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Abstract

We prove that an arbitrary word v of the free pro-p-group is el-
liptic on a pro-p-completion of a discrete finitely generated torsion
residually-p group.

1 Introduction
Let p be a prime number. We say that a group G is residually-p if
NH<G(G: H =g, k> 1} = (1).

In this case the subgroups H of the above intersection can be viewed as
a basis of neighborhoods of 1, thus making G a topological group. If the
topology is complete, then we say that G is a pro-p-group. If not, then the
completion G of the group G is called the pro-p-completion of G.

Let F(00) be the free group on the countable set of generators x1, za, . . ..
The pro-p-completion F' = F(c0); is called a free pro-p-group on zy, xo, . . . ,.
We call an element w € F' a word if it involves finitely many generators.
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Let G be a pro-p-group and let w = w(xy,...,z,) € F. Consider

the set of values of the word w in G and let (w(G)) denote the closed subgroup
of G generated by the set w(G).

We say (see [S ]) that the word w is elliptic (or has finite verbal width)
on G if there exists N > 1 such that (w(G)) = w(G)*' - w(G)*.

N
This is equivalent to say that the discrete subgroup of G generated by w(G)
is closed in G.

It is known that on some important classes of pro-p-groups (p-adic ana-
lytic pro-p-groups [JZ], the Nottingham group [KIl]) all words are elliptic.

In the first chapter we prove the following theorem

Theorem 1.1 Let I' be a finitely generated residually-p torsion group.
Then an arbitrary word w € F' is elliptic on G = T'p.

We remark that the celebrated groups of Golod-Shafarevich, Grigorchuk
or Gupta-Sidki are residually-p torsion groups.

In the second chapter we prove a stronger statement for the so called
multilinear words.

Let w = w(xy,...,2,) € F. Let G be a pro-p-group. Choose elements
i, ..., Qi—1,0i41,-.-,0, € G and fix all variables x; = a; except one ;.
Denote o« = (ay,...,a;_1,Git1,--.,a,) and consider the set w(G,i,a) =
{w(al, ey Ai1,9,Q441, - - - ,an) | g e G}

Definition 1.1 We say that the element w is strongly elliptic on G if
there exist finite subsets M; C G x ---x G, 1 < i < n, and an order on
—_———

n—1

PoM={on << <aopt,ape My, 1<k <gq, 1<i; <n, such that

the verbal subgroup (w(Q)) is equal to

w(G, 11, al)il e w(G g, aq)il



Clearly, if a word is strongly elliptic on G then it is elliptic.
By the result of J. P. Serre [Se| the commutator is strongly elliptic on
finitely generated pro-p-groups.

Consider the lower central series of F', FF = F; > F, > ---, and the
Zassenhaus series ' = F(q) > Fg) > -++ > F,) > - -+, where F{;) is the sub-
group of I’ generated by all powers gpj, g € F;, ip’ > n. Both series (central
series) lead to Lie algebras L(F') = @5 F;/Fiq1 and L,(F) = @ Fuy/Fiv).-

Definition 1.2 Let w € F be a word. Suppose that w € F, \ F,11. We
call the word w multilinear if w = ww’, where
(i) w is a product of powers of left-normed commutators,
W= [] [ o) Za@), s o)™
G’GSTL

Y

where k, € Z, are p-adic integers such that the element wF, 1 does not
belong to pL(F),

(i) the element w' € F,iy is a (converging) product of commutators
n xi,...,x, of length > n + 1, each commutator involves all n generators
T1yeoeyTp.

Theorem 1.2 Let I' be a finitely generated residually-p torsion group.
Then an arbitrary multilinear word is strongly elliptic on the pro-p-group
G =T, the pro-p-completion of I.

A linearization process leads to

Theorem 1.3 For an arbitrary nonidentical word w € F' there exist a
multilinear element w € (w(F)).

2 Verbally just infinite pro-p-groups

We say that a pro-p-group G is verbally just infinite if GG is infinite and for
an arbitrary word w € F' either w(G) =1 or |G : (w(G))| < oo.

Lemma 2.1 Let G be a finitely generated verbally just infinite pro-p-
group. Then an arbitrary word w € F is elliptic on G or G 1is virtually
abelian.



Proof. Let G be a finitely generated pro-p-group that is not virtually
abelian. Let w € F, H = (w(G)). If H = (1), then the word w is clearly
elliptic on G. If H # (1) then the subgroup H has finite index in G and,
therefore, is a finitely generated pro-p-group.

Since the group G is not virtually abelian it follows that [H, H] # (1).
By the result of J. P. Serre [Se], the subgroup [H, H] is closed in G.

