
the A* algorithm explores more number or equal number of nodes than ĥ, but
less number or equal number of nodes than h = 1. In fact, ĥd encapsulates
both heuristics, since taking the extreme values of d leads to them. On the
one hand, taking the maximum value of d leads to ĥm−j with 1 ≤ j ≤ m− 1
(we will denote this heuristic as ĥ∞), which is in fact the heuristic ĥ detailed

in Section 4.1. On the other hand, taking the minimum value of d leads to ĥ0

which is indeed the heuristic h = 1. In general, ĥd1 is more dominant than
ĥd2 if d1 > d2. However, the computational time of obtaining the values of ĥd

increases as d increases. Hence, tuning d adequately one can obtain a balance
between the number of nodes explored and the computational time employed
to evaluate the heuristic.

The case of d = 1 has especial interest, since the heuristic is also valid for
non-linear models fj . The form of the heuristic is

ĥ1 =

j+1∏
i=j+1

P(yi |x, y1, . . . , yj , yij+1, . . . , y
i
i−1) ·

m∏
i=j+2

1, (29)

18 Deiner Mena et al.

(0,0,0)
0.024

(0,0,1)
0.056

(0,1,0)
0.096

(0,1,1)
0.224

(1,0,0)
0

(1,0,1)
0.24

(1,1,0)
0.144

(1,1,1)
0.216

(0,0)
0.08

0.3 0.7

(0,1)
0.32

0.3 0.7

(1,0)
0.24

0 1

(1,1)
0.36

0.4 0.6

(0)
0.4

0.2 0.8

(1)
0.6

0.4 0.6

()
1

0.4 0.6

h =0.8
e =0.32

h =0.6
e =0.36

h =0.7
e =0.056

h =0.7
e =0.224

h =1
e =0.24

h =0.6
e =0.216

 ˆ ˆ

 ˆ ˆ ˆ ˆ

Fig. 7 An example of A* using the heuristic ĥ1. The dotted arrows show the path followed
by the algorithm. The values of g are provided inside each node

that simplifying leads to

ĥ1 = P(yj+1 |x, y1, . . . , yj). (30)

As seen, this heuristic ĥ1 means just evaluating the model of the node fj(x, y1, . . . , yj),
hence without making any restriction on the linearity of fj .

Figure 7 shows an example of the path followed by the A* algorithm when
ĥ1 is taken as an heuristic. As seen, the A* algorithm explores more nodes
using this heuristic than using ĥ, but the computational time of evaluating the
heuristic is considerably reduced, as we will show later on in the experiments.

4.3 Implementation Details

Here we significantly extend the results of A* using ĥ presented in the prelim-
inary work [13]. However, they present differences because we have carried out
an improvement in the implementation of the algorithms in order to become
more efficient. In fact, the time results reported there in comparison with the
number of nodes explored was the key to make us reconsider the implemen-
tation of the algorithms. Algorithm 1 shows the pseudocode of A* using ĥd.

Particularly, the differences between this version and that of the prelimi-
nary work [13] are that now:

1. The models fi (parameters wi
x, wi

y and βi) are ordered according to the
label order of the chain.

2. All repeated computations are calculated just once and stored:
(a) The evaluation of 〈wi

x,x〉 for each linear model fi, which is common for
all nodes corresponding to fi, is computed once and saved in variable
WX (line 2).

Admissible Heuristics for A* to perform Inference in PCC 19

Algorithm 1 Pseudocode of the implementation of A∗ algorithm using ĥd

1: function A∗

Input: x, [W,β] a CC Linear Model, m, d, BlockSize
Output: Label combination with highest probability for x

2: WX ←Wx ∗ x // Computes 〈wx,x〉 for all labels
3: K+ ← AllocMemory(m)
4: K− ← AllocMemory(m)
5: for label = [2 : m] do // Starts at 2nd level, no label attributes in the 1st model
6: K+[label]← [[Wy [label] >= 0]]
7: K−[label]← [[Wy [label] < 0]]
8: end for
9: Q← AllocMemory(BlockSize) // tuples {Labels, Level, e, g}

