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Abstract

We propose a new point of view in the long-standing
problem where several voters have expressed a linear
order relation (or ranking) over a set of candidates.
For a ranking a > b > c to represent a group’s
opinion, it would be logical that the strength with
which a > c is supported should not be less than the
strength with which either a > b or b > c is sup-
ported. This intuitive property can be considered
a monotonicity constraint, and has been addressed
before. We extend previous approaches in the fol-
lowing way: as the voters are expressing linear or-
ders, we can take the number of candidates between
two candidates to be a measure of the degree to
which one candidate is preferred to the other. In
this way, intensity of support is both counted as
the number of voters who indicate a > c is true, as
well as the distance between a and c in these vot-
ers’ rankings. The resulting distributions serve as
input for a natural ranking rule that is based on
stochastic monotonicity and stochastic dominance.
Adapting the previous methodology turns out to be
non-trivial once we add some natural feasibility con-
straints.

Keywords: Group Decision Making, Linear Order,
Weak Order, Monotonicity, Stochastic Dominance,
Integer Linear Programming.

1. Introduction

Probably the most simple and ancient ranking rule
is plurality, where the candidate with the most votes
is declared the winner. Yet, it is not the most widely
used method, as it suffers from a multitude of issues.
Arrow’s impossibility theorem has shown that there
will always be some issues with any ranking rule, as
a number of intuitive properties are mutually ex-
clusive [3]. In fact, two of the most widely known
voting rules are explicitly divided on the issue of
"should a pairwise majority winner automatically
be the winner of an election?": Condorcet’s practi-
cal method [6] and the Borda count [4] answer this
question in diametrically opposed ways.
In 1982, Riker [12] realized that the same set of

votes can yield different winners, depending on the
voting rule used. Furthermore, he showed that, in

some extreme cases, even every candidate in an elec-
tion can be elected the winner according to some
voting rule. In order to do so, he studied the no-
tion of consensus and demonstrated that most rank-
ing rules can be characterized as measuring the dis-
tance from this consensus by a metric. For example,
consider the least reversals method by Condorcet,
which consists of looking for an acyclic pairwise ma-
jority relation, disregarding the pairwise majorities
with smaller support if needed. This idea can be
thought of as a way to minimize the distance to a
consensus, an acyclic pairwise majority relation in
this context. A deeper review of voting rules can be
found in [5].

It will be no surprise that a big family of ranking
rules consists of those that measure how close each
possible linear order of the candidates comes to ful-
filling a specific property [1, 2, 5], for example, be-
ing in agreement with each pairwise majority. As an
example of a recent such ranking rule, Rademaker
and De Baets proposed in [9] a natural application
in social choice of their previous works on restoring
monotonicity [7, 8, 10, 11]. In [9], they propose a
ranking rule that amounts to finding the ranking for
which it holds that the votes are closest to satisfy-
ing a natural monotonicity property. They consider
that, for a ranking a > b > c, monotonicity implies
that the strength with which a > c is supported
should not be less than the strength with which ei-
ther a > b and b > c is supported. Positional in-
formation is not explicitly taken into account in [9],
and we propose to extend the method to take this
hitherto unexploited information into account. Af-
ter all, for a linear order a > b > c, we can observe
that b is in between a and c, making the support
for a over c stronger than that for a over b, which
is not considered in [9]. In order to make consistent
use of this information, we employ some feasibility
constraints.

2. Problem setting

Consider a set C of k candidates and let there be
an unknown ’true’ linear order > between them. A
set R of r voters, which are imprecise observers of
>, is asked to compare the candidates according to
their respective imprecise estimates regarding their
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suitability. These estimates are expressed as linear
orders �i.

Let us denote by pi(a, b) ∈ {0, 1} the preference
that voter i has shown for candidate a over candi-
date b. Let pi(a, b) = 0 denote that b is preferred
to a and, analogously, pi(a, b) = 1 denote that a is
preferred to b. Of course, pi(a, b) = 1− pi(b, a), for
any a, b ∈ C. Furthermore, as we are working with
linear orders, pi is transitive.
Our goal is to look for the ’true’ linear order con-

sidering the information provided by these voters.
Let C2

∗ = C2\{(a, a) | a ∈ C} and r�(a) be
the position of candidate a in the linear order �
(considering the greatest is position 1). Note that
r�(a) = 1 +

∑
b∈C
b6=a

p�(b, a).

