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Abstract

State Estimation (SE) is a vital component of the Supervisory Control and Data
Acquisition (SCADA) system used today in power networks. In traditional SE meth-
ods, such as Weighted Least Squares (WLS), the state variables of the grid (voltage
magnitudes and phase angles) are estimated from a snapshot of the meters embedded
in the network (i.e. the last measurements available). New approaches to the SE
problem, known as Forecasting-Aided State Estimation (FASE), take advantage of
past states in order to improve the estimation and endow the system with forecasting
capabilities. The application of FASE to the low voltage grid in the context of the
Smart Grid paradigm is an alluring area of research. In this work, a FASE algorithm
using Kalman filters is developed and applied to a distribution network. The algo-
rithm is implemented in Matlab and is assessed in the context of test feeders using
quasi-static time series data. The performance of the new algorithm is compared with
a traditional WLS implementation.
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Chapter 1

Introduction

1.1 Background

Electric power systems become complex due to the growth of demand and con-

sumer. These complexities make the monitoring and control of power systems an

important issue. The control and monitoring of the whole system are a major task of

Energy Management Systems (EMS) at the control center. The state estimator, which

is the valuable element of the energy management systems, provides acceptable real

time data of the system state based on the available measurements on the assumed

system model. The accuracy of the state estimator output should be very precise

because basis on this estimation, the control center performed continuous monitoring

of system conditions using telemetric data. The other actions like determination of

the operating states and appropriate decision making for the preventive and correc-

tive actions using Energy Management System (EMS) also has to be done by this

estimation. The EMS functions of power depends on power flow, state estimation,

security constrained unit commitment, security constrained optimal power flow etc.

Thus, the state estimation process plays a significant role in ensuring the secure and

economic operation of the power systems in large-scale interconnected power grids.
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1.2 Introduction of SCADA in Distribution Sys-

tem

SCADA stands for Supervisory Control and Data Acquisition which means that

the system is controlled from control center by using communication technologies.

The basic function consists in estimating the state variables and performing control

activity at supervisory level. The SCADA monitored system could be suitable for an

oil refinery plant, a power generation and distribution system, a communication net-

work or even a simple switching network. The SCADA collects data from the system

and issue commands accordingly to monitor and control the automation system. To

perform this kind of control activity, it’s necessary to use different kind of sensors

(Analog or Digital) and control relays. The system is supervised by a SCADA master

station which collects data from monitoring devices and issues controls accordingly

(either automatically or at the request of human operators) [2]

An electrical distribution system can be monitored and controlled by a SCADA

system. All substations of the electricity network in a city can be controlled by

SCADA system. Coordination of a power system of a country managed by SCADA

central control room though the central load dispatch center and other related elec-

tricity authorities. It also manages the load demand of a city according to the power

generation profile. During any emergency situation in order to avoid overall system

failure, it works properly for regulation and co-ordination. The main functions of

SCADA includes the power flow status within the overall system, daily and monthly

power supply report and overall system operation, etc [3]

1.3 Limitation in SCADA system

In an SCADA system of a distribution network, the Remote Terminal Unit (RTU)

is a very important element. RTU is used to connect sensors in the process, converting

sensor signals to digital data and sending digital data to the supervisory system.

The RTU connects to physical equipment. Typically, an RTU converts the electrical

signals from the equipment to digital values such as voltage, current, active and
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reactive power. These digital values of voltage and current transmitted through a

communication channel. The significant problem during this transmission is some

errors added up to digital values. These errors are not only caused by the noise

from AD conversion and communication issues, but also from the accuracy of the

sensors (current transformers, potential transformers, etc). For this reason, after

D/A conversion, we are unable to get the exact value as transmitted from RTU. This

wrong value leads an SCADA system towards fault operation and control. Many

researchers are working for many decades to solve this problem. State Estimation

process is one of the best solutions which were accepted by many researcher and

scientists. So we need an algorithm or computation tool which take the noise value

and estimate the best value for power system monitoring.

1.4 Power System State Estimation Process

Power system state estimation is a process by which we can obtain the best es-

timate of the state of the system based on a set of measurements and the model of

the system. As we know that The state of a system represents the minimum amount

of information about the system at any instant of time that is necessary so that the

future behavior can be determined without any information from previous instants.

A state vector is a set of linearly independent variables which can provide a complete

Figure 1-1: Block Diagram of basic State Estimation (SE) Process

description of the system like voltage, current, phase angle etc. A state estimator

provides the state variables (voltage magnitude, phase angle), measurement error

12



processing results, provide an estimate for all metered and unmetered quantities, fil-

ter out the small errors for all model approximation and measurements inaccuracies,

detect and identify the discordant measurements which are called bad data.

1.5 Literature Review

Since the method of state estimation (SE) was first formulated and proposed

[4, 5, 6] three decades ago, power system state estimation remained very plenteous

and argumentative research field. As the first step of proposed method of SE, re-

searcher selected static state estimation method [4]. This method was based on a

single scan of redundant telemetry providing a time snapshot of the network. But

the fact is that the demand and generation (consequently the voltage at each node)

do not change drastically within the considered time frames for traditional systems.

Consequently, the operators have not been concerned with the fact that the static

state estimation output actually represents a ‘past state’. Due to these problems, dif-

ferent approach or modeling of state estimation snatched researcher attention. They

have proposed different kind of mathematical model and implementation of state esti-

mation for control center[7, 8, 1]. Nowadays, as a well-performed application of EMS,

the centralized single-scan weighted least squares (WLS) estimation is considered in

all over the power sector. The classic performance of WLS state estimators has been

done by static approach [6], where the state of the system is estimated by using a

single set of measurements. It cannot predict the future operating point of the sys-

tem but the accuracy of the static estimation is within acceptable limits; in other

words, without using any state prediction from previous, estimations, the estimator

has to be reinitialized for every new set of measurements [9]. However many differ-

ent kinds of formulation has been implemented to improve WLS, such as Orthogonal

Factorization, Hybrid Method, Augmented Matrix Approach, etc. [1]

In early 1970s, Dynamic State Estimators (DSE) approach provides oversimplified

models to describe system state time [10, 11, 12]. Eventually, these models were

unable to forecast the states. The most recent estimated state/measurement set

is used as one-step ahead forecasting. Tracking estimators [13, 14, 15] were other
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models which followed static-state time changes. No system time evolution model

is explicitly assumed by these estimators. As a result, limited forecasting skills of

these models leads to state forecasting inappropriate. In [16, 17, 18] some dynamic

state transition models have been proposed by introducing innovation processes which

are very important method for detection and identification of anomalies (unexpected

sudden changes in system state components, bad data, network configuration error

etc). In this model innovation vector was defined which was the difference between

forecasted and measured quantities.

More developed system state models were implemented in [19]. The proposed

dynamic models were appropriate because online estimation of the parameter (using

exponential smoothing and Kalman filter techniques) to adjust the models to system

state time evolution. Another advanced dynamic state model with a scheme of data

debugging process was proposed in [20, 21, 22]. After analyzing the computation tech-

niques, researchers started thinking to combine all schemes like topology processor,

forecasting scheme, innovation analysis, state filtering, residual analysis, data debug-

ging etc in one algorithm. In this way, Forecasting-Aided State Estimation (FASE)

has introduced in the state estimation regime.

Initially, the researchers choose Artificial Neural Network (ANN) and pattern

analysis to implement DSE algorithm. So with the help of pattern analysis of raw

measurements (analog or status), a real time network configuration was proposed in

[22, 23]. After that papers [24, 25, 26, 27] prove that the most appropriate input

variables for data debugging in ANN are normalized innovations which are better

that normalized estimation residuals and raw measurements. Recently some papers

[28, 29, 30, 31] supported the fuzzy control method for FASE algorithm. In these

papers, they showed the comparative performance studies of their proposed FASE

models and extended Kalman filter including sudden load changes.

To more attention of Forecasting-Aided State Estimation (FASE) research (some

researchers also call it dynamic state estimation) some models was proposed with

various Kalman filters (KF), such as extended Kalman filter (EKF) and unscented

Kalman filter (UKF). The regression based state forecasting method developed in
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[32] to consider fast sampling rates of voltage and phasor measurements by PMU in

DSE. The predicted state was greatly improved compared with previous work and

providing system operators with the capability of getting the trend in state variations.

A new method using EKF based DSE was proposed in [33] to track states of a power

grid. The optimum quantity and suitable locations of PMU installed in the system

to ensure a satisfactory state tracking performance were discussed. In [34], a method

with extension of the standard SSE based on data analysis of an electric power system

using PMU was proposed. An algorithm based on the and weighting factors on the

accuracy of DSE were discussed in [35]. In the paper [36, 37, 38], DSE using different

measurement weighting functions was proposed to handle outliers and system sudden

changes. Gaussian mixtures models were adopted in [39] to account for the stochastic

characteristic of power flow in SE process. But this method is an SSE and does not

have forecasting ability. In [40], a short-term load forecasting method based static

SE was proposed to consider the impacts of load variations on SE. However, the DG

integration was not considered.

To sum up, there are so much research activities has been already done with

Dynamic State Estimation (DSE) and Forecasting-Aided State Estimation (FASE).

Some researchers are continuing in this area. So the aim of this literature review is

to give the complete idea about the past work on FASE and DSE. However, many

missing items are very important. Following of this flow, we have tried to implement

DSE algorithm and applied to a distribution system in this thesis work.

1.6 Objectives of the Master Thesis

The ultimate goal of this thesis is the implementation of a Forecasting-Aided

State Estimation (FASE) algorithm. The performance of the algorithm is analyzed

with respect to different factors like the variation of the smoothing constants, Mean

Square Error (MSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error

(MAPE) and Root Mean Square Error (RMSE) etc. Then a comparison is made with

conventional state estimation process (WLS) in terms of the same factor with the same

distribution system. To observe the effect of optimized exponential smoothing is also
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an important objective of this thesis work.

1.7 Master Thesis Outline

This thesis is described in six chapters as follows:

� Chapter 1 will discuss about the basic aspects of State Estimation (SE) process

in SCADA of a distribution system. It will also be discuss about the problem of

SCADA system for which the monitor and control activities is possibly incorrect.

Then we describe the literature review of various SE process developments. In

this section, we tried to give a complete idea about the significance of FASE

algorithm in distribution system state estimation (SE) process based on past

research work.

� In chapter 2, it will also be shown the general formulation of Weighted Least

Square (WLS) method in state estimation process. The power flow formulas,

derivatives of Jacobian matrix, objective function minimization, performance

indices’s etc is discussed in this chapter.

