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Abstract

We prove that an arbitrary word v of the free pro-p-group is el-
liptic on a pro-p-completion of a discrete finitely generated torsion
residually-p group.

1 Introduction

Let p be a prime number. We say that a group G is residually-p if⋂
{H / G | |G : H| = pk, k ≥ 1} = (1).

In this case the subgroups H of the above intersection can be viewed as
a basis of neighborhoods of 1, thus making G a topological group. If the
topology is complete, then we say that G is a pro-p-group. If not, then the
completion Gp̂ of the group G is called the pro-p-completion of G.

Let F (∞) be the free group on the countable set of generators x1, x2, . . ..
The pro-p-completion F = F (∞)p̂ is called a free pro-p-group on x1, x2, . . . ,.
We call an element w ∈ F a word if it involves finitely many generators.
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Let G be a pro-p-group and let w = w(x1, . . . , xn) ∈ F . Consider

w(G) = {w(g1, . . . , gn) | gi ∈ G, 1 ≤ i ≤ n}

the set of values of the word w inG and let 〈w(G)〉 denote the closed subgroup
of G generated by the set w(G).

We say (see [S ]) that the word w is elliptic (or has finite verbal width)
on G if there exists N ≥ 1 such that 〈w(G)〉 = w(G)±1 · · ·w(G)±1︸ ︷︷ ︸

N

.

This is equivalent to say that the discrete subgroup of G generated by w(G)
is closed in G.

It is known that on some important classes of pro-p-groups (p-adic ana-
lytic pro-p-groups [JZ], the Nottingham group [Kl]) all words are elliptic.

In the first chapter we prove the following theorem

Theorem 1.1 Let Γ be a finitely generated residually-p torsion group.
Then an arbitrary word w ∈ F is elliptic on G = Γp̂.

We remark that the celebrated groups of Golod-Shafarevich, Grigorchuk
or Gupta-Sidki are residually-p torsion groups.

In the second chapter we prove a stronger statement for the so called
multilinear words.

Let w = w(x1, . . . , xn) ∈ F . Let G be a pro-p-group. Choose elements
a1, . . . , ai−1, ai+1, . . . , an ∈ G and fix all variables xj = aj except one xi.
Denote α = (a1, . . . , ai−1, ai+1, . . . , an) and consider the set w(G, i, α) =
{w(a1, . . . , ai−1, g, ai+1, . . . , an) | g ∈ G}.

Definition 1.1 We say that the element w is strongly elliptic on G if
there exist finite subsets Mi ⊆ G× · · · ×G︸ ︷︷ ︸

n−1

, 1 ≤ i ≤ n, and an order on

∪ni=1Mi = {α1 < α2 < · · · < αq}, αk ∈Mik , 1 ≤ k ≤ q, 1 ≤ ik ≤ n, such that
the verbal subgroup 〈w(G)〉 is equal to

w(G, i1, α1)
±1 · · ·w(G, iq, αq)

±1.
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Clearly, if a word is strongly elliptic on G then it is elliptic.
By the result of J. P. Serre [Se] the commutator is strongly elliptic on

finitely generated pro-p-groups.

Consider the lower central series of F , F = F1 ≥ F2 ≥ · · · , and the
Zassenhaus series F = F(1) ≥ F(2) ≥ · · · ≥ F(n) ≥ · · ·, where F(n) is the sub-

group of F generated by all powers gp
j
, g ∈ Fi, ipj ≥ n. Both series (central

series) lead to Lie algebras L(F ) =
⊕

i≥1 Fi/Fi+1 and Lp(F ) =
⊕
F(i)/F(i+1).

Definition 1.2 Let w ∈ F be a word. Suppose that w ∈ Fn \ Fn+1. We
call the word w multilinear if w = w̄w′, where

(i) w̄ is a product of powers of left-normed commutators,

w̄ =
∏
σ∈Sn

[· · · [xσ(1), xσ(2)], · · · , xσ(n)]kσ ,

where kσ ∈ Zp are p-adic integers such that the element w̄Fn+1 does not
belong to pL(F ),

(ii) the element w′ ∈ Fn+1 is a (converging) product of commutators
in x1, . . . , xn of length ≥ n + 1, each commutator involves all n generators
x1, . . . , xn.