For any i ∈ {−k+ 1, . . . ,−1, 1, . . . , k− 1} and for
any (a, b) ∈ C2

∗ , we define:

Di
j(a, b) = 1

(
r�j (a)− r�j (b) = −i

)
,

where 1(A) is the indicator function of the logical
expression A, we further define:

Di(a, b) =
r∑

j=1
Di

j(a, b).

With each couple (a, b) ∈ C2
∗ we can associate its

distribution. A distribution is a function D : C2
∗ →

{0, 1, . . . , r}2k−2 defined via:

D(a, b) =
=
(
D1−k(a, b), . . . ,D−1(a, b),D1(a, b), . . . ,Dk−1(a, b)

)
.

For instance, if we have three linear orders �1:
a > b > c > d, �2: d > a > c > b and �3: a >
d > b > c. We can observe that D3

1(a, d) = 1 (as
in the first linear order a is preferred to d and there
are two elements in between), D−1

2 (a, d) = 1 (as in
the second linear order d is preferred to a and there
are no elements in between), D1

3(a, d) = 1 (as in the
third linear order a is preferred to d and there are
no elements in between) and Di

j(a, d) = 0 for the
other values of i and j. Therefore, joining all the
experts, we will obtain D−3(a, d) = 0, D−2(a, d) =
0, D−1(a, d) = 1, D1(a, d) = 1, D2(a, d) = 0 and
D3(a, d) = 1. Finally, the obtained distribution for
(a, d) is D(a, d) = (0, 0, 1, 1, 0, 1).
These distributions have the following properties,

commonly known as feasibility properties:

Proposition 1 Let D be a distribution on a set of
k candidates C based on a profile of r voters. Then,
D satisfies the following properties:

• Completeness: for any (a, b) ∈ C2
∗ :

k−1∑
i=1−k

i6=0

Di(a, b) = r.

• Reciprocity: for any i ∈ {−k + 1, . . . , k − 1}
with i 6= 0 and any (a, b) ∈ C2

∗ :

Di(a, b) = D−i(b, a).

• Stability: for any i ∈ {−k+ 1, . . . , k− 1} with
i 6= 0: ∑

(a,b)∈C2
∗

Di(a, b) = r(k − |i|).

• Peakedness:
for any a ∈ C and any i ∈ {2, . . . , k − 1}:∑

b∈C

Di(a, b) ≤
∑
b∈C

Di−1(a, b),

∑
b∈C

Di(b, a) ≤
∑
b∈C

Di−1(b, a).

for any a ∈ C and any i ∈ {1− k, . . . ,−2}:∑
b∈C

Di(a, b) ≤
∑
b∈C

Di+1(a, b),

∑
b∈C

Di(b, a) ≤
∑
b∈C

Di+1(b, a).

We can define stochastic dominance D with re-
spect to a distribution D over C2

∗ . Let (a, d) and
(b, c) be two couples in C2

∗ .

D(a, d)DD(b, c)⇔ (∀j)

 j∑
i=1−k

i6=0

Di(a, d)≤
j∑

i=1−k
i6=0

Di(a, d)

.
Trivially, to a linear order relation > corresponds

a total weak order relation ≥. Furthermore, a linear
order relation > gives rise to the following strict
partial order relation A↑ on C2

∗ .

Definition 1 Let C be a set of k candidates (pro-
vided with a linear order >). Then, a relation be-
tween two elements (a, d), (b, c) ∈ C2

∗ is defined in
the following way:

(a, d) A↑ (b, c)⇔ a ≥ b, c ≥ d, b > c, (a > b or c > d).

As A↑ is only satisfied by elements on the upper
half of C2

∗ , we will often use the following notation:

C2
∗↑ = {(a, b) ∈ C2

∗ | a > b}.

