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Nonlinear systems control is a main issue in control theory. Many developed applications suffer from a mathematical foundation
not as general as the theory of linear systems.This paper proposes a control strategy of nonlinear systems with unknown dynamics
bymeans of a set of local linear models obtained by a supervised neural gas network.The proposed approach takes advantage of the
neural gas feature bywhich the algorithm yields a very robust clustering procedure.The directmodel of the plant constitutes a piece-
wise linear approximation of the nonlinear system and each neuron represents a local linear model for which a linear controller is
designed. The neural gas model works as an observer and a controller at the same time. A state feedback control is implemented
by estimation of the state variables based on the local transfer function that was provided by the local linear model. The gradient
vectors obtained by the supervised neural gas algorithm provide a robust procedure for feedforward nonlinear control, that is,
supposing the inexistence of disturbances.

1. Introduction

Although some physical systems can be approximated as a
linear model, almost all real plants actually have a nonlinear
functioning. Awide understanding of the behavior of nonlin-
ear processes is available but it is sometimes difficult to choose
the appropriate control method. Lyapunov theory is a classic
method for nonlinear system control. If and only if there is
a positive definite continuous function whose derivative is
negative under the suitable conditions of the control design,
then the control asymptotic stability is guaranteed. However,
this method is unfortunate because obtaining the Lyapunov
function is difficult.This problem is even worse when dealing
with unknown plants that are not defined mathematically.
Therefore, it is usually not easy to guarantee the stability of
a complex nonlinear system [1]. However, if the local linear
system corresponding to an equilibrium point is controllable,
then sufficient conditions can be stated for local stability [2].

Hartman-Grobman theorem states that the behavior of
a nonlinear system in the neighborhood of an equilibrium

point can be approximated by its linearized model. The
systems theory is based on many mathematical procedures
about stability, controllability, and observability regarding
linear systems. The stability and, to a great extent, the
dynamic response of a linear system can be described in
terms of eigenvalues of the systemmatrix in state space design
or poles of the transfer function. No such method exists
for nonlinear systems. For this reason, industrial control
processes are still usually designed using this linear control
theory. After linearization, the typical approach is to design a
linear controller such as PID with fixed parameters.

The classical approach to get local linear models can be
achieved with RLS (Recursive Least Squares) method. How-
ever, sometimes this method throws up unfavorable results
due to the intrinsic nonlinearities of the process to be con-
trolled. The problem is to establish the different operating
points for a nonlinear system. At this point, the proposed al-
gorithm can establish each operating point as a cluster centre
of the neural gas network. It is for such reason that artificial
intelligence techniques improve the control performance.
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Research into identification and control of nonlinear sys-
tems by means of neural networks (NN) began over two
decades ago [3]. One of the major advantages of control
by NN is that precise knowledge of the plant such as a
mathematical model is not needed. Initially, control appli-
cations using NN were based on a trial-and-error approach.
Research efforts have improved the control algorithms and
several journals have published special issues with a strong
mathematical foundation [4]. Many applications are based
on a combination between feedforward and recurrent NN.
Recurrency, also known as dynamic backpropagation, is
necessary due to the dependency of the output on the
previous values of the same output, which are also functions
of the weights [5]. Zhang and Wang [6] proposed a pole
assignment control using recurrent NN.

The typical design procedure is to carry out the system
identification in order to model the plant and, secondly,
to obtain the controller. Traditional methods rely heav-
ily on models extracted from physical principles, whereas
approaches based on NN theory usually create black-box
models as function approximators using data obtained from
the plant. Knowledge about the mathematical model of the
plant or any other physical principle is not necessary.

Neural gas (NG) is an unsupervised prototype-based
method [7] in which the prototype vectors are the weights
and carry out a partition of the training data space. It con-
siders the cooperation-competition computation, allowing
the algorithm to be prevented from local minima problems.
In addition, the batch NG allows fast training so that
the convergence is achieved in a small number of epochs
[8]. Supervised versions of NG have also been developed,
specially for classification [9, 10]. The algorithm has a great
robustness for clustering tasks but has also been proven to be
robust to obtain direct models of plants [11].