Theorem 1.2 Let Γ be a finitely generated residually-p torsion group.
Then an arbitrary multilinear word is strongly elliptic on the pro-p-group
G = Γp̂, the pro-p-completion of Γ.

A linearization process leads to

Theorem 1.3 For an arbitrary nonidentical word w ∈ F there exist a
multilinear element w̃ ∈ 〈w(F )〉.

2 Verbally just infinite pro-p-groups

We say that a pro-p-group G is verbally just infinite if G is infinite and for
an arbitrary word w ∈ F either w(G) = 1 or |G : 〈w(G)〉| <∞.

Lemma 2.1 Let G be a finitely generated verbally just infinite pro-p-
group. Then an arbitrary word w ∈ F is elliptic on G or G is virtually
abelian.
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Proof. Let G be a finitely generated pro-p-group that is not virtually
abelian. Let w ∈ F , H = 〈w(G)〉. If H = (1), then the word w is clearly
elliptic on G. If H 6= (1) then the subgroup H has finite index in G and,
therefore, is a finitely generated pro-p-group.

Since the group G is not virtually abelian it follows that [H,H] 6= (1).
By the result of J. P. Serre [Se], the subgroup [H,H] is closed in G.

Consider the word

v(x1, . . . , xm, y1, . . . , ym) = [w(x1, . . . , xm), w(y1, . . . , ym)].

Clearly, [H,H] = 〈v(G)〉. By the assumption of the lemma, |G : [H,H]| <∞.

Let h1, . . . , hr ∈ w(G)±1 be a maximal system of elements that are distinct
module [H,H]. Then h1, . . . , hr generate H. By the result of J. P. Serre [Se]
we have

[H,H] = [H, h1] · · · [H, hr].

Every element of H can be represented as hi1 · · ·hit , t ≤ |H : [H,H]|,
modulo [H,H]. Hence

H =
⋃
hi1 · · ·hit [H, h1] · · · [H, hr].

Now the verbal width of w is ≤ |H : [H,H]| + 2r since [x, hi] = (hxi )
−1hi ∈

w(G)±1 · w(G)±1. This completes the proof of the lemma.

Remark. A finitely generated virtually abelian pro-p-group G is p-adic
analytic. If w ∈ F (∞) then w is elliptic on G by the result of A. Jaikin-
Zapirain [JZ]. Most likely this is also the case when w ∈ F \F (∞), but there
are no references.

Let G be a pro-p-group and let 1 6= w ∈ F . We say that the group G
satisfies the pro-p- identity w = 1 if w(G) = (1).

The following theorem was proved by E. Zelmanov ( [Z3]).

Theorem 2.1 Let G be a pro-p-group satisfying a nontrivial pro-p-identity
and having a dense finitely generated torsion discrete subgroup. Then |G| <
∞.
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Lemma 2.2 Let Γ be a finitely generated residually-p torsion group, G =
Γp̂. Then either |Γ| <∞ or G is a verbally just infinite group.

Proof. Suppose that the groups Γ and G are infinite. Let 1 6= w =
w(x1, . . . , xn) ∈ F be a word. We need to show that the subgroup H =
〈w(G)〉 has finite index in G.

Consider the pro-p-group G] = G/H and the discret subgroup Γ] =
ΓH/H. The group Γ] is finitely generated, torsion and dense in G]. The
pro-p-group G] satisfies a non trivial pro-p-identity. Then, by Zelmanov’s
theorem , |G]| <∞, what finishes the proof of the lemma.