10: Q[1]← {[], 0, 1, 1} // root node, empty label set, level 0, e and g = 1
11: last← 1 // last element used in Q
12: while true do
13: [Best, Position]←Max(Q, last)
14: if Best.Level = m then
15: return Best.Labels // Leaf node
16: end if
17: level← Best.Level + 1
18: P ← 1/(1 + exp(−(WX[level] + β[level] + 〈wy [level], Best.Labels〉)))
19: // Left child

20: ĥd←Heuristic(d, level, [Best.Labels 0],K+,K−,WX,Wy ,x) // Eq(28)

21: Q[Position]← {[Best.Labels 0], level, Best.g ∗ (1− P) ∗ ĥd, Best.g ∗ (1− P)}
22: // Right child
23: last← last+ 1
24: if last > Q.size then
25: Q← resize(Q,BlockSize)
26: end if
27: ĥd←Heuristic(d, level, [Best.Labels 1],K+,K−,WX,Wy ,x) // Eq(28)

28: Q[last]← {[Best.Labels 1], level, Best.g ∗ P ∗ ĥd, Best.g ∗ P}
29: end while
30: end function

(b) Sets K+ and K−, that is the best values of yk for the unknown part of
the heuristic, are computed only once before starting the main loop of
A∗ (lines 3-8).

3. Open set, Q, stores tuples of four elements: label combination, level, e and
g. Q is stored in a resizable vector whose positions are reused. The left
child is stored in the position of its parent (line 21). Notice that parent
information is not required to obtain the final solution, since Q contains
all the required information for each node.

4. The design of Q allows us to optimize the function Max, the operation
to obtain the best node to be expanded. The function Max only needs to
evaluate the first elements (1..last) of Q (line 13), because the rest of the
vector is unused.

5. Algorithm 1 contains several auxiliary functions to make the pseudocode
shorter and more easily understood. However, in the actual program all
these functions were coded inline, making the code faster because all the
calls to functions with large parameters, like the function Heuristic, are
avoided.

20 Deiner Mena et al.

4.4 Complexity analysis

Despite the theoretical optimality properties of the A* algorithm, it might not
be useful in some problems because it may explore an exponential number
of nodes with regard to the depth of the tree (see [17] and [21]). Only under
certain conditions over the heuristic taken, is it possible to obtain an algorithm
with a theoretical complexity less than exponential. This is the case if one is
able to prove that the heuristic h satisfies the following condition for any level
j with regard to the optimal heuristic h∗ [21]

|h∗(j)− h(j)| ≤ O(log h∗(j)). (31)

In general, it occurs that that error is at least linear with regard to the path
cost, hence leading to exponential growth. However, by taking care of designing
good heuristics, one can obtain huge profit in relation to not providing any kind
of heuristic information. That is the case with our heuristic ĥd with regard to
the heuristic h = 1, which does not provide any kind of heuristic information,
in spite of being an improvement of the ES.

On what follows, let us focus on the heuristic ĥ∞, since it is the most
dominant heuristic among the heuristics proposed. According to the results
where the noise is increasing (see Figures 9 and 10 of Section 5.3), it is not

clear that ĥ∞ is exponential at all as the rest of the algorithms clearly show, at
least for the datasets taken. This behavior of ĥ∞ sheds light on performing a
deeper analysis over other situations. In this sense, let us consider a theoretical
case when the difference between ĥ∞ and h∗ is maximum. For instance, this
situation occurs (see Figure 8) when the first level has probability 0 in the left
branch and 1 in the right branch, all the probabilities of the left subtree are 0
(for the left branches) and 1 (for the right branches) and all the probabilities
of the right subtree are 1/2 (for all the branches). In this case, the error can
be bounded as follows for any level j

|h∗(j)− ĥ∞(j)| ≤ |1/2j−1 − 1|. (32)

This bound tends to 1 as the level j grows, hence, in this case, it is not
possible to guarantee that the theoretical complexity is less than exponential.
However, these extreme cases are hardly likely to occur. Let us remember that
the probabilities are evaluated from the models, where the description x of the
examples plays an important role. This description is equal for obtaining the
probabilities of all the nodes of the same level, hence, such probabilities will
probably not differ so much among them as in the extreme case considered.