After years of works in identification and control of
dynamical systems by means of NN, there is agreement
among researchers that linear identifiers and controllers
should be used as first attempt, as stated in Chen and
Narendra [2]. If a set of local linear models corresponding
to several equilibrium points can approximate with certain
accuracy a nonlinear system, then linear controllers can be
designed for each model and the global control is related to
control by switched linear models.

This divide-and-conquer approach is applied in thiswork.
The resulting model is a set of local linear maps. Each neuron
of the NG model corresponds to one local model. These
local models are obtained after NG training. In this way, a
direct model of the plant is obtained. After obtaining this NG
model, the design of the local linear controller is simpler than
that of the global nonlinear controller. Local linear mapping
using another prototype-based algorithm such as SOM was
successfully tested at the NASA facilities [12].

This paper aims to apply the robustnessmodeling capabil-
ity of NG to control a nonlinear plant such as a typical robot
manipulator.

The paper contains the learning rules of the considered
NG algorithm in Section 2, the model of the plant and the
control strategy are explained in Sections 3 and 4, respec-
tively, and the proposed technique is tested in Section 5.

2. Neural Gas Approach

The unsupervised version of the NG algorithm is based on
energy cost function (1) according to the Euclidean metric.
The notation used for the squared Euclidean distance is given
in (2). Moreover,

𝐸NG = 𝑚∑
𝑖=1

𝑁∑
𝑗=1

ℎ𝜎(V𝑗 ,𝑤𝑖) ⋅ 𝑑 (V𝑗, 𝑤𝑖) , (1)

𝑑 (V𝑗, 𝑤𝑖) = 󵄩󵄩󵄩󵄩󵄩V𝑗 − 𝑤𝑖󵄩󵄩󵄩󵄩󵄩 = (V𝑗 − 𝑤𝑖)2 . (2)

A neighborhood function (3) is needed to implement
the algorithm. The rank function 𝑘(V, 𝑤𝑖) ∈ 0, . . . , 𝑚 − 1
represents the rank distance between prototype 𝑤𝑖 and data
vector V. The minimum distance takes the value 0 and the
rank for the maximum distance is equal to 𝑚 − 1, where𝑚 is the number of neurons or prototypes and 𝜎(𝑡) is the
neighborhood radius:

ℎ𝜎 (V, 𝑤𝑖) = exp(−𝑘 (V, 𝑤𝑖)𝜎 (𝑡) ) . (3)

The neighborhood radius 𝜎(𝑡) is usually chosen to
decrease exponentially according to (4). The decrease goes
from an initial positive value, 𝜎𝑡0 , to a smaller final positive
value, 𝜎𝑡max

:

𝜎 (𝑡) = 𝜎𝑡0 ⋅ (𝜎𝑡max𝜎𝑡0 )
𝑡/𝑡max , (4)

where 𝑡 is the epoch step, 𝑡max is the maximum number of
epochs, and 𝜎𝑡0 was chosen as half the number of map units
(𝜎𝑡0 = 𝑚/2), as in Arnonkijpanich et al. [13]. In addition,𝜎𝑡max

= 0.0001 in order to minimize the quantization error
at the end of the training.

