

Manual del programador de Templates del Trabajo Fin de Máster realizado por

Manuel Vázquez Muñiz

para la obtención del título de

Máster en Ingeniería de Automatización e Informática Industrial

Upgrade of the UNICOS Time Stamp Push Protocol

(TSPP) broker to include ultra-fast events

Junio 2017

Templates programmer manual Manuel Vázquez Muñiz 1

INDEX
INDEX .. 1

FIGURE INDEX .. 2

1. Introduction ... 3

1.1. Project identification ... 3

1.2. Project overview ... 3

1.3. Document overview .. 3

2. Templates code .. 4

2.1. Files modified .. 4

2.2. General functions .. 6

2.3. Digital Input ... 6

2.4. Digital Output .. 7

2.5. Digital Alarms .. 7

2.6. OnOff ... 8

2.7. Communication ... 8

2.8. TSPP ... 8

2.9. OB Compilation ... 9

2.10. Logic .. 9

2.11. WINCC OA ... 10

2.12. Specifications File Generation .. 10

2.13. Semantic Rules .. 11

2.14. PLC Parameters ... 11

3. Plugin code ... 12

4. Acronyms ... 14

5. Documents of the project ... 15

6. Bibliography ... 16

Templates programmer manual Manuel Vázquez Muñiz 2

FIGURE INDEX
Fig. 1. Fast interlock error in UAB log ... 4

Fig. 2. Difference between original (left) and new (right) implementation of the python file used to

generate the digital input (DI) SCL file .. 7

Fig. 3. Difference between original (left) and new (right) implementation of the “get_optimized_block”

function and the new “get_DB_blocks” in the python file used to generate the digital input (DI) SCL

file ... 7

Fig. 4. Difference between “CPC_TSPP_UNICOS.scl” (right) and “CPC_TSPP_UNICOS_FI.scl” (left) files.

 .. 9

Fig. 5. Difference between original (left) and new (right) implementation of the Digital Input Device

Type file with fast interlock attribute ... 10

Fig. 6. New PLC params for each kind of object .. 11

Fig. 7. IntelliJ configured for the cpc wizard execution .. 12

Fig. 8. Extract of the “s7db_id” function used in the plugin modified for the fast interlock DBs 13

Fig. 9. Extract of the “createDeviceInstanceResources” function used in the plugin modified for the

fast interlock symbols ... 13

Templates programmer manual Manuel Vázquez Muñiz 3

1. Introduction

1.1. Project identification

 Title: Upgrade of the UNICOS Time Stamp Push Protocol (TSPP) broker to include ultra-fast

events

 Author: Manuel Vázquez Muñiz

 Advisor: Víctor Manuel González Suárez

 Co-advisor: Jerónimo Ortolá Vidal

 Date: June 2017

 Organization: CERN

1.2. Project overview

The current project objective is to solve the issue of the fast interlocks (or ultra-fast events)

by improving the Time Stamp Push Protocol (TSPP) used to communicate the control and supervision

layers. This protocol is used in the framework UNICOS, and this framework should also be modified as

to support this new feature.

With this new feature, the organization will be able to fulfil the requirements of the internal

clients who need this capability as to have a proper use of their equipment.

1.3. Document overview

This document explains the changes made to the python code of the templates (as well as the

java code of the plugin of UAB) and other files as to generate the SCL code used to make a functional

fast interlock treatment using the UNICOS framework.

For an insight of the full code of the template files that have been modified, see the Templates

code document. The plugin files of UAB that have been modified are also included in that document.

Templates programmer manual Manuel Vázquez Muñiz 4

2. Templates code

As to generate the new SCL code necessary, some of the template files have been modified.

They are described in this section.

The modifications of the files were tested making use of the UNICOS cpc wizard, as the

resources it uses are the ones from the resources folder (in most of the cases). The execution time

errors were displayed in the UAB log, and used as to correct the mistakes or misbehaviours of the files

modified.

A screenshot of the UAB log is shown in Fig. 1.

Fig. 1. Fast interlock error in UAB log

2.1. Files modified

This chapter contains a list of the files created or modified in the “Resources” folder.

