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Abstract

In previous papers, it has been empirically proved that descriptive (summary mea-
sures) and inferential conclusions (in particular, tests about means p-values) with
imprecise-valued data are often affected by the scale considered to model such data.
More concretely, conclusions from the numerical and fuzzy linguistic encodings of
Likert-type data have been compared with those for fuzzy data obtained by us-
ing a totally free fuzzy assessment: the so-called fuzzy rating scale. These previous
comparisons have been performed separately for each of the scales.

This paper aims to perform a joint comparison in such a way that means of linked
data (one associated with the fuzzy rating and the other one with the encoded
Likert scale) are to be tested for equality. Two real-life examples, as well as several
simulation-based synthetic ones, have unequivocally shown that the fuzzy rating
scale means are significantly different from those for the encoded Likert scales.

Key words: fuzzy linguistic scale; fuzzy rating scale; intrinsically imprecise data;
Likert-type scale; testing hypothesis about means

1 Introduction1

Fuzzy rating scales were introduced (see Hesketh et al. [20]) as a compu-2

tationally/mathematically handleable and expressive tool to rate intrinsically3

imprecise-valued magnitudes mostly associated with human judgments. By in-4

trinsically imprecise-valued magnitudes we mean in this paper those for which5

values cannot be in general expressed by means of real numbers, but they can6

be properly formalized by means of fuzzy numbers.7
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The most popular scales to rate such magnitudes are Likert-type ones. They al-8

low a rater to choose among a small number of pre-specified ‘linguistic values’,9

labeling different degrees of agreement/satisfaction/accomplishment/etc., the10

one that best represents rater’s score. To develop statistics with Likert scale-11

based data, the usual way to proceed is to numerically encode different Likert12

scale values (frequently, consecutive integers), so that the imprecision of Likert13

values is lost in most cases.14

Aiming to capture such an imprecision in a computationally/mathematically15

(and, hence, statistically) handleable way, a fuzzy linguistic variable, or its16

associated fuzzy linguistic scale, is introduced (Zadeh [37]) as a fuzzy number-17

valued encoding of a Likert-type scale.18

Fuzzy rating scales confer an added value to fuzzy linguistic ones, namely,19

the freedom in rating. This freedom in rating results in a much richer and20

more expressive information, so that diversity, variability and subjectiveness21

are also much better captured with the fuzzy rating scales than with the Likert22

or the fuzzy linguistic ones.23

Intuitively, because of such a freedom and since fuzzy sets offer more flexibility24

in an opinion expression, the fuzzy rating scales are more informative than the25

others from a statistical perspective. In fact, statistical conclusions, should26

substantially differ depending on the involved scale. This assertion has been27

recently confirmed from both descriptive and inferential studies (see de la28

Rosa de Sáa et al. [10], Gil et al. [15], Lubiano et al. [22,23]). In these studies,29

different descriptive analyses and hypothesis tests about means have been30

separately developed for each of the three rating scales. Outputs have been31

later compared leading to conclude that in many of the considered cases they32

differ to a greater or lesser extent.33

In this paper, a joint comparative hypothesis testing-based discussion is carried34

out. Thus, instead of developing separate tests about means for the three35

rating scales (as in Lubiano et al. [23]), two-sample test about means are to36

be performed where one of the samples corresponds to fuzzy rating scale-based37

data and the other one corresponds to either numerically- or fuzzy linguistic-38

encoded Likert-based data. To avoid the possible influence of raters in the39

comparative discussion, samples have been taken to be linked.40

To get general theoretical conclusions for this comparative discussion would be41

a chimera. We could always think about a rather unrealistic artificial example42

leading to conclude that the mean of fuzzy rating scale-based data is not sig-43

nificantly different from that of either numerically- or fuzzy linguistic-encoded44

Likert-based ones at most of the usual significance levels. Consequently, the45

approach to be followed is to combine empirical and simulation researches.46

More concretely, two case studies involving double-type responses (fuzzy rat-47

2



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

ing and Likert) will illustrate the assertion that the mean of fuzzy rating48

scale-based data is significantly different from that of either numerically- or49

fuzzy linguistic-encoded Likert-based ones at most of the usual significance lev-50

els. This assertion will be more widely corroborated by means of simulations51

mimicking real-life situations as well as reasonable double-type responses.52

In Section 2 of this paper we describe the three scales to be compared. Section53

3 recalls the main mathematical tools to be considered for the comparison. Sec-54

tion 4 shows through two real-life examples that in most of the cases the means55

for the fuzzy rating scale-based random elements significantly differ from those56

of the associated numerical/fuzzy linguistic-encoding of Likert-based random57

elements. This conclusion is confirmed in Section 5 by considering simulation58

developments. The paper ends with some final remarks.59

2 Preliminaries on the scales to rate intrinsically imprecise-valued60

magnitudes61

This section aims to review the three scales to rate intrinsically imprecise-62

valued magnitudes we have previously referred to: Likert-type scales (along63

with their numerical encoding), fuzzy linguistic scales and the fuzzy rating64

scales.65

2.1 Likert scale-based ratings66

Likert scale-based ratings [21], allow a rater to choose among a small67

number of pre-specified ‘linguistic values’, labeling different degrees of agree-68

ment/satisfaction/fulfillment/accomplishment/etc., the one that best repre-69

sents rater’s score.70

Figure 1 displays two Likert scale-based items drawn from two real-life ques-71

tionnaires to be later detailed.72
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    How much do you agree with these statements about science? 

Tell how much you agree with these statements 
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S.2. I read about science in my spare time 
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1. 

 

 

2. 

      Disagree                Disagree                  Agree                       Agree  
         a lot                      a little                   a little                        a lot 
 

 

1. 

 

 

2. 

      Disagree                Disagree                  Agree                       Agree  
         a lot                      a little                   a little                        a lot 
 

Perception of the relative size of the black segment w.r.t. the grey one

Fig. 1. Examples of 4-point (on the left) and 5-point (on the right) Likert scale-based
items from two questionnaires

The item on the left of Figure 1 has been taken from the well-known TIMSS-73

PIRLS 2011 student questionnaire which is conducted on Grade 4 students74

(nine to ten years old at the moment they fill the questionnaire) and concerns75
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their opinion and feeling on aspects regarding reading, math, and science. This76

questionnaire (http://timssandpirls.bc.edu/pirls2011/downloads/P11_StuQ.pdf,77

and http://timssandpirls.bc.edu/timss2011/downloads/T11_StuQ_4.pdf) is a78

rather standard paper-and-pencil questionnaire and most of the involved ques-79

tions have to be answered according to a 4-point Likert scale, responses (lin-80

guistic values to choose among) being disagree a lot, disagree a little,81

agree a little, and agree a lot).82

The item on the right of Figure 1 has been taken from an online (computerized)83

application (http://bellman.ciencias.uniovi.es/SMIRE/Perceptions.html) asking84

users for their perception of the relative length of different line segments (in85

black) with respect to a longer reference line (in gray). This question has to86

be answered according to a 5-point Likert scale, responses (linguistic values87

to choose among) being very small, small, medium, large, and very88

large).89

Among the pros of using Likert scales one can highlight the following:90

− the ease of rating, irrespectively of the framework in which the rating is91

carried out;92

− there is no need for a special training to use them, since common sense93

is generally enough; as a consequence, Likert scale-based ratings can be94

usually conducted irrespectively of the age, background, knowledge... of95

raters;96

− the linguistic labels are coherent with the intrinsic imprecision associated97

with the rating based on these scales.98

Among the cons that have been pointed out in the literature, one can mention99

the following:100

− the number of possible ‘values’ to choose among is small (i.e., Likert scales101

are discrete with a small cardinal) and should be usually chosen before-102

hand; consequently, the variability/adjustment/diversity/subjectivity of103

these ratings cannot be well captured with these scales;104

− the choice of the ‘value’ that best represents rater’s score is often a com-105

plex task because none of them accurately fit such a score;106

− to analyze Likert-type data a posterior numerical-encoding of the in-107

volved Likert scale ‘values’ is usually considered; as a consequence, Likert108

scale-based data are often treated and analyzed as ordinal (by encoding109

them by means of their position in accordance with a certain ranking);110

this makes all differences between consecutive ‘values’ to coincide, which111

is often seen as inappropriate;112

− the transition from a value to another within the scale is rather abrupt;113

− the number of suitable statistical techniques to analyze Likert-type data114

is quite limited, and they are mainly based on the frequencies of different115

‘values’ and, maybe, on their numerical encoding, whence relevant statis-116
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tical information is often lost; actually, many of the commonly employed117

statistical procedures, albeit applicable, are not really appropriate to deal118

with Likert-type data.119

2.2 Fuzzy number scale-based ratings120

The preceding drawbacks lead us to a rather natural question: why not fuzzy121

scales to rate intrinsically imprecise magnitudes? In the literature one can122

find several quotations motivating and supporting this endeavour, like “... The123

fuzzy scales establish a link between strongly defined measurements... and124

weakly defined measurements” (see Benoit [3]).125

Fuzzy scales can be applied to overcome the limitations of standard scales to126

rate intrinsically imprecise magnitudes by modeling such an imprecision in127

terms of fuzzy numbers so that128

− values capture ‘differences in location’,129

− values capture ‘differences in imprecision’,130

− and they can be mathematically treated.131

Fuzzy numbers (also referred to by some authors as fuzzy intervals) are for-132

malized as follows:133

Definition 2.1 A (bounded) fuzzy number is a function Ũ : R → [0, 1]
such that it is upper semi-continuous, quasi-concave, normal (i.e., it takes on
the value 1 for at least a real number), and its support is a bounded interval.
In this view (often referred to as the vertical definition), for each x ∈ R,
the value Ũ(x) can be interpreted as the ‘degree of compatibility of x with
(the property defined by) Ũ ’. Equivalently, a (bounded) fuzzy number is a
mapping Ũ : R→ [0, 1] such that for any α ∈ [0, 1] the α-level set defined as