In Figure 1 we can observe the diagram of A↑ for
a linear order a > b > c > d. Informally, we will
call this diagram ’the triangle diagram’.

Furthermore, we can extend this relation to C2
∗ .

Definition 2 Let > be a linear order. It defines a
strict partial order relation A on C2

∗ :

(a, d) A (b, c)⇔



(a, d) A↑ (b, c) if b > c,

(c, b) A↑ (d, a) if d > a,
(a, d) A↑ (c, b)
(c, b) A↑ (a, d)
a = c, b = d

if a > d, c > b.
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(a, d)

(a, c) (b, d)

(a, b) (b, c) (c, d)

Figure 1: Graphical representation of A↑ for rank-
ing a > b > c > d. Triangle diagram.

(a, d)

(a, c) (b, d)

(a, b) (b, c) (c, d)

(b, a) (c, b) (d, c)

(d, a)

(c, a) (d, b)

Figure 2: Graphical representation of A for ranking
a > b > c > d. Diamond diagram.

In Figure 2 we show a graphical representation of
A for a linear order a > b > c > d. Informally, we
will call this diagram ’the diamond diagram’.
However, as we work with reciprocal distribu-

tions, the distributions of couples in the lower part
of the diagram defined by A do not actually provide
additional information beyond that provided by the
top part. To exploit this knowledge, we always work
with A↑.

Definition 3 Let C be a set of k candidates (pro-
vided with a linear order >) and the corresponding
C2
∗ (provided with the strict partial order A). Then

a couple (a, b) ∈ C2
∗ is said to be a basic element of

C2
∗ if a� b, i.e.,

a > b and @c such that a > c > b.

The set of all basic elements of C2
∗ is denoted by

B(C2
∗).

Therefore, for a given ranking >, we can define
the natural monotonicity constraint in the following
way:

Definition 4 For a given linear order > and cor-
responding A, the monotonicity constraint on a dis-
tribution D is the following:

for any (a, d), (b, c) ∈ C2
∗ such that (a, d) A↑

(b, c):
D(a, d) DD(b, c),

and for any (e, f) ∈ B(C2
∗):

D(e, f) DD(f, e).

D is called monotone if these constraints are ful-
filled.

This natural monotonicity constraint does not
need to be satisfied by every distribution D, as the
voters could disagree in their comparisons. How-
ever, it seems natural to require that the winning
ranking satisfies this property or at least that it is
not too far from satisfying it. When this mono-
tonicity constraint is not satisfied by any ranking,
the goal will be to look for a distribution D′ that
is monotone with relation to at least one ranking.
Obviously, among all the possible monotone distri-
butions, we want the closest to the observed one.

Therefore, it is necessary to introduce at this mo-
ment a distance metric between distributions.

d(D,D′) =
∑

(a,b)∈C2
∗↑

d (D(a, b), D′(a, b)) , where

d (D(a, b) , D′(a, b)) =

=
k−1∑

i=1−k
i6=0

∣∣∣∣∣∣∣∣
i∑

j=1−k

j 6=0

Dj(a, b)−D′j(a, b)

∣∣∣∣∣∣∣∣ .
When looking for the closest monotone distribu-

tion, we want to focus on the distributions that
also satisfy the feasibility properties introduced in
Proposition 1. In this case, we are working with
distributions that do not need to satisfy these prop-
erties, but we want to impose them as constraints.
Therefore, the whole set of feasibility properties
(reciprocity, completeness, stability and peaked-
ness) will be named feasibility constraints from now
on.