5 Experiments

This section deals with the experiments carried out with all the approaches.
Before discussing the experimental results in Sections 5.2 and 5.3, let us de-
scribe in Section 5.1 the common settings of all experiments: datasets, learning

Admissible Heuristics for A* to perform Inference in PCC 21

=1·½·½· … = ½ j-1

* !

()
1

(0)
0

0 1

0 1 ½ ½

0 1 0 1 ½ ½ ½ ½

max!

max!

max!

=1

=1

=1

^ !
h

h

… … … … … … … …

=1·1·1 … = 1

(0,0)

0

(0,1)

0

(1)
1

(1,0)
½

(1,1)
½

Fig. 8 An example of worst cases for heuristic ĥ

algorithms and parameter selection procedures. Finally, Section 5.3 reports
the computational results of the methods for more complex problems, such as
those that include noise.

5.1 Settings

The experiments were performed over several benchmark multi-label datasets
whose main properties are shown in Table 1. As can be seen, there are sig-
nificant differences in the number of attributes, instances and labels. The
cardinality—number of labels per instance—varies from 1.07 to 4.27. Concern-
ing the number of labels, there are some datasets with just 5, 6 or 7 labels,
whereas others have more than 100, one of them even has almost 400 labels.

The approaches for inference in PCC compared with our proposal were
those discussed throughout the paper, except for the ES. No experiment was
carried out with the ES method due to its computational cost. Hence, the
methods compared with the A* algorithm with the heuristic ĥ for different
values of the parameter d (1, 2, 3,∞) were GS, ε−A algorithm for different
values of ε (.0, .25, .5) and BS for different values of beam width b (1, 2, 3, 10).
Let us remember that the ε−A algorithm with ε = 0.5 is equivalent to GS and
to BS with b = 1.

The results will be presented in terms of the example-based subset 0/1 loss
estimated by means of a 10-fold cross-validation.

22 Deiner Mena et al.

Table 1 Properties of the datasets

Datasets Instances Attributes Labels Cardinality
bibtex 7395 1836 159 2.40
corel5k 5000 499 374 3.52
emotions 593 72 6 1.87
enron 1702 1001 53 3.38
flags 194 19 7 3.39
image 2000 135 5 1.24
mediamill* 5000 120 101 4.27
medical 978 1449 45 1.25
reuters 7119 243 7 1.24
scene 2407 294 6 1.07
slashdot 3782 1079 22 1.18
yeast 2417 103 14 4.24

The base learner employed to obtain the binary classifiers that compose all
these multi-label models was logistic regression [10] with probabilistic output.
The regularization parameter C was established for each individual binary
classifier performing a grid search over the values C ∈ {10−3, 10−2, . . . , 103}
optimizing the brier loss estimated by means of a balanced 2-fold cross vali-
dation repeated 5 times. The brier loss [1] is a proper score that measures the
accuracy of probabilistic predictions, as logistic regression does. The expression
is as follows

1

n

n∑
i=1

(p̂i − ai)2, (33)

where for an instance i, pi is the predicted probability of a certain label and
ai is the actual value of the label (0 or 1).

Table 2 Subset 0/1 loss for the different methods. Those scores that are equal to or better
than optimal predictions reached by ε−A and ES are shown in bold.

Datasets
ĥ (*)

ε−A(.25)
GS/BS(1)

BS (2) BS (3) BS (10)
ε−A(.0) ε−A(.5)

bibtex 81.92 81.95 82.19 81.88 81.92 81.92
corel5k 97.48 98.62 98.90 98.30 98.04 97.48
emotions 71.16 71.82 72.83 72.16 71.32 71.16
enron 83.14 84.26 85.43 83.43 83.37 83.14
flags 87.13 87.16 86.13 88.21 87.13 87.13
image 68.35 68.35 69.75 68.35 68.35 68.35
mediamill* 83.86 84.58 85.80 84.10 83.86 83.86
medical 30.37 30.37 30.67 30.37 30.37 30.37
reuters 22.73 22.70 23.60 22.69 22.73 22.73
scene 31.86 31.86 33.28 31.90 31.86 31.86
slashdot 51.80 52.22 54.49 51.77 51.80 51.80
yeast 76.95 77.62 79.77 76.83 77.08 76.95

Admissible Heuristics for A* to perform Inference in PCC 23

Table 3 Number of explored nodes for the different methods.

