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Abstract

Background

Assessing the relationship between lung cancer and metabolic conditions is challenging

because of the confounding effect of tobacco. Mendelian randomization (MR), or the use of

genetic instrumental variables to assess causality, may help to identify the metabolic drivers

of lung cancer.

Methods and findings

We identified genetic instruments for potential metabolic risk factors and evaluated these in

relation to risk using 29,266 lung cancer cases (including 11,273 adenocarcinomas, 7,426

squamous cell and 2,664 small cell cases) and 56,450 controls. The MR risk analysis sug-

gested a causal effect of body mass index (BMI) on lung cancer risk for two of the three

major histological subtypes, with evidence of a risk increase for squamous cell carcinoma

(odds ratio (OR) [95% confidence interval (CI)] = 1.20 [1.01–1.43] and for small cell lung

cancer (OR [95%CI] = 1.52 [1.15–2.00]) for each standard deviation (SD) increase in BMI

[4.6 kg/m2]), but not for adenocarcinoma (OR [95%CI] = 0.93 [0.79–1.08]) (Pheterogeneity =

4.3x10-3). Additional analysis using a genetic instrument for BMI showed that each SD

increase in BMI increased cigarette consumption by 1.27 cigarettes per day (P = 2.1x10-3),

providing novel evidence that a genetic susceptibility to obesity influences smoking patterns.

There was also evidence that low-density lipoprotein cholesterol was inversely associated

with lung cancer overall risk (OR [95%CI] = 0.90 [0.84–0.97] per SD of 38 mg/dl), while fast-

ing insulin was positively associated (OR [95%CI] = 1.63 [1.25–2.13] per SD of 44.4 pmol/l).

Sensitivity analyses including a weighted-median approach and MR-Egger test did not

detect other pleiotropic effects biasing the main results.
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Conclusions

Our results are consistent with a causal role of fasting insulin and low-density lipoprotein

cholesterol in lung cancer etiology, as well as for BMI in squamous cell and small cell carci-

noma. The latter relation may be mediated by a previously unrecognized effect of obesity on

smoking behavior.

Introduction

Lung cancer is the leading cause of cancer mortality [1]. Most lung cancers are caused by

tobacco smoking [2], although associations have also been reported with a range of inflamma-

tory and metabolic conditions. Observational studies have indicated an inverse relationship

for both body mass index (BMI) [3–7] and lipid levels [8,9], as well as a positive correlation

with dietary glycemic index [10] and insulin levels [11], with lung cancer risk. However, given

the strong effect of tobacco smoking on lung cancer risk, and the well described association

between tobacco consumption and alterations in body weight [12–14], traditional observa-

tional studies are unlikely to fully account for the confounding effect of tobacco exposure

when describing the relationship between lung cancer and obesity or metabolic conditions.

Mendelian randomization (MR) is an analytical approach based on genetic markers of an

exposure (i.e. an instrumental variable) that is less sensitive to reverse causation and confound-

ing than traditional regression analyses in observational studies [15]. Inherited gene variants

associated with the risk factors of interest should act as unconfounded markers of those risk

factors, assuming an absence of pleiotropy [16]. In this instance, an association between the

genetic variant and the outcome implies that the risk factor of interest may have a causal effect

on the outcome [17]. Previous MR analyses on lung cancer risk showed that a genetic score for

increased BMI raised the risk for lung cancer, especially for squamous cell carcinoma and

small cell lung cancer [18,19]. These results are in contradiction to observational findings, con-

firming the utility of MR analyses for this exposure.

The goal of the current study was to use genetic variations associated with a range of meta-

bolic factors, including obesity, body shape, dyslipidemia and hyperglycemia, to further inves-

tigate the causal relationship between these metabolic exposures and lung cancer. The method

applied in this study is called two-sample MR, which combines summary statistics on genetic

variant-exposure and genetic variant-outcome associations from different samples [20,21].

Furthermore, we sought to confirm that the genetic control of these metabolic phenotypes did

not influence cigarette smoking behavior.

