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Abstract

Graph-based data mining approaches have been mainly proposed to the task
popularly known as frequent subgraph mining subject to a single user pref-
erence, like frequency, size, etc. In this work, I propose a new crossover oper-
ator for frequent subgraph mining problem, where a subgraph (or solution)
is defined by a genetic algorithm through several iterations, reproductions
and filtering. I have develop a standard genetic algorithm, which includes
most of the used stages as selection, crossover (without mutation), evalua-
tion and replacement. Evolutionary algorithm for Graph-base data mining
approaches is a very recent field, and the genetic algorithms for frequent
subgraph mining subject is introduced in this project, with the proposal of
a new crossover operator. This project is based in the framework of Subdue
algorithm for subgraph mining. The method is called optimization by genetic
algorithms (GAOptimize) and has several advantages: (i) optimization from
a Subdue’s solutions stack in a single run (ii) selection of different constraints
for substructure selection and reproduction (iii) search in the subgraphs lat-
tice space and (iv) capability to deal with different isomorphic graph search
algorithms. The good performance of GAOptimize is shown on two samples
datasets from Subdue and two real-life datasets.



Keywords: Graph-based data mining, Frequent subgraph mining, Sub-
due, Genetic Algorithms, Evolutionary optimization, Crossover Operator.



Chapter 1

Introduction

Graph-based data mining (GBDM) has been prevalently used in a wide range
of application domains, such as computing communities [1][2], subgraph dis-
covery [3][4][5][6], topic detection [7], attack detection [8], computing the
number of triangles [9], clustering [10][11], peta graph mining [12]. Recently
GBDM has been recognized as one of the ten challenging problems in data
mining research [13]. For the recent developments and comprehensive survey
of this important and emerging topic, the reader is referred to [14][3].

GBDM approaches are characterized by the representation of multi-relational
data in the form of graphs. They have been extensively applied to the
task popularly known as frequent subgraph mining. These approaches can
be categorized into mathematical graph theory-based approaches (such as,
MoFa/MoSS [15], FSG [16], Gaston [17], gSpan [18], CloseGraph [19], gPrune
[20]), greedy search-based approaches (like Subdue [21] and GBI [22]), and
kernel function-based approaches [23]. All these approaches work by per-
forming a search in the lattice of all possible subgraphs [24]. The underlying
search process, which could either involve an exact exhaustive or approximate
heuristic search, is usually guided by a single objective, which represents a
unique and specific user preference.

The existing GBDM approaches applying such simple thresholds for fre-
quent subgraph mining task have important limitations. For example, the
number of mined subgraphs is large (respectively, few or nil) in the cases of
weak (respectively, strict) thresholds [25]. Moreover, in real-life applications,
a user is generally interested in mining a graph-based repository using several
objectives that are actually meaningful to her/him, which are often conflict-
ing in nature [25]. For example, users prefer obtaining subgraphs with both
high frequency and size values. Nevertheless, these objectives are conflicting
as simpler descriptions are usually the most frequent ones and vice-versa.

The Subdue framework [21] offers a substructure discovery algorithm,



which performs data mining on databases represented as graphs. The sys-
tem performs two key data-mining techniques: unsupervised pattern dis-
covery and supervised concept learning from examples. Subdue discovers
substructures searching (using a beam search algorithm) that compress the
original data and represent structural concepts in the data.

The main idea of the new crossover operator proposed in this project, is
to use a set of parents P to reproduce a set of children C' considering the
lattice space of P. This task is done merging the parent chromosomes and
selecting consecutively a number of edges and vertices at random. As we
show at final of this report, this new approach shows good results in the
datasets used.

In the following section I will describe the related work with the respective
objective of the project. Later, I will do a review of the methodology adopted
to develop the method called GAOptimize. Finally, I will do a complete
explanation of the algorithm, with some graphics, examples and results.



Chapter 2

Related work and contribution

Recent work in the data mining community has been focused on developing
graph-based data approaches to discover subgraphs consisting of complex
relationships between entities [14][21]. In this section, we briefly review some
fundamental developments related to our work.

