
This is a postprint version of the following published document:

Núñez-Valdez, E.R., García-Díaz, V., Lovelle, J.M.C.
et al. A model-driven approach to generate and deploy
videogames on multiple platforms. J Ambient Intell
Human Comput 8, 435–447 (2017).

DOI: https://doi.org/10.1007/s12652-016-0404-1

© 2016, Springer Nature

https://doi.org/10.1007/s12652-016-0404-1

market, as each of them possesses specific APIs and use a

different programming language.
As a result of this situation and with the objective of

making videogame development easier and improving the

development process, a number of graphical tools with
support for the creation of videogames have surfaced on

the market (Núñez-Valdez et al.2013). Some tools such as

GameMaker,GameSaladandUnityare intended for the
development of applications for a variety of the above-

mentioned platforms.
These tools appear to make videogame development

easier but actually present a high learning curve for inex-

perienced users as well as for developers using other pro-
gramming languages. Moreover, they offer compiled

solutions, with which the modification of and extension of

the applications are impossible. It is also worth noting that
these tools focus on the creation of the games’ characters

and levels but do not offer the user an easy interaction

platform for creating other fundamental aspects of a
videogame such as the menus, the score system or other

common features; the definition of these other types of

elements with the abovementioned tools remains a difficult
task for the users.

In addition to these tools, some proposals have been

made for improving the videogame development process.
Furtado and Santos propose an approach for computer

game development based on models and a created domain-

specific language (Furtado2006). With this approach, users
are able to define aspects such as configuration, game

states, game flow, exit conditions and basic properties. The

generation was restricted initially to the C# language,
focusing on videogames with audio components, sprites,

items, characters, states and resources. The work is based

on the implicit proprietary metamodel that is the core of the
Microsoft DSL Tools Project (Cook et al.2007a). Reyno

and Carsı́Cubel (2009) present an approach to 2D platform

game prototyping automation through the use of MDE.
This approach was used to prototype a Bubble Bobble type

of game, including the structure and behavior of the game.

It is worth mentioning that this work only presents one type
of videogame modeling. There are other related works,

such as (Solı́s-Martı́nez et al.2015), where the approach is

to model videogames using a reduced version of the
business process modeling notation (BPMN) for modeling

and generating videogames on different platforms. On

another hand, Garcı́a et al. (2014) proposes a parameterized
transformation for a model of performance properties

derived from a system model using MDE. The idea behind

a parameterized term is to leave open the transformation
framework to adopt future improvements and make the

approach reusable. The reusable approach is used in the

develop process of our platform.

software engineering community continuously offers new
approaches for improving, as much as possible, the soft-
ware development process life cycle, such as agile software
development methodologies (Cockburn and Highsmith
2001) or continuous integration practices (Beck and Andres

2004).
One of the most promising changes related to software

development over the last few years is the adoption, in both
academic and industrial circles, of model driven engi-
neering (MDE) as a real possibility (Kent 2002), focusing
on raising the level of abstraction through the use of
models instead of traditional programming languages such
as Java or C??. Models allow for managing domain-re-
lated concepts of the problem and, through a series of
automatic transformations, for generating software com-
ponents understood by classic compilers and interpreters.
The aim of this paper is to present our approach to game

development. After conducting a survey on the main types
of videogames and their main characteristics, we extracted
the common and different elements that can vary from one
type of game to another, determining a schematic for the
repetitive part of the domain under study that all model-
driven developments have (Stahl and Voelter 2006). Using
the main differences between videogames of the same
genre, we have defined a metamodel that formally allows
the creation of different models that conform to the
metamodel, uniquely defining the characteristics of a type
of game. This feature allows us to automate code genera-
tion for different platforms such as Android, iPhone,
Windows Phone or HTML5 through the use of templates
tailored for each.
The remainder of this paper is structured as follows: in

Sect. 2, we present a brief overview of the relevant state of
the art; in Sect. 3, we describe our approach for generating
videogames under the principles of MDE; in Sect. 4, we
discuss an evaluation of our approach using a case study;
and finally, in Sect. 5, we present our conclusions and
related future work.