Proof of Theorem 1.1

Let Γ be a finitely generated residually-p torsion group and let G = Γp̂
be its pro-p-completion. Let w ∈ F be a word. If |Γ| < ∞ then the result
is obvious. Suppose therefore that Γ is infinite. By Lemma 2.2 the pro-p-
group G is verbally just infinite. We remark that the group G is not virtually
abelian since then a finitely generated torsion virtually abelian group Γ would
be finite. Now Lemma 2.1 implies the word w is elliptic on G.

3 Multilinear words

Let’s recall the construction of a Lie ring associated to a pro-p-group G.

Consider the lower central series G = G1 > G2 > · · · of the group G,
Gn+1 = [Gn, G]. Clearly [Gi, Gj] ⊆ Gi+j, the abelian group Gi/Gi+1 is a
module over the ring of p-adic integers Zp.

Consider the direct sum

L(G) = ⊕i≥1Gi/Gi+1.

The Lie ring multiplication is defined on homogeneous elements by

[aGi+1, bGj+1] = [a, b]Gi+j+1

and extended to arbitrary elements by linearity. This makes L(G) a Lie
algebra over Zp.
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For the free pro-p-group F the Lie algebra L(F ) is known to be the free
Lie Zp-algebra on the set of free generators X̄ = {x̄i = xiF2 | i ≥ 1}

Along with the lower central series of F , F = F1 ≥ F2 ≥ · · · , we consider
the Zassenhaus series F = F(1) ≥ F(2) ≥ · · · ≥ F(n) ≥ · · ·, where F(n) is

the subgroup of F generated by all powers gp
j
, g ∈ Fi, ipj ≥ n, [F(i), F(j)] ⊆

F(i+j), ∩i≥1F(i) = (1), each factor F(i)/F(i+1) is an elementary abelian p-group.
The Zassenhaus series gives rise to the Lie algebra Lp(F ) =

⊕
F(i)/F(i+1) over

the field Z/pZ.

Proof of Theorem 1.3

The proof of this result imitates the well known linearization process in
algebras (see [SSSZ]) or, equivalently, Higman’s collection process in groups
[H ].

As always we consider the free group F (∞) and the free pro-p-group F
on the set X = {xi | i ≥ 1} of free generators.

Let w ∈ F(n) \ F(n+1). Replacing w by a group commutator [w, xi], if
necessary, we may assume that n is coprime to p. The element w can be
represented as w = w̄w′, where w̄ is a product of ρp

j
, ρ is a commutator in

X of length i, ipj = n, w′ ∈ F(n+1).

Since n is coprime to p it follows that all j = 0, that is, w̄ is a product
of commutators of length n in X. If w̄Fn+1 ∈ p(Fn/Fn+1) then w̄ ∈ F(n+1), a
contradiction.

Let Lie〈X〉 denote the free Lie Zp-algebra on the same set of free gen-
erators X and X̄ = {x̄1, x̄2, . . .}, where x̄i = xiF2. Consider the element
f(x̄1, . . . , x̄m) = w̄Fn+1 of the free Lie Zp-algebra Lie〈X̄〉. The element
f(x̄1, . . . , x̄m) is homogeneous of total degree n and f /∈ pLie〈X̄〉n. The
element f does not, though, have to be homogeneous in each variable x̄i.

For a multiindex d = (d1, . . . , dm), di ≥ 0,
∑m
i=1 di = n let fd be the

homogeneous component of f having degree di in x̄i, 1 ≤ i ≤ m.

For a fixed index i, 1 ≤ i ≤ m, let f ′i =
∑
di 6=0 fd, f

′′
i =

∑
di=0 fd. Then

f = f ′i + f ′′i .

If f ′′i /∈ pLie〈X̄〉n, then considering w(x1, . . . , xi−1, 1, xi+1, . . . , xm) (that
lies in 〈w(F )〉) instead of w we cut the number of variables.
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If f ′i /∈ pLie〈X̄〉n, then considering w := ww(x1, . . . , xi−1, 1, xi+1, . . . , xm)−1

instead of w we can assume that f =
∑
di 6=0 fd.

