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We report the generation-characterization of a fetal liver (FL) B-cell progenitor (BCP)-derived human induced
pluripotent stem cell (hiPSC) line CRISPR/Cas9-edited to carry/express a single copy of doxycycline-inducible
Cas9 gene in the “safe locus” AAVS1 (iCas9-FL-BCP-hiPSC). Gene-edited iPSCs remained pluripotent after
CRISPR/Cas9 genome-edition. Correct genomic integration of a unique copy of Cas9 was confirmed by PCR and
Southern blot. Cas9 was robustly and specifically expressed on doxycycline exposure. T7-endonuclease assay
demonstrated that iCas9 induces robust gene-edition when gRNAs against hematopoietic transcription factors
were tested. This iCas9-FL-BCP-hiPSCwill facilitate gene-editing approaches for studies on developmental biolo-
gy, drug screening and disease modeling.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Resource Table
In
D
nique stem cell line identifier
 JCLRIi001-A-1

C
lternative name of stem cell line
 iCas9-FL-BCP-hiPSC

E
stitution
 Josep Carreras Leukemia Research Institute
ontact information of distributor
 Julio Castaño, jcastano@carrerasresearch.org

pe of cell line
 iPSC

rigin
 human

dditional origin info
 Age: 19–22 weeks of human fetal development

Sex: XX

ell source
 Fetal liver B-cell progenitors

ethod of reprogramming
 Non-integrative (Sendai virus)

ssociated disease
 Non applicable

ene/locus
 Cas9 inserted in AAVS1 locus

ethod of modification
 CRISPR-Cas9
Leukemia Research Institute,
y of Barcelona, Barcelona, Spain.
s Leukemia Research Institute,
y of Barcelona, Barcelona, Spain.
año).

. This is an open access article under the
ene correction
CC BY-NC-ND license (http://creat
NO

ame of transgene or resistance
 Cas9

ducible/constitutive system
 Doxycycline inducible system

ate archived/stock date
 December 2016

ell line repository/bank

thical approval
 Patient's informed consent obtained.

Institutional Review Board approval
obtained (CMRB-CEIC-26/2013)
Resource utility

This iCas9-FL-BCP-iPSC constitutes a unique tool facilitating the
screening on multiple sgRNAs (and libraries) for the generation of
locus-specific genetic-edited (knock-in, knock-out, codon substitution,
structural rearrangements, etc.) hiPSC for developmental biology, com-
pound screening and disease modeling.