� In Chapter 3, it will be shown the general modeling of Forecasting-Aided State

Estimation (FASE) with Kalman filter technique. There are two well known

filtering process in application of state estimation. These are Extended Kalman

Filtering (EKF) Process and Unscented Kalman Filtering (UKF) Process. This

work is done with EKF. It also discussed about how can be optimize the fore-

casting parameter to improve the forecasting in every iteration.

� In Chapter 4, the simulation result of implemented algorithm is shown in MAT-

LAB/Simulink platform. All simulation results will be discussed based on differ-

ent performance parameter. A comparative study between implemented FASE

algorithm and convention WLS algorithm will also be discussed with respect to

different factors. The optimized smoothing parameter effect on forecasting are

also described at the end of this chapter.

� The conclusions and future work are presented in Chapter 5.
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Chapter 2

Static State Estimation of Power

System

The network models and complex phasor voltages of all buses are the significant

elements to determine the operating state of a power system. Network operating state

can be classified into six possible states with respect to various operating conditions

such as secure, correctively secure, alert, controllable emergency, non-controllable

emergency (in extremis), and restorative [25].

The limited equality and the inequality constraints of the network define the nor-

mal state of a power system. The equality constraints refer to the loads supplemented

by the available generations. The inequality constraints state that transmission lines

flows, bus voltages and generation output power must not exceed the limits [26].

2.1 Power System Security Assessment

The technical meaning of secure and correctively secure states as the normal state

of a power system. In the normal state, all loads are supplied without any operating

limit violations. Moreover, no violation occurs as contingency event. For instance,

the system does not need any post contingency action to survive as a secure system.

An outage of transmission lines or generators due to faults is the common contin-

gencies in most of the systems. If some contingency violation occur over there and

the system will need appropriate control actions to prevent loss of load due to the
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contingency violations, then the state is classified as ‘correctively secure’ [27]. In the

alert state, some violations caused by a contingency cannot be corrected with any loss

of load. Therefore, some preventive actions must be taken to avoid line overloading

and unwanted tripping of the protection devices.

The operating condition may change significantly and operating constraints would

be violated due to the lacking of preventive control actions. This state is classified

as ‘emergency state’ and immediate corrective actions are needed by the operator to

bring the system back to the alert and normal state. Lack of appropriate actions may

lead the system to evolve into a ‘non-controllable emergency’ (in-extremis) state. In

this condition, cascading of the component outages result in a partial or system-wide

blackout.

The system is in the restorative state when the various loads, lines, transformers

or other equipment should be disconnected to eliminate the operating constraint

violations. In this stage, the system goes back to the normal state; the system would

be recovered with a reduced load and reconfigured topology. The required actions

to start supplying power to all the loads are referred to as ‘restorative control’. The

operating states and control actions in a power system are summarized in Fig 2-1.

Figure 2-1: Power System State Operating Mechanism
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The system run as a normal state is the ultimate goal of system operator. For this

reason continuous monitoring of the system conditions is necessary to keep the grid

in normal state. Consequently the operators can make appropriate decisions to take

preventive or corrective actions by determining the current states. This procedure is

known as ‘security analyses’. Measurement acquisition is required for this analysis. A

device called remote terminal units (RTU) performs the collection and transmission

of various types of measurements. Normally these devices are installed in substations.

Nowadays, intelligent electric devices (IED) are also used to complement the duties

of RTUs. The measurements are transferred to the Supervisory Control and Data

Acquisition(SCADA) host computers from all monitored substations via one of many

possible types of communication links such as fiber optics, satellites, and microwaves.

Figure 2-2 shows the configuration of a typical EMS/SCADA.

Figure 2-2: Typical EMS/SCADA configuration

The measurements includes line flows, bus voltage and line current magnitudes,

generator outputs, loads, circuit breaker and switch status, transformer tap positions,

and switchable capacitor bank values. A state estimator process these raw data and

measurements to filter out the measurement noise and identify the total error. It

gives an optimal estimate of the system by which, data center can perform various
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EMS functions like contingency analysis, automatic generation control, corrective

real and reactive power dispatch, load forecasting and optimal power flow to provide

initial conditions. As we know that Weighted Least Square (WLS) is well accepted

method of static state estimation process. In next section, WLS model, assumption,

mathematical formulation are described.

2.2 Static State Estimator Modeling Methodology

The loads vary in daily operation according to pattern cycles with small varia-

tions. Sudden load changes are rarely seen and they happen due to the disconnection

of big load (industrial consumers), popular TV program broadcast, scheduled out-

ages of network components, unfavorable weather conditions, etc. Therefore, using

some network parameter such as branch resistances, shunt capacitors, shunt inductor,

branch reactance’s and variables like bus loads, generation, nodal injection power, line

flows, and bus voltages (magnitudes and phase angles), the system operating condi-

tion is fully characterized at a given point in time by consideration of quasi-static

data. These co-dependent variables are related by Kirchhoff laws or so called power

flow equations. Power flow equations are used to determine the line flows, and bus

voltages based on the load and generation. The bus voltages are defined as ‘system

states’ rendering the power flow equations as nonlinear. The goal of static state esti-

mation is to provide power system operators with complex voltages (phasors) of all

of the system buses at a given point in time.

2.2.1 Assumptions and Network Modeling

Firstly we assumed a balanced power system which operates in a steady-state. In

balanced conditions, there are three phase branches which are fully transposed and

equal load in each phase. All series or shunt devices are also in three-phase. To model

correctly, we assumed single phase positive sequence circuit as ’one line diagram’ for

entire system. Therefore all solution given by this model is positive phase sequence

component.
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2.2.2 Transmission Line

A two-port π-model is used to represent the branches, whose parameters corre-

spond to the positive sequence equivalent circuit of transmission lines. A transmission

line with a positive sequence series impedance of R+jX and total line charging sus-

ceptance of jB, is modeled by the equivalent circuit shown in Figure 2-3.

Figure 2-3: Typical pi-model of transmission lines[1]

2.2.3 Shunt Elements

The per phase susceptance represents the shunt capacitors and reactors are con-

nected parallel to the bus. Technically shunt elements type is determined by the sign

of susceptance value. Positive sign of B is a indication of shunt capacitors and for

shunt reactors is vice versa.

2.2.4 Regulating Transformer and Tap Settings

We modeled a phase shifting transformer as a series impedance added with a ideal

transformer of tap setting ’a’ as shown in Figure 2-4.

Figure 2-4: Equivalent circuit of a off nominal phase shifting transformer[1]
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The terminal current injections of two port circuit given in Figure 2-4 are deter-

mined by:  ik
im

 =

 y
a2
−y
a

−y
a

y

vk
vm

 (2.1)

where a is the in-phase tap ratio. The equivalent circuit for the above set of

nodal equations is shown in Figure 2-5 for a phase-shifting transformer, where the

off-nominal tap value a is complex, the nodal equations change to [1]:

 ik
im

 =

 y

|a|2 −
y
a∗

−y
a

y

vk
vm

 (2.2)

Figure 2-5: In phase tap changer equivalent circuit model.[1]

2.2.5 Generator and Loads

Constant impedance type loads are modeled as shunt admittances at the corre-

sponding buses. Normal loads and generator are modeled as a equivalent complex

power injector and therefore have no effect on the network model [1].

2.2.6 Network Mathematical Model

The network model is built based on the component models. A set of nodal

equations are derived by applying Kirchhoff’s current law at each bus as follows [1]:
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I =


i1

i2
...

iN

 =


Y11 Y12 · · · Y1N

Y21 Y22 · · · Y2N
...

...
. . .

...

YN1 YN2 · · · YNN




v1

v2
...

vN

 = Y *V (2.3)

Where I is vector of net current injection. V represent vector of bus voltage

phasor. ik and vk current injection and voltage phasor respectively at bus k and

Ykm indicate (k,m)th element of Y. The diagonal and non-diagonal elements of bus

admittance matrix are determined by following Eqn 2.4 and Eqn 2.5.

Ykk =
N∑
m=1

ykm (2.4)

Ykm = −ykm (2.5)

where ykm is the admittance of the component connecting from bus k to bus m.

The shunt components are added to the relevant diagonal terms. We can include the

regulating transformer model in the admittance matrix in the following way:”

Y new
kk = Ykk +

y

|a|2
(2.6)

Y new
km = Ykm −

y

a∗
(2.7)

Y new
mk = Ymk −

y

a
(2.8)

Y new
mm = Ymm + y (2.9)

The measurement models related to the system state is given in following section.

2.3 Measurement Models

As we discussed above, the power system state is defined by the vector of phasor

voltages at all the buses. The phasor angles and magnitudes are estimated as separate

state variables. For a network with N buses, the state is
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x = [δ2 δ3 · · · δN V1 V2 · · · VN ]T (2.10)

The phase angle of bus 1 is not consider as a state variable in Eqn 2.10 because this

bus is known as slack bus and its phase angles known as 0. Each measurement zi is

uniquely calculated by a nonlinear function of the state hi(x) in the ideal case. Since

measurements are not perfect, the corrupted measurements that the state estimator

will process are generated by adding some error with zero mean Gaussian noise ν.

The measurement model equation has given in following Eqn 2.11.

z =


z1

z2
...

zm

 =


h1(x)

h2(x)
...

hm(x)

 +


e1

e2
...

em

 = hi(x) + ei (2.11)

Where,

z is the measurement vector.

hi(x) is the non linear function relating ith measurement to the state vector x.

xT = [x1, x2.....xN ] is corresponding state vector.

h(x) = [h1(x), h2(x)....hm(x)] is measurement vector.

eT = [e1, e2, ....en]T is error vector associated in corrupted measurements and resulting

from the limited accuracy of metering devices. Since we assumed this kind of error

corresponds to white Gaussian noise with zero mean. So it has some statistical

properties such as:

� E[ei] = 0; i = 1, 2, ....m

� Measurement error are independent i.e E[νiνj] = 0. So it belongs to a covari-

ance matrix with standard deviation σi of each measurement which reflect the

expected accuracy of the corresponding meter and the communication devices.

Cov[e] = E[eiej] = R
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R =


σ2
1 0 · · · 0

0 σ2
2 · · · 0

...
...

. . .
...