2.1 Related work

2.1.1 Gaston

GrAph Sequence Tree extractiON (GASTON) algorithm [17]. Given a database
of graphs, a graph mining algorithm searches for substructures that satisfy
constraints such as minimum frequency, minimum confidence, minimum in-
terest and maximum frequency. Example of substructures include graphs,
trees and paths, for these substructures many mining more efficient, GAS-
TON is based on the “Quick-start principle”, exploiting the fact that the
various substructures are contained in each other.

2.1.2 gSpan

Graph-based Substructure PAtterN mining (gSpan) [18], which discovers fre-
quent substructures without candidate generation. gSpan builds a new lexi-
cographic order among graphs, and maps each graph to a unique minimum
DFS code as its canonical label. Based on this lexicographic order, gSpan
adopts the depth-first search strategy to mine frequent connected subgraphs
efficiently.



2.1.3 MoFa/MoSS

Mining MOlecular FrAgments (MoFa) [15] is an algorithm to find fragments
sets of molecules that help to discriminate between different classes of, for
instance, activity in a drug discovery context. Instead of carrying out a
brute-force search, our method generates fragments by embedding them in
all appropriate molecules in parallel and prunes the search tree based on
a local order of the atoms and bonds, which results in substantially faster
search by eliminating the need for frequent, computationally expensive re-
embeddings and by suppressing redundant search.

2.14 FSG

Frequent SubGraph discovery algorithm (FSG) [16] for finding frequent sub-
graphs in large graph datasets. FSG starts by enumerating all frequent single
and double edge subgraphs. Then, it enters its main computational phase,
which consists of a main iteration loop. During each iteration, FSG first
generates all candidate subgraphs whose size is greater than the previous
frequent ones by one edge, and then counts the frequency for each of these
candidates and prunes subgraphs that do no satisfy the support constraint.
FSG stops when no frequent subgraphs are generated for a particular itera-
tion.

2.1.5 gPrune

gPrune [20] algorithm proposes to incorporate all the constraints in such
a way that they recursively reinforce each other through the entire mining
process. Pattern-inseparable Data-antimonotonicity, is used to handle the
structural constraints unique in the context of graph, which, combined with
known pruning properties, provides a comprehensive and unified classifica-
tion framework for structural constraints. The exploration of these antimono-
tonicities in the context of graph pattern mining is a significant extension
to the known classification of constraints, and deepens our understanding of
the pruning properties of structural graph constraints.

2.1.6 GBI

Graph-Based Induction (GBI) [22] extracts typical patterns from directed
graph data by stepwise pair expansion, including tree structured data and
multi-inputs/outputs nodes and loop structure which cannot be treated in
the conventional way.



Subdue (Graph, BeamWidth, MaxBest, MaxSubSize, Limit)
ParentList = {}
ChildList = {}
BestList = {}
ProcessedSubs = 0
Create a substructure from each unique vertex label and its single-vertex instances;
insert the resulting substructures in ParentList
while ProcessedSubs <= Limit and ParentList is not empty do
while ParentList is not empty do
Parent = RemoveHead(ParentList)
Extend each instance of Parent in all possible ways
Group the extended instances into Child substructures
foreach Child do
if Size0f(Child) <= MaxSubSize then
Evaluate the Child
Insert Child in ChildList in order by value
if Length(ChildList) > BeamWidth then
Destroy the substructure at the end of ChildList
ProcessedSubs = ProcessedSubs + 1
Insert Parent in BestList in order by value
if Length(BestList) > MaxBest then
Destroy the substructure at the end of BestList
Switch ParentList and ChildList
return BestList

Figure 2.1: Subdue’s discovery algorithm [21]

2.1.7 Subdue

Subdue [21] is a GBDM method designed for different tasks as frequent sub-
graph mining, hierarchical clustering, and classification model building from
relational data.