2 Background

The evolution of mobile devices and the Web has ushered
in a new era for videogame and entertainment applications.
This ongoing evolution has promoted the existence of a
variety of mobile devices and platforms that enable the
development and execution of a great variety of applica-
tions. However, due to this wide range of platforms and
devices, it is sometimes very difficult to develop applica-
tions for all of them in an efficient manner (Lavı́n-Mera
et al. 2008). This is due to the differences that exist
between the different mobile operating systems in the

Author's personal copy

3 Approach

In this work, we create a family of software products
related to videogames, as they provide a prescription for

the same core assets (Clements and Northrop2002). In

addition, we have divided this family into five smaller
product families, one for each type of game we offer

support for. Each of the variations in the family members

are captured using feature models that describe hierarchies
with mandatory features, options and alternatives (Kang

et al.1990). Thus, we can identify commonalities of and

variances between the products of every family. MDE has
been used on numerous occasions with families of products

because models can be easily used to capture the differ-

ences that the products may have with respect to the other
members of the family (Morin et al.2009; Garcı́a-Dı́az

et al.2010). The solution is based on the idea of software

product lines (SPL), which relies on the concept of soft-
ware factories (Greenfield et al.2004), with the aim of

creating software through systematic reuse, supply chains

and mass customization. There are several visions very
similar to each other for creating a family of products based

on models, related to which there is much scientific debate
(Greenfield et al.2004; Schmidt2006; France and Rumpe

2007); however, they are beyond the scope of this work.

All of them share the same principles and ideas. Thus, the
four main concepts used in this work related to SFs are the

following (Lenz and Wienands2006):

• Architecture framework, which implements common
features of a system and provides extension points

where components can be integrated and extended.
• Product line development, which should only attempt to

cover a specific domain or market segment, without

attempting to cover all the possible domains.
• Model-driven development, which is closely related to

the domain-specific language concepts. Based on a

metamodel of the specific domain, users build models,
and from them, templates are used to generate code for

the different target platforms. In other words, the main

principles of the MDE development approach are used
in this work (Kelly and Tolvanen2008a).

• Guidance in Context, which states that the SFs should

include facilities such as code samples, how-to help
pages, and so on.

The idea is not to create a system whereby we can create

all types of applications automatically. Rather, SFs are
focused on specific domains or families of software product

lines. Conceptually, it can be divided into two main phases,

the creation of a schema and the creation of a template of
that schema. The SF schema is a model that can be

interpreted by humans and tools, which describes work

products, workflows used to produce the work products and
assets used in the enactment of the workflows, for a specific

family of software products in a given domain. Therefore,

the development process depends on the experience of
development because with a defective schema, the SF will

fail. Thus, the SF template can be considered as an instance

of the schema that is usually integrated into a development
environment.

3.1 Game typologies

To develop games of different genres based on a model-
driven approach, the first task performed was an analysis of

the different types of existing games and their internal

features. Users can develop any type of 2D videogame
belonging to one of the following typologies: touch ability,

puzzle, platform, trivia-style and turn-based strategy

videogames.
Each of the typologies (smaller product families) is

characterized by common elements (e.g., the existence of

multiple levels, points recording, etc.) and similarities (e.g.,
settings, goals, objects, etc.). The common elements are

easy to share among different videogames because they are

always identical, except for small configuration aspects.
However, similar elements have the same base but different

behaviors, aspects or functions, and an analysis was

required to discover what the differences are between one
element and another. After we performed the analysis, we

built a metamodel, which establishes a model that formally

represents the possible variations among the elements of
each videogame. Figure1shows a small excerpt of the

inferred metamodel that shows the most representative

elements for creating a game. Although the figure lacks
certain details for reasons of space, the metaclasses indi-

cate that a game can be of five different types (trivia,

platform, puzzle, touch, strategy), and all of them have a
specific configuration. The features will differ depending

on the type of game chosen. For example, trivia games only

focus on questions and elements, while platform games
have different levels, characters, enemies and sprites.

Obviously, games have different screens that will be sim-

ilar between them but customized for every particular case.
From the metamodel, final users are able to create models

(using the tool we provide) that will be transformed to code

for different platforms using specific templates.
Basedon the metamodel, we have created an infras-

tructure that guides both the design and automatic video-

game generation according to the guidelines established in
the model-driven development principles (Stahl and

Voelter2006).

Author's personal copy

expert. In MDE development, the model is the key element

because it is the source from which all the final artifacts are

generated using the transformation engine.