Resource details

Fresh fetal liver (FL) was collected from developing human embryos
aborted at 19–22 weeks of pregnancy. Human tissue was provided by
The Vrelinghuis abortion clinic (Utrecht, The Netherlands) upon signed
ivecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. CRISPR/Cas9-mediated generation of iCas9-FL-BCP-hiPSCs by gene targeting at the AAVS1 locus.
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informed consent and approval by our local Ethics and Biozahard Board
Committees (CMRB-CEIC-26/2013) through a formal collaborationwith
the Erasmus-Medical Centre, Rotterdam, The Netherlands). Mononuclear
cells (MNCs) were isolated using Ficoll-Hypaque and CD34+ CD19+ B-
cell progenitors (BCP) were FACS-purified and reprogrammed by infec-
tion with non-integrative tetracistronic SeV vectors encoding the tran-
scription factors OCT4, SOX2, KLF4, and MYC (OSKM) (Muñoz-López et
al., 2016a; Muñoz-López et al., 2016b). Resulting FL CD34 + CD19 +
− iPSC lines (FL-BCP-hiPSC) were established as previously reported
(Muñoz-López et al., 2016a; Muñoz-López et al., 2016b; Bueno et al.,
2016). This FL-BCP-hiPSC was genome-edited to harbor the Cas9 coding
sequence controlled by a doxycycline-inducible cassette in the genomic
“safe harbor” AAVS1 (iCas9-FL-BCP-hiPSC). A single cassette containing
both the rTetR activator under CAG promoter and the Tetracycline Re-
sponse Element (TRE) promoter driving the expression of Cas9, was
inserted in the AAVS1 locus by homologous recombination using the
Cas9 nuclease and a guide RNA (gRNA) sequence (Mali et al., 2013)
against intron 1 of AAVS1 locus (Fig. 1 panel A). The Fig. 1 panel A
shows a schematic representation of the donor vector used for insertion
of the iCas9 cassette into the AAVS1 locus (HA, homology arm; puro, pu-
romycin; SA, splice acceptor; T2A, self-cleaving 2A peptide; CAG, CMV
early enhancer/chicken β actin promoter. rTetR, reverse Tet repressor;
pA, poly A signal; TRE, Tet response element). Correct genomic integra-
tion of a unique copy of Cas9 was confirmed by both genomic PCR (not
shown) and Southern blot analysis (Fig. 1 panel B) in several iPSC clones,
using a 5′-internal probe (left panel) and a 3′-external probe (right
panel). Red asterisks indicate clones with the desired targeted insertions
of the iCas9. Three iCas9-FL-BCP-hiPSC cloneswere induced for 72 hwith
2 μg/ml of doxycycline and analyzed for Cas9 expression by qPCR (Fig. 1
panel C), showing a robust, non-leaky expression of Cas9. To functionally
validate the Cas9 expression, iCas9-FL-BCP-hiPSCs were nucleofected
with different gRNAs against three hematopoietic transcription factors
(MLL, GATA2 and AF4) in presence/absence of doxycycline. The T7 endo-
nuclease I assay confirmed a high percentage (25%–62%) of cleavage
(Fig. 1 panel D). Red asterisks depict the expected T7EI-specific fragments
used to quantify indel frequency. The in silico-predicted (crispr.mit.edu)
top off-targets of AAVS1 gRNA (RNF4, RHOT2, FAIM2, RPL8, BTNL8,
MYBL2) were sequence-verified in iCas9-FL-BCP-hiPSCs and they were
consistently found unaltered, demonstrating the high specificity of the
approach used (data not shown).

Importantly, iPSCs remained pluripotent after CRISPR/Cas9 gene
editing. iCas9-FL-BCP-hiPSCs retained hESC-like morphology and
expressed the pluripotency markers alkaline phosphatase (AP) (Fig. 1
panel E), OCT4, NANOG, SOX2, REX1, CRIPTO, and DNMT3B (Fig. 1 panel
F). Endogenous expression of NANOG and OCT4 was accompanied by
the extensive loss of CpG methylation in their promoters (Fig. 1 panel
G). By flow cytometry, gene-edited iPSCs consistently expressed SSEA-
3, SSEA-4, TRA-1-60, and TRA-1-81 (Fig. 1 panel H). In vivo, the
Table 1
Summary of quality control testing and results for iCas9-FL-BCP-hiPSC.

Classification Test Result

Morphology Photography hESC-l
AP staining Positiv

Phenotype qPCR Expres
SOX2,

Promoter demethylation loss of
Flow cytometry SSEA-3

and TR
Genotype Karyotype 47 (XX

Resolu
Identity VDJH (BCR) rearrangement Incom
Mutation analysis Southern blot One sp
Microbiology and virology Mycoplasma Mycop
Differentiation potential Teratoma formation Repres
Donor screening N/A
Genotype additional info N/A
differentiation capacity was confirmed by teratoma formation in NSG
mice comprising tissue representing all three germ layers (Fig. 1
panel I).

Materials and methods

iPSC generation, maintenance and characterization

iPSCs were generated using OKSM polycistronic SeV vector
(Muñoz-López et al., 2016a; Muñoz-López et al., 2016b) and were fully
characterized before and after gene edition as previously described
(Bueno et al., 2016).

Promoter demethylation

Bisulfite pyrosequencing ofOCT4 andNANOGpromoterswasdone as
described (Bueno et al., 2016).

Immunophenotyping

Antibodies used to check by flow cytometry the pluripotency-
associated markers are detailed in Table 2.