Arguing in this way with all generators x1, . . . , xm we will assume that
f(x̄1, . . . x̄m) =

∑
fd(x̄1, . . . x̄m), where for each multiindex d on the right

hand side we have d1 ≥ 1, . . . , dm ≥ 1.

Fix a multiindex d = (d1, . . . , dm), di ≥ 1 such that fd /∈ pLie〈X̄〉n. For
each i, 1 ≤ i ≤ r, choose a set of di elements Xi = {xi1, . . . , xidi} ⊂ X such
that the subsets X1, . . . , Xm do not intersect. (If di = 1 then we choose
Xi = {xi}).

For a nonempty subset S ⊆ [1, di] let X̄i(S) =
∑
j∈S x̄ij.

For a nonnegative integer a, let us define sgn(a) = (−1)a. The element

f̃ =
∑

∅6=Si⊆[1,di]
sgn(

r∑
i=1

(di − |Si|))f(X̄1(S1), . . . , X̄m(Sm)) =

∑
∅6=Si⊆[1,di]

sgn(
r∑
i=1

(di − |Si|))fd(X̄1(S1), . . . , X̄m(Sm))

is multilinear in all variables x̄ij, 1 ≤ i ≤ m, 1 ≤ j ≤ di.

We call f̃ the complete linearization of f , that corresponds to the multi-
index d. Of course, it depends on the choice of d.

We use two facts about complete linearizations over a field (see [SSSZ]):
(1) If h(x1, . . . , xm) is a homogeneous (in all variables) element of degree

multiindex d′ = (d′1, . . . , d
′
m), d′i ≥ 1,

∑m
i=1 d

′
i =

∑m
i=1 di and d′ 6= d, then the

complete linearization corresponding to the multiindex d turns h into 0,
(2) let h be a nonzero element of a free Lie (associative) algebra over a

field which is homogeneous in all variables. Then the complete linearization
of h is 6= 0.

The assertions (1), (2) imply that f̃ 6= 0 mod p.

Now let us imitate the above process in the free pro-p-group. For a
nonempty subset S ⊆ [1, di] let Xi(S) be a product of generators xij, j ∈ S,
in an arbitrary order.

Let v be a product of elements of the form

w(X1(S1), . . . , Xm(Sm))sgn(
∑m

i=1
(di−|Si|))
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in an arbitrary order, where Si run over all nonempty subsets of [1, di].
It is straightforward that v ∈ F(n) and vF(n+1) = f̃(xijF(2)) 6= 0.

Changing names of free generators, if needed, we can say that we found a
nonidentical element v ∈ 〈w(F )〉 such that v = v̄v′, the element v̄ is a product
of multilinear commutators [. . . [xσ(1), xσ(2)], . . . , xσ(n)], σ ∈ Sn, v̄ /∈ F(n+1),
v′ ∈ F(n+1).

Collecting at the right end all commutators not involving x1, then col-
lecting again, among all those commutators that include x1, those that do
not involve x2 (again at the right end) and so on, finally we can represent
v′ as v′ = v′′vn · · · v2v1, where v′′, vi ∈ F(n+1), the element vi is a product of
commutators (of length ≥ n+1 ) that involve x1, . . . , xi−1 and do not involve
xi. The element v′′ is a product of commutators that involve x1, x2, . . . , xn.

Let us show, by induction on i, that vi ∈ 〈v(F )〉. Substituting x1 = 1
we get v|x1=1 = v1. Hence v1 ∈ 〈v(F )〉. Now substituting xi = 1 we get
v|xi=1 = vi(vi−1|xi=1) · · · (v1|xi=1). Hence vi ∈ 〈v(F )〉.