Subdue is an instance of greedy search-based approaches,which use heuris-
tics to evaluate the subgraphs. It represents data in graph form and it can
support either directed or unidrected edges. Input to Subdue is a single
graph or a set of graphs. The framework of Subdue is explained in the figure
2.1.

In the algorithm, we have to distinguish a step very important for this
project: Evaluate the child. The evaluation method is based on the MDL [26]
principle. The MDL value of the subgraph p is given as:

MDL(G,p) = DL(p) + DL(G|p) (2.1)

where DL(p) is the description length of the subgraph p, and DL(G|p)
is the description length of the input graph G compressed by the subgraph
p. Thus, we can conclude that the best subgraph has the smallest value of
MDL measure.



Genetic Algorithm
Input Paramteres (Pc, Pm, NumGen, PopSize, ... );
t < 0;
Init(P(t)); // Initial Population
Evaluate(P(t)); // Fitness funcion
while ( t < NumGen) {
t — t+1;
P’(t) = Select(P(t-1)); // Selection
P’’(t) = Alter(P’(t)); // Crossover and Mutation
Evaluate( P’’(t)); // Fitness function
P(t) = Replace(P’(t), P’’(t)); // Replacement

end.

Figure 2.2: A conventional genetic algorithm [28§]

2.1.8 Genetic Algorithms

Genetic Algorithms are search and optimization algorithms which are based
on the mechanics of natural evolution, particularly on natural selection and
genetic inheritance.

They were introduced by John Holland and his collaborators at the Uni-
versity of Michigan in the early 1970’s [27]. A conventional genetic algorithm
is shown in the figure 2.2.

2.1.9 GBDM and Evolutionary Algorithms

EP belogs to the same category of evoluonary computation as genetic al-
gorithms (GAs) [28][29][30], the primary differences being (i) EP does not
place any constraint on the representation, while GA usually requires the
problem solutions to be encoded as strings, and (ii) EP does not use any
sexual reproduction (or crossover), while crossover is one of the fundamental
operators in GA. In EP only mutation is applied on the parent chromosomes
to produce offspring [31]. The offspring are then evaluated in the same way
as their parents. Subsequently the next generation is selected from collection
of both the parents and the offspring. In this regard, EP is quite similar
to evolutionary strategies (ES) [32], although the two approaches evolved
independently.

So, the searching capability of evolutionary programming is utilized for
discovering concepts or substructures that are often repeating in such struc-
tural data. So, the substructure discovery algorithm used by the EP-based
technique, is shown in figure 2.3.



Algorithm EP-Substructure-Discovery(G,Pop-Size, Limit)
ParentList = {}
ChildList = {}
ChromList = NewChromList = {}
BestChromosome = Chromosome = {}
Generations = 0
Create a substructure from each unique vertex label and its single-vertex instances
Insert the resulting substructures in ParentlList
while ParentList is not empty do
Parent = RemoveHead( ParentList)
Extend each instance of Parent in all possible ways
Group extended instances into Child substructures
foreach Child do
Insert Child in ChildList
for i = 1 to Pop-Size do
Randomly select one substructure from ChildList
Chromosome = pointer to this substructure
Evaluate the substructure
Assign the value to the fitness of Chromosome
ChromList = ChromList + Chromosome
while Generations < Limit do
foreach chromosome in ChromList do
Mutate chromosome and append to ChromList
Evaluate the mutated substructure
Assign value to the fitness of chromosome
Store the chromosome with maximum fitness in BestChromosome
Introduce BestChromosome in NewChromList
Select (Pop-Size - 1) chromosomes from ChromList and append to NewChromList
Assign NewChromList to ChromList
Generations = Generations + 1
return BestChromosome

Figure 2.3: EP-based discovery algorithm [31]



2.2 Own contribution

The crossover operator for frequent subgraph mining is a new concept, that I
will try to introduce in this project. It begins from a binary representation of
the parents to builds the offsprings, considering the lattice space of G. Each
child reproduced will be reevaluated in the complete graph G, to reject it or
admit it into the possible solutions of Subdue, by a fitness function called:
MDL [26].