Definition 5 For a given distribution D and a
ranking >, a closest monotone distribution (under
feasibility constraints) D′ : C2

∗ → {0, 1, . . . , r}2k−2

for a given distance metric d is one satisfying:

(MON) For any (a, d) A (b, c): D′(a, d) DD′(b, c)

(REC) For any (a, b) and any i:
D′i(a, b) = D′−i(b, a)

(COM) For any (a, b):
k−1∑

i=1−k
i6=0

D′i(a, b) = r

(STA) For any i:
∑

(a,b)∈C2
∗

D′i(a, b) = r(k − |i|)
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(PEA) For any a ∈ C and any i ∈ {2, . . . , k − 1}:∑
b∈C

D′i(a, b) ≤
∑
b∈C

D′i−1(a, b)

For any a ∈ C and any i ∈ {1−k, . . . ,−2}:∑
b∈C

D′i(a, b) ≤
∑
b∈C

D′i+1(a, b)

(OPT) There is not another distribution D′′ :
C2
∗ → {0, 1, . . . , r}2k−2 satisfying the above

conditions while

d(D,D′′) < d(D,D′)

Finding a closest monotone distribution is impor-
tant in order to find an optimal linear order:

Definition 6 For a given distribution D, an op-
timal linear order > (with a corresponding clos-
est monotone distribution D′) is a linear order for
which it holds that there exists no ranking >′ (with
a corresponding closest monotone distribution D′′)
such that d(D,D′′) < d(D,D′).

In a previous work [9], Rademaker and De Baets
were able to calculate the “number of changes
needed in order to impose monotonicity w.r.t. �”
by solving a flow network problem. However, when
we add condition (STA), we are no longer able to
use a flow network representation. Instead, we will
need to solve an integer linear programming prob-
lem for each possible linear order. We feel adding
(STA) is worthwhile, as it follows the "reassigning
votes" rationale from [9] much closer than in the
original paper. Now, when changing a vote that
compared extremes in certain ranking (at distance
k − 1), another couple of candidates will have to
become extremes.
The number of unknown values and the number

of constraints will depend on the number k of can-
didates:

• Number of (positive integer) variables:
2k(k − 1)2.
• Monotonicity constraints (inequalities):

4(k − 1)2(k − 2) + 2(k − 1)2.
• Reciprocity constraints (equalities):
k(k − 1)2.
• Completeness constraints (equalities):
k(k − 1).
• Stability constraints (equalities):

2(k − 1).
• Peakedness constraints (inequalities):

4k(k − 2).

However, because of completeness and reci-
procity, some of these constraints become superflu-
ous. We can focus on A↑ (triangle diagram) instead
of A. This yields the following constraints:

• Number of (positive integer) variables:
k(k − 1)2.

• Monotonicity constraints (inequalities):
2(k − 1)2(k − 2) + (k − 1)2

• Completeness constraints (equalities):
k(k − 1)

2 .
• Stability constraints (equalities):

(k − 1).
• Peakedness constraints (inequalities):

2k(k − 2).

More formally, the integer linear programming
problem we will need to solve is then:

minimize d(D,D′) subject to:
I for any j ∈ {1− k, . . . ,−1, 1, . . . , k − 2},

for any (a, d) A↑ (b, c),
j∑

i=1−k
i6=0

D′i(a, d) ≤
j∑

i=1−k
i6=0

D′i(b, c)

I for any j ∈ {1− k, . . . ,−1},
for any (e, f) ∈ B(C2

∗),
j∑

i=1−k
i6=0

D′i(e, f) ≤
j∑

i=1−k
i6=0

D′−i(e, f)

I for any (a, b) ∈ C2
∗↑,

k−1∑
i=1−k

i6=0

D′i(a, b) = r

I for any i ∈ {1, . . . , k − 1},∑
(a,b)∈C2

∗↑

D′i(a, b) +D′−i(a, b) = r(k − i)

I for any a ∈ C and any i ∈ {2, . . . , k − 1},∑
b∈C
a>b

D′i(a, b) +
∑
b∈C
b>a

D′−i(a, b) ≤

≤
∑
b∈C
a>b

D′i−1(a, b) +
∑
b∈C
b>a

D′1−i(a, b)

I for any a ∈ C and any i ∈ {1− k, . . . ,−2},∑
b∈C
a>b

D′i(a, b) +
∑
b∈C
b>a

D′−i(a, b) ≤

≤
∑
b∈C
a>b

D′i+1(a, b) +
∑
b∈C
b>a

D′−1−i(a, b)

I for any i ∈ {1− k, . . . ,−1, 1, . . . , k − 1},
for any (a, b) ∈ C2

∗↑.