CRISPR/Cas9-edition of hiPSCs expressing a doxycycline-inducible Cas9

TheCAG-rTetR cassettewas PCR amplified fromAAVS1-Neo-M2rtTA
(Addgene #60843)with primers containing restriction sites for SalI and
ClaI. After amplification and enzyme-digestion, the CAG-rTetR cassette
was cloned in the Puro-Cas9 donor vector (Addgene #58409). Finally,
a gBlock fragment (IDT Technologies) designed with two opposite
poly-A sequences was cloned using MluI and ClaI enzymes. A gRNA se-
quence targeting the AAVS1 intron 1 (5′-GGGGCCACTAGGGACAGGAT-
3′) was in vitro transcribed (IVT). To edit the iPSCs, 200.000 cells were
electroporatedwith 100 pmol Cas9 nuclease (IDT - Integrated DNA Tech-
nologies), 120 pmol the IVT-gRNA against AAVS1 intron 1, and 5 μg of
linearized donor vector. Electroporation was performed using Neon
Transfection System (ThermoFisher) at 1400 V, 5 ms and 3 pulses in a
100 μl tip. Cells were then selected with 1 μg/ml puromycin.

Southern blot

Genomic DNA from each cell line was isolated with Maxwell® RSC
Cultured Cells DNA Kit (Promega). 6 μg of DNA from each clone was
digested with SphI (for 5′ probe) or BglII (for 3′ probe) (New England
Biolabs), separated on a 1% agarose gel and transferred to a nylon
membrane (RPN303B, Amersham). Membranes were hybridized with
DIG-dUTP labeled probes. Probes were detected by an AP-conjugated
DIG-Antibody (Roche Diagnostics) using CDP-Star (Sigma-Aldrich) as
Data
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A-1-81 (99%)

Fig. 1 panel H

) + 20
tion: 400-band level

Fig. 1S panel C

plete VDJH rearrangement (progenitor B cell) Fig. 1S panel A
ecific insertion at AAVS1 locus Fig. 1 panel B
lasma tested by PCR: negative Fig. 1S panel B
entation of all three germ layers Fig. 1 panel I

http://crispr.mit.edu


Table 2
Antibodies and primers used in this study.

Antibodies used for immunocytochemistry/flow-citometry

Antibody Dilution Company Cat # and RRID

SSEA-3-PE Rat anti-SSEA-3 1:100 BD Bioscience Cat#560237, RRID:AB_1645542
SSEA-4-v450 Mouse anti-SSEA-4 1:100 BD Bioscience Cat#561156, RRID:AB_10896140
TRA-1-60-BV510 Mouse anti-TRA-1-60 1:100 BD Bioscience Cat#563188, RRID:AB_2637036
TRA-1-81-AlexaFlour647® Mouse anti-TRA-1-81 1:100 BD Bioscience Cat#560793, RRID:AB_10550550

Primers
Target Forward/Reverse primer (5′–3′)

Genomic PCR 5′ junction CTGCCGTCTCTCTCCTGAGT/GTGGGCTTGTACTCGGTCAT
3′ junction GGCGATCTGACGGTTCACTAAAC/GAATCCACCCAAAAGGCAGC

Southern blot 5′ probe AGGTTCCGTCTTCCTCCACT/GTCCAGGCAAAGAAAGCAAG
3′ probe ACAGGTACCATGTGGGGTTC/CTTGCCTCACCTGGCGATAT

T7 assay MLL CAGCACTCTCTCCAATGGCA/TAAGCCTCCCATCTCCCACA
AF4 GGGGAAAAAAAACATTTCGGCGACATG/CTACCATTTCCCTCATTCCAATTCACTCC
GATA2 CGTGTCGCTGGGATCAAG/TCCCCAAAGAAAGCCAGAAAC