Ũα =


{x ∈ R : Ũ(x) ≥ α} if α ∈ (0, 1]

cl{x ∈ R : Ũ(x) > 0} if α = 0

with ‘cl’ denoting the closure of the set, is a nonempty compact interval.134

This equivalent view is often known as the horizontal definition. The space135

of (bounded) fuzzy numbers will be denoted by F ∗
c (R).136

Real numbers and nonempty compact intervals can be viewed as special fuzzy137

numbers, since each real number x or each nonempty compact interval I can138

be identified with the indicator function of the corresponding singleton or139

interval (1{x} and 1I , respectively).140

To illustrate the idea of fuzzy number one can consider a well-known and
frequently used family of fuzzy numbers: trapezoidal fuzzy numbers. If a, b, c, d

5
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∈ R with a ≤ b ≤ c ≤ d, the trapezoidal fuzzy number Tra(a, b, c, d) is given,
in accordance with the vertical view, by

Tra(a, b, c, d)(x) =



(x− a)/(b− a) if x ∈ [a, b)

1 if x ∈ [b, c]

(d− x)/(d− c) if x ∈ (c, d]

0 otherwise

and, in accordance with the horizontal view, and for each α ∈ [0, 1] by

(Tra(a, b, c, d))α = [a+ α(b− a), d+ α(c− d)].

A wider interesting family of fuzzy numbers, including the one of trapezoidal141

fuzzy numbers, is that of the LR-fuzzy numbers (see Dubois and Prade [12]).142

Recently, it has been empirically shown (see, for instance, Lubiano et al. [24])143

that the fuzzy means (and also the real-valued variances) of fuzzy number-144

valued random elements are not significantly affected by the shape chosen to145

model fuzzy data (that is, by the choice of functions L and R).146

2.2.1 Fuzzy linguistic scales147

A fuzzy linguistic variable (Zadeh [37]), or its associated fuzzy linguistic148

scale (FLS), is characterized by a 4-tuple (X,T ,S,R), where149

− X is the intrinsically imprecise-valued magnitude to be either measured150

or observed,151

− T is the set of imprecise ‘values’ of X (usually referred to as terms),152

− S is the (fuzzy) semantic rule, i.e., a mapping S : T → F ∗
c (R) where S(t)153

is the fuzzy number which has been considered to model the imprecise154

value t ∈ T .155

Figure 2 displays two triangular fuzzy linguistic scales to model labels/responses156

in Figure 1. These FLS’s are the most usual (balanced) semantic representa-157

tions of the linguistic hierarchies of k = 4 (on the left) and k = 5 (on the158

right) levels (see, for instance, Herrera et al. [18], Sanz et al. [30]).159

Fig. 2. Examples of 4 terms (on the left) and 5 terms (on the right) fuzzy linguistic
scales

6
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X corresponds in the first situation to the response chosen for the considered160

item, and in the second situation it is the perception of the relative length of161

the shorter line segment w.r.t. the longest reference. Notice that, although in162

this case there is an underlying precisely-valued magnitude (the real relative163

length), the perception of such a length (when we are not making use of exact164

measurement tools) is essentially imprecise.165

FLS’s can be very often viewed as a posterior fuzzy number-encoding of a166

Likert scale, so pros and cons are quite similar to those for the Likert approach.167

Among the pros of using fuzzy linguistic scales one can highlight the following:168

− the ease of the initial rating and no need for a special training, since the169

posterior encoding is usually made by trained experts;170

− the values in the scale can cope (to some extent) with the intrinsic im-171

precision associated with this rating.172

Among the cons to be pointed out, one could mention the following:173

− the number of possible fuzzy values to choose among is small (it is a174

discrete scale with small cardinal), and the transition from a value to175

another within the scale is somewhat abrupt; so, variability, adjustment,176

diversity, subjectivity of these ratings are to some extent lost;177

− the choice of the Likert-type ‘value’ that best represents rater’s score is178

often a complex task because none of them accurately fit such a score, and179

the same usually happens with the fuzzy modeling of the chosen value;180

actually, the analyst or another expert transforms the Likert scale labels181

into fuzzy numbers by choosing a set of fuzzy numbers that he/she finds182

appropriate to reflect the underlying imprecision in the recorded Likert183

scale measurements; but this is an arbitrary choice which may or may184

not reflect the imprecision in the opinion of the persons who originally185

filled in the questionnaire;186

− statistical techniques should be developed to analyze fuzzy number-valued187

data; in fact, this is currently a rather minor concern, since it has been188

overcome in the last years, as it will be commented in Section 3.189

2.2.2 Fuzzy rating scales190

Several quotations from the literature have accurately captured the spirit be-191

hind fuzzy rating scales. Among them, we have chosen two that properly mo-192

tivate and illustrate the aim and scope of these scales: “... a scale in which...193

something can be meaningful although we cannot name it” (Ghneim [14]), and194

“Paradoxically, one of the principal contributions of fuzzy logic,... , is its high195

power of ‘precisiation’ of what is imprecise” (see Zadeh [38]).196

7
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A fuzzy rating scale (FRS), as introduced by Hesketh et al. [20], allows197

a rater to draw the fuzzy number that ‘best represents’ rater’s score. The198

guideline for the mechanism to draw such a fuzzy number is as follows:199

Step 1. A reference bounded interval/segment is first considered. This is200

often chosen to be [0, 10] or [0, 100], but the choice of such a reference in-201

terval is only constrained to be bounded. The end-points are often labeled202

in accordance with their meaning referring to the degree of agreement,203

satisfaction, quality, and so on.

204

Step 2. The core, or 1-level set, associated with the response is determined.205

It corresponds to the interval consisting of the real values within the206

reference one which are considered to be as ‘fully compatible’ with the207

response.

208

Step 3. The support, or its closure or 0-level set, associated with the response209

is determined. It corresponds to the interval consisting of the real values210

within the referential that are considered to be as ‘compatible to some ex-211

tent’ with the response, and it should be always included in the reference212

interval.

213

Step 4. The two intervals are ‘linearly interpolated’ to get a trapezoidal fuzzy214

number.

215

It should be pointed out that the linearity of the last interpolation is not a216

must but it is simply very convenient for computational purposes.217

Among the pros of using fuzzy rating scales one can highlight the following:218

− values in FRS’s can cope (to a full extent) with the intrinsic imprecision219

associated with this rating;220

8
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− any FRS means a continuum, and the transition from a value to another221

within the scale is fully gradual (both in location and precision);222

− these scales are much richer and more expressive than any one based on223

a (unavoidably finite) natural language or its real/fuzzy-valued encoding224

(“... something can be meaningful although we cannot name it”);225

− the flexibility of FRS’s allow raters to properly capture individual dif-226

ferences, whence the intrinsic variability, diversity and subjectivity are227

better caught (“... precisiation of what is imprecise”);228

− values in the FRS’s can be mathematically and computationally handled229

in a suitable way, since one can state arithmetic and distances230

� preserving the meaning of fuzzy numbers,231

� and allowing us to extend/adapt/develop many concepts and devel-232

opments from Statistics with real-valued data.233

Among the cons to be pointed out, one could mention the following:234

− surveys/questionnaires for which responses are based on a FRS cannot be235

conducted in any framework, since they require either a paper-and-pencil236

or a computerized form to be filled by the rater;237

− raters need either to have an adequate background or to be properly238

trained; it should be remarked that, although this is a clear concern, the239

training does not need to be highly time consuming in most of the cases,240

as it will be shown in the first case study to be considered in Section 4;241

− statistical techniques should be developed to analyze fuzzy number-valued242

data; in this respect, Hesketh et al. [19] have stated that “... We are yet243

to see easily adapted packages that allow for researchers to use the fuzzy244

concept and then to apply appropriate statistical and other analyses to245

these in order to both test hypotheses and ensure that meaning is cap-246

tured”; as it has been already commented, nowadays this is just partially247

a con.248

From a data-analytic perspective, it is intuitively clear that FRS-based data249

are much more informative than Likert-based ones (or their numerical/fuzzy250

encodings). This is due to the fact that, in case data can be doubly rated251

following both scales, many data matching for the Likert-type scale (and hence252

showing no variability) do not match at all for the fuzzy rating one (and hence253

showing a certain variability). To support and illustrate this last assertion, we254

can consider an item from the case study to be detailed in Section 4.2, in255

which some items from the TIMSS-PIRLS 2011 student questionnaire have256

been adapted to allow a double-type response: the original Likert and a FRS-257

based one with reference interval [0, 10]; for instance, in responding to item258

M.2: ‘My math teacher is easy to understand’ the Likert scale-based response259

chosen by four students has corresponded to disagree a little, whereas260

the FRS-based responses for the same students have been definitely different261

(see Figure 3).262

9



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Fig. 3. Example of 4 double responses to item M.2 for which the Likert-type ones
coincide while the fuzzy rating scale-type clearly differ

From a philosophical perspective, we can wonder about the internal and exter-263

nal consistencies of the FRS-based data. Regarding the internal consistency, if264