The original Subdue algorithm is wrote in ANSI C with a procedural
paradigm of programming, and it offers a good performance for many differ-
ent problems, that we can see in the user guide. The crossover operator and
the genetic algorithm that I have designed, was attached as a new library
into the main header “subdue.h”. In most cases the new implementation has
good performance, as we show later.

2.3 Objective

Develop a Crossover Operator for Frequent Subgraph Mining. Given that
there is not any research in Genetics Algorithms for Frequent Subgraph Min-
ing, we will propose a new crossover operator which integrates the GA idea
to frequent subgraph mining concept.



Chapter 3

Crossover Operator proposal

In this section, we will describe the application of the crossover operator
into an evolutionary algorithm for optimal subgraph discovery, including its
methodology description.

3.1 Genetic algorithms for Frequent Subgraph
Mining

We have not found any specific reference of using Genetics Algorithms for
Frequent Subgraph Mining, so, we have to apply the conventional genetic
algorithm explained in the section 2.1.8 and the figure 2.2. Thus, we can
distinguish two different phases: (i) Sentences before first cycle starts, and
(ii) Sentences inside the while cycle. The inputs parameters, as the initial
population will be all the solutions (substructures) of Subdue algorithm.

Every substructure of the initial population is evaluate by MDL (Minimun
description length) index, described in section 2.1.7 and describes the level
of information that contains the substructure from the initial graph. Thus, a
greater MDL index means a greater level of information and a better quality
of the chromosome.

The second phase includes the classic selection, crossover, mutation, eval-
uation and replacement operations. The selection method does the following
steps:

k separation The classic GA requires chromosomes with the same size. Al-
though, in our binary representation of the chromosome have the same
size nxn, the graphical representation shows that two chromosomes
does not need to have the same size, i.e., the same k£ number of nodes.
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However, if the user wants to keep the same size for the parent chro-
mosomes, then we will have to separate in [ levels, the different sub-
structures with the same k.

[ selection If the user wants to keep the constraint mentioned in the preced-
ing item, then we will have to select a specific level of k substructures.
Given an uniform distribution such that U7(0,1), we select a level with
a number of substructures greater than 2. This procedure will make a
pool of similar substructures that we will use later, for select our parent
chromosomes.

P selection Regardless of the user’s decision, we will have to select the
parent chromosomes for a pool of substructures, with the same k or
not. Only the substructure which have instances that share at least
one node between them, as the figure 3.1 shows, could be selected. So,
if we have more than 2 substructures that have an instance which share
at least one node, then we will have more than 2 parents chromosomes
P for our later cross operation. This particular case we will denominate
it as a coincidence. If we have m different coincidences, then we will
select at random, under a uniform distribution U~ (0, m) the couple of
parent to use.

This selection process is just an adaptation of the classic GA to our
project, to adjust it to the later crossover operator. Note that in this case
we have preferred to let open the possibility of using more than 2 parents in
any cross operation.

The transformation process includes the crossover and mutation oper-
ations, nevertheless, the crossover process requires a whole subsection to
describe it, because it is our new proposal. The mutation operation will not
cover in our project.

Once every offspring is generated, everyone are evaluated and inserted in
the substructure list of the initial population. The evaluation and insertion
are done in the same function, removing the worst results after nSubs‘ sub-
structures. Therefore, we have always nSubs substructures in every iteration
of our model.

3.2 Crossover problem statement

The crossover operator problem is based on the idea of subgraph optimiza-
tion, where a solution x is defined a subgraph C, a set of nodes and edges,

11
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INSTANCES FROM DIFFERENT SUBSTRUCTURES

REAL GRAPH ° e

Figure 3.1: Example of the crossover operator.

12



the solution space is referred as the subgraph search space, i.e., the subgraph
lattice.