The learning rule of the batch version is obtained in
Cottrell et al. [8]. The batch algorithm can be obtained by
means of Newton’s method using the Jacobian and Hessian
matrices, 𝐽 and 𝐻, respectively, of the cost function 𝐸NG.
The adaptation of the prototype 𝑤𝑖 is formulated accordingly
based on this method

Δ𝑤𝑖 = −𝐽 (𝑤𝑖) ⋅ 𝐻−1 (𝑤𝑖) . (5)

Kernel function ℎNG can be considered locally constant
[8]. In this way, the Jacobian and Hessian matrices are

𝐽 (𝑤𝑖) = −2 ⋅ 𝑁∑
𝑗=1

ℎ𝜎 (V𝑗, 𝑤𝑖) ⋅ (V𝑗 − 𝑤𝑖) ,

𝐻 (𝑤𝑖) = 2 ⋅ 𝑁∑
𝑗=1

ℎ𝜎 (V𝑗, 𝑤𝑖) .
(6)
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Substituting (6) into (5), the increment can be obtained

Δ𝑤𝑖 = ∑𝑁𝑗=1 ℎ𝜎 (V𝑗, 𝑤𝑖) ⋅ (V𝑗 − 𝑤𝑖)
∑𝑁𝑗=1 ℎ𝜎 (V𝑗, 𝑤𝑖) . (7)

Finally, the updating rule for each prototype vector
appears in

𝑤𝑖 = ∑𝑁𝑗=1 ℎ𝜎 (V𝑗, 𝑤𝑖) ⋅ V𝑗
∑𝑁𝑗=1 ℎ𝜎 (V𝑗, 𝑤𝑖) . (8)

2.1. Supervised Learning. Supervised learning with NG is
possible by means of local linear mapping over each Voronoi
region defined by prototype vector 𝑤𝑖. A constant 𝑦𝑖 and a
vector∇𝑓𝑖 with the same dimension as𝑤𝑖 are assigned to each
neuron 𝑖. The goal is to approximate the function 𝑦 = 𝑓(V)
fromR𝐷 toR, where 𝐷 is the number of training variables,
that is, the dimension of data vector V. The training thus
becomes supervised and the dataset contains input-output
pairs of data vector V and variable 𝑦 as the objective function.
The estimation is carried out by

𝑦̂ (V) = 𝑦𝑖∗ + ∇𝑓𝑖∗ ⋅ (V − 𝑤𝑖∗) , (9)

where 𝑦̂(V) is the estimated output value, 𝑦𝑖 is the reference
value learned for 𝑤𝑖, ∇𝑓𝑖 is the gradient of the approximated
function obtained in the 𝑖thVoronoi regiondefinedby𝑤𝑖, and𝑖∗ is the neuron 𝑖with its closest𝑤𝑖 to data vector V, that is, the
best matching unit (BMU). The asterisk super index denotes
the winning neuron for input data vector V.

The probability distribution of the input data is repre-
sented by prototype vectors 𝑤 which are previously updated
according to the typical rule of the unsupervised version of
the algorithm [14] using (8). Each prototype vector 𝑤𝑖 can be
considered as the centroid of the 𝑖th Voronoi region. After
unsupervised training, 𝑚 regions are well defined by these
vectors. At this point, local models will be created in each of
these regions so that𝑚 local models will represent the whole
data distribution.

The energy cost function of the supervised version of the
algorithm is based on the mean square error of the output
variable estimation averaged over each Voronoi region [15]
according to (10). Prototypes 𝑤𝑖 are already obtained in (8),
whereas the adaptation rules of 𝑦𝑖 and ∇𝑓𝑖 are calculated
considering Newton’s method for energy cost (10). The
learning rules for 𝑦𝑖 and ∇𝑓𝑖 are shown in (11) and (12),
respectively:

𝐸NGsup =
𝑚∑
𝑖=1

𝑁∑
𝑗=1

ℎ𝜎(V𝑗 ,𝑤𝑖) ⋅ (𝑓 (V𝑗) − 𝑓̂ (V𝑗))2

= 𝑚∑
𝑖=1

𝑁∑
𝑗=1

ℎ𝜎(V𝑗 ,𝑤𝑖) ⋅ (𝑦𝑗 − 𝑦𝑖 − ∇𝑓𝑖 ⋅ (V − 𝑤𝑖))2 ,
(10)