0 0 · · · σ2
m

 (2.12)

2.3.1 Measurement Function, h(xk)

Most commonly used measurements are the line power flows, bus power injections,

bus voltage magnitudes and line current now magnitudes [1]. These measurements

can be expressed in terms of the state variables either using the rectangular or the

polar coordinates. When using the polar coordinates for a system containing N buses,

the state vector will have (2N — 1) elements, N bus voltage magnitudes and (N — 1)

phase angles, where the phase angle of one reference bus is set equal to an arbitrary

value, such as 0. The state vector x is in the form as Eqn 2.10 assuming bus 1 is

chosen as the reference. Now let us consider a general two-port π-model in Fig 2-6

for network branches, the expressions of branch components are expressed in terms

of conductance and susceptance.

Figure 2-6: Network branch of 2-port Pi-model model.[1]

The expressions for each of the above types of measurements are given below:

� Real and reactive power injection at bus k [1]:
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Pk = Vk
∑
m 6=k

Vm(Gkm cos θkm +Bkm sin θkm)

Qk = Vk
∑
m6=k

Vm(Gkm sin θkm −Bkm cos θkm)
(2.13)

� Real and reactive power flow from bus k to bus m:

Pkm = V 2
k (gsk +Gkm)− VkVm(Gkm cos θkm +Bkm sin θkm)

Qkm = −V 2
k (bsk −Bkm)− VkVm(Gkm sin θkm −Bkm cos θkm)

(2.14)

� Line current flow from bus k to bus m:

Ikm =

√
P 2
km +Q2

km

Vk
(2.15)

Ignoring the shunt admittance, the equation can be written as

Ikm =
√

(G2
km +B2

km)(V 2
k + V 2

m − 2VkVm cos θkm) (2.16)

These functions represents the set of non-linear functions h(xk) that relate the

state variables Vk and θk to the measurements. The variables in the above

expressions are defined as

� Vk, θk are the voltage magnitude and phase angle at bus k.

� θkm = θk - θm.

� Gkm + jBkm is the (km)th element of Y-bus matrix.

� gkm+jbkm is the admittance of series branch between bus k and bus m. They

can be calculated from line parameter by following Eqn 2.17.

Ykm = Gkm + jBkm = −ykm = − 1

Rkm + jXkm
(2.17)

� gsk + jbsk is the shunt admittance of shunt branch of bus k.
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2.3.2 Measurement Jacobian, H

For a quasi-static conditions of a power system, its acceptable to linearize the func-

tion around an executing point.It can be done by Taylor series expansion, eliminating

the high order elements. Once enunciate the linearization, the result is commonly

named measurament Jacobian.

H =
∂h(x)

∂x
(2.18)

The structure of Jacobian matrix can be constructed as follow:

H =



∂Pinj

∂θ

∂Pinj

∂V

∂Pflow

∂θ

∂Pflow

∂V

∂Qinj

∂θ

∂Qinj

∂V

∂Qflow

∂θ

∂Qflow

∂V

∂Imag

∂θ

∂Imag

∂V

0 ∂Vmag

∂V


(2.19)

The measurement Jacobian component corresponding to real power injection has

given below[1]:

∂Pk
∂θk

=
N∑
m=1

VkVm(−Gkm sin θkm +Bkm cos θkm)− V 2
k Bkk (2.20)

∂Pk
∂θm

= VkVm(Gkm sin θkm −Bkm cos θkm) (2.21)

∂Pk
∂Vk

=
N∑
m=1

Vm(Gkm cos θkm +Bkm sin θkm)− VkGkk (2.22)

∂Pk
∂Vm

= Vk(Gkm cos θkm +Bkm sin θkm) (2.23)

The Jacobian element corresponding to reactive power injection measurement has

given below:

∂Qk

∂θk
=

N∑
m=1

VkVm(Gkm cos θkm +Bkm sin θkm)− V 2
k Gkk (2.24)
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∂Qk

∂θm
= VkVm(−Gkm cos θkm −Bkm sin θkm) (2.25)

∂Qk

∂Vk
=

N∑
m=1

Vm(Gkm sin θkm −Bkm cos θkm)− VkBkk (2.26)

∂Qk

∂Vm
= Vk(Gkm sin θkm −Bkm cos θkm) (2.27)

For real power flow, the Jacobian entries can be determine by following equations:

∂Pkm
∂θk

= VkVm(gkm sin θkm − bkm cos θkm) (2.28)

∂Pkm
∂θm

= −VkVm(gkm sin θkm − bkm cos θkm) (2.29)

∂Pkm
∂Vk

= −Vm(gkm cos θkm + bkm sin θkm) + 2(gkm + jgsk)Vk (2.30)

∂Pkm
∂Vm

= −Vk(gkm cos θkm + bkm sin θkm) (2.31)

The measurement Jacobian component corresponding to reactive power flow has given

below:
∂Qkm

∂θk
= VkVm(gkm cos θkm + bkm sin θkm) (2.32)

∂Qkm

∂θm
= VkVm(gkm cos θkm + bkm sin θkm) (2.33)

∂Qkm

∂Vk
= −Vm(gkm sin θkm − bkm cos θkm)− 2(bkm + jbsk)Vk (2.34)

∂Qkm

∂Vm
= −Vk(gkm sin θkm − bkm cos θkm) (2.35)

Jacobian elements for voltage measurements at bus k can be represent by following

expressions:
∂Vk
∂θk

= 0 (2.36)

∂Vk
∂θm

= 0 (2.37)

∂Vk
∂Vk

= 1 (2.38)
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∂Vk
∂Vm

= 0 (2.39)

The Jacobian components of line current flow from bus k to bus m can be calculated

by following equations:

∂Ikm
∂θk

=
g2km + b2km

Ikm
VkVm sin θkm (2.40)

∂Ikm
∂θm

= −g
2
km + b2km
Ikm

VkVm sin θkm (2.41)

∂Ikm
∂Vk

=
g2km + b2km

Ikm
(Vk − Vm cos θkm) (2.42)

∂Ikm
∂Vm

=
g2km + b2km

Ikm
(Vm − Vk cos θkm) (2.43)

2.3.3 The Gain Matrix, G(xk)

The gain matrix, G is matrix is a multiplicative form consisting Jacobian matrix,H

and measurement error covariance matrix,R [1]. The measurement error covariance

matrix is a diagonal matrix of measurement variances as we know from above Eqn

2.12. So the expression of gain matrix has given below:

G(xk) = HTR−1H (2.44)

R−1 =


1
σ2
1

0 · · · 0

0 1
σ2
2
· · · 0

...
...

. . .
...

0 0 · · · 1
σ2
m

 (2.45)

A n-bus system has n number voltage magnitude and n-1 number of phase angles. So

total number of state variables is 2n-1. If we receive m number of measurements,then

the matrix of measurement error covariance matrix is m×m. Hence the dimension

of Jacobian matrix for n-bus is (m)× (2n−1). There the resulting dimension of gain

matrix is (2n− 1)× (2n− 1).

The gain matrix has following properties:
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� It is structurally and numerically symmetric.

� It is sparse, yet less sparse compared to R.

� In general it is a non-negative definite matrix, i.e. all of its eigenvalues are

non-negative. It is positive definite for fully observable networks.

So the measurement vector h(xk) and Jacobian matrix H is most significant

elements for static state estimation process. In next section, the Weighted Least

Square (WLS) technique is described briefly.

2.4 Weighted Least Square (WLS) Technique

WLS estimation is useful for estimating the values of model state vector when the

estimated values have various degrees of changeability over the combinations of the

predictive values. Let us consider the received measurement vector is z.

z = [z1, z2, · · · zm]T (2.46)

where m is the number of the measurements available. A non-linear function relate

the measurements and the state; so no perfect measurements are considered in above

Eqn 2.11.

2.4.1 Objective Function Minimization

The objective function is to minimize the sum of the squares of the weighted

deviations of estimated measurements from the actual measurements. It is defined

as:

J(x) =
m∑
k=1

(zk − hk(x))2

Rkk

= [z − h(x)]TR−1[z − h(x)] (2.47)

The WLS estimator will minimized the above objective function for each state variable

with respect to a threshold value [1]. At the minimum, the first order optimality will

have to be satisfied. The above expression can be represent in compact form as below:

g(x) =
∂J(x)

∂x
= −HTR−1[z − h(x)] = 0 (2.48)
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2.4.2 Solution using Taylor Expansion

Using Taylor series expansion, the non-linear function g(x) can be written around

state vector xk as:

g(x) = g(xk) +G(xk)(x− xk) + ...... = 0 (2.49)

Neglecting the higher order terms leads to an iterative solution scheme known as the

Gauss-Newton method.

xk+1 = xk + [G(xk)]−1g(xk) (2.50)

where,

� k is the iteration index.

� xk is solution vector at time step k.

G(xk) =
∂g(xk)

∂x
= HT (xk)R−1H(xk) (2.51)

g(xk) = −HT (xk)R−1[z − h(xk)] (2.52)

We discussed about properties of gain matrix G(xk) in above section 2.3.3. Due

to quite sparsity, G(xk) is not inverted so we can solve the sparsity problem by

decomposing G(xk) into its triangular factors. But instead of decomposing, we can

solve forward/backward substitution of following sparse linear set of equation at each

iteration k.

[G(xk)]∆xk = HT (xk)R−1[z − h(xk)] (2.53)

where,

∆xk = xk − [G(xk)]−1g(xk) (2.54)

The set of equations given by Eqn 2.53 is known as Normal Equations.

2.4.3 WLS Algorithm

Iterative solution of the Normal equations 2.53 gives the state estimation of the

system. An initial guess has to be made for the state vector x0. As in the case of
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power flow solution, this guess typically corresponds to the flat voltage profile, where

all bus voltages are assumed to be 1.0 per unit and in phase with each other[1]. The

graphical representation of WLS algorithm has given below:

Figure 2-7: Weighted Least Square (WLS) process algorithm.

The WLS algorithm steps has given below:

1. Start the iteration by setting iteration index, k=0.
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2. Initialize the state vector xk as a flat profile.

3. Received the measurement set, zk at iteration k.

4. Calculate the non linear measurement function vector h(xk).

5. Calculate the Jacobian matrix H(xk).

6. Calculate the Gain matrix G(xk).

7. Solve the normal equation for ∆xk from Eqn 2.53.

8. Determine the maximum absolute value among absolute ∆xk.

9. Check the convergence with a threshold value, ε. If it’s false then update the

state vector as xk = xk + ∆xk and repeat the procedure from 4 with updated

state vector.

10. If true then display the state estimation result and wait for next measurement

set for k+1 time step.

Computational burden is the main drawback in the WLS solution algorithm that is

the decomposition in triangular factors of the gain matrix or the information matrix.