 DeviceTypes (all files included in it)

 PlcParams

o Siemens.xml

 S7InstanceGenerator

o Config

 CPC_TSPP_UNICOS_FI.scl

o Rules

 GlobalTemplates

 S7Inst_Communication_Template.py

Templates programmer manual Manuel Vázquez Muñiz 5

 S7Inst_Communication_Template.scl

 S7Inst_Communication_Template_FI.scl

 S7Inst_CompilationOB_Template.py

 S7Inst_CompilationOB_Template.scl

 S7Inst_TSPP_UNICOS_Template.py

 TypeTemplates

 S7Inst_DigitalAlarm_Template.py

 S7Inst_DigitalAlarm_Template.scl

 S7Inst_DigitalAlarm_Template_DB.scl

 S7Inst_DigitalAlarm_Template_optimized.scl

 S7Inst_DigitalInput_Template.py

 S7Inst_DigitalInput_Template.scl

 S7Inst_DigitalInput_Template_DB.scl

 S7Inst_DigitalInput_Template_optimized.scl

 S7Inst_DigitalOutput_Template.py

 S7Inst_DigitalOutput_Template.scl

 S7Inst_DigitalOutput_Template_blocks.scl

 S7Inst_OnOff_Template.py

 S7Inst_OnOff_Template.scl

 S7Inst_OnOff_Template_DB.scl

 S7LogicGenerator

o Rules

 CommonTemplates

 S7Logic_DefaultAlarms_Template.py

 GlobalTemplates

 S7Logic_FC_PCO_Logic_Template.py

 SemanticCheckRules

o GlobalTemplates

 ApplicationGeneralCheckRules.py

o TypeTemplates

 DigitalAlarm_SemanticCheckRules.py

 DigitalInput_SemanticCheckRules.py

 DigitalOutput_SemanticCheckRules.py

 OnOff_SemanticCheckRules.py

Templates programmer manual Manuel Vázquez Muñiz 6

 SharedTemplates

o FI_Functions.py

 WinCCOAInstanceGenerator

o Rules

 TypeTemplates

 WinCCOA_DigitalAlarm_Template.py

 WinCCOA_DigitalInput_Template.py

 WinCCOA_DigitalOutput_Template.py

 WinCCOA_OnOff_Template.py

2.2. General functions

A couple of functions have been created to get the fast interlock and the normal instances

from an instance list (“get_FI_instance_list” and “get_normal_instance_list” respectively) and added

to a new file “FI_Functions.py” contained inside the “Shared_Templates” folder, which contains the

files shared by all the templates.

2.3. Digital Input

The files used to generate the digital input SCL file have been modified to include the fast

interlock code generation. The common code is still contained in the

“S7Inst_DigitalInput_Template.scl”, whereas the code for the data blocks that are similar for normal

and fast interlock objects has been included in the “S7Inst_DigitalInput_Template_DB.scl” file. The

code for the function block, function and data block of the digital inputs is contained in the

“S7Inst_DigitalInput_Template_optimized.scl” or in “S7Inst_DigitalInput_Template_simplified.scl” for

the simplified objects (used when the application is defined as large).

The processing of these files is done in the “S7Inst_DigitalInput_Template.py” and includes

the modification of the code for generating the normal or the fast interlock blocks. All these files are

included in the “S7InstanceGenerator\Rules\TypeTemplates” folder.

In Fig. 2 is shown an extract of the difference between the original and the new python

template used to generate the SCL DI file. Note that the function “get_optimized_block” has a new

parameter to indicate if the block is or not fast interlock. That’s why the function is called once for the

fast interlock objects with that parameter to “True” and once for the non-fast interlock objects with

Templates programmer manual Manuel Vázquez Muñiz 7

that parameter to “False”. The “get_optimized_block” function with the new parameter is shown in

Fig. 3.

Fig. 2. Difference between original (left) and new (right) implementation of the python file used to generate the digital
input (DI) SCL file

Fig. 3. Difference between original (left) and new (right) implementation of the “get_optimized_block” function and the
new “get_DB_blocks” in the python file used to generate the digital input (DI) SCL file

2.4. Digital Output

Same modifications have been done for the digital output code as for the digital input one,

with the exception that no simplified nor optimized blocks are needed, so the whole blocks that are

similar for fast interlock and normal processing are included in the

“S7Inst_DigitalOutput_Template_blocks.scl” file.

2.5. Digital Alarms

Same modifications have been done for the digital alarm code as for the digital input one, with

the exception that no simplified blocks are needed.

Templates programmer manual Manuel Vázquez Muñiz 8

2.6. OnOff

The modification of the code for the OnOff is similar to the one of the digital input in the sense

that the common code and the data blocks that are similar are processed the same way. The different

part, which is the function that calls the objects and that are not included in a multiinstance DB but in

one DB for each object, is created inside the python file “S7Inst_OnOff_Template.py” as plain text. As

such, that file has been modified as to include the function used to call the fast interlock objects.