𝑦𝑖 = ∑𝑁𝑗=1 ℎ𝜎(V𝑗 ,𝑤𝑖) ⋅ 𝑓 (V𝑗)
∑𝑁𝑗=1 ℎ𝜎(V𝑗 ,𝑤𝑖) , (11)

Δ∇𝑓𝑖
= ∑𝑁𝑗=1 ℎ𝜎(V𝑗 ,𝑤𝑖) ⋅ (V𝑗 − 𝑤𝑖) ⋅ (𝑓 (V𝑗) − 𝑦𝑖 − ∇𝑓𝑖 ⋅ (V𝑗 − 𝑤𝑖))

∑𝑁𝑗=1 ℎ𝜎(V𝑗 ,𝑤𝑖) ⋅ (V𝑗 − 𝑤𝑖) ⋅ (V𝑗 − 𝑤𝑖) . (12)

3. Plant Model

After NG training, the plant is modeled as a set of linear
systems whose output 𝑌 depends on the previous values of
both output 𝑌 and input 𝑈. The Nonlinear Autoregressive-
Moving Average (NARMA) model has been proven for
nonlinear identification [16, 17] and can be expressed as

𝑌𝑘+𝑑 = ℎ (𝑌𝑘, 𝑌𝑘−1, 𝑌𝑘−2, . . . , 𝑌𝑘−𝑛+1, 𝑈𝑘, 𝑈𝑘−1, 𝑈𝑘−2, . . . ,
𝑈𝑘−𝑛+1) , (13)

where 𝑌𝑘 is the system output at the sampling instant 𝑘, 𝑈𝑘 is
the system input at instant 𝑘, and 𝑑 is the system delay.

Considering zero delay system and substituting (13) for
(9) remains

𝑌𝑘 = 𝑦𝑖∗ + ∇𝑓𝑖∗,1 (𝑌𝑘−1 − 𝑤𝑖∗ ,1) + ∇𝑓𝑖∗,2 (𝑌𝑘−2 − 𝑤𝑖∗ ,2)
+ ⋅ ⋅ ⋅ + ∇𝑓𝑖∗,𝑛 (𝑌𝑘−𝑛 − 𝑤𝑖∗ ,𝑛)
+ ∇𝑓𝑖∗,𝑛+1 (𝑈𝑘 − 𝑤𝑖∗ ,𝑛+1)
+ ∇𝑓𝑖∗,𝑛+2 (𝑈𝑘−1 − 𝑤𝑖∗ ,𝑛+2) + ⋅ ⋅ ⋅
+ ∇𝑓𝑖∗,2𝑛+1 (𝑈𝑘−𝑛 − 𝑤𝑖∗ ,2𝑛+1) .

(14)

Hereafter, the gradients will be denoted as coefficients 𝑎𝑖
and 𝑏𝑖.∇𝑓𝑖∗,1 = 𝑎1, ∇𝑓𝑖∗,2 = 𝑎2, . . . ,∇𝑓𝑖∗,𝑛 = 𝑎𝑛, ∇𝑓𝑖∗,𝑛+1 = 𝑏0,∇𝑓𝑖∗,𝑛+2 = 𝑏1, . . . ,∇𝑓𝑖∗,2𝑛+1 = 𝑏𝑛.

And the following terms will be gathered to form variable𝜂:
𝜂𝑘 = 𝑦𝑖∗ −

2𝑛+1∑
𝑗=1

∇𝑓𝑖∗,𝑗 ⋅ 𝑤𝑖∗ ,𝑗. (15)

Denoting the polynomials with backward shift operator𝑧−1 by 𝐴(𝑧−1) = 1 − 𝑎1𝑧−1 − 𝑎2𝑧−2 − ⋅ ⋅ ⋅ − 𝑎𝑛𝑧−𝑛 and 𝐵(𝑧−1) =𝑏0 + 𝑏1𝑧−1 + 𝑏2𝑧−2 + ⋅ ⋅ ⋅ + 𝑏𝑛𝑧−𝑛