Datasets ĥ1 ĥ2 ĥ3 ĥ∞ ε−A(.0) ε−A(.25)
GS/BS(1)

BS(2) BS(3) BS(10)
ε−A(.5)

bibtex 283.31 277.97 273.23 215.91 289.27 184.00 160.00 319.00 477.00 1575.00
corel5k 1456.92 1443.08 1431.57 1338.62 1474.17 517.11 375.00 749.00 1122.00 3725.00
emotions 9.12 8.28 7.80 7.68 10.67 10.78 7.00 13.00 18.00 45.00
enron 110.32 106.50 103.28 75.51 114.81 77.29 54.00 107.00 159.00 515.00
flags 16.45 12.69 10.43 8.79 22.56 16.33 8.00 15.00 21.00 55.00
image 6.64 6.28 6.14 6.11 7.33 7.66 6.00 11.00 15.00 35.00
mediamill* 188.18 185.64 183.68 178.89 191.76 142.37 102.00 203.00 303.00 995.00
medical 46.61 46.58 46.55 46.40 46.64 46.65 46.00 91.00 135.00 435.00
reuters 8.15 8.14 8.13 8.13 8.24 8.26 8.00 15.00 21.00 55.00
scene 7.16 7.15 7.15 7.15 7.25 7.25 7.00 13.00 18.00 45.00
slashdot 24.98 24.88 24.86 24.84 25.29 24.89 23.00 45.00 66.00 205.00
yeast 23.60 22.80 22.38 21.01 26.09 26.02 15.00 29.00 42.00 125.00

Table 4 Average prediction time (in seconds) per example for all methods

Datasets ĥ1 ĥ2 ĥ3 ĥ∞ ε−A(.0) ε−A(.25)
GS/BS(1)

BS(2) BS(3) BS(10)
ε−A(.5)

bibtex 0.0195 0.0314 0.0411 0.8407 0.0162 0.0099 0.0079 0.0110 0.0156 0.0507
corel5k 0.1684 0.2578 0.3333 23.8344 0.1360 0.0161 0.0110 0.0278 0.0404 0.1361
emotions 0.0006 0.0008 0.0009 0.0011 0.0006 0.0006 0.0004 0.0005 0.0006 0.0013
enron 0.0085 0.0141 0.0185 0.1084 0.0072 0.0030 0.0019 0.0039 0.0055 0.0172
flags 0.0011 0.0014 0.0015 0.0015 0.0012 0.0007 0.0004 0.0005 0.0007 0.0016
image 0.0005 0.0006 0.0007 0.0007 0.0005 0.0005 0.0004 0.0004 0.0005 0.0009
mediamill* 0.0144 0.0242 0.0326 0.4847 0.0115 0.0055 0.0037 0.0072 0.0105 0.0333
medical 0.0033 0.0057 0.0077 0.0495 0.0027 0.0027 0.0027 0.0033 0.0046 0.0144
reuters 0.0006 0.0008 0.0010 0.0013 0.0005 0.0005 0.0005 0.0005 0.0007 0.0016
scene 0.0005 0.0007 0.0009 0.0010 0.0005 0.0005 0.0004 0.0005 0.0006 0.0013
slashdot 0.0018 0.0029 0.0039 0.0124 0.0015 0.0014 0.0012 0.0016 0.0022 0.0063
yeast 0.0016 0.0026 0.0034 0.0075 0.0015 0.0010 0.0006 0.0010 0.0014 0.0040

5.2 Results over Benchmark Datasets

Tables 2, 3 and 4 respectively show the subset 0/1 loss, the number of nodes
explored and the computational time (in seconds) averaged per test instances
for the different methods compared.