The constant gain matrix approximation reduces the computational burden. In WLS

solution steps, flat start initialization and the converged solution of gain matrix com-

ponents remain almost constant. The sensitivity of the real (reactive) power equations

to changes in the magnitude (phase angle) of bus voltages are very low, especially for

high voltage transmission systems [41]. Moreover, WLS method cannot capture the

time-history data. Although it is known to be robust and gives satisfactory results,

the main drawback is that it only considers one set of measurements. For this reason,

Kalman filter based state estimation process is considered as an alternative.
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Chapter 3

Forecasting Aided State Estimation

Due to the computational burden and incapability of tracking the time historic data,

most researchers concentrate their efforts on dynamic state estimation technique

instead of static process. The use of ”Dynamic State Estimation” was noticed in

[10, 28, 42] when Kalman Filter techniques were used to enhance the computational

performance of the traditional WLS state estimation process in power system appli-

cations. In particular, the Kalman Filter techniques were not only used as a steady

state power system model, but also to track the status of bus voltages and phase an-

gles. At each time step, the execution of the Kalman Filter process is the inevitable

part of dynamic state estimation. The computational performance was shown to be

superior compared to the weighted least square (WLS) algorithm. Nowadays, DSE

process with forecasting scheme is the most widely accepted technique to track the

real time state variables. In this context, the Forecasting Aided State Estimation

(FASE) has discussed in this chapter.

3.1 Basic Stages of FASE

Since Forecasting Aided State Estimation (FASE) is a newly research topic in

the field of tracking the real time state variables, its fundamentals has FASE has are

discussed in this section
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3.1.1 Mathematical Modeling of FASE

The amount of information that is available for the state estimate varies depending

on the particular problem has to solve [43]. So a priori and a posteriori state vector

is needed for all of the measurements up to and including time k available for use in

estimate of xk. The expected value of state variable xk before conditioning all the

measurements are known as prior estimation. It is denoted as x̃k. On the other hand,

the estimated value after conditioning/filtering is known as a posterior estimate. It

is expressed as x̂k.

The state space representation of the system based on priori estimate is given

below [43]:

xk+1 = Fkxk + gk + wk (3.1)

zk = hk(xk) + vk (3.2)

Where,

� k is the time sample.

� xk is (n× 1) state vector at instant of k.

� Fk is (n× n) state transition matrix.

� gk is the (n× 1) state trajectory associated with the trend behavior.

� wk denotes modeling uncertainties consisting Gaussian noise with zero mean

and covariance matrix Qk i.e N(0, Qk).

� zk represents the (m× 1) measurement vector.

� hk denote the (m × 1) vector of non-linear measurement function of a given

system which is function of state variables.

� vk is (m × 1) Gaussian error vector consisting of Gaussian noise with zero

mean and covariance matrix Rk i.e N(0, Rk).
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The model in Eqn 3.1 has two parameters Fk and gk which is determined on-line

by using exponential smoothing technique. This technique are discussed in section

3.3. The parameter Qk is determined off-line by considering different operating

conditions of the system.

3.1.2 State Forecasting Stage

State forecasting stage is the first part of Kalman filtering. Let us consider that

an SE process has completed which gives the posterior estimate vector x̂k at the

instant of k with covariance matrix Pk[43]. So for the next time step, it is possible

to forecast the state vector x̃k+1 and its error covariance matrix Mk+1 by performing

conditional forecasting technique by using following equation.

x̃k+1 = Fkx̂k + gk (3.3)

Mk+1 = FkPkF
T
k +Qk (3.4)

So using Eqn 3.3 and 3.4, we can calculate the measurement vector z̃k and its error

covariance matrix Tk+1 by following equation.

z̃k+1 = hk+1(x̃k+1) (3.5)

Tk+1 = Hk+1Mk+1H
T
k+1 (3.6)

where Hk+1 = ∂hk+1

∂x
, x = xk+1 is the Jacobian matrix. The quality of the ith fore-

casted measurement zk+1(i) is represented by standard deviation σT =
√
Tk+1(i, i).

3.1.3 Innovation Analysis Stage

Innovation analysis is a process by which we can determine the abnormality of

received measurements with priori estimate. We can estimate the innovation vec-

tor νk+1(i) for ith component at time instant (k+1) by difference between received

measurement zk+1(i) and forecasted z̃k+1(i). We can also calculate innovation error
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covariance matrix Nk+1 using Rk+1 and Mk+1.

νk+1 = zk+1(i)− z̃k+1(i) (3.7)

Nk+1 = Rk+1 +Hk+1Mk+1H
T
k+1 = Rk+1 + Tk+1 (3.8)

To detect the anomaly in forecasted state vector at a k + 1 time instant, we need

normalized innovations and tested its convergence with some threshold γ. The

normalized vector of innovation is

νN =
|ν(i)|
σN(i)

≤ γ (3.9)

Here, σN(i) =
√
N(i, i) is the standard deviation of the innovations and the time

instant notation is omitted to neglect the complexity. If at least one innovation

exceeds the γ, then νN will be positive which means there is some abnormality in

innovation vector and it should have diagnosed. Conversely νN will be negative for

acceptable innovations and FASE algorithm will be valid for this innovation vector.

3.1.4 Kalman Filtering Stage

Kalman filter is an iterative process that exploits a set of nonlinear mathematical

functions to perform estimation. It can determine the present state, even future state

by the knowledge of past level and trend. The state and measurement functions are

already mentioned in Eqn above 3.1 and 3.2.

Kalman filter has two major steps: Prediction and Correction (or Update). The

prediction of forecasting state has already discussed in section 3.2. In this stage,

the calculation of a priori state estimate which propagated to corrected stage via

innovation analysis as discussed in section 3.3. The correction stage has given in the

section below.

3.1.5 State Correction/Filtering Stage

In this stage, the forecasted/priori state vector x̃k+1 and measurement vector z̃k+1

can be filtered/posteriori state vector x̂k+1 yielding with its new covariance Pk+1.
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First of all, we have to minimize the objective function with forecasted state vector

z̃k+1 and initial error covariance Pk. The objective function has given below

J(x) = [z − h(x̃k+1)]
TR−1[z − h(x̃k+1)] + (x− x̃k+1)P

−1
k (x− x̃k+1)

T (3.10)

After minimization we got the acceptable forecasted state vector. Then the Kalman

gain is calculated by following equation.

Kk+1 = PkH
T
k+1(H

T
k+1PkHk+1 +R)−1 = PkH

T
k+1R

−1 (3.11)

Finally the state vector as posteriori estimate and error covariance matrix can be

updated by following equation.

x̂k+1 = x̃k+1 +Kk+1(z̃k+1 −Hk+1x̃k+1) (3.12)

Pk+1 = (I −Kk+1Hk+1)Pk (3.13)

So Kalman filter working strategy is a recursive process to filtering the present and

future estimate. The graphical representation of Kalman filtering process has shown

in Fig 3-1 below

3.1.6 Residual Analysis Stage

A residual analysis can determine the abnormality of received measurements with

posteriori estimate. It can estimate the residual vector rk+1(i) for ith component at

time instant (k+1) by difference between received measurement zk+1(i) and filtered

ẑk+1(i). The residual error covariance matrix Ek+1 using Rk+1 and Pk+1 can also

be calculated.

rk+1 = zk+1(i)− ẑk+1(i) (3.14)

Ek+1 = Rk+1 −Hk+1Pk+1H
T
k+1 = Rk+1 − Sk+1 (3.15)

To detect the anomaly in posterior state vector at a k + 1 time instant, normalized

residuals and tested its convergence with some threshold λ. The normalized vector
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Figure 3-1: Kalman Filtering Process Algorithm

of residuals is

rN =
|r(i)|
σE(i)

≤ λ (3.16)

Here, σE(i) =
√
E(i, i) is the standard deviation of the residuals and the time instant

notation is omitted to neglect the complexity. If at least one residual exceeds the λ,

then rE will be positive which means there is some abnormality in residual vector

and it should have diagnosed. Conversely rE will be negative for acceptable residuals

and FASE algorithm will be valid for this innovation vector.

3.2 FASE Algorithm

FASE is a continuous process perform but the control center, together with its

EMS, is conceived as the central nervous system of the power network. The FASE

algorithm flow chart has given in Fig 3-2 below.
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Figure 3-2: Kalman Filtering Process Algorithm

The network model is extracted From the scan of real-time data (raw measure-

ments and status) which obtained by performing data acquisition system. The static

database has the network basic topology along with electrical parameter data. In
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order to execute the FASE algorithm shown in Fig 3-2, some input parameters must

be defined:

� max iter is maximum number of iterations

� γ is the abnormality detection threshold for normalized innovations.

� λ is the anomaly detection threshold for normalized residuals.

� ε is the tolerance of estimated values, needed in the test for convergence of the

filtering process.

3.3 Optimization Technique of Forecasting

As the well acceptable approach to handling the complexity of the model men-

tioned above in Eqn 3-1. In that equation an EKF-based method simplifies liber-

alizing the transit function, assuming the quasi-steady-state behavior. As we know,

Fk is known as state transition matrix which determines the state vector for next

time instant and gk is the state trajectory vector defines the level and trend path

for predicted state vector over the further time instants. So it is very important to

determine Fk and gk for Kalman filtering process. To optimize the FASE algo-

rithm, we have to play with these parameters. There are many techniques already

used to determine these parameters. In this thesis, we used Holt Linear Exponential

Smoothing Technique. We discussed this technique in below sub section.

3.3.1 Holt Linear Exponential Smoothing

Holt’s linear smoothing is a comparatively simple technique of short-term forecast-

ing which is executable when an acceptable number of data has to be forecasted at

the same time. The smoothing of the main dataset has done with its trend through

two different parameters α and β whose value lying between 0 and 1. But it is

noticeable in different work that the value of β followed 0 < β < α.

Let us consider that xik is the ith element of the true state vector xk. If x̃ik and

x̃ik+1 are the predictions of state vector at time instant k and k+1 respectively, Holt’s

41



linear method expressions are

x̃ik+1 = aik + bik (3.17)

Where aik and bik is the level and trend at ith time instant. The level and trend

equation has given below

aik = αix
i
k + (1− αi)x̃ik (3.18)

bik = βi(a
i
k − aik−1) + (1− βi)bik−1 (3.19)

The equation 3.17 and be written as following way

x̃ik+1 = F i
kx̃

i
k + gik (3.20)

where

F i
k = αi(1 + βi)I (3.21)

gik = [(1 + βi)(1− αi)]x̃ik + βia
i
k−1 + (1− βi)bik−1 (3.22)

where I is the identity matrix, and all associated parameters can be calculated based

on a priori knowledge. Despite its rather simple implementation, this technique can

offer very short-term predictions (few minutes ahead). However, this linearization step

is more suited to quasi-steady-state models and may not be suitable for significant

dynamic situations.