𝑌 (𝑧) = 𝐵 (𝑧−1)
𝐴 (𝑧−1)𝑈 (𝑧) + 1

𝐴 (𝑧−1)𝜂 (𝑧) (16)

which reminds one of an ARMAX model, 𝜂 is not only a
zero mean independent identically distributed white noise
process but also a known disturbance calculated according to
(15), and it depends on the input and output values since it is
obtained by BMU 𝑖∗. The internal noise of the system can be
included in 𝜂.
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Using the 𝑧-transform,𝑌(𝑧) is the systemoutput and𝑈(𝑧)
is the system input where the controller must be connected.

4. Local Linear Control by State Feedback

If the system is linear (locally), then the superposition
theoremcan be applied remaining the linear transfer function
between the system output and the control input as follows:

𝑌 (𝑧) = 𝑏0 + 𝑏1𝑧−1 + 𝑏2𝑧−2 + ⋅ ⋅ ⋅ + 𝑏𝑛𝑧−𝑛1 − 𝑎1𝑧−1 − 𝑎2𝑧−2 − ⋅ ⋅ ⋅ − 𝑎𝑛𝑧−𝑛𝑈 (𝑧) . (17)

Define

𝑄 (𝑧) = 𝑈 (𝑧)1 − 𝑎1𝑧−1 − 𝑎2𝑧−2 − ⋅ ⋅ ⋅ − 𝑎𝑛𝑧−𝑛 (18)

and choose the following relationship between the state
variables: 𝑥1(𝑧) = 𝑧−𝑛𝑄(𝑧), 𝑥2(𝑧) = 𝑧−𝑛+1𝑄(𝑧), . . . ,𝑥𝑛(𝑧) =𝑧−1𝑄(𝑧).

Transfer function (17) can be expressed in control canon-
ical form for linear state space design as

[[[[[[[[[
[

𝑥1 (𝑘 + 1)
𝑥2 (𝑘 + 1)

...
𝑥𝑛−1 (𝑘 + 1)
𝑥𝑛 (𝑘 + 1)

]]]]]]]]]
]

=
[[[[[[[[
[

0 1 0 ⋅ ⋅ ⋅ 00 0 1 ⋅ ⋅ ⋅ 0... ... ... d
...0 0 0 ⋅ ⋅ ⋅ 1

𝑎𝑛 𝑎𝑛−1 𝑎𝑛−2 ⋅ ⋅ ⋅ 𝑎1

]]]]]]]]
]

[[[[[[[[[
[

𝑥1 (𝑘)
𝑥2 (𝑘)...
𝑥𝑛−1 (𝑘)
𝑥𝑛 (𝑘)

]]]]]]]]]
]

+
[[[[[[[[[
[

0
0
...
0
1

]]]]]]]]]
]

𝑢 (𝑘) ,

(19)

𝑌 (𝑘)

= [𝑏𝑛 + 𝑎𝑛𝑏0 𝑏𝑛−1 + 𝑎𝑛−1𝑏0 ⋅ ⋅ ⋅ 𝑏1 + 𝑎1𝑏0]
[[[[[[
[

𝑥1 (𝑘)
𝑥2 (𝑘)...
𝑥𝑛 (𝑘)

]]]]]]
]

+ 𝑏0𝑢 (𝑘) .

(20)

Assuming that the system is controllable, the purpose of
the control by state feedback via pole placement is to assign
a set of pole locations for the closed-loop system that will
correspond to satisfactory dynamic response in terms of rise
time, settling time, and overshoot of the transient response.
The control law is a linear combination of the state variables𝑥𝑖 which are estimated in (19) byway of local transfer function
(17).