The crossover method requires a special analysis, because we cannot only
cross two chromosomes as the classic GA indicates. We have a set P of
square binary matrices as bi-dimentional chromosomes, but if we make some
offspring from the classic approach, just interchanging some percentage of
everyone, then we may brake the structure of the initial graph G, making
offspring that cannot correspond with the original graph.

To make children or offsprings that correspond with their original graph,
we have to consider the lattice space of the initial graph G, which is built
by the set of nodes and edges. This consideration is more easy to imple-
ment from a graphical representation of the problem, besides of the binary
representation.

In this context, we cannot make chromosomes from the substructure,
which is represented by a graph pattern, because we have to consider the local
connections of every subgraph, represented by subdue algorithm as instances.
This local connections is added to our problem as neigborhood problem, e.g.,
every instance to be crossed, from different substructure, must share at least
one node as the figure 3.1 shows. Thus, a particular chromosome will be
represented by just one instance, that represent, a particular subgraph of G.

3.3 Methodology

The current project is developed in the software engineer field, because we
have to develop a computational algorithm enough stable to ensure the exper-
iments showed at the final of the document. In this context, I have preferred
an adaptation of the eXtreme Programming (XP) methodology [33], because
it has good capabilities for developments in short times, with an accept-
able quality of the solution. This methodology is explained in the following
subsection.

3.3.1 Extreme Programming

Extreme Programming (XP)[33] is an “agile methodology” that some people
advocate for the high-speed, volatile world of Internet and Web software
development [34]. XP’s critical underlying assumption is that developers can
obviate the traditional high cost of change using technologies such as objects,
patterns, and relational databases, resulting in a highly dynamic XP process.

The method that I have applied have the following basic elements (with
some notes related to our decisions in this project):

13



Planning game Quickly determine the next release’s scope. Thus, this
documents describes our planning game, including the future work.

Small releases Put a simple system into production quickly. I have done

continual implementations of GAOptimize method and its integration
with Subdue.

Metaphor Guide all development with a simple, shared story of how the
overall system works. Continually done, via e-mail (and resumed in
this document).

Simple design Design as simply as possible at any given moment. I have
try to do a model as simply as I can describe in this document.

Testing Developers continually write unit test that must run flawlessly.

Refactoring Restructure the system without changing its behavior to re-
move duplication, improve communication, simplify, or add flexibility.
Thus, although Subdues is development under an imperative program-
ming paradigm, I have developed the GAOptimize method as a new
module of subdue, very flexible, simple and with good quality.

Pair programming All production code is written by two programmers at
one machine. I have omitted this topic.

Collective ownership Anyone can improve any system code anywhere at
any time. I have omitted this topic, because It does not makes sense
in this kind of project.

Continuous integration Integrate and build the system many times a day.
This topic was strictly done every time of this project.

40-hour weeks Work no more than 40 hours per week whenever possible.
I really does not apply this topic in our project.

On-site customer Have an actual user on the team full-time to answer
questions. I have omitted this topic.

Coding standards Have rules that emphasize communication throughout
the code. In this case, I have followed the same way of coding that
Subdues uses.

14



3.4 Crossover operator method

Given a set of parents P which share at least one node, we proposes a new
crossover operation, to make a set of offsprings C. The procedure is shown in
the figure 3.1. The classic GA allows only 2 parents to make 2 offspring, but
for our purposes, for taking advantage of the nature of the operation that we
are proposing, we are letting open this possibility.

3.4.1 Chromosome representation

A substructure S is a graph pattern. Each substructure have its own isomor-
phic instances. Each instance is a unique sub-graph located into the initial
graph. For the next purposes, we will consider the graph of this instance as
a chromosome C'.

A chromosome could have two basic representation. The first one is a
graphic representation as the figure 3.1 and the second one is a binary square
matrix of size n, where n is the number of nodes of the initial graph G.