3.3.2 Performance Indices for Optimization

The forecasts should be verified or validated by comparing with historical or true

data. For this validation, some performance indices are very important. There is no

general agreement among researchers to determine the best process for most optimized

forecasting method. But according to some research work , accuracy is the most

important concern in evaluating the quality of a forecast. The goal of the forecast is

to minimize error [44].

We used common indicators to evaluate accuracy particularly MAE (Mean abso-

lute error), MSE (Mean squared error), RMSE (Root mean squared error) or MAPE

(Mean absolute percentage error). We discussed the definition of these indices in the
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following section.

3.3.2.1 Mean Absolute Error, MAE

MAE is a indicator of overall accuracy that defines the degree of spread, where

all errors are assigned equal weights.

MAE =
1

n

n∑
t=1

(|et|) (3.23)

Here et is the residuals at the time instant t. If the forecast data match with the

past time series data very good, MAE is near zero, otherwise MAE is large indication

of poor forecast. Thus, when two or more forecasting methods are compared, the one

with the minimum MAE can be selected as most accurate [44].

3.3.2.2 Mean Squared Error, MSE

It also indicate the overall accuracy as MAE but this parameter is well acceptable

in case of exponential smoothing or other techniques due to giving additional weight

to large error.

MSE =
1

n

n∑
t=1

(et)
2 (3.24)

3.3.2.3 Root Mean Squared Error, RMSE

RMSE is a quadratic scoring rule that also measures the average magnitude of the

error. It’s the square root of the average of squared differences between prediction

and actual observation.

RMSE =

√√√√ 1

n

n∑
t=1

(et)2 (3.25)

Since the errors are squared before they are averaged, the RMSE gives a relatively

high weight to large errors. This means the RMSE should be more useful when large

errors are particularly undesirable.

3.3.2.4 Mean Absolute Percentage Error, MAPE

MAPE measures the deviation from the actual data in terms of percentage, that

is the only difference between them. The similarity between MAE and MAPE is they
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both measure the absolute error.

MAPE =
1

n

n∑
t=1

(|et|)
xt
× 100 (3.26)

3.3.2.5 Mean Absolute Scaled Error, MASE

All errors discussed before are scale dependent which means accuracy of forecasting

based on relative errors. MASE is widely applicable to determine measurements

forecast accuracy without the problems seen in the other measurements. This forecast

evaluation statistical index is calculated for the ith series of forecasted/filtered values,

over a period n time samples can be calculated using Eqn 3.27 and 3.28 below:

MASE(i) =
1

n

n∑
t=1

|qt(i)| (3.27)

qt(i) =
x̂t(i)− x̃t(i)

1
t−1

∑t
j=2 |x̂j(i)− x̂j−1(i)|

(3.28)

The result is independent of the scale of the data. MASE can be summerized as

follow:

� MASE(i) < 1 means the proposed forecasting methods gives smaller errors

than the one step ahead forecast of naive method;

� MASE(i) = 1 means naive method is better than proposed forecasting tech-

nique.

� MASE(i) > 1 forecasts obtained with the proposed method are worse, on

average than naive forecasts.

So MAD, MAPE, and RMSE are good measures, and positive and negative do not

cancel each other out in either, but RMSE and MASE more aggressively punishes big

errors than small ones, whereas MAD/MAPE are more linear.
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3.3.3 Optimization Approach of Smoothing Constant

In contaxt of optimization of algorithm, we have to concentrate in forecasting sec-

tion. The accuracy of forecasting of FASE technique depends on smoothing constant

α and β. Choosing an appropriate value of exponential smoothing constant is very

essential to minimize the error in forecasting.

Basically a intuition on performance indices is a method selecting a smoothing

constant i, using forecast errors to guide the decision. The goal is to select a optimized

smoothing constant that balances the benefits of smoothing random variations with

the benefits of responding to real changes if and when they occur.

The smoothing constant sis like a weighting factor. When α is close to 1, the

new forecast will include a substantial adjustment for any error that occurred in the

preceding forecast. When α is close to 0, the new forecast is very similar to the old

forecast.

The smoothing constant α is not an arbitrary choice but generally falls between

0.1 and 1. Low values of a are used when the underlying average tends to be stable;

higher values are used when the underlying average is susceptible to change.

In practice, the smoothing constant α is often chosen by a grid search of the

parameter space; that is, different solutions for a are tried starting, for example, with

α = 0.1 to α =0.9, with increments of 0.1. The value of α with the smallest MAE,

MSE, RMSE or MAPE is chosen for use in producing the good future forecasts.
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Chapter 4

Case Study Simulation and Results

In this chapter, the simulation result of FASE algorithm is shown in MATLAB/Simulink

platform. All simulation results discussed based on tabular and graphical format. A

comparative study between our implemented FASE algorithm and conventional WLS

process are also discussed with respect to different factors. Finally, the simulation

results with optimized smoothing parameter is shown at the end of this chapter. The

chapter starts by describing the system for which the whole case study was done.

4.1 Distribution System Description

A customer owned grid of a steelworks in the north of Spain, already tested in

previous works [45] considered in this case study. The main purpose of this system is

to operate some descaling pump and lightning. The system includes four tap changing

transformer at between Bus 2 and 3, Bus 3 and 8, Bus 4 and 5, Bus 6 and 7. It also

has buses of different voltage levels. The customer grid is connected with 220kV

public utility grid through a point of common coupling (PCC). The voltage level of

Bus 3 and 4 is 132kV, 30kV for Bus 5 and 6 and 13.8kV for Bus 7, 8 and 9. The grid

is shown in Fig 4-1 below.
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Figure 4-1: A 9 bus Industrial Distribution System in North of Spain

The parameters and configuration of the embedded transformers are listed in Table

4-1. The bus data including resistance and reactance is shown in Table 4-2. Table

4-3 depicted the lengths and per km impedances of the lines, together with the series

impedances of each branch for lines and transformers. The specific power injection

values considered in this case study are listed in Table 4-4.
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Table 4.1: Transformer Parameters

TransformerID Sn [MVA] Rsc[ %] Xsc[ %] a[pu]

T23 2*270 0.9 12.9 1.0125
T45 3*37.5 0.9 9 0.9875
T67 10 0.95 4.8 0.925
T38 3*50 0.92 8.5 0.975

Table 4.2: Bus Data

BusID Rik[pu] Xik[pu]

1 2.43× 10−05 2.33× 10−04

2 1.36× 10−03 2.02× 10−03

3 1.36× 10−03 1.30× 10−04

4 7.90× 10−04 7.90× 10−03

5 1.89× 10−03 4.43× 10−04

6 −1.46× 10−02 4.29× 10−02

7 −2.25× 10−03 5.08× 10−03

8 1.52× 10−02 1.06× 10−02

Table 4.3: Line Data

Branch Length[km] Rline[ohm/km] Xline[ohm/km]

1to2 4.7 0.025 0.24
3to4 1.5 0.161 0.151
5to6 0.3 0.568 0.133
8to9 1.8 0.161 0.112

Table 4.4: Power Injections

BusID RealPower, Pi[MW ] ReactivePower,Qi[MV ar]

2 0.0 0.0
3 84.0 26.0
4 0.0 0.0
5 34.0 12.0
6 0.0 0.0
7 4.9 12.6
8 52.0 39.0
9 2.7 -3.4
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4.2 Data Generation as Measurement

Since the main goal of this thesis is to formulate accurate estimates for the state

of the network in each time instant, the test of the estimation algorithm requires

the exact state values as well as a set of measurements which would include some

noise. The distribution system shown in Fig. 4.1 was solved by using the Direct

Approach (DA) power flow method (See Appendix A) in order to calculate the exact

state variables of the network. The solutions for 100th time instant given by power

flow method considered as actual state variables of each node. The state variables at

the 100th time instant are depicted in Table 4-5 below.

Table 4.5: State Variable from DA Power Flow Solution

BusID V oltageMagnitude, |V | [pu] Angle, 6 θ[rad]

1 1.0000 0.0000
2 0.9997 -0.0003
3 0.9843 -0.0031
4 0.9841 -0.0031
5 0.9927 -0.0064
6 0.9921 -0.0060
7 1.0582 -0.0154
8 1.0065 -0.0057
9 0.9990 -0.0045

4.3 Corrupted or Noisy Measurement Generation

The corrupted measurements with zero means and some standard deviation is

generated. In this simulation, it is assumed 0.001 standard deviation for voltages

data generation and 0.02 for real and reactive power injection. This deviation added

randomly with voltage, real and reactive power injections to create corrupted mea-

surements. For example, the probability density function of real power injection at

bus 2 for 100 iterations has shown in Fig 4-2 below:
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Figure 4-2: Gaussian distribution used for the generation of corrupted data for real
power injection at Bus 1

Thus for this 9 bus distribution system, there are 9 voltage 8 real power and re-

active power corrupted measurements generated using Gaussian probabilistic density

function. For FASE process we used these measurements as a 25×1 vector Zk. The

vector structure is expressed in Eqn 4.1 below.

Zk = [V1 V2 · · · V9 P i
2 P i

3 · · · P i
8 Qi

2 Qi
3 · · · Qi

8]
T (4.1)

Here, P i
2 and Qi

2 defined as the real and reactive power injection at Bus 2.
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4.4 Post Simulation Matrices and Vectors for 9

Bus System

The corrupted measurements from each node are generated. So it is possible to

simulate the FASE algorithm with these measurements. After complete simulations,

there are generated some important matrices which made the whole FASE process

valid. The definition and dimensions of these matrices are discussed in this section.

4.4.1 Algorithm Parameters

For simulation purpose, it is necessary to define parameter constrained which has

used for different conditions. The matrix parameters is showed in Table 4.6

Table 4.6: Algorithm Parameters

ParametersDefination Symbol V alue

Total Number of Iteration max− iter 100
Tolerance tol 10−14

innovation Threshold γ 5
Residual Threshold λ 3

Smoothing Parameter (Level) α 0.775
Smoothing Parameter (Trend) β 0.1

4.4.2 Posterior and Prior Vectors

Posterior and Prior vector are the most important vectors in this simulation.