The characteristic polynomial of the closed-loop system
depending on system matrix 𝐹, input matrix 𝐺, and gain
vector𝐾 is

det [𝑧𝐼 − (𝐹 − 𝐺𝐾)] = 0 (21)

whereas the characteristic polynomial of the desired pole
locations is

𝑝 (𝑧) = 𝑛∏
𝑗=1

(𝑧 − 𝜆𝑗)
= 𝑧𝑛 + 𝑝1𝑧𝑛−1 + 𝑝2𝑧𝑛−2 + 𝑝3𝑧𝑛−3 + ⋅ ⋅ ⋅ + 𝑝𝑛.

(22)

For an 𝑛th-order system, the gain vector 𝐾 =[𝐾1 𝐾2 ⋅ ⋅ ⋅ 𝐾𝑛] for state feedback is obtained by matching
coefficients in (21) and (22) forcing the closed-loop poles to
be placed at the desired locations:

𝐾 = [𝑝1 + 𝑎1 𝑝2 + 𝑎2 ⋅ ⋅ ⋅ 𝑝𝑛 + 𝑎𝑛] . (23)

It is possible that there are enough degrees of freedom
to choose arbitrarily any desired root location by selecting
the proper values 𝐾𝑖. This is an inexact procedure that may
require some iteration by the designer. The solution of the
local linear model lies in finding the matrix or the regulator
coefficients that implement the state feedback control. The
stability condition for linear discrete-time systems is that all
the eigenvalues must be inside the unit circle. Obviously,
this criterion is not valid for nonlinear systems but there is
a region inside the stable linear area where the asymptotic
stability of the switched linear systems is achieved [18]. Thus,
not only a desired dynamic response can be designed, but
also stability criteria will be accomplished. In this work, this
stability region was found by means of trial-and-error with
different eigenvalues.

The proposed control strategy scheme is shown in Fig-
ure 1. Gain vector 𝐾 is calculated to fulfill the dynamics
according to (22) depending on the local linearmodel defined
by the current winning neuron 𝑖∗ or BMU. State variables𝑥𝑖 are also obtained by the local linear model of the NG in
(19). Tracking of the setpoint reference is possible using the
inverse static gain of the feedback loop. In addition, since
disturbance 𝜂 is known (it is included by the model), it can
be compensated as −𝜂/𝐴 𝑖∗(𝑧−1). The transfer function of the
prefilter has been chosen as (1 − 𝜆prefilter)𝑛/(𝑧 − 𝜆prefilter)𝑛
and determines the switching rate of the local linear models.
Although the pole assignment method does not affect the
zeros of the plant, the prefilter can be optionally designed in
order to cancel dominant zeros located inside the unit circle.
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Figure 1: Control strategy by state feedback and local linear models.
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Figure 2: Plant used to test the proposed control.

5. Experimental Testing

The aim is to control the typical robot arm problem depicted
in Figure 2. Hagan et al. [19] focused on this plant to be
controlled by dynamic propagation algorithm using a Model
Reference Control architecture. Obviously the proposal con-
trol is not based on the mathematical model of the plant,
but this is a well-known second-order nonlinear differential
equation:

𝑢 (𝑡) = 𝐽 ̈𝜃 (𝑡) + 𝐵 ̇𝜃 (𝑡) + 𝑀𝑔𝐿 sin 𝜃 (𝑡) , (24)

where 𝑀 = 1 kg, 𝐽 = 1 kgm2, 𝐿 = 1m, 𝐵 = 1 kgm2/s, and𝑔 = 10m/s2. The viscous friction coefficient is important
regarding stability and dynamic response. If 𝐵 = 0, then the
system is unstable in open loop and the necessary training
data can not be obtained by open loop simulation of the plant.
In the present work, the system is simulated in open loop
to acquire the training data considering 𝐵 = 1 in order to
propose a plantwithmore oscillatory response in comparison
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Figure 3: Results for testing data using 𝑛 = 4.