It implies that v̄v′′ ∈ 〈v(F )〉, v′′ is product of commutators of length
≥ n + 1, involving x1, . . . , xn and of p-powers [. . . [xσ(1), xσ(2)], . . . , xσ(n)]

pk ,
k ≥ 1, σ ∈ Sn. Moving all these p-powers to the left we get

v̄v′′ = (
∏
σ∈Sn

[. . . [xσ(1), xσ(2)], . . . , xσ(n)]
kσ)v′′′, kσ ∈ Zp,

and v′′′ is a (converging) product of commutators of length ≥ n + 1 involv-
ing all x1, . . . , xn. Substituting 1 for all generators that do not belong to
{x1, . . . , xn} we can assume that all factor commutators in v′′′ involve only
x1, . . . , xn. This finishes the proof of Theorem 1.3.

In order to prove Theorem 1.2 we will have to adapt the above definitions
to Lie algebras.

As above, let X = {xi | i ≥ 1} and let Lie〈X〉 denote the free Lie Zp-
algebra on the set of free generators X. Let f(x1, . . . , xn) be a multilinear
element from Lie〈X〉 and let L be a Lie algebra over Zp.

Consider the set f(L) = {f(a1, . . . , an) | ai ∈ L} of values of the element
f on L.
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Definition 3.1 We say that the element f is elliptic on L if there exists
N ≥ 1 such that the Zp-linear span of f(L), Spanf(L), is

Span(f(L)) = f(L) + · · ·+ f(L)︸ ︷︷ ︸
N

.

Definition 3.2 We say that the element f is strongly elliptic on L if
there exist finite sets Mi ⊆ L× · · · × L︸ ︷︷ ︸

n−1

, 1 ≤ i ≤ n, such that Spanf(L) is a

sum of additive subgroups f(a1, . . . , ai−1, L, ai+1, . . . , an), where (a1, . . . , ai−1,
ai+1, . . . , an) ∈Mi, 1 ≤ i ≤ n.

Clearly a strongly elliptic multilinear element is elliptic.

An element a of a Lie algebra is said to be ad-nilpotent if the linear
transformation ad(a) is nilpotent.

Lemma 3.1 Let L be a Lie Z/pkZ-algebra generated by a finite subset
X ⊆ L such that an arbitrary commutator in X is ad-nilpotent (we consider
elements of X as commutators of length 1). Let f(x1, . . . , xn) ∈ Lie〈X〉 be a
multilinear element of the free Lie Zp- algebra such that f /∈ pLie〈X〉. Then

(i) I = Spanf(L) is a Lie ideal in L, |L : Spanf(L)| <∞;
(ii) f is strongly elliptic on L

Proof: To see that I = Spanf(L) is an ideal in L choose arbitrary
elements b, b1, . . . , bn ∈ L. Then

[b, f(b1, . . . , bn)] = f([b, b1], b2, . . . bn) + . . .+ f(b1, b2, . . . , [b, bn]),

which implies the claim.

The Lie algebra L/I + pL (1) is generated by a finite set ( = image of X)
and every commutator in these generators is ad-nilpotent and (2) satisfies a
nontrivial polynomial identity.

By [ Z3] the Z/pZ-algebra L/I+pL is nilpotent. Hence there exists s ≥ 1
such that Ls ⊆ I + pL.

Since pkL = (0) this implies (Ls)k ⊆ I.
In [K, P ] it is shown that in a finitely generated solvable Lie algebra L if

all commutators in generators are ad-nilpotent, then the algebra is nilpotent.
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Hence there exists d ≥ 1 such that Ld ⊆ (Ls)k ⊆ I. It implies that |L : I| <
∞, which finishes the proof of (i).

Again in [K, P] it is shown that in a finitely generated Lie algebra L if
all commutators in generators are ad-nilpotent, then each power of L is a
finitely generated subalgebra (this result is even valid in rings). Since the
algebra Ld is finitely generated and |I : Ld| <∞, it follows that the algebra
I is finitely generated.

Suppose that I is generated as a Lie algebra by a finite collection of
elements f(ai1 , . . . , ain), 1 ≤ i ≤ r, aij are commutators in generators. We
have

I ⊆
∑
i

(Z/pkZ)f(ai1 , . . . , ain) +
∑
i

[L, f(ai1 , . . . , ain)] ⊆

∑
f(ai1 , . . . , ait−1 , L, ait+1 , . . . , ain),

which means that the element f is strongly elliptic on L. This finishes the
proof of the lemma.