Consider the word

U(xb ey Ty Yty - 7ym> = ['lU(.ﬁl’fl, s 7$m>7w(y17 s 7ym)]

Clearly, [H, H] = (v(G)). By the assumption of the lemma, |G : [H, H]| < occ.

Let hy, ..., h, € w(G)*! be a maximal system of elements that are distinct
module [H, H]. Then hy, ..., h, generate H. By the result of J. P. Serre [Se]
we have

(H,H] = [H, ] [H, h].

Every element of H can be represented as h;, ---h;,, t < |H : [H, H]|,
modulo [H, H]. Hence

H - Uhll hlt[H7h1] [H,hT}

Now the verbal width of w is < |H : [H, H]| + 2r since [z, h;] = (h¥)"'h; €
w(G)*! - w(G)*!. This completes the proof of the lemma.

Remark. A finitely generated virtually abelian pro-p-group G is p-adic
analytic. If w € F(oo) then w is elliptic on G by the result of A. Jaikin-
Zapirain [JZ]. Most likely this is also the case when w € F'\ F(0c0), but there
are no references.

Let G be a pro-p-group and let 1 # w € F. We say that the group G
satisfies the pro-p- identity w = 1 if w(G) = (1).
The following theorem was proved by E. Zelmanov ( [Z3]).

Theorem 2.1 Let G be a pro-p-group satisfying a nontrivial pro-p-identity
and having a dense finitely generated torsion discrete subgroup. Then |G| <
00.



Lemma 2.2 Let ' be a finitely generated residually-p torsion group, G =
['y. Then either |I'| < oo or G is a verbally just infinite group.

Proof. Suppose that the groups I' and G are infinite. Let 1 # w =
w(zy,...,z,) € F be a word. We need to show that the subgroup H =
(w(@)) has finite index in G.

Consider the pro-p-group G* = G/H and the discret subgroup I'¥ =
I'H/H. The group I'* is finitely generated, torsion and dense in G*. The
pro-p-group G* satisfies a non trivial pro-p-identity. Then, by Zelmanov’s
theorem , |G*| < oo, what finishes the proof of the lemma.

Proof of Theorem 1.1

Let I' be a finitely generated residually-p torsion group and let G = I';
be its pro-p-completion. Let w € F be a word. If |T'| < oo then the result
is obvious. Suppose therefore that I' is infinite. By Lemma 2.2 the pro-p-
group G is verbally just infinite. We remark that the group G is not virtually
abelian since then a finitely generated torsion virtually abelian group I" would
be finite. Now Lemma 2.1 implies the word w is elliptic on G.

3 Multilinear words

Let’s recall the construction of a Lie ring associated to a pro-p-group G.

Consider the lower central series G = G; > Gy > --- of the group G,
Gny1 = [G,,G]. Cleatly [G;,G;] C Gy, the abelian group G;/Giiq is a
module over the ring of p-adic integers Z,.

Consider the direct sum

L(G) - @i21Gi/Gi+1-
The Lie ring multiplication is defined on homogeneous elements by
[aGis1,bGj] = [a,b]Gitjn

and extended to arbitrary elements by linearity. This makes L(G) a Lie
algebra over Z,,.



For the free pro-p-group F' the Lie algebra L(F) is known to be the free
Lie Z,-algebra on the set of free generators X = {z; = x;F>|i > 1}

Along with the lower central series of ', F' = F; > Fy > -+, we consider
the Zassenhaus series F' = F(yy > Fg) > -+ > F,) > -+, where F{,) is
the subgroup of F generated by all powers ¢?’, g € F, ip’ > n, [Fly, Fijy] €
Flivj), Ni=1Fu) = (1), each factor F{;)/ F{;11) is an elementary abelian p-group.
The Zassenhaus series gives rise to the Lie algebra L, (F) = @ F;)/ Fli41) over
the field z/pz.

Proof of Theorem 1.3

The proof of this result imitates the well known linearization process in
algebras (see [SSSZ]) or, equivalently, Higman’s collection process in groups
[H].

As always we consider the free group F(co) and the free pro-p-group F
on the set X = {x;|i > 1} of free generators.

Let w € Finy \ Fnt1). Replacing w by a group commutator [w, z;], if
necessary, we may assume that n is coprime to p. The element w can be
represented as w = ww’, where w is a product of p”’, p is a commutator in
X of length ¢, ip! =n, w' € Fuy1).

Since n is coprime to p it follows that all j = 0, that is, w is a product
of commutators of length n in X. If wF, ., € p(F,/F,11) then w € F,11), a
contradiction.