Before discussing the results of the tables, let us remember that only the
A* algorithm using ĥd (and consequently also the ε−A with ε= 0, since it is

the A* algorithm with h = 1 or ĥ0) provides a Bayes optimal inference, as the
ES does. This means that they always predict the label combination with the
highest joint conditional probability. Despite the fact that other methods may
predict other label combinations with lower joint conditional probability for
some examples, in a few cases they obtain better subset 0/1 scores. This fact
is due to several reasons, mainly a) the relatively small size of testing sets, and
b) that the models fj obtained to estimate the joint conditional probability
P (y |x) do not usually return true estimations. Theoretically, under perfect

conditions (large test sets and perfect models), the A* algorithm using ĥd

would obtain the best scores. In general, the performance of the ε−A algorithm
decreases as the value of ε increases and the performance of the BS method
increases as b increases. The BS method reaches stability for low values of the
beam b, it even converges to the performance of the A* algorithm but at the
cost of exploring many more nodes.

24 Deiner Mena et al.

With regard to the number of nodes explored (see Table 3), GS (equivalent
to ε−A algorithm with ε = 0.5 and to BS(1)) is the method which explores
the least number of nodes, since it only goes over one path in the tree. In
fact, such a number corresponds to the number of labels (plus one if the root
is considered as an explored node). It follows the A* algorithm using our

heuristic ĥd for any value of d, although it is exceeded by the ε−A algorithm
with ε > 0 and by BS with b > 1 in some cases. However, let us remember
that neither GS nor the ε−A algorithm with ε > 0 nor BS with any value of
the beam b guarantee reaching an optimal solution as the A* algorithm using
heuristic ĥd does. So, it is not surprising that they explore fewer nodes. What
it is actually surprising is that for most of the cases they explore more nodes
even without reaching an optimal solution.

Let us now focus on the methods that theoretically reach the optimum (the

A* algorithm with the heuristic ĥd or the ε−A algorithm with ε=0). As it has

theoretically been shown, the A* algorithm with the heuristic ĥ∞ explores the
least number of nodes, followed by the same algorithm but with the heuristic
ĥ3, then with the heuristic ĥ2, after that with the heuristic ĥ1 and finally the
ε−A algorithm with ε=0.

The computational time is expected to be higher as more nodes are ex-
plored, but looking at Table 4 one can see that this does not happen at all.
This is true for GS, the ε−A algorithm and the BS technique, but the A* al-
gorithm obtains higher computational time in spite of exploring considerably
fewer nodes. The reason for that is the time spent in computing the heuris-
tic. In this respect, the A* algorithm is faster as the parameter d diminishes,
although this implies exploring more nodes. Hence, considering the methods
that reach the optimum, the ε−A approximation algorithm with ε= 0 is the
fastest method, followed by A* using the heuristic ĥ1, then ĥ2 and so on until
ending with the heuristic ĥ∞.

As a conclusion, the A* algorithm with the heuristic h1 can be considered
a good alternative for guaranteeing optimal performance in terms of subset
0/1 and balancing the trade-off between the number of nodes explored and
the computational time. Besides, it is also applicable for non-linear models.

5.3 Results with Noise

We have also performed experiments including noise in the datasets in order to
analyze more in depth the power of the A* algorithm for inference in PCCs.
This study arises from the fact that the number of nodes explored by A*
is quite low in comparison with the number of labels (depth of the tree).
This is so even using the heuristic h = 1 (ε−A with ε = 0) which does not

provide information as other heuristics do, for instance, ĥ. This means that the
algorithm A* performs few backtracking in the tree, hence, the probabilities
provided by the models may be not so close from 0.5 or, even more, they may
be close to 0 or 1. In this way, by adding noise we expect the probabilities to

Admissible Heuristics for A* to perform Inference in PCC 25

h1
h2
h3
h∞
ε-A(.0)

Ex
pa

nd
ed

 N
od

es

6

8

10

12

14
Ti

m
e

(m
illi

se
co

nd
s)

0.4

0.6

0.8

Noise (%)
0 10 20

(a) image (5)

h1
h2
h3
h∞
ε-A(.0)

Ex
pa

nd
ed

 N
od

es

5

10

15

20

25

Ti
m

e
(m

illi
se

co
nd

s)

0.5

1.0

1.5

Noise (%)
0 10 20

(b) emotions (6)

h1
h2
h3
h∞
ε-A(.0)

Ex
pa

nd
ed

 N
od

es

10

15

20

Ti
m

e
(m

illi
se

co
nd

s)

0.4

0.6

0.8

1.0

Noise (%)
0 10 20

(c) scene (6)

h1
h2
h3
h∞
ε-A(.0)