D′i(a, b) ∈ Z ∩ [0, r] (1)

Remark 1 It must be noted that d(D,D′) is a sum
of absolute values and we will have an integer non-
linear programming problem (INLP) instead of an
integer linear programming problem (ILP). Fortu-
nately, such absolute values can easily be handled
by adding auxiliary variables to our problem.
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Minimize
n∑

i=1
|zi| (with zi a linear combination of

a vector of unknown values x) under certain condi-
tions Ax ≤ b is equivalent to:

Minimize
n∑

i=1
yi under the following conditions:

Ax ≤ b
zi ≤ yi for any i = 1, . . . , n,
−zi ≤ yi for any i = 1, . . . , n,
yi ≥ 0 for any i = 1, . . . , n.

3. Allowing for weak orders

In real problems, some of the candidates can be
similarly worthy and be considered equivalent. To
model this kind of problems we will need to allow
for weak orders instead of linear orders as winning
rankings. Remember that weak orders are binary
relations satisfying reflexivity and transitivity (but
not antisymmetry).
In our particular problem, we can intuitively ob-

serve that if two elements a and b are equivalent
then, for every different element c, the distributions
D(a, c) and D(b, c) will need to be quite similar.
Furthermore, D(a, b) and D(b, a) will need to co-
incide too. Therefore, it seems intuitive to add to
our integer linear programming problem of Eq. (1)
these constraints.
Formally, adding the equivalence a ∼ b (where

(a, b) ∈ B(C2
∗)), the constraints would be:

I for any j ∈ {1− k, . . . ,−1, 1, . . . , k − 1},
for any c ∈ C\{a, b},
j∑

i=1−k
i6=0

D′i(a, c) =
j∑

i=1−k
i6=0

D′i(b, c)

I for any j ∈ {1− k, . . . ,−1},
j∑

i=1−k
i6=0

D′i(a, b) =
j∑

i=1−k
i6=0

D′−i(a, b)

However, a technical problem involving the num-
ber of voters may arise in this part of the study. In
a hypothetical case where alternatives a and b are
equivalent, we would need to have that D(a, b) =
D(b, a). However, if we have an odd number of vot-
ers this condition is not going to be satisfied because
D(a, b) and D(b, a) are symmetric by definition of
distribution.
This uncomfortable issue can be solved consider-

ing a threshold t and changing the preceding con-
straints to the following one:

∑
c∈C\{a,b}

k−1∑
i=1−k

j 6=0

∣∣∣∣∣∣∣∣
j∑

i=1−k
i6=0

Di(a, c)−
j∑

i=1−k
i6=0

Di(b, c)

∣∣∣∣∣∣∣∣+

+
−1∑

j=1−k

∣∣∣∣∣∣∣∣
j∑

i=1−k
i6=0

Di(a, b)−
j∑

i=1−k
i6=0

D−i(a, b)

∣∣∣∣∣∣∣∣≤ t. (2)

Note that, by monotonicity, the absolute values in
this equation can be removed considering the right
side of the absolute value.

As we want to minimize this threshold t, we will
need to solve an equivalent minimization problem
where we will treat firstly the minimization of t and
secondly the optimization of d(D,D′):

minimize δ·t+d(D,D′) s.t. constraints (1) and (2),

where δ is an upper bound of d(D,D′).
When adding constraints to a linear programming

problem, the optimal value of the objective function
will get worse (or remain equal). This makes it dif-
ficult to compare the number of changes needed to
obtain a suitable weak order to the number needed
to obtain a suitable linear order. A possible solu-
tion to this problem is to output the Pareto optimal
front, i.e. the set of the closest weak orders with
each number of equivalence classes, which includes
the linear order with k singleton equivalence classes.
We provide a straightforward algorithm in order to
obtain the Pareto optimal front.