Let Lie(X) denote the free Lie Z,-algebra on the same set of free gen-
erators X and X = {Zy,Ts,...}, where ; = z;F>. Consider the element

f(Z1,...,Zm) = wF,41 of the free Lie Z,-algebra Lie(X). The element

f(z1,...,Zy) is homogeneous of total degree n and f ¢ pLie(X),. The
element f does not, though, have to be homogeneous in each variable z;.

For a multiindex d = (dy,...,dn), d; > 0, X", d; = n let fq be the
homogeneous component of f having degree d; in z;, 1 < i <m.

For a fixed index i, 1 <@ < m, let fj = >, .0 fa, [’ = 2a,=0 fa- Then
f=r+1

If f" ¢ pLie(X),, then considering w(zy,...,7;_1,1,%1,...,7,) (that
lies in (w(F))) instead of w we cut the number of variables.



If f/ ¢ pLie(X),, then considering w := ww(x1, ..., 2i 1,1, Tit1, ..., Tpm) *
instead of w we can assume that f =3, . fa-

Arguing in this way with all generators x1,...,z,, we will assume that
f(Z1,. . Zm) = X falZ1, ... Tym), where for each multiindex d on the right
hand side we have d; > 1,...,d,, > 1.

Fix a multiindex d = (dy,...,d,), d; > 1 such that f; ¢ pLie(X),. For
each i,1 < i < r, choose a set of d; elements X; = {x;1,...,xq,} C X such
that the subsets Xji,...,X,, do not intersect. (If d; = 1 then we choose
X; = {x;}). )

For a nonempty subset S C [1,d;] let X;(S) = X5 Tij.

For a nonnegative integer a, let us define sgn(a) = (—1)®. The element

T

F=3 sgn(Q(di— |SDFXi(S), -, Xon(Sm)) =

@#Sig[l,di} =1

T

> sgn(d(di — [Si) fa(X1(S1), ., Xin(Sm))

0#£SiC[1,di] i=1
is multilinear in all variables z;;, 1 <7 <m, 1 < j <d,.

We call f the complete linearization of f, that corresponds to the multi-
index d. Of course, it depends on the choice of d.

We use two facts about complete linearizations over a field (see [SSSZ]):

(1) If h(xq, ..., 2,) is a homogeneous (in all variables) element of degree
multiindex d' = (d},...,d,,), d; > 1, >" d; =>",d; and d' # d, then the
complete linearization corresponding to the multiindex d turns h into 0,

(2) let h be a nonzero element of a free Lie (associative) algebra over a

field which is homogeneous in all variables. Then the complete linearization
of h is # 0.

The assertions (1), (2) imply that f # 0 mod p.

Now let us imitate the above process in the free pro-p-group. For a
nonempty subset S C [1,d;] let X;(S) be a product of generators x;;, j € S,
in an arbitrary order.

Let v be a product of elements of the form

W(X1(S1),s -+, X (S )29t (diSiD)
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in an arbitrary order, where S; run over all nonempty subsets of [1, d;].
It is straightforward that v € F,) and vF(,41) = f(2ijF(2)) # 0.

Changing names of free generators, if needed, we can say that we found a
nonidentical element v € (w(F")) such that v = v¢’, the element v is a product
of multilinear commutators [...[%s1), Zo@),- - Tom)), 0 € Sn, U & Flniy,
v e F(n+1).

Collecting at the right end all commutators not involving zy, then col-
lecting again, among all those commutators that include xy, those that do
not involve xs (again at the right end) and so on, finally we can represent
v as v = v"v, - - vy, where 0", v; € Fi,41), the element v; is a product of
commutators (of length > n+1 ) that involve x4, ..., z;_; and do not involve
x;. The element v” is a product of commutators that involve 1, zs, ..., z,.

Let us show, by induction on 4, that v; € (v(F')). Substituting x; = 1
we get v|,,—1 = v1. Hence vy € (v(F)). Now substituting x; = 1 we get
Vlg=1 = 0i(Vim1]z;=1) -+ - (V1]2;=1). Hence v; € (v(F)).

It implies that vv” € (v(F)), v” is product of commutators of length
> n+ 1, involving x1,...,2, and of p-powers [...[T(1), To2)]; - - - ,a:a(n)]pk,
k>1,0¢€.S,. Moving all these p-powers to the left we get

' = (] - Ty, To@)s - - s To@)] W, ke € Z,,
€Sy

and v" is a (converging) product of commutators of length > n + 1 involv-
ing all zq,...,x,. Substituting 1 for all generators that do not belong to
{z1,...,2,} we can assume that all factor commutators in v" involve only
Z1,...,x,. This finishes the proof of Theorem 1.3.