3.4.2 Crossover operator proposal

In this section we will attempt to describe my contribution of a new crossover
operator, listed in the figure 3.2. From the figure 2.2 I have called Alter (P~ (t))
to the method which will contain the core of the crossover operator. Thus,
we can distinguish two different cycles to control the parent selection and the
children reproduction. Before execute each second cycle, we have to covert to
binary (subsection 3.4.1) each graph parent (as a result from the procedure
described in subsection 2.1.8).

Afterward, inside the second cycle, we will reproduce our next offspring
and we will convert it to the graph format of Subdue, later. The result will
be added to the instance list of children. After all cycles, the children list is
filtered to remove all repeated offspring.

As we know from the previous subsection, a substructure is a subgraph
pattern into the lattice space of the initial set of graph G. To make all
conversions we have to consider each instance as an independent pattern, e.g.,
a Substructure. Nevertheless, to estimate the physical representation, e.g.,
the instances of the new substructure, we will have to apply an isomorphic
search into G to find them. Specifically, I have used the NP-hard method
provided by Subdue called FindInstances.

15



Alter(P’ (t))

t < 0;
while ( t < NumMergedParents ) {
t < t+1;
P’ (t) = ConvertGraphToBinary(P’(t));
c < 0;
while ( ¢ < NumChildrenToReproduce ) {
C < c+1;
offspring = ReproduceNewChild(P’ (t));
offspring = ConvertBinaryToGraph(offspring) ;
InsertInstanceToList(listChild,offspring);
}
}

listChild=TwinFilter(1istChild);
SubOffspring=InstanceToSubstructue(listChild);
return SubOffspring;

Figure 3.2: Overview crossover algorithm

16



Chapter 4

Experimental Study

In this chapter I will explain the experimental framework to evaluate the
algorithm proposed.

Note: The GAOptimizer has been implemented in ANSI C, and all ex-
perimetns have been performed on an Intel Core i3 at 2.33 GHz (using only
one core), with 4GB RAM, running Debian 6.0. with linux kernel 2.6.32-5-
amd64.

4.1 Dataset description

The performance evaluation study has been conducted in our experiments
on 4 datasets, which are summarized as follows:

Carbon 1. Name: Carbon
2. Type: Chemical
3. Number of vertices: 79
4. Number of edges: 90
5. Number of labels: 2
6. Author: Subdue Source Code

Subdue 1. Name: Sample
2. Type: Subdue Example
3. Number of vertices: 20
4. Number of edges: 19
5. Number of labels: 7
6. Author: Subdue Source Code

17



Pbd305d 1. Name: Pbd305d
2. Type: Protein Data Bank
3. Number of vertices: 159
4. Number of edges: 178
5. Number of labels: 5
6. Author: Protein Data Bank at http://www.rcsb.org/pdb

Pbd105d 1. Name: Pbd105d
2. Type: Protein Data Bank
3. Number of vertices: 364
4. Number of edges: 435
5. Number of labels: 9
6. Author: Protein Data Bank at http://www.rcsb.org/pdb

4.2 Parameter setting

Subdue and GAOptimizer methods have been run with three different values
of nsubs=10, 20, and 40. Each of these methods have been run for 1000
generations. A single execution of Subdue and GAOptimizer has been carried
out on the input graph datasets as a consequence of being deterministic
methods. The parameters used in the testing framework are listed in table
4.1.

4.3 Performance evaluation

To evaluate the performance of the proposed Crossover Operator, we have
used the following statistical measures: (i) Population mean (ii) Population
variance, and (iii) Maximum value. Thus, Mean and Variance will help us to
determine the behavior of the algorithm in our population, and the maximum
value will determine the real effectiveness of the algorithm.

4.4 Analysis of results

We have executed Subdue with GAOptimize method using the previous pa-
rameters, and the results are shown in the table 4.2. .