to Hagan et al. [19] where 𝐵 = 2. Plant input 𝑢 is a uniformly
distributed random signal with −4 and 8.1 as minimum and
maximum values of amplitude, respectively. The pulse width
must be carefully selected in order to model the transient
and steady states correctly. Thus, the pulse width is equal
to 14 seconds. Since NG is a vector quantization algorithm
where the neurons are updated according to the probability
distribution function of the training data, it is important to
obtain a uniformdistribution of output value 𝜃 in the training
data. After plant simulation, it was observed that the present
system output 𝜃𝑘 did not depend on the present system input
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𝑢𝑘 in the training dataset. If 𝑛 = 2 is considered, then
the plant is not correctly modeled, only the steady state is
approximated but not the transient. If 𝑛 = 3, then the plant
model is quite accurate but the control is not well performed
due to the system nonlinearities.The optimum value is 𝑛 = 4.
BatchNG training was carried out considering 50 epochs and
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Figure 6: Results for 𝜆prefilter = 0.9.

49 neurons to obtain the direct model of the plant. Fewer
neurons cause a similar effect to that mentioned above for𝑛 = 2 and using more neurons does not improve the control.
Figures 3 and 4 show the results for testing data after training
for 𝑛 = 4. Obviously, the sampling timemustmeet the criteria
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Figure 7: Results for 𝜆prefilter = 0.7 and 𝜆 = 0.2.

of Nyquist-Shannon theorem.The considered sampling time
was 0.1 seconds.

Eigenvalues 𝜆𝑗 in (22) provide asymptotic stability and
suitable dynamic response. We consider that all the eigen-
values are equal; that is, 𝑝(𝑧) = (𝑧 − 𝜆)4. In order to tune𝜆, the control system was tested for different eigenvalues and
prefilter poles. Steps of amplitude 0.9 at the reference setpoint
were used since 𝜃 values close to 0.9 represent the worst
system working zone with high nonlinearity. Obviously, 𝜃
values over 0.9 are even worse, but we refer to the training
data range. Eigenvalue 𝜆 was incremented from 0.2 to 0.9 in
series of 0.1 amplitude steps. Figures 5 and 6 show the results.
If the prefilter has a wide bandwidth (𝜆prefilter is low), then
lower values of 𝜆 produce instability. In Figure 5, lower 𝜆
values yield a considerable effect of the modeled disturbance𝜂 and the overshoot is high, whereas there are some rebounds

between two BMU linear models for higher 𝜆 values. The
lower 𝜆, the lower the rise time (the wider the bandwidth).
The optimum 𝜆 range is [0.5–0.6] for 𝜆prefilter = 0.4. Thus,
when using switched linear models there is a stability region
of 𝜆 within the global stability area of the linear systems
theory (unit circle) depending on the switching rate of theNG
local linearmodels [18]. Here the switching rate is determined
by the prefilter transfer function. If 𝜆prefilter is increased then
good results are obtained for 𝜆 = 0.2, and see Figure 6.

Once the parameters had been determined, the NG
approach was tested to track a constant reference for control
of position in Figure 7 and a variable reference such as a
sinusoidal signal to check control of velocity in Figure 8. The
linear estimation output 𝜃̂𝐿 is not the NG estimation 𝜃̂ in (9)
but it is calculated by means of (20) and adding the value of
known disturbance 𝜂.
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The worst control is when the reference value is close
to 0.9. To illustrate this problem, PI control with fixed
parameters was compared to NG approach. Obviously, PID
control would achieve a fast and stable response due to
derivative action but at the cost of an unrealizable control
action and the system control would be affected by noisy
signals. The linearized model using the 𝑠-transform in the
neighborhood of 𝜃0, denoted as 𝐺|𝜃0 , is

Θ (𝑠)𝑈 (𝑠) = 𝐺|𝜃0 = 1𝐽𝑠2 + 𝐵𝑠 +𝑀𝑔𝐿 cos 𝜃0 . (25)