In order to prove Theorem 1.2 we will have to adapt the above definitions
to Lie algebras.

As above, let X = {x;|i > 1} and let Lie(X) denote the free Lie Z,-
algebra on the set of free generators X. Let f(z1,...,x,) be a multilinear
element from Lie(X) and let L be a Lie algebra over Z,.

Consider the set f(L) = {f(a1,...,a,)|a; € L} of values of the element
fon L.



Definition 3.1 We say that the element f is elliptic on L if there exists
N > 1 such that the Z,-linear span of f(L), Spanf(L), is

Span(f(L)) = (L) +---+ f(L).

N

Definition 3.2 We say that the element f is strongly elliptic on L if
there exist finite sets M; C L X --- x L, 1 <i <n, such that Spanf(L) is a
“1
sum of additive subgroups f(ay,...,a;—1, L,a;1,...,a,), where (ay, ..., a;_1,
ai+17"'>an) GMZ'; 1 SZSTL

Clearly a strongly elliptic multilinear element is elliptic.

An element a of a Lie algebra is said to be ad-nilpotent if the linear
transformation ad(a) is nilpotent.

Lemma 3.1 Let L be a Lie Z/p*Z-algebra generated by a finite subset
X C L such that an arbitrary commutator in X is ad-nilpotent (we consider
elements of X as commutators of length 1). Let f(x1,...,x,) € Lie(X) be a
multilinear element of the free Lie Z,- algebra such that f ¢ pLie(X). Then

(i) I = Spanf(L) is a Lie ideal in L, |L : Spanf(L)| < oo;

(i) f is strongly elliptic on L

Proof: To see that I = Spanf(L) is an ideal in L choose arbitrary
elements b,bq,...,b, € L. Then

b, f(br, . b)) = F([b.br] by by) + oo+ f(brba, - [b, b)),

which implies the claim.

The Lie algebra L/I +pL (1) is generated by a finite set ( = image of X)
and every commutator in these generators is ad-nilpotent and (2) satisfies a
nontrivial polynomial identity.

By [ Z3] the z/pz-algebra L/I + pL is nilpotent. Hence there exists s > 1
such that L° C I 4+ pL.

Since p*L = (0) this implies (L*)* C I.
In [K, P | it is shown that in a finitely generated solvable Lie algebra L if
all commutators in generators are ad-nilpotent, then the algebra is nilpotent.
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Hence there exists d > 1 such that L? C (L*)¥ C I. Tt implies that |L : I| <
oo, which finishes the proof of (i).

Again in [K, P] it is shown that in a finitely generated Lie algebra L if
all commutators in generators are ad-nilpotent, then each power of L is a
finitely generated subalgebra (this result is even valid in rings). Since the
algebra L is finitely generated and |I : L% < oo, it follows that the algebra
I is finitely generated.

Suppose that I is generated as a Lie algebra by a finite collection of
elements f(a;,...,a;,), 1 <i <r, a;; are commutators in generators. We
have

IC Z(Z/pkz)f(ah, coaq) + Z[L,f(ai1, coa,)] C

Zf(aip"'a&it_pLaait_;,_lv"'?ain)a

which means that the element f is strongly elliptic on L. This finishes the
proof of the lemma.

Let w = ww’ be a multilinear word from F,

w = H [ o [x0(1)7x0(2)]7 T xa(n)]k(I, ka € Zpa (S Fn+1-
O'GSn

As we have mentioned earlier, the Lie ring L(F) = @51 F;/F;41 is a free
Lie 7, algebra on the free generators z; = z;F%, 1 > 1.

Let f(Z1,...,%,) = X ko|ZToq1), - - > Tom)] = wF,11 be a multilinear ele-

ment from L(F) = Lie(X) that corresponds to w.

Let G be a pro-p-group, let G = G| > G5 > - - - be its lower central series.
Let L = L(G) = @;>1Gi/G,41 be the Lie algebra linked to the lower central
series. As above, Spanf(L) denotes the Z,-linear span of the set f(L). Since
f is multilinear it follows (as in Lemma 3.1) that Spanf(L) is an ideal of L.

Lemma 3.2 [f|L: Spanf(L)| < oo and f is strongly elliptic on L, then
|G (w(@G))| < 0o and w is strongly elliptic on G.

Proof. Since |L : Spanf(L)| < oo, it follows that there is £ > 1 such
that p*L C Spanf(L). Hence L/Spanf(L) becomes a Z/p*Z-module.