Algorithm 1 INPUT: Profile R with r voters
and k candidates

OUTPUT: Pareto optimal front P

P ← ∅
for i = k : −1 : 0

best← rk(k−1)(2k−3)
2

O ← ∅
for all possible weak orders � of the k
candidates with i equivalence classes do

current← number of changes needed
in order to impose monotonicity
w.r.t. �
if current < best then

best← current
O ← {�}

else if current = best then
O ← O ∪ {�}

end if
end for

P ← P ∪O
end for

Remark 2 Pruning technique
The number of weak orders of the k candidates

with i equivalence classes scales rapidly and can
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cause computational issues. Consequently, every
possible reduction of the number of elements to be
analysed is of interest. A simple way to do so is by
using lower bounds: once we have obtained the costs
of each linear order, we can use these obtained val-
ues in order to obtain a lower bound of each weak
order. The idea is that if the closest linear order
has a cost of c0 changes and the best weak order
with k−1 equivalence classes has a cost of c1 (obvi-
ously c0 ≤ c1), we can discard every weak order with
k − 1 equivalence classes with a linear extension of
cost greater than c1.

4. Case study and computational example

The methodology is applied to a dataset coming
from a decision making problem concerning man-
agement of the Lar rangeland in Iran, an area of
great local economic, ecological and social impor-
tance. When drawing up new management plans,
the Iranian government asked 31 representatives of
different stakeholder groups to rank four plans ac-
cording to their perceived suitability on different cri-
teria. We represent the data corresponding to the
Wildlife Diversity Criterion here. For more details,
we refer to [13].

frequency ranking
18 a � b � c � d
3 c � d � b � a
3 d � c � b � a
2 b � a � c � d
1 b � c � a � d
1 b � d � c � a
1 c � b � d � a
1 d � b � c � a
1 b � c � d � a

Table 1: Expressed rankings and their frequency for
the Wildlife Criterion in the Lar rangeland decision
problem.

In Table 1 we can see the linear orders given by
the experts in the Lar rangeland decision problem.
We can observe that a majority of voters have ex-
pressed a preference for a � b � c � d. However,
as our considered ranking rule is not plurality, the
winning ranking could differ from the most voted
linear order.
The goal right now will be to look for the optimal

linear order. Remember that our notion of consen-
sus is the linear order that is the closest to satisfy
the monotonicity property. In Table 2 the number
of changes needed to restore monotonicity for ev-
ery linear order is shown. We can conclude that
a � b � c � d is the closest linear order with a cost
of 45. Therefore, we are going to consider it as the
optimal linear order.
In Figure 3 we can observe the original distribu-

tion and a monotone relabelling with 45 changes.

ranking changes ranking changes
a � b � c � d 45 c � a � b � d 97
a � b � d � c 90 c � a � d � b 132
a � c � b � d 80 c � b � a � d 89
a � c � d � b 125 c � b � d � a 131
a � d � b � c 119 c � d � a � b 141
a � d � c � b 130 c � d � b � a 146
b � a � c � d 60 d � a � b � c 136
b � a � d � c 83 d � a � c � b 147
b � c � a � d 78 d � b � a � c 139
b � c � d � a 106 d � b � c � a 148
b � d � a � c 118 d � c � a � b 152
b � d � c � a 125 d � c � b � a 153

Table 2: Closest linear orders.

a > d

a > c b > d

a > b b > c c > d

(4, 4, 2, 1, 2, 18)

(4, 4, 3, 2, 18, 0) (0, 3, 4, 2, 19, 3)

(2, 3, 8, 18, 0, 0) (0, 3, 4, 21, 3, 0) (0, 1, 4, 24, 2, 0)

a > d

a > c b > d

a > b b > c c > d

(1, 2, 4, 4, 2, 18)

(1, 3, 3, 6, 17, 1) (1, 2, 4, 4, 17, 3)

(1, 4, 8, 13, 4, 1) (1, 3, 3, 20, 3, 1) (1, 2, 4, 20, 3, 1)

Figure 3: Original data (top) and monotone rela-
belling (bottom).

Next, we determine the Pareto optimal front. We
already know that a � b � c � d is the closest linear
order to monotonicity so it belongs to the Pareto
optimal front. In addition, we trivially know that
a ∼ b ∼ c ∼ d belongs to the Pareto front too.
Therefore, we will need to look for the closest weak
orders with 3 and 2 equivalence classes.