3.2.2 Graphical tool

All models and metamodels have an abstract syntax and one or

more concrete syntaxes (Stahl and Voelter2006). The most

commonly used technologies related to MDE [e.g., those
included in the Eclipse Modeling Project (Gronback2009) or

in the DSL Tools (Cook et al.2007b)] use the XML language
as their abstract syntax, with which it is easy to disseminate,

interpret, persist or alter models through a large number of

languages and tools. There are many alternatives for the
concrete syntax, mostly textual or graphical, although there

are other possibilities such as tree-based interfaces or com-

binations of these interfaces (Kelly and Tolvanen2008b).
Our system also uses XML as its abstract syntax. In

addition, to facilitate the work of users and avoid having to

manually handle large and complex XML files, we have

Fig. 1 Excerpt of the Gade4all metamodel for creating videogames

3.2 System architecture

To implement our approach, we built a system that relies on
the common architecture of model-driven software devel-
opments, as shown in Fig. 2. The models created through the
use of the editor are sent to the generation/transformation
engine, which, after internal processing, outputs the source
code for the videogames, making them available for execu-
tion on different platforms. The following sections detail the
key components of the architecture.

3.2.1 Model

The graphical editor is aimed towards facilitating the task
of the videogame designer and, at the same time, gener-
ating a view of the graphically designed element in XML
format, representing the model of the system (e.g., size,
damage, or design of a bullet using XML key-value pairs).
These files are generated internally through the use of
the graphical editor so that the user is not required to be an

Author's personal copy

chosen to provide a graphical tool inspired by other

videogame generation tools previously cited in this paper.
The Gade4all tool (Núñez-Valdez et al.2013) has been

developed following the MDE approach. The main

objective of this tool is to facilitate agile videogame

development. As show in Fig.3, the visual editor is a layer
between the users and the DSL to facilitate videogame

development by people who do not have experience doing

Fig. 2Architecture of the system

Fig. 3Gade4all visual editor

Author's personal copy

The quality therefore does not depend on the approach but

rather on the experience of the designers of the templates.

3.2.4 Transformation engine

The transformation engine is a key factor in any MDE

development (Sendall and Kozaczynski2003; Garcı́a-

Dı́az et al.2015). It is used to convert models into other
models or textual artifactsthat could be, for instance,

software that can be understood by any appropriate
compiler or interpreter. In our case, the transformation

engine receives a model as the input and, through a

series of rules and transformations, creates code for the
following platforms: Android, iPhone, Windows Phone

and HTML5.

With any model that conforms to the Gade4all meta-
model, the same transformation engine could generate

artifacts for any current or future platform by simply using

template specific to that platform. Reusability is one of the
main advantages obtained when working with models

(Mellor et al.2003). To this purpose, we have several

analyzers that are specialized according to the specific
platform. One of their objectives is to read the DSL file and

parse it, iterating through the whole model using an XML

API.

4 Evaluation

With the objective of improving the validation of the

results, the evaluation is done following the guidelines
of an improvement case study proposed in (Runeson and

Höst2008). We have adopted the methodology so that it

introduces a case study in a specific scope followed by a
survey answered by the domain experts in order to

understand their perception of the proposed approach.

Our case study allows for establishing the viability of
our videogame development approach, and the survey

helps us determine if developers notice any benefit due

to the adoption of our proposal during their development
effort. The survey aims to validate the results of the case

study and determine to what extent the participants agree

with our approach.

4.1 Case study

The case study proposed in this paper aimed to investigate

if the adopted approach is feasible in the videogame

development process and if the effort level experienced by
the user with the approach is acceptable. The following

subsections offer a detailed description of the context,

execution and results of the case study.

4.1.1 Nature of the case study

The objective of this case study is an approach to improve the
development of multi-platform videogames; it be considered

as an improvement case study (Runeson and Höst2008). The

subjects of the case study have some experience in video-
game development and other types of applications on dif-

ferent platforms such as HTML, iOS, Android and Windows

Phone. This means that we focused on offering the users a
tool that would allow them to generate multi-platform

applications quickly and without the need for programming,

with the goal of increasing their productivity. The process
followed during the case study allowed for the monitoring of

certain variables, which allowed us to obtain some interest-

ing results about our approach that will be discussed later in
this paper. Moreover, due to the degree of software devel-

opment experience of the users participating in the case

study, we accounted for their perceptions of the development
process when using the tool using a survey.