(for instance) essentially the same question is asked repeatedly under similar265

circumstances to the same person, he/she could often give different answers266

because of the ‘continuous’ freedom in drawing such answers; but these an-267

swers are expected not to be very different/distant (i.e., they are expected268

to express a rather consistent opinion), so that almost generally such minor269

differences scarcely affect the statistical conclusions. Regarding the external270

consistency, although different subjects sharing the same opinion in connec-271

tion with a question could express their answers by means of different fuzzy272

numbers, these differences will be usually much lower than different answers273

based on a Likert scale; this situation mainly arises when the shared opin-274

ion corresponds in fact to an answer that cannot fit any of the Likert scale275

values but something in between two of them, and in such a situation FRS-276

based responses will mostly differ less than Likert-type ones, whence statistical277

conclusions will not be very much affected. Anyway, subjectivity would be un-278

avoidable because of the intrinsic imprecision associated with the aspects to279

be measures/answered.280

It should be noticed that other popular scales which has been used in rating281

imprecise-valued magnitudes (like pain and many others, coming often from282

the medical realm) are visual analogue ones, introduced by Freyd [13]. They283

allow a rater to draw/choose within a given bounded interval (with labeled284

extremes) the point that best represents rater’s score. It shares the cons with285

the FRS, but it also add some specific concerns, namely, that the choice of286

the single real number that best represents rater’s score is usually neither easy287

nor natural, and to require a full accuracy seems rather unrealistic in such an288

intrinsically imprecise context.289
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Regarding the last con in connection with the two described fuzzy scales (the290

need for statistical techniques to analyze fuzzy data), it should be pointed291

out that along the last years a methodology is being developed to statisti-292

cally analyze fuzzy scale-based data (see Blanco-Fernández et al. [5,6] for a293

recent review and discussions about). Furthermore, an R package is addition-294

ally being stated to support its practical implementation (see Trutschnig and295

Lubiano [33]), so such a con has been substantially overcome.296

3 Preliminaries on the arithmetic, metrics and hypothesis testing297

methodology to analyze intrinsically imprecise-valued data298

The key tools for the above-mentioned statistical methodology with fuzzy data299

are:300

• arithmetic + metrics with fuzzy numbers;301

• random fuzzy numbers.302

Why does combining arithmetic + metrics constitute a key tool in this setting?303

To handle fuzzy data from a mathematical perspective, one can first pose a304

relevant question: can fuzzy data be treated as special functional data? There305

is not a single answer to the last question, but the two following answers are306

compatible:307

− Directly, NO. In applying functional arithmetic to handle elements in the308

space of (functional-valued) fuzzy numbers, one often moves out of the309

space and the fuzzy meaning is generally lost.310

− Indirectly, YES. By using an appropriate arithmetic and suitable metrics,311

fuzzy numbers can be identified with elements in a convex cone of a312

Hilbert space of functions, and the arithmetic and metrics with fuzzy313

numbers with those in the Hilbert space of functions (see, for instance,314

González-Rodríguez et al. [16]). This is the view we will adopt along this315

paper.316

3.1 Arithmetic with fuzzy data317

When fuzzy numbers are considered to model experimental data, statistics to318

analyze them are frequently based on two arithmetical operations, namely the319

sum and the product by scalars.320

The common way to extend the sum and the product by a scalar from R321

to F ∗
c (R) is to use Zadeh’s extension principle [37], which is equivalent to322

considering the usual interval arithmetic level-wise. More concretely,323

Definition 3.1 Given Ũ , Ṽ ∈ F∗c (R), the sum of Ũ and Ṽ is the fuzzy num-
ber Ũ + Ṽ ∈ F ∗

c (R) such that for each α ∈ [0, 1]

(Ũ + Ṽ )α = Ũα + Ṽα =
[

inf Ũα + inf Ṽα, sup Ũα + sup Ṽα
]
.

11
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Given Ũ ∈ F ∗
c (R) and γ ∈ R, the product of Ũ by the scalar γ is the fuzzy

number γ · Ũ ∈ F ∗
c (R) such that for each α ∈ [0, 1]

(γ · Ũ)α = γ · Ũα =


[
γ · inf Ũα, γ · sup Ũα

]
if γ ≥ 0

[
γ · sup Ũα, γ · inf Ũα

]
otherwise.

Remark 3.1 It can be easily proved that both operations are closed within324

the class of trapezoidal fuzzy numbers.325

Remark 3.2 It should be especially highlighted that the space (F ∗
c (R),+, ·)326

has not linear but semilinear structure since Ũ + (−1 · Ũ) 6= 1{0} (neutral327

element of +).328

3.2 Metric between fuzzy data329

Due to the nonlinearity that has been pointed out in Remark 3.2, one cannot330

state a definition for the difference between fuzzy numbers that is always well-331

defined and simultaneously preserves the main properties of the difference332

between real values in connection with the sum. In fact, there exists a difference333

notion (Hukuhara’s one) satisfying the last condition, but it cannot be defined334

for many fuzzy number values.335

This crucial drawback has been substantially overcome in developing statistics336

with fuzzy data by incorporating suitable distances between them. On one337

hand, distances will allow to ‘translate’ the equality of fuzzy numbers into the338

vanishing of the distance between them, as in the case of real values. On the339

other hand, appropriate distances also allow us via the support function to340

‘identify’ fuzzy data with functional ones and fuzzy arithmetic with functional341

arithmetic (as it will be later remarked). Furthermore, statistical concepts and342

methods for real-valued datasets involving metrics (e.g., dispersion measures,343

mean distance approaches, classification problems, etc.) could be extended by344

considering extended metrics.345

Among the L2 metrics between fuzzy numbers, the one introduced by Diamond346

and Kloeden [11], and extending Vitale’s [34] one for interval values, is given347

as follows:348

Definition 3.2 Let Ũ , Ṽ ∈ F ∗
c (R). The 2-norm distance between Ũ and Ṽ

is defined as

ρ2(Ũ , Ṽ ) =

√
1

2

∫
(0,1]

([
inf Ũα − inf Ṽα

]2
+
[
sup Ũα − sup Ṽα

]2)
dα

=

√∫
[0,1]

(
[mid Ũα −mid Ṽα]2 + [spr Ũα − spr Ṽα]2

)
dα,

12
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where mid and spr are the centre and radius, respectively, of the corresponding349

interval (i.e., mid Ũα = (inf Ũα + sup Ũα)/2, spr Ũα = (sup Ũα − inf Ũα)/2).350

Remark 3.3 In dealing with trapezoidal fuzzy numbers and ρ2, we have that

ρ2(Tra(a1, b1, c1, d1),Tra(a2, b2, c2, d2))

=

√
(a1−a2)2 + (b1−b2)2 + (a1−a2)(b1−b2) + (c1−c2)2 + (d1−d2)2 + (c1−c2)(d1−d2)

6

=

√
(m1−m2)2 + (m1−m2)2 + (m1−m2)(m1−m2) + (r1−r2)2 + (r1−r2)2 + (r1−r2)(r1−r2)

3
,

where m = (a+ d)/2, m = (b+ c)/2, r = (d− a)/2 and r = (b− c)/2.351

Remark 3.4 By combining the above fuzzy arithmetic and metric ρ2, and via352

the so-called support function introduced by Puri and Ralescu [28],353

s : F ∗
c (R) → H2 (with H2 = {L2-type real-valued functions defined on [0, 1]354

× {−1, 1} w.r.t. `⊗ λ1}, λ1(−1) = λ1(1) = .5, and s(Ũ) = s
Ũ
with s

Ũ
(α,−1)355

= − inf Ũα, sŨ(α, 1) = sup Ũα), an isometric embedding of F ∗
c (R) onto a356

convex cone of the Hilbert space H2 can be stated. An immediate and crucial357

implication from such an embedding is that any fuzzy number Ũ ∈ F ∗
c (R)358

can be identified with the corresponding function s
Ũ

and this identification359

is accompanied by the correspondences between the usual arithmetics and L2
360

metrics. Consequently, data in the setting of fuzzy number-valued data with361

the fuzzy arithmetic and the metric ρ2 (in fact, with more general L2 metrics,362

see González-Rodríguez et al. [16]) can be systematically translated into data363

in the setting of functional data with the functional arithmetic and the metric364

based on the associated norm. In this way, fuzzy data should not be treated365

directly, but via the support function, as functional data.366

Then, we can formally assert as a relevant implication for statistical pur-367

poses that several developments in Functional Data Analysis could be par-368

ticularized to fuzzy number-valued data by using the adequate identifications369

and correspondences. However, it should be guaranteed that the resulting el-370

ements/outputs and steps remain in the cone s (F ∗
c (R)). This will apply, for371

instance, in testing about means in Section 3.4.372

3.3 Random fuzzy numbers373

In developing statistics with fuzzy data coming from intrinsically imprecise-374

valued magnitudes, random fuzzy numbers constitute a well-formalized model375

within the probabilistic setting for the random mechanisms generating such376

data. Random fuzzy numbers, originally coined as (one-dimensional) fuzzy377

random variables by Puri and Ralescu [29], integrate randomness (associated378

with data generation) and fuzziness (associated with data nature).379
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Definition 3.3 Let (Ω,A, P ) be a probability space modeling a random ex-380

periment. A mapping X : Ω → F ∗
c (R) is said to be an associated random381

fuzzy number (for short RFN) if and only if for all α ∈ [0, 1] the interval-382

valued mapping Xα, such that Xα(ω) =
(
X (ω)

)
α
for all ω ∈ Ω, is a compact383

random interval (i.e., a Borel-measurable mapping w.r.t. the topology induced384

by Hausdorff metric in the space of the nonempty compact intervals).385

Equivalently, X is an RFN if and only if s(X ) is an H2-valued random element386

(that is, a Borel-measurable function w.r.t. the Borel σ-field generated by the387

topology induced by the metric associated with ρ2 via s).388

Also equivalently, X is an RFN if and only if it is a Borel-measurable mapping389

w.r.t. the Borel σ-field generated on F ∗
c (R) by the topology induced by ρ2.390