RNA in vitro transcription AAVS1 IVT GAAATTAATACGACTCACTATAGGGGGCCACTAGGGACAGGATGTTTTAGAGCTAGAAA/AAAAGCACCGACTCGGTGCC
MLL IVT GAAATTAATACGACTCACTATAGTTAGCAGGTGGGTTTAGCGCGTTTTAGAGCTAGAAA/AAAAGCACCGACTCGGTGCC
AF4 IVT GAAATTAATACGACTCACTATAGGTCTCATTCCAGCAACACGTGTTTTAGAGCTAGAAA/AAAAGCACCGACTCGGTGCC
GATA2 IVT CATGTAGTTGTGCGCCGTTTTAGAGCTAGA/AAAAGCACCGACTCGGTGCC

Pluripotency Markers (qPCR) OCT4 GGGTTTTTGGGATTAAGTTCTTCA/GCCCCCACCCTTTGTGTT
NANOG ACAACTGGCCGAAGAATAGCA/GGTTCCCAGTCGGGTTCAC
SOX2 CAAAAATGGCCATGCAGGTT/AGTTGGGATCGAACAAAAGCTATT
REX1 CCTGCAGGCGGAAATAGAAC/GCACACATAGCCATCACATAAGG
CRIPTO CGGAACTGTGAGCACGATGT/GGGCAGCCAGGTGTCATG
DNMT3B GCTCACAGGGCCCGATACTT/GCAGTCCTGCAGCTCGAGTTTA

Housekeeping gene GAPDH GCACCGTCAAGGCTGAGAAC/AGGGATCTCGCTCCTGGAA
Off-target genomic PCR RNF4 CAGACCGTGACTCCCGAAA/GTCAGCGGGGAACAAAAACC

RHOT2 TGTTACTGGGCGAGGGTAGG/CTACGGCCGCTACCTGAGTA
FAIM2 AGGCTCGTCCCATCCTTTTG/CACATCCCCATTTGCTCCCT
RPL8 GCAGGCAGTTCTAGAAGCCA/CCTTAGTTATCTGGATTTCCAGAAC
BTNL8 TAGGAGTCTTGGTGGTGTTCAT/ATATCGTGGCACCTGGCTAC
MYBL2 GCAGTCGGAGGAAGTGACAA/CTCCTGGCCCCTCTTAGACT

Mycoplasma PCR Nature TGCACCATCTGTCACTCTGTTAACCTC/GGGAGCAAACAGGATTAGATACCCT
M1 ACACCATGGGAGCTGGTAAT/CTTCATCGACTTTCAGACCCAAGGCAT
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a substrate for chemiluminescence. Probes were synthesized by PCR
using the PCR DIG Probe Synthesis Kit (Roche Diagnostics). 5′ probe
was generated using plasmidic DNA and 3′ probe using genomic DNA
as a templates. Primers used for probes are detailed in Table 2.
T7 endonuclease assay

iCas9-FL-BCP-hiPSCswere treatedwith doxycycline (2 μg/ml) for two
days before and during transfection. Cells were dissociatedwith Accutase
(Stem Cell Technologies) and 200.000 cells were electroporated with
120 pmol of a single IVT-gRNA (MLL, GATA2 or AF4). Genomic DNA was
extracted four days after gRNA transfection. Genomic regions flanking
the CRISPR target sites were PCR amplified (Table 1). PCRs were dena-
tured and re-annealed and then PCRs were treated with 5U of T7EI at
37 °C for 1 h.
In vitro transcription

T7 RNA polymerase promoter was added to gRNA sequences by PCR
using as a template the pSpCas9(BB)-2A-GFP (PX458) plasmid (Addgene
#48138) containing the guide RNA sequences forMLL, GATA2 or AF4. PCR
amplification were performed using specific forward primers and a uni-
versal reverse primer (Table 2). PCR products were used as templates
for IVT using the HiScribe™ T7 High Yield RNA Synthesis Kit (New
England Biolabs). The resulting gRNAswere purified using theMEGAclear
kit (Life Technologies), eluted in RNase-free water and stored at−80 °C
until use.
Mycoplasma test

Primers used are listed in Table 2. PCR conditions were:

94 °C: 20″
×40 cycles

94ªC: 20″
55 °C: 20″ (Nature primer) or 58 °C: 10″ (M1 primer)
65ªC: 20–40″

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.scr.2017.04.011.
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