Posterior vector indicates the state variables after filtering process which mean the

elements of this vector will display at control center of SCADA system. Similarly

priori vector also express state variables but before filtering process.

x̂k = [δ2 δ3 · · · δ9 V1 V2 · · · V9]
T (4.2)

x̃k = [δ2 δ3 · · · δ9 V1 V2 · · · V9]
T (4.3)

Here x̂k and x̃k denoted the posteriori and priori vector at k time instant. Since

the Bus 1 is slack bus, the phase angle of this bus is 0. Thus the 9 bus distribution
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system has 17 state variables. The dimensions of posteriori and priori vector is ( 17×1)

column vector.

4.4.3 Jacobian Matrix

Jacobian matrix is formed based on the measurements and state variables. Each

element of this matrix is in partial derivative form. Every measurement is the partial

derivative with respect to each state variable.

H =



∂V1
∂θ2

· · · ∂V1
∂θ9

∂V1
∂V1

· · · ∂V1
∂V9

...
. . .

...
...

. . .
...

∂V9
∂θ2

· · · ∂V9
∂θ9

∂V9
∂V9

· · · ∂V9
∂V9

∂P1

∂θ2
· · · ∂P1

∂θ9

∂P1

∂V1
· · · ∂P1

∂V9
...

. . .
...

...
. . .

...

∂P8

∂θ2
· · · ∂P8

∂θ9

∂P8

∂V1
· · · ∂P8

∂V9

∂Q1

∂θ2
· · · ∂Q1

∂θ9

∂Q1

∂V1
· · · ∂Q1

∂V9
...

. . .
...

...
. . .

...

∂Q8

∂θ2
· · · ∂Q8

∂θ9

∂Q8

∂V1
· · · ∂Q8

∂V9



(4.4)

The mathematical formulation Jacobian matrix already discussed in Chapter 2. Since

there are 25 measurements and 17 state variables, the dimension of the Jacobian

matrix is ( 25× 17). The observability analysis of the system can be determined by

the H matrix, also known as observation matrix of the system.

4.4.4 Kalman Gain Matrix

Kalman filter quality can be determined by Kalman filter gain K. The expression

of Kalman gain is shown in above Eqn 3.11 where it can be seen that this gain depends

on Fk, Hk and Rk matrices. That means the Kalman gain K can be calculated

off-line and saved in memory before the system operation. The dimension of Kalman

gain matrix for this 9 bus system is ( 17× 25).

The computational effort of calculating K can be saved during real-time operation

by pre-computing it. If the Kalman filter is implemented in an embedded system with

strict computational requirements, this can make the difference between whether or
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not the system can be implemented in real time. Furthermore, the performance of the

filter can be investigated and evaluated before the filter is actually run. Invalidness

of these matrices indicate that the algorithm wrong operation.

In summary, the matrices are different for different set of measurement received.

It changes in every iteration.

4.5 Illustrative Results

The Forecasting Aided State Estimation (FASE) technique was tested in a 9-bus

industrial grid. Though not conducted in this work, it would be possible to validate

the algorithm in an IEEE standard distribution test network. The simulation tests

were conducted using the MATLAB environment.

4.5.1 Quasi Static Load Profiles

After observing the distribution system in Fig 4-1, it is shown that there are 5

loads connected with corresponding buses 3,5,7,8 and 9. In order to emulate a quasi-

dynamic behavior, a load profile is assigned to each of those loads by linking them

with .csv files. These .csv files define the minute load profile of corresponding buses.

Load profiles are defined by a matrix with two columns. The first column specifies

the time, while the second column specifies the multiplier values. A portion of the

Load-profile-1.csv file is shown below.

Figure 4-3: Row and Columns in Load-profiles-1 csv file

The MVA value of a load at a specific time is determined by its base MVA and

multiplier values. Take LOAD1 as an example, its base MVA value is 50 and the value

of multiplier at time 00:01:00 is 0.036. Therefore, the MVA value of LOAD1 at time
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00:01:00 is 50×0.036 = 1.8 MVA. Moreover, it is necessary to convert the appearent

power into real and reactive power injection. So the KW and KVAR are calculated

by assuming the power factor 0.85. Thus we can determine time series load profile

for corresponding load buses. The quasi static time series load profiles are shown in

Fig 4-4 below.

Figure 4-4: Quasi Static Time Series Load Profiles at corresponding load buses
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4.5.2 Simulation Results of FASE Algorithm

A flat voltage and angle profile is considered as a posterior estimate for the initial

iteration step. We have done the simulation of FASE algorithm with tolerance 10−14

iteratively. The voltage and angle estimate for 100th time instant at the different

buses as state variables of the grid are presented in Table 4-7 below.

Table 4.7: Voltage magnitudes and phase angle estimation using FASE

BusID V oltageMagnitude, |V | [pu] Angle, 6 θ[rad]

1 0.9995 0.0000
2 0.9990 -0.0003
3 0.9841 -0.0032
4 0.9839 -0.0032
5 0.9926 -0.0065
6 0.9920 -0.0061
7 1.0582 -0.0155
8 1.0062 -0.0058
9 0.9987 -0.0048

A graphical representation is shown in Fig 4-5 and 4-6 below where the voltage

and angle estimate of 9 buses at 100th time step is very closer to the actual state

variables.

The real and reactive power injection are also calculated with this estimated volt-

age and angles using Eqn 2.13. Table 4.8 illustrates the estimated real and reactive

power injections of Bus 2 at 100th time instant. The estimated real and reactive

power injection at bus 2 over 100 iteration is plotted in Fig 4-7 and 4-8 which also

matched with actual measurements.
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Figure 4-5: Voltage Estimation of FASE Algorithm comparing with actual voltage
magnitude

Figure 4-6: Angle Estimation of FASE Algorithm comparing with actual angle
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Figure 4-7: Real Power Injection Estimation over 100 iteration compared with actual
measurement

Figure 4-8: Reactive Power Injection Estimation over 100 iteration compared with
actual values

Forecasting property makes FASE a more efficient and robust than any other state

estimation techniques (i.e WLS). Due to forecasting, the algorithm can reach near

actual state data. Thus it is very easy to estimate the state variables near the actual

by the filtering process. Fig 4-9 and 4-10 depicted the forecasted and filtered state

variables compared with actual. It is clearly seen that forecasted value is becoming

more accurate as actual after 50 iteration.

The performance indices are very important factors to analyze the validity or ac-
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Table 4.8: Real and Reactive Power Injections Comparison at 100th Time Step

BusID Pac[MW ] PSE[MW ] Qac[MV ar] QSE[MV ar]

1 -0.00 -0.00 -0.00 -0.01
2 -27.0 -27.9 -25.65 -25.13
3 -0.00 -0.01 -0.00 -0.04
4 -17.50 -17.83 -16.63 -16.33
5 -0.00 -0.00 -0.00 -0.03
6 -27.50 -27.40 -25.13 -25.48
7 -21.23 -21.50 -20.42 -20.07
8 -29.84 -30.50 -28.02 -27.70
9 -0.00 -0.02 -0.00 -0.03

Figure 4-9: Forecasted and Filtered Voltage Magnitudes compared with actual

ceptability of state estimation technique. We discussed different types of performances

in section 3.3.2 of previous chapters. Table 4.9 illustrates different performance in-

dices for voltage magnitudes and angles of each bus. This simulation has done by

considering smoothing parameter α = 0.775 and β = 0.1.

58



Figure 4-10: Forecasted and Filtered Angles compared with actual

Since forecasted and filtered voltage magnitudes for 9 buses and angles for 8 buses

are being calculated, 100 forecasted and filtered results for voltage and angle at each

bus were generated. These results are valid for specific smoothing parameter that is

α = 0.775 and β = 0.1. Using Eqn 3.23, 3.24, 3.25 and 3.26, the MAE, MSE, RMSE,

and MAPE are calculated for 100 iterations. It is noticeable that different buses

have different values of performance indices at specific smoothing parameter. The

minimum value of that indices indicates an almost perfect estimation. For example,

RMSE is minimum for Bus 1 voltage magnitude estimation for this α and β which

means that this simulation is perfect for Bus 1 voltage magnitude estimation.

The performance of FASE under normal operating conditions is demonstrated

through MASE indexes, calculated for all the state variables—8 time series of voltage

phase angles and 9 of voltage magnitudes. The Mean Absolute Scaled Error (MASE)

for this forecasting technique is depicted in Table 4.10 below.

These indexes, depicted in Fig 4-11 and 4-12 below, reveal that the adopted fore-

casting method presents an adequate performance, MASE(i) < 1 for all forecasted

state time series, defeating by far the naive (tracking) method.
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Table 4.9: Performance Indices of 9 Buses for α = 0.775 and β = 0.1

Voltage Magnitudes Angles

Bus ID MAE MSE RMSE MAPE MAE MSE RMSE MAPE

( ×10−4) ( ×10−7) ( ×10−4) ( ×10−6) ( ×10−4) ( ×10−7) ( ×10−4) ( ×10−5)

1 2.90 1.30 2.90 2.91 - - - -
2 2.89 1.28 3.58 2.78 5.24 3.24 5.69 1000
3 2.72 1.14 3.37 2.89 58 393 62.7 920
4 2.71 1.13 3.36 2.77 0.64 0.075 0.866 9.80
5 2.60 1.10 3.31 2.64 59 456 67.55 472.3
6 2.61 1.10 3.32 2.65 6.72 7.27 8.52 61.2
7 4.76 4.65 6.81 4.64 160 4050 201.22 552.7
8 2.84 1.33 3.64 2.86 139 3600 189.78 1228.1
9 3.55 2.26 4.75 3.65 29 131 36.21 296.7

Table 4.10: Forecast Errors of Bus Voltages Magnitudes and angles

BusID MASE, |V | [pu] MASE, 6 θ[rad]

1 0.0001219 -
2 0.0002228 0.0000007
3 0.0001233 0.0000065
4 0.0001234 0.0000062
5 0.0001281 0.00001359
6 0.0001281 0.00001314
7 0.0001539 0.00001314
8 0.0001324 0.00001427
9 0.0001452 0.00001274
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Figure 4-11: Forecast error measure for Bus Voltage Magnitudes

Figure 4-12: Forecast error measure for Bus Phase Angles
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4.6 Comparative Study between FASE and WLS

Techniques

As it is well-known, Weighted Least Square (WLS) method is well established

and globally accepted method of state estimation. Any other approach to the field,

then, should confront its results towards this well-accepted algorithm. Forecasting

Aided State Estimation is a new technique, it is a mandatory task to make a com-

parison study with WLS to validate its accuracy. If the result of FASE is closer or

similar to actual values, thus FASE algorithm has worked and estimated correctly. A

comparative study is discussed in this section.