2.7. Communication

The files to generate the communication file have been modified as to include the new code

necessary for the fast interlock treatment. A new file S7Inst_Communication_Template_FI.scl has

been included as to generate the code of the blocks used for the fast interlock processing

(“DB_FIEvent” and “FC_Event_FI”). The files “S7Inst_Communication_Template.scl” and

“S7Inst_Communication_Template.py” have also been modified as to include the fast interlock code

in the generated SCL file and to modify the normal blocks as to include the code necessary for the fast

interlock objects processing in the normal PLC processing and the data blocks of the fast interlock

objects in the normal TSPP processing.

The files for the communication file generation are included in the

“S7InstanceGenerator\Rules\GlobalTemplates” folder.

2.8. TSPP

The file “S7Inst_TSPP_UNICOS_Template.py”, which is included in the

“S7InstanceGenerator\Rules\GlobalTemplates” folder, has been modified as to select the

“CPC_TSPP_UNICOS_FI.scl” file instead of the “CPC_TSPP_UNICOS.scl” file whenever a fast interlock

is present in the project. It also includes now the amount of status tables used inside the fast interlock

processing depending on the objects used (although it should always be 4 more status tables if a fast

interlock is present). The new file “CPC_TSPP_UNICOS_FI.scl” included in the

“S7InstanceGenerator\Config” folder has the new function block and data blocked defined as to

support the TSPP treatment for the fast interlocks.

A sample of the interrupts established in the new “CPC_TSPP_UNICOS_FI.scl” file as to avoid

the concurrency issues in shown in Fig. 4.

Templates programmer manual Manuel Vázquez Muñiz 9

Fig. 4. Difference between “CPC_TSPP_UNICOS.scl” (right) and “CPC_TSPP_UNICOS_FI.scl” (left) files.

2.9. OB Compilation

The files used for the generation of the organization blocks and some other type of blocks

have been modified as to include the new organization block used to treat the fast interlock (either

OB 40 for hardware interrupts or OB 34 for cyclic interrupts) and the function, function block and data

block used inside them for the peripheral updates.

Although it’s necessary to have the full chain of objects for the processing of the fast

interlocks, the check of existence of at least a fast interlock object of each kind is done as to add the

function call inside the OB. That’s done that way in concordance with the generation of the OB 1,

which is the reference that has been used as to create these OBs.

The files used for the OB compilation file generation are included in the

“S7InstanceGenerator\Rules\GlobalTemplates” folder.

2.10. Logic

The “S7Logic_FC_PCO_Logic_Template.py” used as to generate the code of the

“FC_PCO_Logic” where the logic of the UNICOS processing is called, both for the PCO objects and the

field ones, has been modified as to include the new “FC_FI_LOGIC” function where just the fast

interlock logic processing is done.

The file mentioned is included in the “S7LogicGenerator\Rules\GlobalTemplates” folder.

The alarm logic processing is generated with the use of the

“S7Logic_DefaultAlarms_Template.py” contained in the

“S7LogicGenerator\Rules\CommonTemplates” folder. The file has been modified as to include the fast

interlock alarms which are contained in a different data block (“DB_DA_FI.DA_SET”) than the ones

implemented already.

Templates programmer manual Manuel Vázquez Muñiz 10

2.11. WINCC OA

The different files for generating the wincc_oa_db_file_”project name”.txt file used to create

the WINCC OA project are included in the “WinCCOAInstanceGenerator”. The files that have been

modified are the ones included in the “Rules\TypeTemplates” inside that folder which correspond to

the objects used inside the fast interlock processing (for example,

“WinCCOA_DigitalInput_Template.py” for the digital input processing). The files have been modified

as to call the “getAddressSCADA” function included in the plugin with the proper object name

(“$Alias$_StsReg01_FI” for the fast interlock status register 01 of the object called “Alias”) where

necessary.

2.12. Specifications File Generation

The specifications file generation is done with the xml files described in the

“Resources\DeviceType” folder for the different UNICOS objects. This generation is done with the use

of the baseline code, so the modification needs to be implemented inside the UAB as to be tried.

The files contained in the directory mentioned (for example, “DigitalInputDeviceType.xml” for

digital input) were modified as to include a new column (“Fast Interlock Type”, included in the

“LogicDeviceDefinitions attributefamily”) where the fast interlock objects are indicated by selecting

the type of interrupt that is going to be used (“Hardware Interrupt” or “Cyclic Interrupt”). These files

are also used later by the UAB as to check the proper data filling inside the excel file.

They also have been modified as to indicate whether the objects are used or not in the fast

interlock processing (for the symbols generation), as shown in Fig. 5 for digital inputs.