4.1.2 Research questions

The research questions included in the case study are the

following:

• RQ1. Is the approach appropriate for improving the

videogame development process? This question is
related to the possibility of abstracting a conceptual

model with the main features of the different video-

game typologies. This abstraction is intended to serve
as the basis for software reuse and automation of

videogame generation. In this context, the concept of

‘‘appropriate’’ means that we want to raise the level of
abstraction during development so that users do not

need to work with low-level instructions that do not

depend on the domain of knowledge (in this case, the
videogame industry) but rather depend on the under-

lying technologies (concepts such as namespace, class,

public, double, loops, and so on). Thus, users focus just
on the main features of the different videogame

typologies (main character, enemies, menus, tiles,

targets, etc.).
• RQ2. Is the effort associated with the proposed

approach acceptable? The answer to this question is

based on measuring the effort users put into the testing
procedure followed in the case study. With this metric,

we intend to determine if the effort put into the

development of a videogame with our approach is
acceptable. In our case, the concept of ‘‘acceptable’’

means that users require less effort to create video-

games than with other alternatives, taking into account
that the videogames should have similar features and

behavior.

Author's personal copy

4.1.3 Case selection

To select the case study, we evaluated the main tools in the
market that have features similar to the one proposed in this

study. This evaluation focused on selecting the most suit-

able tool for designing a videogame with both of the tools
(our proposal and the commercial tool) in an efficient

manner. The selected tool was GameMaker, as it is one of

the main tools in the market and offers good usability rates
for different user profiles.

Once the tools had been selected, the task to be com-

pleted with them was determined, accounting for the agility
and efficiency of the task. Our approach clearly defines

different videogame typologies, but the rest of the tools do

not offer this possibility; thus, we decided that a platform
videogame would be the best choice, as it is a classic

typology and is available for both tools. Thus, in this part

of the study, the user had to design and develop a simple
platform videogame with three levels of different difficulty

degrees (shown in Fig.6).

4.1.4 Data collection procedure

The proceeding followed during the case study was divided
into different steps or phases, to measure the proposed

approach as precisely as possible. Once the metamodel had

been defined and the tool had been developed, we decided to
create a metric for the purposes of comparison of our tool with

the other tools. The goal of this comparison was to determine if

our approach achieved the objective initially presented.
During the testing procedure, support personnel were in

charge of noting the number of mistakes or number of

questions per user (when a user had doubts about the tools).

The users’ behavior during the task was automatically

registered in order to measure the effort made by each user
to complete the task. As is shown in Table1, the monitored

variables were the following: time elapsed, mouse clicks,

keystrokes and distance traveled by the mouse.
The third step of the case study was to determine the

most suitable user profile for carrying out the tests. The

testing sample included 25 participants who had some
experience in the development of videogames or other

types of applications for different platforms but who had
never used the tools included in the study. The users were

offered a basic introduction to both tools and were given

the resources (images, sounds, etc.) needed to complete the
task. Furthermore, so as not to penalize or favor any of the

tools, half the study participants started development using

the Gade4All approach (13 out of 25), and the other half
started development using the GameMaker tool (12 out of

25), preventing any prior development experience that

could be decisive in the final results.

4.1.5 Result

With the objective of evaluating the videogame develop-

ment process in the most accurate way with both tools

(Gade4all and GameMaker), the following variables were
monitored: time, errors, questions, keystrokes, clicks and

distance.

Table1showcases the descriptive statistics of the
results collected on the behavior of the users during the

tests. In this table, we summarize the real values obtained

during the test: we show a percentage comparison of the
minimum, average, and maximum values per variable and

tool for clarifying the differences between the tools.

Author's personal copy

The main conclusions that can be extracted from the

analysis of the results in Table1are the following:

• Taking as a reference the average time users needed to

complete the task with each tool, we see that users

needed, on average, 27.04 % more time with Game-
Maker than with the Gade4all tool. This indicates that

videogame development time is reduced with our

approach, resulting in an increase in productivity.
• If we compare the average number of mistakes made

and questions asked by the users, our approach reduces

the number of errors by 31.66 % and the number of
questions by 36.48 %. This indicates that the Gade4all

is more usable than GameMaker.
• From the clicks data, the keystrokes and the distance

traveled by the mouse, we can see that the values

associated with these variables are much smaller with
our approach. Specifically, users needed 15.12 % less

clicks and 64.40 % less keystrokes to complete the

task, and the mouse traveled a distance that was on
average 20.48 % shorter. With Gade4all, users needed

to define a smaller number of elements because the

main features of each typology are already included in
this tool and the elements are better grouped, which

reduces the distance traveled by the mouse.