Considering the closest linear order a � b � c �
d, we are going to check the number of changes
needed to restore monotonicity for the three possi-
ble weak orders with 3 equivalence classes that are
linearly extended by a � b � c � d:

• a ∼ b � c � d: 77;
• a � b ∼ c � d: 83;
• a � b � c ∼ d: 91.

Note that the best weak order with 3 equivalence
classes that is linearly extended by a � b � c � d
is a ∼ b � c � d. We need now to check if there is
another weak order with 3 equivalence classes (not
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necessarily linearly extended by a � b � c � d) with
a smaller number of changes. Normally, we would
need to check all the possible weak orders but, using
the pruning technique, we can reduce the number
of studied weak orders.
Consulting Table 2, we can observe that the only

linear order with a cost smaller than 77 is b � a �
c � d. Therefore, we only need to study the three
possible weak orders with 3 equivalence classes that
are linearly extended by b � a � c � d:

• b ∼ a � c � d: 78;
• b � a ∼ c � d: 98;
• b � a � c ∼ d: 92.

Note that the costs of a ∼ b � c � d and b ∼
a � c � d differ in a unit. This is due to the odd
number of voters that renders a real tie between
both alternatives impossible.

We can also note that the calculation of the costs
of b � a ∼ c � d and b � a � c ∼ d is unnecessary.
b � c � a � d is a linear extension of the first
one and it has a cost of 78 (≥ 77). Analogously,
b � a � d � c is a linear extension of the second
one and it has a cost of 83 (≥ 77).

We can therefore observe that a ∼ b � c � d =
b ∼ a � c � d is the closest weak order with three
equivalence classes and it belongs to the Pareto op-
timal front.
Finally, we are going to calculate the costs of the

weak orders with 2 equivalence classes linearly ex-
tended by a � b � c � d.

• a � b ∼ c ∼ d: 132;
• a ∼ b � c ∼ d: 95;
• a ∼ b ∼ c � d: 112.

The linear orders with a cost smaller than 95 are
a � b � c � d (45), a � b � d � c (90), a � c �
b � d (80), b � a � c � d (60), b � a � d � c (83),
b � c � a � d (78) and c � b � a � d (89).

Therefore, the possible weak orders with 2 equiv-
alence classes obtained from this linear orders are:

• a � b ∼ c ∼ d: 132;
• a ∼ b � c ∼ d: 95;
• a ∼ b ∼ c � d: 112;
• a ∼ b ∼ d � c: 146;
• a ∼ c � b ∼ d: 140;
• b � a ∼ c ∼ d: 128;
• b ∼ c � a ∼ d: 129;
• c � a ∼ b ∼ d: 145.

Note that it is not necessary to compute all these
costssince we can find linear extensions with a cost
higher than 95. Finally, we add a ∼ b � c ∼ d to
the Pareto optimal front, yielding:

P = {a � b � c � d, a ∼ b � c � d,
a ∼ b � c ∼ d, a ∼ b ∼ c ∼ d}.

5. Conclusions and open problems

In this work, we extended an existing ranking
method to take into account hitherto unused in-
formation, guarantee additional intuitive properties
(the feasibility conditions, first and foremost) and
to allow for more flexibility on the output. Due
to the non-trivial nature of the extension, an inte-
ger linear problem needed to be constructed. The
use of lower bounds to speed up computation has
been illustrated, and the full Pareto front of possi-
ble optimal linear and weak order solutions has been
computed in an example application. Weak order
solutions are important in practice, as, often, mul-
tiple candidates can be considered equally suited.

Nevertheless, it remains an open problem to de-
cide when such an equivalence is justified. To deter-
mine when this is the case, one will probably have to
examine the inputs to the ranking method. Identi-
fying quantifiable indicators that point to an equiv-
alence being appropriate, is a challenging task. On
a related note, allowing voters to express equiva-
lence between candidates is another interesting area
of future research. This will probably require a new
distance metric, among other things. Making sure
voters who express a linear order are not penalized
or advantaged with respect to those who express a
weak order is a topic that requires careful consider-
ation.
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