Let w = w̄w′ be a multilinear word from F ,

w̄ =
∏
σ∈Sn

[· · · [xσ(1), xσ(2)], · · ·xσ(n)]kσ , kσ ∈ Zp, w
′ ∈ Fn+1.

As we have mentioned earlier, the Lie ring L(F ) = ⊕i≥1Fi/Fi+1 is a free
Lie Zp algebra on the free generators x̄i = xiF2, i ≥ 1.

Let f(x̄1, . . . , x̄n) =
∑
kσ[x̄σ(1), . . . , x̄σ(n)] = wFn+1 be a multilinear ele-

ment from L(F ) = Lie〈X̄〉 that corresponds to w.

Let G be a pro-p-group, let G = G1 > G2 > · · · be its lower central series.
Let L = L(G) = ⊕i≥1Gi/Gi+1 be the Lie algebra linked to the lower central
series. As above, Spanf(L) denotes the Zp-linear span of the set f(L). Since
f is multilinear it follows (as in Lemma 3.1) that Spanf(L) is an ideal of L.

Lemma 3.2 If |L : Spanf(L)| <∞ and f is strongly elliptic on L, then
|G : 〈w(G)〉| <∞ and w is strongly elliptic on G.

Proof. Since |L : Spanf(L)| < ∞, it follows that there is k ≥ 1 such
that pkL ⊆ Spanf(L). Hence L/Spanf(L) becomes a Z/pkZ-module.
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Since the element f is strongly elliptic, there exist finite sets M̄i ⊆
L× · · · × L︸ ︷︷ ︸

n−1

, 1 ≤ i ≤ n, M̄i = {(a(i)j,1, . . . , a
(i)
j,i−1, a

(i)
j,i+1, . . . , a

(i)
j,n) | 1 ≤ j ≤

mi = |M̄i|} such that

Spanf(L) =
∑

f(a
(i)
j,1, . . . , a

(i)
j,i−1, L, a

(i)
j,i+1, . . . , a

(i)
j,n).

Without loss of generality we will assume all elements a
(i)
j,k to be homoge-

noeus, a
(i)
j,k ∈ Ld(i,j,k).

Choose elements g
(i)
jk ∈ Gd(i,j,k) such that a

(i)
j,k = g

(i)
jkGd(i,j,k)+1.

Let Mi = {(g(i)j1 , . . . , g
(i)
jn ), 1 ≤ j ≤ mi}, 1 ≤ i ≤ n.

Choose an arbitrary order in
⋃n
i=1Mi.

Let S denote the ordered product S =
∏
uw(G, i, u), u ∈ ⋃n

i=1Mi. For an

(n− 1)-tuple, u = (g
(i)
j1 , . . . , g

(i)
jn ) ∈Mi, denote d(u) =

∑n
i 6=k=1 d(i, j, k).

Let g ∈ Gr. Suppose that the element gGr+1 ∈ Lr lies in Spanf(L). Then

gGr+1 =
∑
f(a

(i)
j,1, . . . , a

(i)
j,i−1, b

(i)
ji , a

(i)
j,i+1, . . . , a

(i)
j,n), where b

(i)
ji are homogeneous

elements of degrees r −∑n
i 6=k=1 d(i, j, k).

Choose elements gu ∈ Gr−d(u), u = (g
(i)
j1 , . . . , g

(i)
j,n) such that guGr−d(u)+1 =

b
(i)
ji . Then g =

∏
uw(gu, i, u) modulo Gr+1, u ∈

⋃n
i=1Mi.

From |L : Spanf(L)| < ∞ it follows that there exist t ≥ 1 and k ≥ 1
such that pkL+

∑
i≥t Li ⊆ Spanf(L).