4.1.6 Discussion

In this section, the results of the case study are discussed,
with a focus on the research questions posed in Sect.4.1.2.

1. RQ1. Is the approach appropriate for improving the
videogame development process? As the obtained

results show, the proposed approach is capable of

improving videogame development, generally speak-
ing. Through the use of MDE, we have managed to

automatize the development of videogames for multi-

ple platforms. This automation is possible with the use
of the Gade4all tool, which allows any user to develop

different types of 2D videogames in a simple and
effortless manner. It can also be stated that with the

automatic code generation, our approach increases the

effectiveness of the videogame development process
by reducing the time needed and the errors made and

increasing the productivity.

2. RQ2. Is the effort associated with the proposed approach
acceptable? One of the strong points of our approach is the

fact that different videogame typologies were defined in

the metamodel. This makes the abstraction of the main
characteristics of each typology easier. The abstraction

offers a set of predefined properties and features that are

easy to modify during the development process. From the
results of the tests, we could determine that the effort

made with the Gade4all tool is less than the effort made

with GameMaker, as the numbers associated with the
monitored variables are notably lower (see Table1). The

reduction in effort is based on offering, by default, the

definition of some important features of the videogame
such as character behavior and design of the menu

screens. This makes users focus on the development of the

different levels of the game, which is the most important
component of the process in terms of effort. These

considerations and the results obtained allow us to

determine that using our approach is acceptable.

As the results showcase in Sect.4.1.5, the benefits of

using MDE are numerous because they promote the
development of more intuitive and better-designed tools

that facilitate the creation of better applications in a

reduced period of time. As the measured indicators show,
the use of MDE improves the efficiency of the develop-

ment process, reducing development time and the number

of errors and increasing productivity.

4.2 Survey

After the case study, we proposed the validation of these

results with a survey for the participants. The general goal

Table 1Descriptive statistics
for the users’ behavior

Time (s) Errors Questions Keystrokes Clicks Distance (inch)

G4 GM G4 GM G4 GM G4 GM G4 GM G4 GM

Min

1045 2936 0 1 0 1 72 631 684 1004 2897 4654

% 26.25 73.75 0.00 100.00 0.00 100.00 10.24 89.76 40.52 59.48 38.37 61.63

Average

2089 3636 2 3 2 5 163 753 836 1134 3843 5823

% 36.48 63.52 34.17 65.83 31.76 68.24 17.80 82.20 42.44 57.56 39.76 60.24

Max

3344 4969 4 6 5 9 289 910 989 1334 6318 6506

% 40.23 59.77 40.00 60.00 35.71 64.29 24.10 75.90 42.57 57.43 49.27 50.73

Author's personal copy

of this survey was to record the opinion of the users

regarding the proposed videogame development approach.
With the responses, we intended to determine if our

approach could be adopted not only by professionals of the

videogame industry but also by users without software
development experience.

One of the most followed techniques when using sur-

veys is the Likert type scale, which is used to determine to
what degree the user agrees with a certain situation. In this

survey, we adopted the five-point Likert scale with the
following answer possibilities: 1 strongly disagree, 2

disagree, 3 somewhat agree, 4 agree, and 5 strongly

agree. Table2shows the questions users had to, which
were designed to determine their perception of the pro-

posed videogame development approach.

4.2.1 Survey result

This section presents the results of the answers provided by
the users in the survey. Table3showcases the descriptive

statistics for better analysis and visualization of the results.

Table4presents a summary of the results, offering a
general view of the symmetry found in the distribution of

the data.

After the case study and the survey, the main conclu-
sions that can be drawn from the analysis of the results

shown in Tables3and4and are the following:

Questions Q1, Q2, Q4, Q7 and Q12 yield the highest

median values, which indicates these are the questions

where users agree the most. As is shown in Table4,
one of the most important conclusions that can be

drawn from the results is that 84 % of the participants

concur completely on questions Q1 and Q4. It is also
worth noting that 68 % of the participants strongly

agree with questions Q2 and Q7. We also highlight that

52 % of the participants strongly agree and 32 % agree
with question Q12. This last point is related to the

native code generation feature of the tool, which
enables developers to modify code written in a

programming language they already know.