Remark 3.5 The Borel-measurability in the third definition above ensures391

that one can properly and trivially refer to the distribution induced by an392

RFN, the stochastic independence of RFN’s, and so on, without needing to393

state expressly these notions.394

In analyzing the induced distribution of a random fuzzy number the best395

known summary measure is the Aumann-type mean (Puri and Ralescu [29]),396

that extends the mean of a random variable as well as the Aumann expectation397

of a random set, and it is formalized as follows:398

Definition 3.4 Let X be a random fuzzy number associated with the proba-
bility space (Ω,A, P ). The (population) Aumann-type mean of X is the
fuzzy number Ẽ(X ) ∈ F ∗

c (R), if it exists, such that for each α ∈ [0, 1]

(
Ẽ(X )

)
α

= Aumann integral of X α =
{ ∫

Ω
f(ω) dP (ω) : f

a.s. [P ]
∈ Xα

}

(see Aumann [1]), that is,
(
Ẽ(X )

)
α

= [E(inf Xα), E(supXα)] with E denoting399

the expected value of a real-valued random variable. Equivalently, and whenever400

sX ∈ L1(Ω,A, P ), it is the fuzzy number Ẽ(X ) ∈ F ∗
c (R) such that s

Ẽ(X )
401

= E(sX ), with E denoting the Bochner expectation of a Banach space-valued402

random element.403

Remark 3.6 In particular, if x̃n = (X (ω1), . . . ,X (ωn)) is a sample of ob-
servations from X when measured on a sample of individuals (ω1, . . . , ωn),
the (sample) Aumann-type mean is the fuzzy number x̃n given for all
α ∈ [0, 1] by

(
x̃n

)
α
=

(
1

n
· (X (ω1) + . . .+ X (ωn))

)
α

=

[
1

n

n∑
i=1

inf(X (ωi))α,
1

n

n∑
i=1

sup(X (ωi))α

]
.
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Remark 3.7 If X is a trapezoidal-valued random fuzzy number then

Ẽ(X ) = Tra
(
E(inf X0), E(inf X1), E(supX1), E(supX0)

)
.

In particular, if x̃n = (Tra(a1, b1, c1, d1), . . . ,Tra(an, bn, cn, dn)) is a sample
of observations from X , the (sample) Aumann-type mean is the fuzzy
number

x̃n =Tra

(
1

n

n∑
i=1

ai,
1

n

n∑
i=1

bi,
1

n

n∑
i=1

ci,
1

n

n∑
i=1

di

)
.

The Aumann-type mean preserves the main valuable properties from the real-404

valued case, so that it is equivariant under affine transformations on F ∗
c (R)405

(i.e., Ẽ(a · X + b) = a · Ẽ(X ) + b), additive (i.e., Ẽ(X + Y) = Ẽ(X ) + Ẽ(Y)),406

coherent with the above-described fuzzy arithmetic (as shown in Remark 3.6),407

it fulfills Strong Laws of Large Numbers, and it is the Fréchet expectation408

w.r.t. ρ2 (i.e., Ẽ(X ) = arg min
Ũ∈F∗c (R)

E
[(
ρ2(X , Ũ)

)2]
).409

3.4 Two-sample test about means for linked samples of RFN’s410

As we have already announced, this paper aims to test that the use of dif-411

ferent scales to rate intrinsically imprecise-valued magnitudes can often lead412

to different statistical conclusions. To confirm this fact, we are going to con-413

sider real-life and synthetic examples for which a double simultaneous rating414

is assumed: a Likert scale- and an FRS-based rating.415

Once either real-life or simulated double data are collected or generated, two-416

sample test about means for linked samples of RFN’s are to be performed.417

More concretely,418

• for the considered case studies, Likert-type data are to be encoded both419

numerically (leading to the so-denoted NELikert-based data) and fuzzy420

linguistically (leading to the so-denoted FLS-based data); NELikert (ac-421

tually, the indicator functions of their associated singletons) and FLS422

data will be treated as fuzzy number-valued data;423

• for the considered simulations, NELikert and FLS data will be obtained424

as the real numbers (again the indicator functions of their associated425

singletons) or FLS values showing the lowest ρ2-distance to the generated426

FRS data;427

• when all double data are transformed into couples of fuzzy linked data,428

the null hypothesis about the equality of the corresponding two Aumann-429

type means is to be tested; in fact, the p-value of the two-sample test for430

linked samples is to be computed.431
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To test the null hypothesis of equality of the Aumann-type means of two RFNs432

X and X ′, one can consider the bootstrapped algorithm for trapezoidal-valued433

random fuzzy numbers in Lubiano et al. [23] (approximating the particular-434

ization of the two-sample test about means for linked samples from RFNs by435

González-Rodríguez et al. [17]).436

If (X ,X ′) is a two-dimensional random fuzzy set (that is, a mapping from Ω to437

F ∗
c (R)×F ∗

c (R) for which α-levels are compact convex random sets of R2), con-438

sider a sample of independent observations from it,
(
(x̃1, x̃

′
1), . . . , (x̃n, x̃

′
n)
)
. As-439

sume that x̃i and x̃′i are trapezoidal fuzzy numbers, and denote x̃n = (x̃1, . . . ,440

x̃n), x̃′n = (x̃′1, . . . , x̃
′
n) with x̃i = Tra(ai, bi, ci, di) and x̃′i = Tra(a′i, b

′
i, c
′
i, d
′
i).441

Then, the algorithm to test the null hypothesis H0 : Ẽ(X ) = Ẽ(X ′) (i.e.,442

H0 : ρ2

(
Ẽ(X ), Ẽ(X ′)

)
= 0) proceeds as follows:443

Step 1. Compute the value of the statistic

Tn(x̃n, x̃
′
n) =

[
ρ2(x̃n, x̃

′
n)
]2

1
n

n∑
i=1

[
ρ2(x̃i + x̃′n, x̃

′
i + x̃n)

]2
=
An(x̃n, x̃

′
n)

Cn(x̃n, x̃
′
n)
,

An(x̃n, x̃
′
n) =

[
1

n

n∑
i=1

(mi−m
′
i)

]2
+

[
1

n

n∑
i=1

(mi−m′i)
]2

+

[
1

n

n∑
i=1

(ri−r
′
i)

]2
+

[
1

n

n∑
i=1

(ri−r′i)
]2

+

[
1

n

n∑
i=1

(mi −m
′
i)

]
·
[

1

n

n∑
i=1

(mi −m′i)
]

+

[
1

n

n∑
i=1

(ri − r
′
i)

]
·
[

1

n

n∑
i=1

(ri − r′i)
]
.

Cn(x̃n, x̃
′
n) =

1

n

n∑
i=1

[
1

n

n∑
l=1

(mi +ml −m
′
i −m

′
l)

]2
+

1

n

n∑
i=1

[
1

n

n∑
l=1

(mi +ml −m′i −m
′
l)

]2
+

1

n

n∑
i=1

[
1

n

n∑
l=1

(ri + rl − r
′
i − r

′
l)

]2
+

1

n

n∑
i=1

[
1

n

n∑
l=1

(ri + rl − r′i − r
′
l)

]2
+

1

n

n∑
i=1

[
1

n

n∑
l=1

(mi +ml −m
′
i −m

′
l)

]
·
[

1

n

n∑
l=1

(mi +ml −m′i −m
′
l)

]
+

1

n

n∑
i=1

[
1

n

n∑
l=1

(ri + rl − r
′
i − r

′
l)

]
·
[

1

n

n∑
l=1

(ri + rl − r′i − r
′
l)

]
.

444

Step 2. Fix the bootstrap populations to be
{(
x̃1 + x̃′n, x̃

′
1 + x̃n

)
, . . . ,445 (

x̃n + x̃′n, x̃
′
n + x̃n

)}
, with446

x̃i + x̃′
n = Tra

(
ai +

a′1 + . . .+ a′n
n

, bi +
b′1 + . . .+ b′n

n
, ci +

c′1 + . . .+ c′n
n

, di +
d′1 + . . .+ d′n

n

)
,

x̃′i + x̃′
n = Tra

(
a′i +

a1 + . . .+ an

n
, b′i +

b1 + . . .+ bn

n
, c′i +

c1 + . . .+ cn

n
, d′i +

d1 + . . .+ dn

n

)
447

so that to ensure that bootstrap populations fulfill the null hypothesis,448

one can add to each value in each sample the mean of the other one.449
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Step 3. Obtain a sample of independent observations from each boot-450

strap population, say {(x̃1, x̃
′
1)∗, . . . , (x̃n, x̃

′
n)∗} and, for the sake of451

simplicity, denote (x̃∗i , x̃
′∗
i ) = (x̃i, x̃

′
i)
∗ and x̃∗n = (x̃∗1, . . . , x̃

∗
n), x̃′∗n452

= (x̃′∗1 , . . . , x̃
′∗
n ).453

Step 4. Compute the value of the bootstrap statistic T∗n(x̃∗n, x̃
′∗
n ).454

Step 5. Steps 3 and 4 should be repeated a large number B of times to455

get a set of B estimates, denoted by {t∗1, . . . , t∗B}.456

Step 6. Compute the bootstrap p-value as the proportion of values in457

{t∗1, . . . , t∗B} being greater than Tn.458

4 Case studies-based discussion459

As it has been already commented, general theoretical conclusions for the460

equality of means for FRS-based vs either NELikert- or FLS-based data cannot461

be achieved. This section aims to show that means are mostly significantly462

different in real-life situations. For this purpose, two case studies, one involving463

a questionnaire with several items and a 4-point Likert-type scale, and the464

other one involving a single question with several trials and a 5-point Likert465

type scale, both allowing double-type responses, are to be considered. In the466

first case, respondents are nine to ten year-old children whereas in the second467

one respondents are scientists.468

4.1 Case study 1: adapted TIMSS/PIRLS questionnaire469

This example has been previously examined for different statistical purposes470

(see Gil et al. [15], Lubiano et al. [22], Sinova et al. [32]). It relates to the471

well-known questionnaire TIMSS-PIRLS 2011 that has been referred to in472

explaining Figure 1 (Section 2.1). It has been conducted on the population473

of Grade 4 students and most of the involved questions have to be answered474

according to the already described 4-point Likert scale.475

To get more expressive responses and informative conclusions, nine items from476

the original questionnaire have been adapted to allow a double-type response:477

the original Likert and a fuzzy rating scale-based one with reference inter-478

val [0, 10] (see Figure 4 for one of the items, http://bellman.ciencias.uniovi.es/479

