DESARROLLO DE UN SISTEMA DE SIMULACIÓN PARA LA REFRIGERACIÓN DE UNA MÁQUINA DE COLADA CONTINUA DE ACERO BASADA EN SIMIT Y PCS7

Máster en Ingeniería de Automatización e Informática Industrial

Felipe Mateos Martín fmateos@uniovi.es

Iván Granda Arillo UO225312@uniovi.es / ivan.granda@iturcemi.com

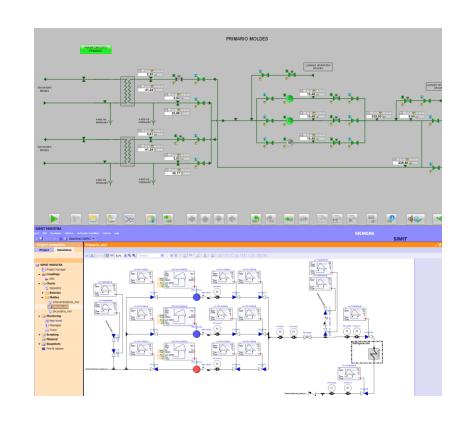
Emilio Ovies Marcos emilio.ovies@iturcemi.com

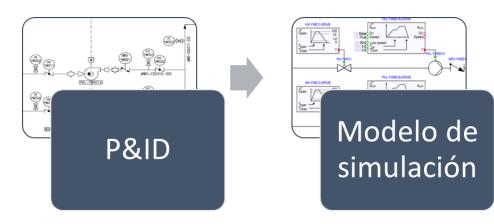
RESUMEN

La simulación es uno de los pilares sobre los que se sustenta el concepto de Industria 4.0. Esto se debe a su utilidad durante el desarrollo, puesta en marcha y mantenimiento de la instalación, así como para el entrenamiento de operadores.

INTRODUCCIÓN

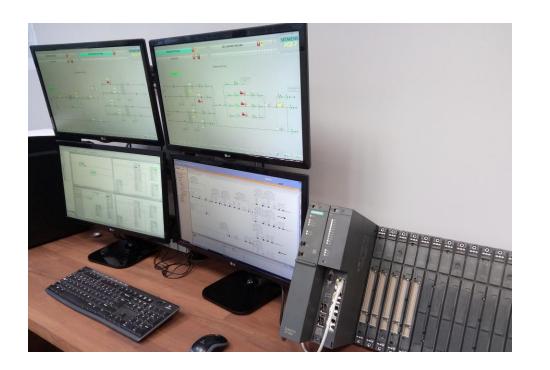
Iturcemi, en colaboración con el master en Ingeniería de Automatización e Informática Industrial, planteó la posibilidad de diseñar una plataforma de simulación del sistema de refrigeración para la nueva máquina de colada continua de Arcelor Mittal en Asturias.


Para llevar a cabo esta tarea se utilizó la herramienta SIMIT de Siemens, un entorno de simulación con capacidad para modelar grandes instalaciones.


IMPLEMENTACIÓN

La implementación se lleva a cabo a partir de la documentación disponible:

- Diagramas de instrumentación y proceso (P&ID).
- Especificaciones de componentes.
- Descripciones funcionales.



Finalmente se consigue una plataforma de simulación compacta compuesta por 4 pantallas, en las que se puede ver el comportamiento de un sistema muy similar al real desde un laboratorio con un simple PC.

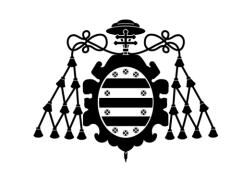
El modelado de la instalación se distribuye en 7 diagramas distintos organizados por su localización.

El sistema es capaz de comunicarse con PLCSIM o con un controlador real a través de OPC.

RESULTADOS

Una vez puesta en marcha la instalación real se contrastan los parámetros con los del simulador.

Parámetro	Valor real (medio)	Valor simulado
MOLDES		
Temperatura entrada primario moldes	33.5 °C	31.1 ºC
Temperatura salida primario moldes	40 °C	40.5 °C
Temperatura entrada secundario	25 °C	25 °C
Temperatura salida secundario moldes	32 °C	34 °C
MAQUINARIA		
Temperatura entrada maquina moldes	31.5 ºC	32 °C
Temperatura salida maquina moldes	37 °C	37 °C
Temperatura entrada secundario	25 °C	25 °C
Temperatura salida secundario moldes	31 °C	35 °C


CONCLUSIONES

Se ha desarrollado un simulador con unas diferencias al sistema real menores del 4%, lo cual es muy razonable dada la envergadura y complejidad del sistema.

El sistema desarrollado cuenta con las siguientes aplicaciones:

- Acortamiento de períodos de puesta en marcha.
- Ensayo de modificaciones en el sistema.
- Entrenamiento de operadores en situaciones críticas.

Universidad de Oviedo Universidá d'Uviéu University of Oviedo