Table 2Questionnaire

Profile Question

Software
Developer

Q1. Videogame modeling and creation of software solutions is possible with this approach

Q2. This proposal helps to reduce the complexity of videogame software development

Q3. Using this approach, inexperienced users can develop 2D videogames in a simple and intuitive manner

Q4. This proposal makes multi platform videogame development easier, as it is only performed once and in one step

Q5. This approach is suitable for videogame development but can also be applied to other domains

Q6. Videogame developers can complete their work with fewer repetitions using this tool and, thus, reduce the number of
errors and increase his/her productivity

Q7. This tool helps users when generating applications for multiple platforms by reducing the development time, making the
development process better

Q8. This tool can reduce the costs of videogame development

Q9. A videogame developer can easily adapt and extended the games generated with this tool because they are generated in
native code for each of the platforms

Q10. This tool can be considered as useful and usable, as it offers real support for videogame development

Q11. It is easier and quicker to modify or add a new functionality to a videogame using the Gade4all tool than using a
specific IDE for the given platform

Q12. It is quicker to polish or improve an application generated with the tool than building it from scratch

Table 3Descriptive statistics
of the survey

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

Min 4 4 3 4 3 2 4 3 2 3 2 3

Quartile 1 5 4 4 5 4 3 4 4 3 4 3 4

Median 5 5 4 5 4 4 5 4 4 4 4 5

Quartile 3 5 5 5 5 4 5 5 5 5 5 5 5

Max 5 5 5 5 5 5 5 5 5 5 5 5

Range 1 1 2 1 2 3 1 2 3 2 3 2

Inter qrt. range 0 1 1 0 0 2 1 1 2 1 2 1

Mode 5 5 4 5 4 5 5 5 5 4 4 5

Author's personal copy

Questions Q6, Q9 and Q11 are the most controversial

questions on the survey, as they have an interquartile

range of 2. This means that answers to these questions
showed great differences, including some disagree-

ments from the participants. For Q6, 4 % of the

participants disagreed with the proposal, and for
questions Q9 and Q12, the corresponding numbers

were 12 and 8 %, respectively, which could be

because some of the developers were not receptive
to automatic code generation as error correction and

functionality addition are more difficult when the

application code is automatically generated. In

addition to these disagreements, we must state that

the 48 % of the users totally agreed with question Q6

and 44 % with question Q9. Additionally, 28 % of the
users strongly agreed and 36 % agreed with Q11.

Questions Q3 and Q5 show neutral percentages and no

disagreements. Only 24 % of the developers were
uncertain about applying this approach to other

domains (Q5), and 20 % were not sure about inexpe-

rienced users being able to develop 2D videogames in a
simple and intuitive way with the tool (Q3). However,

more than 75 % of the developers agreed or strongly

agreed in both cases.

Table 4Response frequency to
each question

Question Strongly disagree Disagree Neutral Agree Strongly agree Total

Q1.

0 0 0 4 21 25

% 0 0 0 16 84 100

Q2.

0 0 0 8 17 25

% 0 0 0 32 68 100

Q3.

0 0 5 13 7 25

% 0 0 20 52 28 100

Q4.

0 0 0 4 21 25

% 0 0 0 16 84 100

Q5.

0 0 6 13 6 25

% 0 0 24 52 24 100

Q6.

0 1 6 6 12 25

% 0 4 24 24 48 100

Q7.

0 0 0 8 17 25

% 0 0 0 32 68 100

Q8.

0 0 2 11 12 25

% 0 0 8 44 48 100

Q9.

0 3 5 6 11 25

% 0 12 20 24 44 100

Q10.

0 0 2 14 9 25

% 0 0 8 56 36 100

Q11.

0 2 8 8 7 25

% 0 8 32 32 28 100

Q12.

0 0 4 8 13 25

% 0 0 16 32 52 100

Author's personal copy

Questions Q8 and Q10 show that 8 % of the users were

neutral participants and that there were no disagree-

ments. This indicates that 92 % of the participants
agreed or strongly agreed with Q8 and Q10.

contextwe plan conduct some experiments in learning area

to improve continuous assessment process using the video-
games generated with ours platform.