SMIRE/FuzzyRatingScaleQuestionnaire-SanIgnacio.html and the supplementary ma-480

terial for the full paper-and-pencil form and http://carleos.epv.uniovi.es:8080/ for481

the full -Spanish- computerized form).482

The nine adapted items chosen from the original Student questionnaire are dis-483

played in Table 1. The adapted questionnaire involving these double-response484

items has been conducted in 2014 on a sample of 69 fourth grade students from485

Colegio San Ignacio (Oviedo-Asturias, Spain). These students have been dis-486

tributed in accordance with (their usual) three groups, and the teachers have487
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 10 

 

  

    
  

    How much do you agree with these statements about math? 

Tell how much you agree with these statements 

 

   M.1. I like mathematics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M.2. My math teacher is easy to understand 

  

   

Mathematics in school 

 

1. 

 

 

2. 

      Disagree                Disagree                  Agree                       Agree  
         a lot                      a little                   a little                        a lot 
 

 

1. 

 

 

2. 

      Disagree                Disagree                  Agree                       Agree  
         a lot                      a little                   a little                        a lot 
 

Fig. 4. Example of the double-response paper-and-pencil (on the left) and comput-
erized (on the right) form to an item in Case Study 1

decided that the 24 students in one of the three classrooms have to fill out488

the paper-and-pencil format and the 45 students from the other two groups489

have to complete the computerized version. To ‘ease’ the relationship between490

the two scales for these very young respondents, each numerically encoded491

Likert response has been lightly superimposed upon the reference interval of492

the fuzzy rating scale part.493

Table 1
Items adapted from the TIMSS-PIRLS 2011 Student’s Questionnaire

reading in school

R.1 I like to read things that make me think

R.2 I learn a lot from reading

R.3 Reading is harder for me than any other subject

mathematics in school

M.1 I like mathematics

M.2 My teacher is easy to understand

M.3 Mathematics is harder for me than any other subject

science in school

S.1 My teacher taught me to discover science in daily life

S.2 I read about in my spare time

S.3 Science is harder for me than any other subject

18
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The training of students to let them know about the meaning and purpose of494

the case study, as well as the aim of the double response, has been carried out495

in up to 15 minutes, and three researchers from the Department of Statistics,496

OR and Math Teaching of the University of Oviedo have been in charge of497

the explanation and conduction of the survey. At this point, it should be498

remarked that students had no idea on the concept of real-valued functions and499

they had just learned that of a trapezium. With the guideline detailed in the500

supplementary material for this paper, students have not had understanding501

problems, they have catched the philosophy behind and have been able to502

provide us with quite coherent responses in most of the cases. Actually, for all503

the questions, the number of ‘no response’s’ have been very small and smaller504

for the fuzzy rating than for the Likert scale. In summary, the training has505

been surprisingly much easier and more effective than it could be expected.506

Datasets associated with responses to this questionnaire can be also found in507

the supplementary material.508

The bootstrapped two-sample test about means for linked samples in Sec-509

tion 3.4 has been now applied (with B = 1000) for each of the nine items510

in Table 1, with X standing for the FRS-based response and X ′ standing511

for either the numerically encoded 4-point Likert-based responses (denoted512

NELikert and taking on values 0, 10/3, 20/3, 10) or the fuzzy linguistically513

encoded 4-point Likert-based responses in accordance with some of the most514

frequently FLSs considered when 4 labels are modelled in connection with515

decision making, classification, control, and other problems for which these516

scales have shown to be valuable (see, for instance, Herrera et al. [18], Bajpai517

et al. [2], Cai et al. [7], Picon et al. [27]). FLS1 will denote the most usual518

(balanced) semantic representations of the linguistic hierarchies on the left in519

Figure 2 (Section 2.2.1). FLS1 to FLS5 are displayed in Figure 5.520

Fig. 5. Examples of five usual fuzzy linguistic scales with 4 terms
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Table 2
Bootstrapped p-values of the two-sample test about means for linked samples (FRS
vs encoded scale in {NELikert, FLS1, FLS2, FLS3, FLS4, FLS5})

item \ X ′ NELikert FLS1 FLS2 FLS3 FLS4 FLS5

R.1 .000 .000 .000 .000 .000 .000
R.2 .000 .000 .000 .000 .000 .000
R.3 .000 .016 .060 .000 .000 .002
M.1 .000 .000 .000 .000 .000 .000
M.2 .000 .002 .000 .000 .000 .005
M.3 .002 .000 .001 .000 .006 .000
S.1 .000 .000 .020 .000 .000 .000
S.2 .000 .000 .001 .000 .000 .000
S.3 .000 .000 .001 .000 .000 .000

On the basis of the p-values in Table 2 one can almost generally conclude that521

for any of the nine items and for the most usual significance levels, the FRS-522

based mean response is significantly different from the encoded Likert-based523

mean response (when the encoded Likert scale is in {NELikert, FLS1, FLS2,524

FLS3, FLS4, FLS5}). In summary, the mean response is influenced by the525

considered scale.526

4.2 Case study 2: perception of the relative length of a line segment527

This example has been previously examined for different statistical purposes528

(see Colubi et al. [8], González-Rodríguez et al. [16]). It relates to an online529

computerized application in which people have been asked for their perception530

of the relative length of different line segments with respect to a pattern longer531

one, and it has been referred to in explaining Figure 1. The population have532

corresponded to people who can be potentially contacted for this purpose.533

The application has been conducted so that on the center top of the screen the534

longest (reference) line segment has been drawn in gray. This segment is fixed535

for all the trials, so that there is always a reference for the maximum length.536

At each trial a black shorter line segment is generated and placed below the537

pattern one, parallel and without considering a concrete location (i.e., indent-538

ing or centering). For each respondent line segments are generated at random,539

although to avoid the variation in the perception of different respondents can540

be mainly due to the variation in length of different generated segments, the541

(27 first) trials for two respondents refer to the same segments but appearing542

in different position and location.543

Each of the perceptions could be doubly expressed, namely by choosing the544

Likert-like scale in Figure 1, and by using the fuzzy rating scale with reference545

interval [0, 100] so that they can be thought as a kind of imprecise percentages546

(see Figure 6 for a screen capture).547
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Fig. 6. Example of a double-response computerized question in Case Study 2

The online application explains the formalization and meaning of the fuzzy rat-548

ing values (see http://bellman.ciencias.uniovi.es/SMIRE/perceptions.html and549

the supplementary material for this paper).550

A sample of 25 respondents (all of them with a university scientific background551

and with a quite minor training need, mostly consisting of simply reading the552

instructions in the online application and the supplementary material) have553

been contacted for this experiment, and they have supplied the responses in554

the supplementary material for this paper.555

The bootstrapped two-sample test about means for linked samples in Sec-556

tion 3.4 has been now applied (with B = 1000), with X standing for the557

FRS-based response and X ′ standing for either the numerically encoded 5-558

point Likert-based responses (denoted NELikert’ and taking on values 0, 25,559

50, 75, 100) or the fuzzy linguistically encoded 5-point Likert-based responses560

in accordance with some of the most frequently fuzzy linguistic scales consid-561

ered when 5 labels are modelled (see, for instance, Yeh et al. [36], Motawa et562

al. [25] for FSL1’ and FSL2’, respectively). FLS3’ will denote the most usual563

(balanced) semantic representations of the linguistic hierarchies on the right564

in Figure 2, FLS4’ is partially inspired by the unbalanced semantic repre-565

sentation of 5 points by Herrera et al. [18]. FLS1’ to FLS4’ are displayed in566

Figure 7.567

Fig. 7. Examples of four usual fuzzy linguistic scales with 5 terms
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The p-values in this case are all equal to .000 for any of the five encoded568

Likert scales, so one can generally conclude that for all the usual significance569

levels, the FRS-based mean response is significantly different from the encoded570