A suitable PI design regarding settling time and smooth-
ness response is PI(𝑠) = 𝑘𝑝 ⋅ (𝑠 + (𝑘𝑖/𝑘𝑝))/𝑠 = 0.3 ⋅ (𝑠 +10)/𝑠 considering 𝜃0 = 0.5. Figure 9 shows that the system
controlled by this PI with fixed parameters becomes more

oscillatory when considering 𝜃0 = 0.9 because the two
complex poles of the plant change their location involving the
change of the closed-loop poles.The two complex closed-loop
poles are more dominant and, therefore, the system increases
oscillation. In this design the trade-off is between the settling
time and the oscillatory component of the response. The
tuning is to change 𝑘𝑝 keeping constant the location of the
zero in −10; that is, 𝑘i/𝑘𝑝 = 10. Figure 10 shows the influence
of the adjustment of 𝑘𝑝 in the control design and the NG
approach is displayed to be compared to that one.

The control strategy described above is valid for feed-
forward control, that is, supposing the inexistence of dis-
turbances. In these conditions, the algorithm promises very
good performance. However, disturbance rejection can be
achieved adding an extra state variable so that 𝑥̇(𝑡) = 𝑒(𝑡),
where 𝑒 is the tracking error, and following the steps
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described from (21) to (23), Figure 11 shows the rejection of a
constant output disturbance of amplitude 0.05.

6. Conclusions

In this paper a supervised version of neural gas (NG)
algorithm is proposed to control nonlinear systems whose
dynamic mathematical models are unknown. The identi-
fication of the plant is achieved with the NG model. In
comparison to other types of neural networks, the formation
of the NGmodel is a robust procedure since there are neither
problems of local minima nor overfitting. The training data
must be carefully selected in order to model the transient
and steady states correctly.The NG algorithm tends to model
the steady states quite well. Obviously, the transient must be
correctly modeled in order to control the plant. In this way,
the number of delayed samples 𝑛 and the number of neurons𝑚 are key parameters. There must be a sufficient number of
neurons but the control is not improved if it is too large.

The trained NG network produces a set of piece-wise
local linear models. Each of these is represented by a neuron.

The global controller is a set of linear controllers which are
obtained by state feedback via pole assignment. This control
does not affect zeros but if these are inside the unit circle, then
they can be cancelled by the poles of the prefilter.

Eigenvalues 𝜆 inside the unit circle do not guarantee
the asymptotic stability because the plant to be controlled
is nonlinear. Therefore, the stability corresponds to a region
inside the unit circle [18].This set of 𝜆 values was assigned by
means of trial-and-error. The worst performance occurs for
the highest setpoint values where the nonlinearities arise.The
proposed approach provides a smoother and faster response
than the typical PI with fixed parameters.

To conclude, NG algorithm provides a robust proce-
dure not only for clustering tasks, but also for feedforward
nonlinear control using the gradient vectors obtained by
the supervised version. These gradient vectors constitute the
poles and zeros of the local transfer function of the plant.
The computational complexity is linear regarding the number
of samples, neurons, and variables because of the efficient
implementation in batch procedure.
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E. Maranõn-Maison, L. Castrillon-Pelaez, and Y. Fernandez-
Nava, “Comparing feed-forward versus neural gas as estimators:
application to coke wastewater treatment,” Environmental Tech-
nology, vol. 34, no. 9, pp. 1131–1140, 2013.

[12] D. Erdogmus, J. Cho, J. Lan, M. Motter, and J. C. Principe,
“Adaptive local linear modelling and control of nonlinear
dynamical systems,” in Intelligent Control SystemsUsing Compu-
tational Intelligence Techniques, A. Ruano, Ed., pp. 119–152, IET,
2005.

[13] B. Arnonkijpanich, A. Hasenfuss, and B. Hammer, “Local
matrix adaptation in topographic neural maps,” Neurocomput-
ing, vol. 74, no. 4, pp. 522–539, 2011.
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