AcknowledgmentsThis work was performed by the University of
Oviedo under Contract No. MITC 11 TSI 090302 2011 11 of the
research project Gade4all. We would also like to thank the reviewers
for their insights and their comments that greatly improved the paper.

References

Baron HB, Salinas SC, Crespo RG (2014) An approach to assessment
of video game based learning using structural equation model.
In: 2014 9th Iberian conference on information systems and
technologies (CISTI), pp 1 6

Beck K, Andres C (2004) Extreme programming explained: embrace
change, 2nd edn. Addison Wesley Professional, Boston

Cerpa N, Verner JM (2009) Why did your project fail? Commun
ACM 52:130 134

Clements P, Northrop L (2002) Software product lines. Addison
Wesley, Boston

Cockburn A, Highsmith J (2001) Agile software development, the
people factor. Computer (Long Beach Calif) 34:131 133

Cook S, Jones G, Kent S, Wills AC (2007a) Domain specific
development with visual studio DSL tools. Addison Wesley,
Boston

Cook S, Jones G, Kent S, Wills AC (2007b) Domain specific
development with visual studio dsl tools. Pearson Education,
Upper Saddle River

Crandall RW, Sidak G (2006) Video games: serious business for
America’s economy. Entertainment software association report,
p 48

Czarnecki K, Helsen S (2003) Classification of model transformation
approaches. In: Proceedings of the 2nd OOPSLA workshop on
generative techniques in the context of the model driven
architecture, pp 1 17

Dijkstra EW (1972) The humble programmer. Commun ACM
15:859 866

France R, Rumpe B (2007) Model driven development of complex
software: a research roadmap. In: Future of software engineering
(FOSE’07), pp 37 54

Furtado A, Santos A (2006) ALMS using domain specific modeling
towards computer games development industrialization. In: The
6th OOPSLA workshop on domain specific modeling (DSM06)

Garcı́a GM, Crespo RG, Martı́nez OS (2014) Parameterized trans
formation schema for a non functional properties model in the
context of MDE. Advances and applications in model driven
engineering. IGI Global, Hershey

Garcı́a Dı́az V, Tolosa J, G Bustelo B et al (2009) TALISMAN MDE
framework: an architecture for intelligent model driven engi
neering. In: Omatu S, Rocha M, Bravo J et al (eds) Distributed
computing artificial intelligence bioinformatics soft computing
and ambient assisted living. Springer, Berlin, pp 299 306

Garcı́a Dı́az V, Fernández Fernández H, Palacios González E et al
(2010) TALISMAN MDE: mixing MDE principles. J Syst Softw
83:1179 1191. doi:10.1016/j.jss.2010.01.010

Garcı́a Dı́az V, Pascual Espada J, Bustelo CPG, Lovelle JMC (2015)
Towards a standard based domain specific platform to solve
machine learning based problems. Int J Interact Multimed Artif
Intell 3:6 12. doi:10.9781/ijimai.2015.351

Greenfield J, Short K, Cook S, Kent S (2004) Software factories:
assembling applications with patterns, models, frameworks, and
tools. Wiley, Oxford

5 Conclusions and future work

In this work, we have presented a platform for agile multi-
platform videogame development by using high-level
abstraction models. To this purpose, we have created a
metamodel and a graphical DSL that allow people with no
programming language knowledge experience to define
different types of videogames. Using a generator, code for
different platforms is automatically generated without user

intervention.
The use of MDE standards and a graphical interface

tailored to the needs of the end user suggest, based on the
results obtained after conducting a quantitative study, that
the approach is appropriate for improving the videogame
development process because through the use of MDE, we
have been able to automate the entire videogame devel-
opment process for various platforms. The case study also
shows that the effort associated with this approach is
acceptable, as it helps generate less repetitive work in
relatively minimal time. This means that our approach
helps reduce the number of errors generated and increase

productivity.
In addition, the survey answered by the 25 participants

in the study reinforces the conclusions of the results
obtained during the evaluation. Based on these results,
users think that it is possible to model videogames and
transform these models into software solutions using the
proposed approach. Moreover, the participants stated that
our approach makes polishing or improvement of the
generated application quicker, which is directly related to
the native nature of the code being generated. This feature
enables developers to modify or extend their projects and
create more complex applications in a shorter amount of