Likert-based mean response (when the encoded Likert scale is in {NELikert’,571

FLS1’, FLS2’, FLS3’, FLS4’}). In summary, the mean response is also influ-572

enced by the considered scale.573

Remark 4.1 It should be clarified that the imprecise data along the paper574

have been assumed as coming from an essentially imprecise random element,575

corresponding to perception, opinion, etc. Eventually, situations can arise for576

which there might be an underlying real-valued random variable (e.g., the577

exact relative length w.r.t. the reference line in Case study 2), and we could578

think in following an ‘epistemic’ approach, so to draw conclusions about the579

underlying real-valued random element on the basis of the available impre-580

cise data. However, statistical data analysis in this paper is assumed to be581

based on the imprecise data but to refer to the imprecise random element582

supplying them, irrespectively of the fact that imprecise data correspond ei-583

ther to existing data (i.e., an ‘ontic’ view is considered) or to the imprecise584

perception of unknown precise data. For a recent detailed discussion about585

the epistemic/ontic distinction in this setting, see [9]).586

5 Simulations-based discussion587

Simulation studies are to be considered along this section to show whether588

the conclusions in the preceding one can be generalized, given that to develop589

general theoretical conclusions is unfeasible in this case. A crucial thought at590

this stage is that there are not yet suitable realistic models for the distribution591

of random fuzzy numbers. This makes the simulation process a novel endeavor.592

On the other hand, in simulating the double data, it should be taken into593

account that in practice the Likert data are not given independently of FRS594

ones, and there is a rather systematic reasonable connection between linked595

data.596

In this work simulations of FRS-based data have been inspired by real-life597

datasets in connection with fuzzy rating scale-based experiments. To generate598

fuzzy data from a trapezoidal-valued random fuzzy number X = Tra(inf X0,599

inf X1, supX1, supX0) Sinova et al. [31] suggest to use the characterization,600

X = Tra〈X1, X2, X3, X4〉, where X1 = midX1, X2 = sprX1 = (supX1601

− inf X1)/2, X3 = lsprX0 = inf X1 − inf X0, X4 = usprX0 = supX0 − supX1,602

that is, X = Tra〈X1, X2, X3, X4〉 = Tra(X1 − X2 − X3, X1 − X2, X1 + X2,603

X1 +X2 +X4).604

In fact, fuzzy data will be generated by simulating the four real-valued random605

variables X1, X2, X3 and X4 so that random vector (X1, X2, X3, X4) will606
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provide us with the 4-tuples (x1, x2, x3, x4) with x1/x2 = center/radius of the607

core, and x3/x4 = lower/upper spread of the fuzzy number. To each generated608

4-tuple (x1, x2, x3, x4) we associate the fuzzy number Tra〈x1, x2, x3, x4〉.609

According to the simulation procedure to be considered, data have been gener-610

ated from random fuzzy numbers with a bounded reference set and ‘mimicking’611

what we have observed in some real-life examples employing the fuzzy rating612

scale. Actually, in these examples we have examined the separate behaviour of613

each of the real-valued components Xi, and some convenient models properly614

fitting such a behaviour.615

More concretely, fuzzy data have been generated so that616

− 5% of the data have been obtained by first considering a simulation from617

a simple random sample of size 4 from a beta β(p, q) distribution, the618

ordered 4-tuple, and finally computing the values of the xi. The values619

of p and q vary to cover three different distributions (namely uniform,620

an asymmetric one like p = 1 < 10 = q, and bell-shaped symmetrical,621

like p = q = 5, see Figure 8). In most of the comparative studies involv-622

ing simulations, the values from the beta distribution are re-scaled and623

translated to an interval [l0, u0] different from [0, 1], but the bootstrapped624

two-sample test conclusions are fully irrespective of the re-scaling and625

translation.626

Fig. 8. Density functions of different Beta(p, q) to be used in the simulation studies

− 35% of the data have been obtained considering a simulation of four627

random variables Xi = (u0 − l0) · Yi + l0 as follows:628

Y1 ∼ β(p, q),629

Y2 ∼ Uniform
[
0,min{1/10, Y1, 1− Y1}

]
,630

Y3 ∼ Uniform
[
0,min{1/5, Y1 − Y2}

]
,631

Y4 ∼ Uniform
[
0,min{1/5, 1− Y1 − Y2}

]
;632

− 60% of the data have been obtained considering a simulation of four633

random variables Xi = (u0 − l0) · Yi + l0 as follows:634

Y1 ∼ β(p, q),635
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Y2 ∼


Exp(200) if Y1 ∈ [0.25, 0.75]

Exp(100 + 4Y1) if Y1 < 0.25

Exp(500− 4Y1) otherwise

636

Y3 ∼

 γ(4, 100) if Y1 − Y2 ≥ 0.25

γ(4, 100 + 4Y1) otherwise
637

Y4 ∼

 γ(4, 100) if Y1 + Y2 ≥ 0.25

γ(4, 500− 4Y1) otherwise.
638

On the other hand, to mimic the systematic reasonable behaviour in assessing639

the linked Likert-type data, we will consider the criterion of the minimum640

ρ2-distance, so that if we assume there are k = 4 possible Likert responses,641

the datum in each of the encoded scales ES ∈ {NELikert, FLS1, FLS2, FLS3,642

FLS4, FLS5} (see Figure 5) will be chosen to be the element in the scale643

showing the lowest ρ2-distance to the FRS datum.644

30 samples of size n (with n ∈ {10, 30, 100}) have been generated for each of645

the three considered distributions for X1, namely, β(1, 1), β(1, 10) and β(5, 5).646

The bootstrapped two-sample test about means for linked samples in Sec-647

tion 3.4 has been now applied (with B = 1000), for FRS-based means vs648

ES-based means, where ES ∈ {NELikert, FLS1, FLS2, FLS3, FLS4, FLS5}.649

The p-values for n = 10 and 30 have been gathered in Table 3. Those for650

n = 100 have not been collected since all of them equal .000.651

Consequently, one could conclude that for moderate to large sample sizes dif-652

ferences between FRS- and ES-based means are almost generally significant for653

the usual significance levels. For small sample sizes, this statement sometimes654

fails, although in many situations differences are also significant.655

Analogously, to mimic the systematic reasonable behaviour in assessing the656

linked Likert-type data when we assume k = 5 possible Likert responses, the657

datum in each of the encoded scales ES ∈ {NELikert’, FLS1’, FLS2’, FLS3’,658

FLS4’} (see Figure 7) will be chosen to be the element in the scale showing659

the lowest ρ2 distance to the FRS datum.660

30 samples of size n (with n ∈ {10, 30, 100}) have been generated for each of661

the three considered distributions for X1. The bootstrapped two-sample test662

about means for linked samples in Section 3.4 has been now applied (with663

B = 1000) for FRS-based means vs ES-based means, where ES ∈ {NELikert’,664

FLS1’, FLS2’, FLS3’, FLS4’}. The p-values for n = 10 and 30 have been665

gathered in Table 4. Those for n = 100 have not been collected since all of666

them equal .000.667
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Table 3
Bootstrapped p-values of the two-sample test about means (FRS vs ES ∈ {NELikert,
FLS1, FLS2, FLS3, FLS4, FLS5}) for simulated linked samples

n = 10 n = 30

X1 ∼ β(1, 1) − k = 4

sample \ES NELikert FLS1 FLS2 FLS3 FLS4 FLS5 sample \ES NELikert FLS1 FLS2 FLS3 FLS4 FLS5

S1 .139 .020 .018 .000 .004 .000 S1’ .000 .000 .006 .000 .000 .000
S2 .089 .000 .011 .001 .010 .000 S2’ .002 .000 .000 .000 .000 .000
S3 .131 .010 .001 .009 .003 .000 S3’ .000 .000 .004 .000 .001 .000
S4 .043 .041 .041 .002 .049 .001 S4’ .001 .000 .000 .000 .000 .000
S5 .211 .003 .001 .000 .002 .000 S5’ .001 .000 .000 .000 .000 .000
S6 .044 .027 .020 .002 .000 .000 S6’ .000 .000 .011 .000 .001 .000
S7 .052 .010 .048 .027 .012 .002 S7’ .000 .000 .001 .000 .000 .000
S8 .028 .002 .035 .001 .034 .000 S8’ .000 .000 .000 .000 .000 .000
S9 .215 .023 .001 .007 .003 .000 S9’ .001 .000 .000 .000 .000 .000
S10 .096 .032 .009 .001 .031 .002 S10’ .002 .000 .000 .000 .000 .000
S11 .154 .010 .015 .013 .018 .013 S11’ .003 .000 .000 .000 .000 .000
S12 .088 .019 .003 .004 .007 .011 S12’ .002 .001 .000 .000 .000 .000
S13 .015 .014 .039 .001 .008 .000 S13’ .005 .000 .000 .000 .000 .000
S14 .275 .008 .001 .000 .001 .001 S14’ .000 .000 .003 .000 .000 .000
S15 .031 .047 .032 .014 .004 .000 S15’ .000 .000 .013 .000 .000 .000
S16 .155 .010 .007 .002 .001 .001 S16’ .000 .000 .000 .000 .000 .000
S17 .078 .008 .012 .005 .001 .001 S17’ .001 .000 .000 .000 .000 .000
S18 .045 .006 .104 .022 .048 .000 S18’ .000 .000 .000 .000 .000 .000
S19 .119 .029 .002 .002 .015 .000 S19’ .004 .000 .000 .000 .000 .000
S20 .045 .002 .017 .001 .030 .000 S20’ .000 .000 .001 .000 .000 .000
S21 .071 .010 .002 .000 .004 .000 S21’ .001 .000 .000 .000 .000 .000
S22 .076 .005 .002 .000 .003 .000 S22’ .000 .000 .005 .000 .000 .000
S23 .034 .014 .163 .003 .014 .000 S23’ .001 .001 .004 .000 .000 .000
S24 .091 .001 .013 .002 .002 .001 S24’ .001 .000 .000 .000 .000 .000
S25 .078 .008 .018 .028 .005 .000 S25’ .004 .000 .000 .000 .000 .000
S26 .034 .001 .016 .003 .008 .000 S26’ .000 .000 .000 .000 .000 .000
S27 .040 .011 .113 .010 .008 .000 S27’ .000 .000 .000 .000 .000 .000
S28 .045 .000 .054 .015 .018 .000 S28’ .000 .000 .001 .000 .000 .000
S29 .035 .000 .004 .005 .010 .001 S29’ .000 .000 .000 .000 .000 .000
S30 .073 .018 .003 .003 .017 .000 S30’ .004 .000 .000 .000 .000 .000