Fig. 5. Difference between original (left) and new (right) implementation of the Digital Input Device Type file with fast
interlock attribute

Templates programmer manual Manuel Vázquez Muñiz 11

2.13. Semantic Rules

The files for checking the semantic rules have been modified as to check the new rules existent

for the fast interlock treatment. The files are contained in the “Resources\SemanticCheckRules”

folder, in the “GlobalTemplates” folder for global checking and in the “TypeTemplates” folder for the

different UNICOS objects.

2.14. PLC Parameters

The symbols of the Step 7 program are generated with the use of the UnicosApplication.xml

file contained in the main directory of any application. This file is generated at the UNICOS application

creation making use of the correspondent file in the “Resources\PlcParams” folder (“Siemens.xml” for

Siemens Step 7 applications).

As this file cannot be generated with the use of a modified “Siemens.xml” file from the

program folder because it generates it in the program creation only, that file is modified and included

in a jar file existent in the UAB installation folder for every cpc version. That file contains the resources

for generating any project, including the Resources folder.

The functions, function blocks and data blocks that can be generated for each type of fast

interlock object are shown in Fig. 6.

Fig. 6. New PLC params for each kind of object

Templates programmer manual Manuel Vázquez Muñiz 12

3. Plugin code

Some of the files containing the code of the plugin used in UAB have been modified and are

described in this section. The changes of these files have been tested with the use of the IntelliJ

software [1], with the proper configuration as to be able to execute the cpc wizard with the local data

of the computer, so that the changes are not directly included in the live version.

A screenshot of the IntelliJ application is shown in Fig. 7.

Fig. 7. IntelliJ configured for the cpc wizard execution

The function “s7db_id” contained in the file “S7Functions.java”, and included in the package

“research.ch.cern.unicos.cpc.utilities.siemens” has been modified as to return the proper DB for the

fast interlock objects of the different kinds (for example, “DB_DI_FI.DI_SET” for the digital inputs)

instead of the normal ones. An extract of the code is shown in Fig. 8.

Templates programmer manual Manuel Vázquez Muñiz 13

Fig. 8. Extract of the “s7db_id” function used in the plugin modified for the fast interlock DBs

The function “createFullAddressMap” contained in the file

“SiemensPLCMemoryMapper.java” and included in the package

“research.ch.cern.unicos.cpc.utilities.siemens” has been modified as to return the proper DB number

for the fast interlock objects that is used as to generate the WINCC OA file in UAB.

The function “createDeviceInstanceResources” of the same file has also been modified as to

generate the symbols of the device types used in the fast interlock processing (taking care of the OnOff

differences with the rest of the objects used in the fast interlocks, as shown in Fig. 9).

Fig. 9. Extract of the “createDeviceInstanceResources” function used in the plugin modified for the fast interlock symbols

Templates programmer manual Manuel Vázquez Muñiz 14

4. Acronyms

CERN European Organization for Nuclear Research

UNICOS Unified Industrial Control Systems

UAB UNICOS Application Builder

CPC Continuous Process Control

BE-ICS-PCS
Beams department, Industrial Controls and Safety group, Process Control
Systems Section

FI Fast Interlock

TSPP Time Stamp Push Protocol

PLC Programmable Logic Controller

ST Structured Text

SCL Structured Control Language

OB Organization Block

FB Function Block

FC Function

SFB Standard Function Block

SFC Standard Function

PII Peripheral Image of Inputs

PIO/PIQ Peripheral Image of Outputs

IEC International Electrotechnical Commission

SCADA Supervisory Control And Data Acquisition

WINCC OA WinCC Open Architecture

DI Digital Input

DA Digital Alarm

DO Digital Output

PCO Process Control Object

Templates programmer manual Manuel Vázquez Muñiz 15

5. Documents of the project

The current project has been elaborated in multiple documents that describe a certain part of

the project.

1. Report: General description of the project. Objectives and conditions for its test. Conclusion

from the realization of the project and future works.

2. Planning and budget: Schedule of the different tasks that compound the project and price of

the resources used.

3. Step 7 programmer manual: Modifications to the code of the UNICOS applications to support

the fast interlock capability. Results obtained from these modifications.

4. Templates programmer manual: Modifications to the code of the templates and of the plugin

used to generate the SCL files used in the PLC.

5. User manual: Steps to create a fast interlock UNICOS application.

6. Templates code: Modified template files inside the resources folder of an application and of

the UAB plugin.

7. Datasheets: Datasheets of the devices used to research and test the solution for the fast

interlocks issue.

Attachments.

1. Attachment 1: Fast interlock application example.

Templates programmer manual Manuel Vázquez Muñiz 16

6. Bibliography

[1] Jet Beans, “IntelliJ IDEA,” [Online]. Available: https://www.jetbrains.com/idea/. [Accessed 24

January 2017].