The results of both FASE and WLS methods are compared and simulated with

respect to same actual values. It is used the same measurements in both case. The

only difference is in state estimation techniques. The state variables estimation of

both methods is shown below.

Table 4.11: Voltage Magnitude Comparison of 9 Buses

Voltage Magnitudes Angles

Bus ID FASE WLS FASE WLS

pu pu rad rad

1 0.9998 0.9998 0 0
2 0.9995 0.9995 -0.0003 -0.0003
3 0.9841 0.9841 -0.0032 -0.0031
4 0.9839 0.9839 -0.0032 -0.0031
5 0.9926 0.9926 -0.0065 -0.0064
6 0.9920 0.9920 -0.0061 -0.0060
7 1.0582 1.0582 -0.0155 -0.0155
8 1.0063 1.0063 -0.0058 -0.0057
9 0.9987 0.9987 -0.0048 -0.0046

So the state variable estimation using FASE is valid. Because this technique giving

almost same result as WLS. The graphical representation of these results is shown in

Fig 4-13 and 4-14.
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Figure 4-13: Voltage Magnitudes of FASE and WLS comparing with Actual Value

Figure 4-14: Phase Angles of FASE and WLS comparing with Actual Value

It can be proved that the real and reactive power injections of the 9 buses, calcu-

lated from the estimated state variables, are very close to the actual values.
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Table 4-12 is illustrating that numerical results.

Table 4.12: Comparison of Real and Reactive Power Injection Estimation

Real Power Injection Reactive Power Injection

Bus ID FASE WLS FASE WLS

kW kW kVar kVar

1
2 0.00 -0.01 0.01 0.09
3 -27.93 -27.09 -25.69 -25.65
4 0.02 0.18 -0.05 -0.49
5 -18.19 -17.57 -16.14 -16.58
6 -0.01 -0.10 -0.01 -0.10
7 -27.29 -27.48 -25.84 -26.10
8 -21.67 -21.52 -20.64 -20.45
9 -30.29 -29.58 -27.35 -27.96

These results indicate that FASE has a good prediction and estimation capabil-

ity which can be used as an alternative of WLS method. Real and reactive power

comparison for 9 buses after 100 iterations is shown in Fig 4-15 and 4-16 below.

Figure 4-15: Real Power Injections of FASE and WLS comparing with Actual Value
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Figure 4-16: Reactive Power Injections of FASE and WLS comparing with Actual
Value

To measure the accuracy between FASE and WLS method, it is necessary to

observe the performance indices for both cases. Less value of performance indices

indicates less estimation error. Table 4.13 and 4.14 depict the performance indices

for voltage and angle.

Figure 4-17: RMSE of Voltage Mangitudes for FASE and WLS
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Table 4.13: Performance Indices of Voltage Magnitudes for 9 Buses

Voltage Magnitudes of 9 Buses

MAE MSE RMSE MAPE

Bus ID FASE WLS FASE WLS FASE WLS FASE WLS

10−4 10−4 10−7 10−7 10−4 10−4 10−6 10−6

1 2.91 5.013 1.29 4.059 3.61 6.371 2.913 5.012
2 2.90 5.015 1.28 4.065 3.58 6.376 2.899 5.018
3 2.72 4.983 1.137 4.039 3.37 6.356 2.779 5.083
4 2.72 4.985 1.131 4.041 3.36 6.358 2.774 5.086
5 2.60 5.093 1.098 4.254 3.31 6.523 2.642 5.169
6 2.61 5.098 1.104 4.264 3.32 6.531 2.650 5.180
7 4.76 5.617 4.647 5.215 6.82 7.222 4.630 5.397
8 2.85 5.147 1.33 4.347 3.65 6.593 2.850 5.166
9 3.55 5.255 2.261 4.593 4.76 6.778 3.650 5.393

Table 4.14: Performance Indices of Phase Angles for 9 Buses

Phase Angles of 9 Buses

MAE MSE RMSE MAPE

Bus ID FASE WLS FASE WLS FASE WLS FASE WLS

10−4 10−4 10−7 10−7 10−4 10−4 10−5 10−5

1
2 5.25 5.24 3.24 3.23 5.69 5.69 1000.00 1000.00
3 57.71 57.67 393.16 392.16 62.70 62.62 916.50 916.50
4 0.64 0.13 0.08 0.00 0.87 0.17 9.80 2.18
5 0.64 58.87 456.25 451.50 67.55 67.19 472.35 472.73
6 6.73 6.80 7.26 7.42 8.52 8.62 61.15 60.59
7 159.65 159.48 4049.08 4004.04 201.22 200.10 552.71 553.77
8 138.58 138.68 3601.47 3613.38 189.78 190.09 1228.11 1229.68
9 28.95 28.80 131.13 125.66 36.21 35.45 296.71 292.44
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From the above table, we are observing the different types of errors for 9 buses in

case of voltage magnitudes and phase angles. According to the MAE, MSE, RMSE,

and MAPE of voltage magnitudes, it is clearly seen that the FASE is a better tech-

nique than WLS for voltage magnitude estimation. All errors for FASE are lower than

WLS. However, the amount of error in both cases is very small which means FASE

is very good estimation method as WLS. For phase angle, errors are also almost

same that the WLS algorithm. The graphical representation of RMSE for voltage

magnitudes and phase angles is shown in Fig 4-17 and 4-18.

Figure 4-18: RMSE of Phase Angles for FASE and WLS

The voltage estimation error over 100 iterations is also shown in Fig 4-19 which

also depict that the amount of error is negligible between the two techniques. The real

and reactive power injection estimation from FASE also has less error over estimation

period. It also can be observed that the relative errors also reduced after 50 iteration in

case of FASE estimation because the priori estimate is improving after that iteration.

The level and trend parameters replace the previous data in every iteration, which is

also a cause of the reduction of the estimation error.
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Figure 4-19: Voltage Estimation Error for FASE and WLS over 100 iteration

It can be seen an insignificant difference between the estimated state of FASE

and WLS method. Remark: it should be noted that for WLS method, the inverse

matrix J must be calculated for each iteration, until reaching the prescribed tolerance;

while in the simulation with Kalman filter, this inverse is calculated just once, so the

computational effort is reduced undoubtedly.

4.7 Effect of Optimized Smoothing Parameters on

Forecasting

Different values of the smoothing constants would be tried out on past data; the

best ones would minimize some chosen measure of error. The assumption is that these

constants will continue to perform well in the future. As we know from section 3.3,

it is not possible to forecast a certain series of data without a fixed level and trend

smoothing parameter α and β. The performance indices like MAE, MSE, RMSE

and MAPE are determined for the given series of data with parameters α and β.

But a fixed value of smoothing constant is not a good parameter to forecast different

series of data. The best value of α and β should be different to forecast of different
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series of data. So it is possible to make an improved forecast by playing with this two

smoothing variables α and β.

There are 17 state variables in the system and it is simulated the FASE algorithm

for 100 iterations, every state variable should have different set of data with 100

elements or every state variable has (1 × 100) row vector. So there is a possibility to

have different optimal α and β pair for each set of data. In this section, the effect of

smoothing parameter variation on forecast and also tried to determine the best value

of smoothing parameter which can give the best forecast. The smoothing of a specific

dataset was done with its trend through two different parameters α and β whose

value lying between 0 and 1. But it is noticeable in different work that the value of

β followed 0 < β < α [43].

With this flow, we determined the optimum α and β for state variable forecast

at each node which is listed in Table 4-15. In this table, we choose the smoothing

parameter based on MSE and RMSE performance indices.

Table 4.15: Optimum α and β for improved state variable forecast

Voltage Mag-
nitudes

α β Phase Angles α β

V1 0.7 0.179 θ1 - -
V2 0.7 0.179 θ2 0.7 0.1
V3 0.775 0.189 θ3 0.925 0.1
V4 0.925 0.211 θ4 1 0.221
V5 0.925 0.1 θ5 0.775 0.1
V6 0.925 0.1 θ6 0.85 0.2
V7 0.925 0.1 θ7 0.85 0.1
V8 1 0.221 θ8 0.7 0.257
V9 0.925 0.211 θ9 0.775 0.189

Table 4-16 are illustrating the performence indices for different α and β which

calculated the data of voltage magnitude forecast at Bus 2.
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Table 4.16: Performance Indices at Different α and β for Voltage Magnitude Node
2

α β MAE MSE RMSE MAPE

10−4 10−7 10−4 10−6

0.7 0.100 144.0 105.0 324.0 135.0
0.7 0.179 2.637 1.0572 3.252 2.639
0.7 0.257 2.740 1.1509 3.392 2.742
0.7 0.336 2.838 1.2552 3.543 2.840
0.7 0.414 2.950 1.3744 3.707 2.952
0.7 0.493 3.062 1.5077 3.883 3.064
0.7 0.571 3.195 1.6534 4.066 3.198
0.7 0.650 3.349 1.8135 4.259 3.351

0.775 0.100 2.666 1.1016 3.319 2.668
0.775 0.189 2.796 1.2128 3.482 2.798
0.775 0.279 2.927 1.3356 3.655 2.929
0.775 0.368 3.061 1.4760 3.842 3.063
0.775 0.457 3.201 1.6318 4.040 3.204
0.775 0.546 3.360 1.8043 4.248 3.363
0.775 0.636 3.535 1.9954 4.467 3.538
0.775 0.725 3.724 2.2064 4.697 3.727
0.85 0.10 2.844 1.2723 3.567 2.846
0.85 0.20 3.003 1.4144 3.761 3.005
0.85 0.30 3.159 1.5740 3.967 3.161
0.85 0.40 3.319 1.7535 4.187 3.321
0.85 0.50 3.503 1.9548 4.421 3.505
0.85 0.60 3.698 2.1798 4.669 3.701
0.85 0.70 3.908 2.4308 4.930 3.911
0.85 0.80 4.140 2.7099 5.206 4.143

0.925 0.100 3.062 1.4876 3.857 3.064
0.925 0.211 3.232 1.6643 4.080 3.234
0.925 0.321 3.410 1.8682 4.322 3.413
0.925 0.432 3.612 2.0996 4.582 3.615
0.925 0.543 3.832 2.3611 4.859 3.835
0.925 0.654 4.081 2.6561 5.154 4.084
0.925 0.764 4.344 2.9880 5.466 4.347
0.925 0.875 4.615 3.3614 5.798 4.619

1 0.100 3.298 1.7494 4.183 3.300
1 0.221 3.492 1.9715 4.440 3.494
1 0.343 3.720 2.2337 4.726 3.723
1 0.464 3.969 2.5336 5.033 3.972
1 0.586 4.235 2.8760 5.363 4.238
1 0.707 4.515 3.2668 5.716 4.519
1 0.829 4.804 3.7125 6.093 4.808
1 0.950 5.100 4.2224 6.498 5.104

70



So from the above Table, it is found that to give a best forecast of voltage mag-

nitude at node 2, it is choosen α = 0.7 and β = 0.179 because the performance

indices are minimum at this α and β. Optimized α pair can give a good forecast

than other pair. Fig 4-20 and 4-21 depicted the effect of optimized α and β on state

variable forecasting at Bus 2. It is clear from the figure that forecasting has improved

for optimum smoothing parameter. For a good forecast of phase angle at Bus 2, we

have to choose α = 0.925 and β = 0.1.