X1 ∼ β(1, 10) − k = 4

sample \ES NELikert FLS1 FLS2 FLS3 FLS4 FLS5 sample \ES NELikert FLS1 FLS2 FLS3 FLS4 FLS5

S1 .000 .001 .000 .000 .024 .000 S1’ .001 .000 .000 .000 .000 .000
S2 .121 .026 .007 .006 .103 .000 S2’ .000 .000 .000 .000 .002 .000
S3 .078 .074 .001 .003 .265 .000 S3’ .000 .000 .000 .000 .001 .000
S4 .360 .020 .003 .009 .000 .002 S4’ .000 .000 .000 .000 .001 .000
S5 .025 .008 .000 .002 .002 .000 S5’ .003 .000 .000 .000 .000 .000
S6 .001 .014 .002 .001 .067 .000 S6’ .003 .000 .000 .000 .000 .000
S7 .002 .000 .001 .001 .029 .000 S7’ .010 .000 .000 .000 .000 .000
S8 .057 .026 .000 .003 .029 .000 S8’ .001 .000 .000 .000 .000 .000
S9 .117 .016 .002 .003 .249 .004 S9’ .000 .000 .000 .000 .000 .000
S10 .105 .042 .007 .003 .125 .000 S10’ .000 .000 .000 .000 .000 .000
S11 .009 .000 .000 .000 .049 .000 S11’ .006 .000 .000 .000 .000 .000
S12 .008 .001 .000 .000 .067 .001 S12’ .000 .000 .000 .000 .000 .000
S13 .011 .001 .011 .006 .032 .000 S13’ .000 .000 .000 .000 .000 .000
S14 .137 .025 .000 .001 .007 .003 S14’ .004 .000 .000 .000 .000 .000
S15 .157 .021 .004 .007 .077 .000 S15’ .001 .000 .000 .000 .000 .000
S16 .231 .018 .004 .004 .068 .000 S16’ .004 .000 .000 .000 .000 .000
S17 .068 .019 .000 .000 .060 .000 S17’ .000 .000 .000 .000 .001 .000
S18 .002 .000 .000 .000 .030 .000 S18’ .000 .000 .000 .000 .000 .000
S19 .002 .034 .004 .003 .083 .005 S19’ .000 .000 .000 .000 .000 .000
S20 .115 .020 .002 .000 .058 .001 S20’ .001 .000 .000 .000 .001 .000
S21 .000 .001 .000 .000 .073 .000 S21’ .001 .000 .000 .000 .000 .000
S22 .121 .032 .006 .017 .052 .000 S22’ .005 .000 .000 .000 .000 .000
S23 .276 .010 .001 .003 .014 .000 S23’ .000 .000 .000 .000 .002 .000
S24 .050 .061 .010 .010 .538 .000 S24’ .002 .000 .000 .000 .002 .000
S25 .034 .010 .000 .000 .288 .000 S25’ .000 .000 .000 .000 .001 .000
S26 .137 .043 .004 .004 .004 .000 S26’ .000 .000 .000 .000 .001 .000
S27 .238 .013 .004 .005 .014 .000 S27’ .000 .000 .000 .000 .000 .000
S28 .009 .047 .002 .002 .191 .000 S28’ .004 .000 .000 .000 .000 .000
S29 .006 .005 .000 .000 .014 .000 S29’ .004 .000 .000 .000 .000 .000
S30 .068 .000 .000 .000 .008 .000 S30’ .001 .000 .000 .000 .000 .000

X1 ∼ β(5, 5) − k = 4

sample \ES NELikert FLS1 FLS2 FLS3 FLS4 FLS5 sample \ES NELikert FLS1 FLS2 FLS3 FLS4 FLS5

S1 .084 .008 .006 .004 .002 .000 S1’ .005 .000 .000 .000 .000 .000
S2 .031 .006 .040 .002 .015 .000 S2’ .000 .000 .000 .000 .000 .000
S3 .024 .003 .034 .000 .019 .000 S3’ .000 .000 .000 .000 .000 .000
S4 .032 .010 .131 .011 .013 .000 S4’ .000 .000 .000 .000 .000 .000
S5 .020 .003 .038 .000 .003 .000 S5’ .001 .000 .000 .000 .000 .000
S6 .008 .015 .027 .001 .006 .000 S6’ .002 .000 .000 .000 .000 .000
S7 .195 .004 .009 .002 .002 .000 S7’ .000 .000 .003 .000 .000 .000
S8 .045 .004 .124 .000 .005 .000 S8’ .000 .000 .000 .000 .000 .000
S9 .055 .034 .087 .009 .004 .000 S9’ .004 .000 .000 .000 .000 .000
S10 .009 .002 .170 .010 .032 .000 S10’ .002 .000 .000 .000 .000 .000
S11 .025 .002 .167 .011 .018 .000 S11’ .000 .000 .000 .000 .000 .000
S12 .126 .007 .003 .001 .004 .000 S12’ .001 .000 .000 .000 .000 .000
S13 .015 .002 .085 .002 .013 .000 S13’ .003 .000 .000 .000 .000 .000
S14 .000 .001 .110 .000 .078 .000 S14’ .000 .000 .000 .000 .000 .000
S15 .010 .000 .022 .001 .017 .000 S15’ .000 .000 .000 .000 .000 .000
S16 .018 .005 .039 .008 .000 .000 S16’ .003 .000 .000 .000 .000 .000
S17 .119 .002 .011 .000 .004 .000 S17’ .000 .000 .003 .000 .000 .000
S18 .033 .018 .009 .016 .005 .000 S18’ .000 .000 .001 .000 .000 .000
S19 .004 .000 .008 .017 .023 .000 S19’ .000 .000 .000 .000 .000 .000
S20 .018 .018 .066 .000 .015 .000 S20’ .000 .000 .003 .000 .000 .000
S21 .111 .012 .025 .007 .003 .000 S21’ .000 .000 .000 .000 .000 .000
S22 .019 .006 .040 .000 .001 .000 S22’ .001 .000 .002 .000 .000 .000
S23 .023 .004 .154 .001 .027 .000 S23’ .000 .000 .000 .000 .000 .000
S24 .090 .011 .029 .003 .002 .000 S24’ .001 .000 .000 .000 .000 .000
S25 .113 .007 .015 .002 .004 .000 S25’ .002 .000 .000 .000 .000 .000
S26 .001 .002 .312 .000 .122 .000 S26’ .000 .000 .000 .000 .000 .000
S27 .037 .000 .007 .000 .000 .000 S27’ .000 .000 .000 .000 .000 .000
S28 .011 .001 .073 .023 .004 .000 S28’ .000 .000 .006 .000 .000 .000
S29 .073 .037 .144 .010 .005 .000 S29’ .004 .000 .000 .000 .000 .000
S30 .021 .000 .015 .018 .000 .000 S30’ .001 .000 .001 .000 .000 .000
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Table 4
Bootstrapped p-values of the two-sample test about means (FRS vs ES∈{NELikert’,
FLS1’, FLS2’, FLS3’, FLS4’}) for simulated linked samples

n = 10 n = 30

X1 ∼ β(1, 1) − k = 5

sample \ES NELikert’ FLS1’ FLS2’ FLS3’ FLS4’ sample \ES NELikert’ FLS1’ FLS2’ FLS3’ FLS4’

S1 .076 .021 .032 .010 .049 S1’ .000 .001 .001 .000 .001
S2 .019 .008 .029 .000 .005 S2’ .000 .001 .001 .000 .000
S3 .004 .098 .025 .006 .003 S3’ .009 .000 .000 .000 .000
S4 .018 .023 .115 .077 .003 S4’ .001 .007 .007 .004 .005
S5 .007 .044 .031 .005 .089 S5’ .000 .009 .002 .000 .002
S6 .090 .008 .003 .002 .007 S6’ .000 .001 .001 .001 .000
S7 .016 .122 .025 .054 .007 S7’ .001 .000 .000 .000 .000
S8 .132 .037 .011 .049 .002 S8’ .000 .000 .000 .002 .000
S9 .012 .036 .014 .002 .087 S9’ .000 .003 .002 .000 .000
S10 .050 .300 .053 .006 .003 S10’ .000 .045 .021 .024 .006
S11 .060 .017 .138 .033 .037 S11’ .000 .022 .007 .002 .001
S12 .012 .011 .014 .008 .010 S12’ .000 .059 .004 .000 .000
S13 .049 .041 .143 .044 .001 S13’ .000 .001 .000 .000 .000
S14 .069 .170 .009 .001 .007 S14’ .000 .002 .000 .000 .000
S15 .003 .008 .055 .002 .021 S15’ .000 .004 .000 .000 .000
S16 .009 .218 .124 .020 .014 S16’ .000 .001 .000 .000 .000
S17 .010 .010 .008 .002 .000 S17’ .000 .000 .000 .000 .000
S18 .065 .143 .043 .007 .008 S18’ .000 .000 .000 .000 .000
S19 .000 .046 .064 .014 .022 S19’ .000 .000 .003 .001 .000
S20 .069 .027 .044 .043 .000 S20’ .000 .009 .023 .001 .000
S21 .033 .002 .044 .020 .016 S21’ .000 .003 .004 .000 .000
S22 .016 .020 .034 .030 .010 S22’ .000 .003 .000 .000 .000
S23 .009 .005 .013 .011 .021 S23’ .000 .004 .000 .000 .000
S24 .094 .035 .021 .037 .005 S24’ .000 .014 .002 .007 .006
S25 .008 .042 .005 .002 .017 S25’ .000 .000 .001 .000 .000
S26 .055 .006 .063 .016 .000 S26’ .000 .003 .000 .000 .000
S27 .014 .076 .018 .026 .009 S27’ .000 .000 .000 .000 .000
S28 .051 .023 .012 .015 .010 S28’ .000 .000 .000 .001 .000
S29 .112 .057 .043 .038 .006 S29’ .000 .000 .000 .000 .000
S30 .073 .036 .010 .006 .014 S30’ .002 .000 .007 .000 .000