10



Since the element f is strongly( )elhptlc( )there)emst ﬁnlte sets M; C
Lx---xL 1<i<n, M ={(a1,...,0;5 1,071, jn) |1 <5<
= | ;|} such that
Spanf(L Zf ,..., ]Z 1,L,a§z+1,...,a§~2).

Without loss of generality we will assume all elements agl,)c to be homoge-

noeus, a% € Lagijr)-

Choose elements gj(z) € G,k such that g,)c gj(k)Gd(i,j,k)H.

Let M; = {(g}),....g0), 1<j<m} 1<i<n
Choose an arbitrary order in U} ; M;.

Let S denote the ordered product S = [, w(G,i,u), u € UL, M;. For an
(n — 1)-tuple, u = (g](ll), . ](,2) € M;, denote d(u) = k=1 d(i, g, k).

Let g € G,. Suppose that the element 9Gry1 € Ly liesin Spanf(L). Then
9Gri1 = Zf( aj, ), JZ 1 bjZ : ]H‘l’ . ,a%), where b§? are homogeneous
elements of degrees m — 321, d(i, j, k).

Choose elements g, € Gy _q(u), 4 = (g](il), e ](17)1) such that g,Gr—gw)+1 =
bg?. Then g = [1, w(gu, i, u) modulo G4, u € U, M;.

From |L : Spanf(L)| < oo it follows that there exist t > 1 and £ > 1
such that p*L + >;5, L; € Spanf(L).

We have p*L; C Spanf(L) C Ly + L3 + ---. Hence p*L; = (0).

Let us show that Gy C S. Since the set S is closed (because it is the

continous image of a compact set) it is sufficient to show that for any r > ¢
we have that G; C SG,. (what would imply that G; C 5 = S.)

Let us use induction on r. It is clear if » = ¢ (since Gy C SG;). Choose
g € G, and suppose that there exists s € S such that gs* € G,. Then
the element gs™'G,,; lies in the Spanf(L). Hence, there exist elements
9u € Gr_g(u) such that gs™t =TI, w(gu, i, u) mod G, .

Let s = [T, w(g.,,i,u). Then

g=s5.9s" modG, = [Tw(d,,i,u) [ w(gu,i,u) mod Gyiq =

11



H w(gl gu,i,u) mod Gpy1.
u

Indeed, the elements w(g,,i,u) lie in G, and therefore they are cen-
tral modulo G,;;. For an arbitrary u € U, M;, Hall identity [zy,z] =
[z, 2][[x, 2], y][y, 2] and multilineariy of w imply that

w(gl, i, w)w(gy,i,u) = w(g, gu,i,u) mod Gy.
That is, we have proved that if G; C SG, for some r > t , then an

arbitrary element g € G lies in SG,,1, what proves our claim.

All Z,-modules G;/G;y, are finitely generated and p*(G;/Gii1) = (0).
This implies that each term G; of the lower central series has finite index in
G. In particular, |G : G| < o0.

Hence there exists a finite collection of elements aq, ..., a, € w(G) such
that

(w(@) =Uaya;,Ge CJas, -+, 8, 1 < p < |GGy 1<y, yiy <

Let 7" = r|G : G| and let us repeat |G : G| times the sequence ay, ..., a,
a&,...,a;, = QA1,02,...,0r,A1,02,...,0p,A1,A2,...,Ap.
Then
~ U a8

where 1 < jy < jo--- <j, <1 1 <pu<|G: Gyl

Since each a € w(G), let a] = w(a;q,...a;n), 1 < i <71’ and o] =
(ai,27 s aai,n)'

Then

<m> = w<G’ L, O'/l) T w(G7 L, a;ﬂ)s

which implies that the word w is strongly elliptic on G and completes the
proof of the lemma.

Proof of Theorem 1.2

Let x1,...,x, be generators of the group I'. Then the Lie Z,- algebra
L = L(Q) is generated by elements z;G2, 1 < i < m. There exists k > 1

12



such that mfk = 1,1 < i < m. This implies p*2;Gy = 0, 1 < i < m and
therefore p*L = (0). Hence L can be viewed as a Z/p*Z- algebra.

The following result was proved in [MZ]. Let T be a finitely generated
residually-p torsion group. Let I' =1'y > I'y > --- be its lower central series.
Then an arbitrary homogenous element of the Lie ring L(I") = &;>,1 /T4
is ad-nilpotent. This result implies that the Lie algebra L = L(G) satisfies
the assumptions of Lemma 3.1. Hence |L : Spanf(L)| < oo and f is strongly
elliptic on L. Now, by Lemma 3.2 the word w is strongly elliptic on the group
G, which finishes the proof of Theorem 1.2.
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