We have pkL1 ⊆ Spanf(L) ⊆ L2 + L3 + · · ·. Hence pkL1 = (0).

Let us show that Gt ⊆ S. Since the set S is closed (because it is the
continous image of a compact set) it is sufficient to show that for any r ≥ t
we have that Gt ⊆ SGr (what would imply that Gt ⊆ S̄ = S.)

Let us use induction on r. It is clear if r = t (since Gt ⊆ SGt). Choose
g ∈ Gt and suppose that there exists s ∈ S such that gs−1 ∈ Gr. Then
the element gs−1Gr+1 lies in the Spanf(L). Hence, there exist elements
gu ∈ Gr−d(u) such that gs−1 =

∏
uw(gu, i, u) mod Gr+1.

Let s =
∏
uw(g′u, i, u). Then

g = s.gs−1 mod Gr+1 =
∏
u

w(g′u, i, u)
∏
u

w(gu, i, u) mod Gr+1 =
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=
∏
u

w(g′ugu, i, u) mod Gr+1.

Indeed, the elements w(gu, i, u) lie in Gr and therefore they are cen-
tral modulo Gr+1. For an arbitrary u ∈ ∪ni=1Mi, Hall identity [xy, z] =
[x, z][[x, z], y][y, z] and multilineariy of w imply that

w(g′u, i, u)w(gu, i, u) = w(g′ugu, i, u) mod Gr+1.

That is, we have proved that if Gt ⊆ SGr for some r ≥ t , then an
arbitrary element g ∈ Gt lies in SGr+1, what proves our claim.

All Zp-modules Gi/Gi+1 are finitely generated and pk(Gi/Gi+1) = (0).
This implies that each term Gi of the lower central series has finite index in
G. In particular, |G : Gt| <∞.

Hence there exists a finite collection of elements a1, . . . , ar ∈ w(G) such
that

〈w(G)〉 =
⋃
ai1 · · · aiµGt ⊆

⋃
ai1 · · · aiµS, 1 ≤ µ ≤ |G : Gt| 1 ≤ i1, . . . , iµ ≤ r.

Let r′ = r|G : Gt| and let us repeat |G : Gt| times the sequence a1, . . . , ar
:

a′1, . . . , a
′
r′ = a1, a2, . . . , ar, a1, a2, . . . , ar, a1, a2, . . . , ar.

Then
〈w(G)〉 =

⋃
a′j1 · · · a

′
jµS,

where 1 ≤ j1 < j2 · · · < jµ ≤ r′; 1 ≤ µ ≤ |G : Gt|.
Since each a′i ∈ w(G), let a′i = w(ai,1, . . . ai,n), 1 ≤ i ≤ r′ and α′i =

(ai,2, . . . , ai,n).

Then
〈w(G)〉 = w(G, 1, α′1) · · ·w(G, 1, α′r)S

which implies that the word w is strongly elliptic on G and completes the
proof of the lemma.

Proof of Theorem 1.2

Let x1, . . . , xm be generators of the group Γ. Then the Lie Zp- algebra
L = L(G) is generated by elements xiG2, 1 ≤ i ≤ m. There exists k ≥ 1

12



such that xp
k

i = 1, 1 ≤ i ≤ m. This implies pkxiG2 = 0, 1 ≤ i ≤ m and
therefore pkL = (0). Hence L can be viewed as a Z/pkZ- algebra.

The following result was proved in [MZ]. Let Γ be a finitely generated
residually-p torsion group. Let Γ = Γ1 > Γ2 > · · · be its lower central series.
Then an arbitrary homogenous element of the Lie ring L(Γ) = ⊕i≥1Γi/Γi+1

is ad-nilpotent. This result implies that the Lie algebra L = L(G) satisfies
the assumptions of Lemma 3.1. Hence |L : Spanf(L)| <∞ and f is strongly
elliptic on L. Now, by Lemma 3.2 the word w is strongly elliptic on the group
G, which finishes the proof of Theorem 1.2.
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