Ex
pa

nd
ed

 N
od

es

10

20

30

40

50

Ti
m

e
(m

illi
se

co
nd

s)

1.0

1.5

2.0

2.5

Noise (%)
0 10 20

(d) flags (7)

h1
h2
h3
h∞
ε-A(.0)

Ex
pa

nd
ed

 N
od

es

10

20

30

Ti
m

e
(m

illi
se

co
nd

s)

0.5

1.0

1.5

Noise (%)
0 10 20

(e) reuters (7)

Fig. 9 Number of nodes expanded and computational time employed (ms) for the algorithm

A* with the heuristic ĥ for different values of the parameter d (1, 2, 3,∞) and for the ε−A
with ε=0, for different percentages of noise and for datasets with few labels (from 5 to 7).

26 Deiner Mena et al.

h1
h2
h3
h∞
ε-A(.0)

Ex
pa

nd
ed

 N
od

es

0

200

400

600

800

Ti
m

e
(m

illi
se

co
nd

s)

0

20

40

Noise (%)
0 10 20

(a) yeast (14)

h1
h2
h3
h∞
ε-A(.0)

Ex
pa

nd
ed

 N
od

es

0

2×103

4×103

6×103

8×103

Ti
m

e
(m

illi
se

co
nd

s)

0

2×102

4×102

6×102

Noise (%)
0 10 20

(b) slashdot (22)

h1
h2
h3
h∞
ε-A(.0)

Ex
pa

nd
ed

 N
od

es

0

2×104

4×104

6×104

8×104

Ti
m

e
(m

illi
se

co
nd

s)

0

105

2×105

3×105

Noise (%)
0 5 10 15

(c) medical (45)

h1
h2
h3
h∞
ε-A(.0)

Ex
pa

nd
ed

 N
od

es

0

2×104

4×104

Ti
m

e
(m

illi
se

co
nd

s)

0

2×104

4×104

Noise (%)
0 5 10

(d) enron (53)

h1
h2
h3
h∞
ε-A(.0)

Ex
pa

nd
ed

 N
od

es

0

105

2×105

Ti
m

e
(m

illi
se

co
nd

s)

0

105

2×105

3×105

Noise (%)
0 2 4 6 8

(e) mediamill (101)

h1
h2
h3
h∞
ε-A(.0)

Ex
pa

nd
ed

 N
od

es

0

5×104

105

Ti
m

e
(m

illi
se

co
nd

s)

0

105

2×105

3×105

Noise (%)
0 1 2 3 4

(f) bibtex (159)

Fig. 10 Number of nodes expanded and computational time employed (ms) for the algo-

rithm A* with the heuristic ĥ for different values of the parameter d (1, 2, 3,∞) and for the
ε−A with ε= 0, for different percentages of noise and for datasets with more labels (from
14 to 159)

Admissible Heuristics for A* to perform Inference in PCC 27

be closer to 0.5, making the problem more complex where more informative
heuristics can show their strength.

Certain grades of noise in terms of percentage were added to the datasets.
No kinds of noise were included in the description of the examples, that is,
in the x part, otherwise, the noise was only introduced in the labels of the
examples, that is, in the y part. In this sense, a percentage of the values of the
labels was swapped from being relevant to become irrelevant and vice versa
for the whole dataset. This means that for a given example the relevance of
either all their labels or only some of them or even none of them was changed.
The percentage of noise included ranges from 0% to 25% for datasets with
fewer than 22 labels. However, the experiments did not finish in a prudential
time by using all the percentages of this range for datasets with more than 45
labels. In particular, the maximum percentage considered in this respect for
medical (45 labels), enron (53 labels), mediamill (101 labels) and bibtex (159
labels) respectively was 18%, 10%, 8% and 4%.

Figures 9 and 10, respectively show for datasets with few labels (from 5 to
7) and for datasets with more labels (from 14 to 159), the number of nodes
expanded and the computational time employed by the A* algorithm with the
heuristic ĥ for different values of the parameter d (1, 2, 3,∞) and by the ε−A
with ε=0, all of them for different percentages of noise.