X1 ∼ β(1, 10) − k = 5

sample \ES NELikert’ FLS1’ FLS2’ FLS3’ FLS4’ sample \ES NELikert’ FLS1’ FLS2’ FLS3’ FLS4’

S1 .004 .039 .172 .017 .009 S1’ .005 .032 .000 .000 .000
S2 .053 .123 .035 .014 .006 S2’ .004 .008 .000 .000 .000
S3 .096 .037 .002 .000 .000 S3’ .000 .097 .003 .000 .000
S4 .091 .019 .035 .019 .012 S4’ .000 .018 .000 .001 .000
S5 .091 .262 .097 .071 .002 S5’ .004 .017 .000 .000 .000
S6 .049 .111 .059 .003 .000 S6’ .001 .010 .000 .000 .000
S7 .017 .256 .129 .052 .025 S7’ .001 .012 .000 .000 .000
S8 .022 .527 .121 .074 .022 S8’ .000 .318 .003 .000 .000
S9 .024 .150 .003 .000 .040 S9’ .003 .023 .001 .000 .000
S10 .012 .071 .012 .017 .013 S10’ .000 .000 .001 .000 .000
S11 .057 .008 .018 .000 .000 S11’ .001 .001 .001 .000 .000
S12 .090 .106 .019 .048 .027 S12’ .000 .012 .000 .000 .000
S13 .064 .127 .062 .051 .008 S13’ .000 .000 .000 .000 .000
S14 .090 .219 .105 .021 .015 S14’ .004 .014 .000 .000 .000
S15 .095 .325 .044 .042 .019 S15’ .000 .002 .000 .000 .000
S16 .000 .000 .001 .000 .000 S16’ .000 .001 .000 .000 .000
S17 .026 .213 .043 .003 .053 S17’ .000 .010 .001 .000 .000
S18 .042 .458 .079 .127 .043 S18’ .000 .059 .000 .000 .000
S19 .125 .089 .029 .008 .002 S19’ .001 .001 .000 .000 .000
S20 .045 .123 .007 .010 .019 S20’ .003 .012 .000 .000 .000
S21 .009 .435 .067 .034 .003 S21’ .002 .000 .000 .000 .000
S22 .148 .091 .002 .052 .021 S22’ .003 .016 .000 .000 .000
S23 .073 .058 .084 .013 .013 S23’ .009 .000 .000 .000 .000
S24 .119 .264 .021 .023 .023 S24’ .002 .008 .000 .000 .000
S25 .106 .014 .026 .023 .004 S25’ .002 .000 .000 .000 .000
S26 .026 .369 .104 .043 .042 S26’ .000 .001 .000 .000 .000
S27 .052 .383 .034 .051 .011 S27’ .012 .053 .000 .000 .000
S28 .115 .075 .021 .027 .029 S28’ .001 .005 .000 .000 .000
S29 .025 .000 .001 .000 .000 S29’ .002 .006 .000 .000 .000
S30 .011 .102 .016 .022 .008 S30’ .011 .015 .000 .000 .000

X1 ∼ β(5, 5) − k = 5

sample \ES NELikert’ FLS1’ FLS2’ FLS3’ FLS4’ sample \ES NELikert’ FLS1’ FLS2’ FLS3’ FLS4’

S1 .004 .002 .008 .018 .034 S1’ .000 .000 .000 .000 .000
S2 .029 .021 .018 .008 .003 S2’ .000 .000 .000 .000 .000
S3 .014 .063 .023 .033 .025 S3’ .000 .000 .000 .000 .000
S4 .003 .003 .005 .002 .051 S4’ .000 .000 .000 .000 .000
S5 .026 .038 .036 .013 .020 S5’ .000 .000 .000 .000 .000
S6 .045 .032 .001 .018 .024 S6’ .000 .000 .000 .000 .000
S7 .070 .014 .014 .024 .007 S7’ .000 .000 .000 .000 .000
S8 .029 .028 .014 .017 .008 S8’ .000 .000 .000 .000 .000
S9 .018 .006 .028 .017 .006 S9’ .000 .001 .000 .001 .000
S10 .022 .010 .012 .007 .008 S10’ .000 .000 .000 .000 .000
S11 .077 .006 .002 .004 .006 S11’ .000 .000 .000 .000 .000
S12 .004 .006 .007 .029 .043 S12’ .000 .000 .000 .000 .000
S13 .011 .006 .007 .003 .008 S13’ .000 .001 .001 .000 .000
S14 .017 .078 .090 .043 .022 S14’ .000 .000 .000 .000 .000
S15 .045 .038 .000 .033 .011 S15’ .000 .000 .000 .000 .000
S16 .025 .065 .037 .014 .003 S16’ .000 .000 .000 .000 .000
S17 .078 .020 .019 .020 .003 S17’ .000 .000 .000 .000 .000
S18 .018 .015 .010 .003 .001 S18’ .000 .001 .000 .000 .000
S19 .015 .036 .014 .011 .002 S19’ .000 .000 .000 .000 .000
S20 .011 .043 .038 .020 .026 S20’ .000 .000 .000 .000 .000
S21 .018 .031 .032 .015 .006 S21’ .000 .000 .000 .000 .000
S22 .019 .008 .011 .007 .009 S22’ .000 .000 .000 .000 .000
S23 .002 .027 .067 .002 .000 S23’ .000 .000 .000 .000 .000
S24 .007 .002 .002 .001 .019 S24’ .000 .000 .000 .000 .000
S25 .049 .002 .003 .003 .018 S25’ .000 .000 .000 .000 .000
S26 .065 .008 .012 .004 .016 S26’ .000 .000 .000 .000 .000
S27 .004 .096 .069 .029 .001 S27’ .000 .000 .000 .000 .000
S28 .015 .020 .029 .010 .005 S28’ .000 .000 .000 .000 .000
S29 .011 .013 .007 .004 .017 S29’ .000 .001 .000 .000 .000
S30 .001 .011 .025 .000 .001 S30’ .000 .000 .000 .000 .000
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As for k = 4, for k = 5 one could conclude that for large sample sizes differ-668

ences between FRS- and ES-based means are almost generally significant for669

the usual significance levels. For moderate sample sizes, the situation is quite670

close to that for k = 4, but in case of symmetric behavior for X1 differences671

between FRS- and ES-based means can be eventually significant. For small672

sample sizes, differences are also significant in many cases, but the significance673

is definitely less general.674

It is not surprising from the simulations collected in Tables 3 and 4 that the675

effect of the chosen scale of measurement is less intense for small sample sizes,676

like n = 10. If one has 10 possible data in the simulation examples, one can get677

at most k ∈ {4, 5} different Likert values and 10 different FRS ones for them,678

whence differences in variability, diversity, and so on, are not that big; when679

n increases, such differences in variability, diversity, and so on, also increase680

and lead to more significant differences among means.681

6 Concluding remarks682

The preceding analyses have been performed for other metrics like the gener-683

alized metric by Bertoluzza et al. [4]. Conclusions are very similar, mainly due684

to the fact that the considered statistic Tn (Section 3.4) involves the metric in685

both the numerator and the denominator. More concretely, when the squared686

distance between spreads/radius is substantially less weighted than the one687

between the mid-points/centers, the differences between means for the two in-688

volved scales are often slightly less significant when sample sizes are small to689

rather moderate. For large sample sizes, p-values are almost constantly equal690

to .000.691

Such a low influence of the choice of the L2 metric is illustrated in Table 5 by
comparing some conclusions in Table 2 in connection with Case study 1 for
distances

Dθ(Ũ , Ṽ ) =

√∫
[0,1]

(
[mid Ũα −mid Ṽα]2 + θ · [spr Ũα − spr Ṽα]2

)
dα

(Bertoluzza et al. [4]) with weights θ ∈ {1, 1/3, .1} (notice that D1 = ρ2).692

To consider much lower weights θ would entail almost neglecting imprecision693

(associated with spreads). Alternatively, if we consider fully ignoring impre-694

cision by defuzzifying the FRS-based values in Case study 1 through their695

Yager’s indicators [35] (coined by Nasibov [26] as the weighted averaging based696

on levels), wablϕ(Ũ) =
∫

[0,1] mid Ũα dα, we can check that all the involved dif-697

ferences are also highly significant.698
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Table 5
Bootstrapped p-values of the two-sample test about means for linked samples (FRS
vs encoded scale in {NELikert, FLS1}) for ρ2 and other L2 metrics

ρ2 D1/3 D0.1

item \ X ′ NELikert FLS1 NELikert FLS1 NELikert FLS1

R.1 .000 .000 .000 .000 .010 .000
R.2 .000 .000 .000 .003 .000 .019
R.3 .000 .016 .060 .023 .000 .036
M.1 .000 .000 .000 .000 .038 .008
M.2 .000 .002 .000 .007 .001 .042
M.3 .002 .000 .004 .000 .001 .004
S.1 .000 .000 .000 .010 .018 .057
S.2 .000 .000 .000 .001 .001 .018
S.3 .000 .000 .000 .001 .004 .034

In summary, we can conclude that in dealing with data from imprecise-valued699

random magnitudes, statistical conclusions concerning the central tendency700

would be clearly affected by the scale considered to rate such magnitudes.701

Since FRS are more informative and diverse than the other two scales, and702

they capture imprecision in an accurate way, we consider their use should be703

encouraged in statistical analyses, since statistical conclusions would be also704

more accurate.705
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