18



Parameter Value
Predefined substructure file none
Output file none
Beam width 4
Compress false
Evaluation method MDL
‘e’ edges directed true
Incremental false
Iterations 1
Limit 45
Minimum size of substructures 1
Maximum size of substructures 79
Number of best substructures | (10,20,40)
Output level 2
Allow overlapping instances false
Prune false
Threshold 0
Value-based queue false
Recursion false
gaOptimize true
numlterations 1000
limitKNodes false
numParents 2
lowerOffset 0

Table 4.1: Parameters of the testing framework
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Dataset Carbon.g
Method Subdue GAOptimal
nsubs | Generations Mean Var Max Mean Var Max
10 100 2.088357 | 0.141333 | 2.94186 | 2.262758 | 0.090199 | 2.94186
20 100 1.777807 | 0.169882 | 2.94186 | 1.960161 | 0.281191 | 3.644603
40 100 1.530214 | 0.148744 | 2.94186 | 1.729228 | 0.244242 | 3.644603
10 1000 2.088357 | 0.141333 | 2.94186 | 2.262758 | 0.090199 | 2.94186
20 1000 1.777807 | 0.169882 | 2.94186 | 2.059268 | 0.267798 | 3.644603
40 1000 1.530214 | 0.148744 | 2.94186 | 3.644603 | 0.244242 | 3.644603
Dataset Sample.g
Method Subdue GAOptimal
nsubs | Generations Mean Var Max Mean Var Max
10 100 1.190461 | 0.073411 | 1.868188 | 1.190461 | 0.073411 | 1.868188
20 100 1.09348 | 0.056636 | 1.868188 | 1.09348 | 0.056636 | 1.868188
40 100 1.09348 | 0.056636 | 1.868188 | 1.09348 | 0.056636 | 1.868188
10 1000 1.190461 | 0.073411 | 1.868188 | 1.190461 | 0.073411 | 1.868188
20 1000 1.09348 | 0.056636 | 1.868188 | 1.09348 | 0.056636 | 1.868188
40 1000 1.09348 | 0.056636 | 1.868188 | 1.09348 | 0.056636 | 1.868188
Dataset Pbd305d
Method Subdue GAOptimal
nsubs | Generations Mean Var Max Mean Var Max
10 100 2.068499 | 0.003686 | 2.168358 | 2.074885 | 0.003297 | 2.168358
20 100 1.894315 | 0.017469 | 2.168358 | 1.941247 | 0.008514 | 2.168358
40 100 1.808214 | 0.018276 | 2.168358 | 1.881699 | 0.009644 | 2.168358
10 1000 2.068499 | 0.003686 | 2.168358 | 2.086963 | 0.003376 | 2.168358
20 1000 1.894315 | 0.017469 | 2.168358 | 2.06169 | 0.003208 | 2.168358
40 1000 1.808214 | 0.018276 | 2.168358 | 2.036387 | 0.003433 | 2.219187
Dataset Pbd105d
Method Subdue GAOptimal
nsubs | Generations Mean Var Max Mean Var Max
10 100 2.565378 | 0.029952 | 2.912358 | 2.565378 | 0.029952 | 2.912358
20 100 2.389825 | 0.046658 | 2.912358 | 2.392942 | 0.045401 | 2.912358
40 100 2.213252 | 0.054211 | 2.912358 | 2.270751 | 0.037985 | 2.912358
10 1000 2.565378 | 0.029952 | 2.912358 | 2.565378 | 0.029952 | 2.912358
20 1000 2.389825 | 0.046658 | 2.912358 | 2.399672 | 0.042944 | 2.912358
40 1000 2.213252 | 0.054211 | 2.912358 | 2.351047 | 0.022966 | 2.912358

Table 4.2: Summarized results comparison
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In figures 4.1, 4.2, 4.3 and 4.4, we can observe an exponential increasing
of the means of every graph, except in graph Sample, when the iterations
or generations are also increasing. The graph Sample shows a semi-constant
behavior, because there are a small number of edges and nodes, so the values
when nsubs are 20 and 40 are equal, an very similar to nsubs 10. In general,
we can see a good behavior through iterations increase.
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Figure 4.1: Curve of means in graph: Carbon.