Obviously, both the number of nodes explored and the computational time
increases as the percentage of noise increases. Regarding the number of nodes
explored, it decreases as d increases as theoretically expected. In this respect,
the number of nodes expanded using the heuristic ĥ∞ keeps quite steady as
the noise increases in comparison to using the rest of the heuristics. In fact,
by using these other heuristics, the number of nodes rockets from a certain
percentage of noise. This is so in general, but it especially happens for datasets
with more than 14 labels.

Concerning the computational time and for datasets with few labels, A*
using ĥd from d > 1 is steadier than using ĥ1 or ε−A with ε= 0 as the noise
increases. In fact, these two last approaches are the best options, ĥ1 being
clearly better than ε−A with ε = 0. However, for high percentages of noise
the other options begin to show their strength. Only flags among the datasets
with few labels presents a different behavior. In this case, the behavior of the
computational time is similar to that of the datasets with more labels, which
coincides with the behavior of the number of nodes. So, the computational
time increases as d decreases and ĥ∞ becomes clearly the best option. In any
case, we are measuring the computational time in milliseconds, so the worth
of the heuristics becomes crucial for datasets with more than 22 labels.

6 Conclusions

This paper proposes a family of admissible heuristics for the A* algorithm
for performing inference in PCCs. In this way, providing admissible heuristics
leads obtaining optimal predictions in terms of subset 0/1 loss and exploring

28 Deiner Mena et al.

fewer nodes than previous approaches that also produce optimal predictions.
The family of heuristics (ĥd) is defined by a parameter d which determines the
depth in the tree for evaluating the heuristic and, hence, controls the trade-
off between the number of nodes explored and the computational time of the
algorithm due to the evaluation of the heuristic. In this manner, the algorithm
A*(ĥd) explores fewer nodes but it expends more time in reaching a solution as
d increases. So far, only uniform-cost search (or ε-A(ε= .0), which in turn is the

particular case of the A*(ĥ0)) has been shown to provide optimal subset 0/1
loss, unlike other approaches such as GS, ε-A(ε> 0) or BS that only estimate

it. The algorithm A*(ĥd) with d > 1 is limited to linear models, but this is not
a major drawback because it is quite common to employ linear models. This
is usually the case for MLC problems with many labels in which the examples
of some classes may be scarce, since using non-linear models in such problems
can lead to overfitting. Only the particular case of d = 1 is also suitable for
non-linear models, since it just involves evaluating the models from all the
known values of the labels.

In the experiments performed over the benchmark datasets, the algorithm
A*(ĥ1) or uniform-cost search (or ε-A(ε= .0) or A*(ĥ0)) are better choices than

A*(ĥd) for d > 1, since the computational cost of evaluating the heuristic does
not seem to compensate for the reduction in nodes explored. In this respect,
adding noise to the benchmark datasets, and, hence, obtaining more complex
problems, allows us to show the strength of A*(ĥd) for d > 1. In this sense,

the behavior of A*(ĥ∞) is quite steady as the percentage of noise increases,

unlike A*(ĥd) for the rest of the values of d, including d = 0 (ε-A(ε = .0)).

Furthermore, only for small datasets in a number of labels, ĥ1 becomes the
best alternative.

In our opinion, the heuristic search is a promising line of research for in-
ference in PCCs. As future work, new admissible heuristics can be devised,
keeping in mind that we should look for a trade-off between their computa-
tional complexity and the quality of the estimations.

Acknowledgements This research has been supported by the Spanish Ministerio de Economı́a
y Competitividad (grants TIN2011-23558, TIN2015-65069).

References

1. Brier, G.W.: Verification of forecasts expressed in terms of probability. Mon. Wea. Rev.
78(1), 1–3 (1950)

2. Cheng, W., Hüllermeier, E.: Combining instance-based learning and logistic regression
for multilabel classification. Machine Learning 76(2-3), 211–225 (2009)

3. Dembczyński, K., Cheng, W., Hüllermeier, E.: Bayes Optimal Multilabel Classification
via Probabilistic Classifier Chains. In: ICML, 2010, pp. 279–286 (2010)

4. Dembczyński, K., Waegeman, W., Cheng, W., Hüllermeier, E.: On label dependence and
loss minimization in multi-label classification. Machine Learning 88(1-2), 5–45 (2012)