time.
In future work, we plan to conduct more experiments,

including the development of larger games and even video-
games of other typologies, exploring also a possible inte-
gration with TALISMAN MDE Framework (Garcı́a-Dı́az
et al. 2009). Additionally, we intend to include in the next
case study users without videogame development experi-
ence, as the participants of the study noted that inexperienced
users could benefit from the use of our tool; this point needs
to be verified. Finally, the videogames are also used in
learning context, e.g., the study presented by Baron et al.
(2014) is an interesting work that shows an approach for
continuous assessment of learning using videogames. In this

Author's personal copy

Gronback RC (2009) Eclipse modeling project: a domain specific

language (DSL) toolkit. Pearson Education, Upper Saddle River

Kang KC, Cohen SG, Hess JA et al (1990) Feature oriented domain

analysis (FODA) feasibility study. Technical Report, CMU/SEI

90 TR 21,ESD 90 TR 222. Distribution 17, p 161

Kelly S, Tolvanen J P (2008a) Domain specific modeling: enabling

full code generation. Wiley, Oxford

Kelly S, Tolvanen J P (2008b) Domain specific modeling: enabling

full code generation. Wiley, Oxford

Kent S (2002) Model Driven Engineering. In: Butler M, Petre L, Sere

K (eds) Integrated formal methods. Third international confer

ence, IFM 2002 Turku, Finland, May 15 18, 2002 Proceedings.

Lecture Notes in Computer Science, vol 2335. Springer, Berlin,

Heidelberg, pp 286 298

Lavı́n Mera P, Moreno Ger P, Fernández Manjón B (2008) Devel

opment of educational videogames in m learning contexts.

Second IEEE Int Conf Digit Game Intell Toy Enhanc Learn

2008:44 51. doi:10.1109/DIGITEL.2008.21

Lenz G, Wienands C (2006) Practical software factories in.NET.

Apress, New York

Marchand A, Hennig Thurau T (2013) Value creation in the video

game industry: industry economics, consumer benefits, and

research opportunities. J Interact Marketing 27(3):141 157

Mellor SJ, Technology P, Clark AN, London C (2003) Model driven

development. IEEE Softw 20:14 18

Morin B, Barais O, Jézéquel J M et al (2009) Models@ run. time to

support dynamic adaptation. Computer (Long Beach Calif)

42:44 51

Núnez Valdez ER, Sanjuan Martinez O, Bustelo CPG et al (2013)

Gade4all: developing multi platform videogames based on

domain specific languages and model driven engineering. Int J

Interact Multimed Artif Intell 2:33 42

Piraquive FND, Crespo RG, Garcia VHM (2015) Failure cases in IT

project management. IEEE Lat Am Trans 13:2366 2371. doi:10.

1109/TLA.2015.7273799

PMI (2000) A guide to the project management body of knowledge

(PMBOK guide). Project Management Institute, Newtown

Square

Reyno EM, Carsı́ Cubel JÁ (2009) Automatic prototyping in model

driven game development. Comput Entertain 7:1. doi:10.1145/

1541895.1541909

Runeson P, Höst M (2008) Guidelines for conducting and reporting

case study research in software engineering. Empir Softw Eng

14:131 164. doi:10.1007/s10664 008 9102 8

Schmidt DC (2006) Guest editor’s introduction: model driven

engineering. Computer (Long Beach Calif) 39:25 31. doi:10.

1109/MC.2006.58

Sendall S, Kozaczynski W (2003) Model transformation: the heart

and soul of model driven software development. Softw IEEE

20:42 45

Solı́s Martı́nez J, Espada JP, Garcı́a Menéndez N et al (2015) VGPM:

using business process modeling for videogame modeling and

code generation in multiple platforms. Comput Stand Interfaces

42:42 52. doi:10.1016/j.csi.2015.04.009

Squire K (2011) Video games and learning: teaching and participa

tory culture in the digital age. Technology, education connec

tions (the TEC Series). ERIC, New York

Stahl T, Voelter M (2006) Model driven software development.

Wiley, Chichester

Ted Tschang F (2005) Videogames as interactive experimental

products and their manner of development. Int J Innov Manage

9(1):103 131

Author's personal copy