In figures 4.5 4.6 4.7 and 4.8 we can see the variance behavior through-
out the generations of the genetic algorithm. Thus, we can observe a good
behavior with curves which are decreasing till get semi-constant. Of course,
when nsubs is lower, then the variance is lower, because in each iterations the
algorithm is considering only the best nsubs substructures. The figure 4.6
shows a semi-constant behavior, because the graph Sample has few nodes and
edges to represent big variations in chromosomes throughout generations.

Around figures 4.9 4.10 4.11 and 4.12 we can observe the behavior of
maximum values found throughout iterations of GA. In almost cases we have
found a semi-constant curves, except in graphs Carbon and pdb305d, which
show a slight increment. The lattice space of a graph limits the number of
optimal solutions or substructues, so, we can consider this slight increment
as a very good result.

In the previous figures, we can observe variations in the variance and the
mean curves, when a newer best solution is found by the algorithm. In the
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Figure 4.2: Curve of means in graph: Sample.
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Figure 4.3: Curve of means in graph: Pbd305d.
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Figure 4.4: Curve of means in graph: Pbd105d.
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Figure 4.5: Curve of variances in graph: Carbon.
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Figure 4.6: Curve of variances in graph: Sample.
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Figure 4.7: Curve of variances in graph: Pbd305d.
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Figure 4.9: Curve of maximum values in graph: Carbon.
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Figure 4.10: Curve of maximum values in graph: Sample.
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Figure 4.11: Curve of maximum values in graph: Pbd305d.

26



3.5

2.5

2 'nsubs=10

s NS UDS =20

1.5 s NS Ubs =40
1
0.5
0

0 200 400 600 800 1000 1200

Figure 4.12: Curve of maximum values in graph: Pbd105d.

same way, we can observe in the real datasets a better convergence of the
algorithm in the variance of population when nsubs is greater.

27



Chapter 5

Concluding remarks and future
work

5.1 Conclusion

I have proposed the use of Genetics Algorithms for optimize the search strat-
egy for subgraph mining in relational graph databases. The approach has
been customized using the Subdue algorithm and has been called as GAOp-
timize (Genetic Algorithm Optimization). Two different variants on the se-
lection of chromosomes also were proposed.

A development methodology was successfully applied to this project, mak-
ing quickly the algorithm proposed. Although, we have proposed only a Cross
Operator, we had to do special functions for selection and replacement, offer-
ing to the user options in order to improve the results in an specific problem.

The performance of GAOptimize has been analyzed using two real-world
datasets and two sample datasets (from the source code of Subdue). From
the obtained results, we have found that GAOptimize is able to discover
new optimal substructures or solutions in a single run.

5.2 Future work

Several ideas for future developments arise from this work. On the one hand,
at the final of the crossover operator, the algorithm uses the method of
Subdue called FindInstances to do an isomorphic search of the chromosome
reproduced into the set graph G to find the instances for the new substruc-
ture. This method use a NP-Hard method which use a modified version of
the beam search of Subdue, to estimate any possible isomorphic subgraph
equal to the chromosome. This search is computationally expensive for large
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graphs, and it would be very useful use other methods to allow use the good
capabilities of GAOptimize for these kind of graphs.

The crossover operator was designed to be applied directly on instances of
substructures that shares at least one node. So, we have two big future chal-
lenges. On the first hand, the crossover operator discards all non-overlapped
instances. And, on the second hand, the crossover operator considers as par-
ent chromosomes the instances objects, the real location of a graph pattern
into GG. So, a crossover operator in the abstraction level of substructures, has
to consider the inclusion of all overlapped and non-overlapped instances.

The values used to evaluate the performance of the crossover operator
only gives an idea of the progress of the algorithm, and some of them (like
mean and variance) has not empirical application known, so, it could be
interesting find any practical application for those evaluators.

In future realses of Subdue, would be very good see development in differ-
ent paradigm of programming, like Object-Oriented Programming (in C++),
because it would make easier the implementation of algorithms or modules,
as we have developed.
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