5. Dembczynski, K., Waegeman, W., Hllermeier, E.: An analysis of chaining in multi-label
classification. In: L.D. Raedt, C. Bessire, D. Dubois, P. Doherty, P. Frasconi, F. Heintz,
P.J.F. Lucas (eds.) ECAI, Frontiers in Artificial Intelligence and Applications, vol. 242,
pp. 294–299. IOS Press (2012)

Admissible Heuristics for A* to perform Inference in PCC 29

6. Elisseeff, A., Weston, J.: A Kernel Method for Multi-Labelled Classification. In: ACM
Conf. on Research and Develop. in Information Retrieval (2005), pp. 274–281 (2005)

7. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination
of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics SSC-
4(2), 100–107 (1968)

8. Kumar, A., Vembu, S., Menon, A.K., Elkan, C.: Learning and inference in probabilistic
classifier chains with beam search. In: ECML/PKDD 2012, pp. 665–680 (2012)

9. Kumar, A., Vembu, S., Menon, A.K., Elkan, C.: Beam search algorithms for multilabel
learning. Mach. Learn. 92(1), 65–89 (2013)

10. Lin, C.J., Weng, R.C., Keerthi, S.S.: Trust region Newton method for logistic regression.
Journal of Machine Learning Research 9(Apr), 627–650 (2008)

11. McCallum, A.K.: Multi-label text classification with a mixture model trained by em.
In: AAAI 99 Workshop on Text Learning (1999)

12. Mena, D., Montañés, E., Quevedo, J.R., del Coz, J.J.: An overview of inference meth-
ods in probabilistic classifier chains for multi-label classification. Tech. rep., Artificial
Intelligence Center, University of Oviedo, Spain, Campus de Viesques, Gijón (2015)

13. Mena, D., Montañés, E., Quevedo, J.R., del Coz, J.J.: Using a* for inference in prob-
abilistic classifier chains. In: IJCAI 2015, Proceedings of the 20th International Joint
Conference on Artificial Intelligence, Buenos Aires, Argentina, July 25-31, pp. 3707–
3713 (2015)

14. Montañés, E., Quevedo, J.R., del Coz, J.J.: Aggregating independent and dependent
models to learn multi-label classifiers. In: ECML/PKDD’11 - Volume Part II, pp. 484–
500. Springer-Verlag (2011)

15. Montañés, E., Senge, R., Barranquero, J., Quevedo, J.R., del Coz, J.J., Hüllermeier, E.:
Dependent binary relevance models for multi-label classification. Pattern Recognition
47(3), 1494 – 1508 (2014). Handwriting Recognition and other {PR} Applications

16. Pearl, J.: Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1984)

17. Pearl, J.: Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1984)

18. Read, J., Martino, L., Luengo, D.: Efficient monte carlo methods for multi-dimensional
learning with classifier chains. Pattern Recognition 47(3), 1535 – 1546 (2014)

19. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classi-
fication. In: ECML/PKDD’09, LNCS, pp. 254–269. Springer (2009)

20. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classi-
fication. Machine Learning 85(3), 333–359 (2011)

21. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2 edn. Pearson
Education (2003)

22. Senge, R., Barranquero, J., del Coz, J.J., Hüllermeier, E.: Rectifying classifier chains
for multi-label classification. Tech. rep. (2012)

23. Senge, R., del Coz, J.J., Hüllermeier, E.: On the problem of error propagation in classifier
chains for multi-label classification. In: Conference of the German Classification Society
on Data Analysis, Machine Learning and Knowledge Discovery, 2012 (2012)

24. Tsoumakas, G., Vlahavas, I.: Random k-Labelsets: An Ensemble Method for Multilabel
Classification. In: ECML/PKDD’07, LNCS, pp. 406–417. Springer (2007)

25. Zhang, M.L., Zhou, Z.H.: Ml-knn: A lazy learning approach to multi-label learning.
Pattern Recognition 40(7), 2038–2048 (2007)

	Introduction
	Probabilistic Classifier Chains in Multi-label Classification
	Inference in Probabilistic Classifier Chains
	A* Algorithm for Inference in PCC
	Experiments
	Conclusions