Figure 4-20: Optimized smoothing effect on voltage magnitude forecast at Bus 2

Figure 4-21: Optimized smoothing effect on Phase Angle forecast at Bus 2
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4.8 Significance of Optimized Smoothing Parame-

ter in FASE

It is discussed and analyzed FASE so far and confirmed that forecasting is a

byproduct of FASE process. This property makes FASE very unique among another

state process. Additionally this forecasting of state variables of power system is based

on previous data level and trend. So the prediction totally depends on α and β.

Optimum values of these smoothing parameter can give a improved forecasting which

is very beneficial for power system monitoring, planning, security, and stability. There

are some benefits derived from an improved forecasting of system state variables have

discussed below:

4.8.1 Substation

� Avoid equipment damage by recognition of problems in future.

� Prevent the outage and thereby improve the continuity of service by advanced

monitoring and recording data on the state of a system.

� Defer the construction of new distribution facilities as a result of prior prediction

of critical circuit loads.

� Save labor costs by unattended operation of the substation.

� Facilitate the substation engineering and maintenance by forecast data records.

4.8.2 Feeder

� Reduce outage time and revenue losses.

� Release generation and transmission capacity through loss reduction.

� Reduce labor costs by reducing staff responsible for routine and emergency

switching operation.

� Facilitate the network engineering and maintenance by forecast data records.
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4.8.3 Automatic Meter Reading

� Improve cash flow by faster billing.

� Reduce labor costs by reassigning staff responsible for meter reading.

� Reduce theft by comparison meter reading and forecasted power measurements.

4.8.4 Load Control

� Avoid the damage of distribution transformers and other types of equipment by

prior detection of the abnormal diversity of pump loads.

� Reduce distribution losses.

� Prevent overloading problems.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In upcoming days, it will be a necessary task for a power engineers to efficiently

monitor a power system and state estimation is the essential pillar for such task. As so,

according to meet perfectly with standard requirements, it needed to be continuously

improved. State estimation with forecasting method has been currently pointed out

as an eye snatching development.

The main focus of this thesis to validate the forecasting-aided state estimation

(FASE) process by comparing with a well-established method as weighted least square

(WLS). So it is tried to remained focused in every chapter included in this work. In

the second chapter, the implementation aspects of Weighted Least Square (WLS)

method is discussed. The mathematical explanation about nonlinear measurement

functions, objective functions, Jacobian matrix, gain matrix etc is also discussed.

Whole WLS algorithm with sequential steps is shown at the end of this chapter.

Forecasting-Aided State Estimation (FASE) process is explained in chapter 3. Since

it is our main topic of work, a complete implementation overview with mathemati-

cal modeling is described here. Thye contents of this chapter are state forecasting,

Kalman filtering stage which is the backbone of FASE algorithm. It is also explained

about objective function minimization, Kalman gain calculation. Additionally, the

Holt Linear Exponential Smoothing technique which is very important for state fore-

74



casting stage. At the of this chapter, different kinds of errors function is discussed

which helped us to measure and improve the accuracy of FASE process.

Case study simulation and results is the significant chapter of this thesis work.

It illustrates all the implementation results with figures and tables. The necessary

implementation outcomes is explained for FASE algorithm particularly the state vari-

ables, real and reactive power injections, performance indices etc. The outcomes is

very closer to the actual data. It is seen that the forecasting is improving in every

iteration and perfectly matched after 50 iteration. Since forecasting is a byproduct

of FASE algorthm and it is valuable for advanced system monitoring, it is very good

indication to improve it. Moreover, a comparative study with WLS indicates that

FASE gives very good results as WLS. However, state estimation using FASE is bet-

ter than WLS but it is possible to replace WLS with FASE for commercial purpose.

Finally, the optimization effect of smoothing parameter on forecasting stage of FASE

algorithm is described. Graphically and numerically, it is clearly observed that opti-

mum value of smoothing constant give a very good forecasting of that original value.

It is a significant findings of this thesis which can be useful for further development

of forecasting-aided state estimation algorithm because state variable forecasting will

open the way of efficient power system monitoring, distribution automation and en-

ergy management as well.

It can be hope that this thesis can work as a douser of cloud from the sky of FASE

development research. The literature review of FASE—representing a history of al-

most 40 years—has been exhibited in the introduction chapter. Insistence is based

on the main functions of FASE (in terms of adequate dynamic modeling, forecasting

techniques, and data validation schemes) which can drive it towards the implemen-

tation in power system control centers.
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5.2 Future Works

The restrictions to the extensive use of the FASE method in the electric power

industry have diminished. In researchers opinion, To stimulate future research in

FASE, it is necessary to work on the following topic: improvement of forecasting

methods; efficient planning for high quality pseudo-measurements; processing of net-

work configuration errors and computational efficiency for large-scale power system

applications.

� With respect to forecasting techniques, there is a need for further research on

developing prediction method and its optimization with emphasis on their real

time applicability. Also, forecasting methods based on nonlinear models. But

it is necessary to validate these forecast obtained from nonlinear functions with

linear models.

� There is a need of practical experimentation in which we can use the high

quality high quality pseudo-measurements generated by a forecasting module.

It should be simulated considering real-world situations involving absence of

measurements during maintenance services (scheduled or in an emergency) at

different redundancy levels. It might be interesting to evaluate how to perpet-

uate the pseudo-measurements accuracy, since their presence will drive all the

SE steps.

� Topology error processing technique to determine the bug in network configura-

tion—via innovation analysis and intelligent systems considered a productive for

further research area. We need to find a method for network configuration er-

ror from priori state estimation results provided by FASE with low redundancy

conditions and/or unobservable network configurations.

� Up to now, there is a lacking of real time implementation of FASE algorithm in

small distribution network. It is hoped this condition can drastically change in

the near future. Small projects to consolidate FASE as an promising approach

would be a good start. Also, given that computational efficiency is vital to
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the implementation of FASE in large-scale power systems, the computational

burden of the introduction of a forecasting step on the SE process should be

evaluated. Data debugging process of FASE for large power system is also a

important area of research.

In overall conclusion, the SE current status is completely different from what it

was three decades ago when power system static SE was developed by Schweppe. It

has boost up with the development of greater computing power, efficient statistical

models, and more sophisticated approaches to forecast calculation and evaluation.

But there is a lot have to be done, with questions still unanswered and new challenges

arising, which can give stimulus to FASE future research.
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Appendix A

Direct Approach Power Flow

Method

The method is based on the DA formulation of the power flow problem. This is a

technique, especially designed for radial networks, inspired by well-known backward-

forward sweep methods such as Ladder Iterative Technique. DA provides a very

compact vectorized formulation with excellent computational and convergence char-

acteristics.

In the application of DA to balanced grids, lines and transformers are modeled

as series impedances, zik, as it is shown in Fig. A.1. The equivalent bus current

injection vector, Ig , is calculated from the power injection at each bus, i, given the

estimation of the bus voltage vector V at iteration (n) as

I
(n)
gi =

Pi − jQi

conjV
(n)
i

(A.1)

Assuming a radial grid, the branch current vector can be calculated as

B(n) = BIBC.Ing (A.2)

where BIBC is the so-called bus-injection to branch-current matrix. The entry

BIBCbi equals 1 if the current injection of node i contributes to the branch cur-
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rent Bb, and equals 0 otherwise. Finally, a better approximation to the voltage

profile can be obtained from

4V (n+1) = BCBV.Bn (A.3)

where BCBV is the branch-current to bus-voltage matrix. The entry BCBVib

equals the series impedance of branch b if that branch is in the path from node i to

the slack bus, and equals 0 otherwise. 4V is a vector with the voltage of the slack

bus referred to the different bus voltages. An improved approximation to the state

variables is subsequently obtained by

V (n+1) = Vg −4V (n+1) (A.4)

where Vg is a column vector with the slack bus voltage at each entry. Starting from

a flat voltage profile, the solution of the distribution power flow is reached by solving

(A.1)–(A.4) iteratively up to a specified convergence threshold.

Figure A-1: Basic Diagram for DA Power Flow Method

A brief summary of the changes can be described as:

� Specific branches are selected to break the meshed grid into a radial network.

Then, new entries are included in the current injection vector to account for the

currents at the selected branches, i.e. IgBnew.

� The BIBC matrix is built as in the base case, by considering the currents of the

branches used to break the network as additional current injections. However,

entries with the value -1 appear now to account for the contribution of the

receiving node of the branches used to break the network due to the inverted

current reference. Notice that the double-sided contribution of the sending and
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receiving nodes of a branch used to break the network, Bc, to the current of

those branches upstream from the first common parent node, Bb, is null, as

they have the same value but opposite references. Additionally, new rows are

added to the BIBC matrix with a single non-null entry in order to identify the

currents of the branches used to break the network. Taking all this into account

the modified BIBC matrix can be obtained as

 B

Bnew

 = BIBC.

 Ig

Bnew

(n)

(A.5)

� The BCBV matrix is built as in the base case, but a new row is added for each

loop in the grid to account for KVL. The impedances included in the entries

of the new rows of the matrix are signed positive or negative according to the

reference of the current at the different branches. Then, (A.3) is reformulated

as 4V
0

(n+1)

= BCBV.

 Ig

Bnew

(n)

(A.6)

� By using A.5 and A.6, it can be rewrite as follow

4V
0

(n+1)

= BCBV.BIBC

 Ig

Bnew

(n)

=

A P

M N

 Ig

Bnew

(n)

(A.7)

The Application of Kron reduction leads to

4V (n+1) = (A−MTM−1M)I(n)g
(A.8)
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