Methods

Genetic instruments for obesity and metabolic parameters

Genetic instruments for potential risk factors were independent (linkage disequilibrium (LD)

R2 < 0.01 in European 1000 Genomes Phase3 samples [22]) single nucleotide polymorphisms

(SNPs) that were associated with the trait of interest in the most recent genome-wide associa-

tion study (GWAS) (P<5x10-8) on European ancestry samples. Results from the Genetic

Investigation of ANthropometric Traits (GIANT) consortium were used to identify genetic

proxies for body mass index (BMI) [23], and waist to hip ratio [24]. High-density and low-den-

sity lipoprotein cholesterol (HDL and LDL), total cholesterol and triglycerides were selected as

lipid profile components. Genetic loci influencing bloodstream levels of these lipids were

Causality appraisal of metabolic factors on risk of lung cancer subtypes
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identified from GWA data provided by the Global Lipids Genetic Consortium (GLGC) [25].

Additionally, genetic instruments of low frequency were also identified for HDL, LDL choles-

terol and triglycerides [26]. Finally, hyperglycemia and hyperinsulinemia parameters were

reported within the Meta-Analysis of Glucose and Insulin related traits Consortium (MAGIC)

at fasting levels and during an oral glucose tolerance test (OGTT). Genetic instruments were

identified for plasma levels of fasting glucose, fasting insulin and 2-hour post-challenge glucose

[27]. For these metabolic parameters, in order to reduce potential pleiotropic effect from BMI,

SNPs that were not associated with the phenotype once adjusted for BMI (P>0.05) were

excluded from our analyses. For each identified SNP, the reported effect was for the increasing

trait allele expressed in standard deviations (SD) of the trait per-allele (βGP) along with the

standard error (SEGP). For the studies in which the genetic effects were not originally reported

in SDs of the trait, they were recalibrated according to the mean SD, weighted for sample size,

reported across different case-control samples. SNPs with ambiguous strand codification (A/T

or C/G) were replaced by SNPs in tight genetic linkage (R2>0.8) using the proxysnps R package

(European populations) (R Project) or removed from the analyses. Details on i) the number of

SNPs identified for each potential risk trait, ii) the mean and SD of the traits in the discovery

GWAS, and iii) the proportion of trait variance explained by the genetic proxies are presented

in Table 1.

Lung cancer association results

GWAS results on overall lung cancer risk and by histology type were obtained from the

recently completed meta-analyses [28] comprising the previous TRICL-ILCCO lung cancer

GWAS (11,177 lung cancer cases and 40,396 controls) [29] and an additional 18,089 lung can-

cer samples and 16,054 controls genotyped using the Illumina Infinium OncoArray-500K

BeadChip (Illumina Inc. San Diego, CA). The overall sample size was 29,266 lung cancer cases

and 56,450 controls. GWAS analyses were stratified by histology, including 11,273 adenocarci-

nomas, 7,426 squamous cell carcinomas and 2,664 small cell lung cancers. Additionally, analy-

ses were performed stratified by smoking status defined as ever smokers (current and former

smokers; 23,223 cases and 16,964 controls) and never smokers (2,355 cases and 7,504 con-

trols). SNPs with imputation quality score (R2) less than 0.7 were removed from the datasets.

For all SNPs used as instruments in this report, SNP to phenotype effect (βGP) and SNP to dis-

ease effect (βGD) for each lung cancer subgroup can be observed in S1 Table.

Table 1. Number of identified instrumental SNPs for metabolic factors, phenotype distribution in the discovery sample, and proportion of pheno-

type variance explained by the instruments. SD: standard deviation.

Phenotype N SNP Mean ± SD Units Variance explained (%) Consortium Publication for instruments

Body mass index 73 27.0 ± 4.6 kg/m2 2.7 GIANT Locke et al 2015 [23]

Waist to hip ratio 32 1.1 ± 0.1 cm/cm 1.4 GIANT Shungin et al 2015 [24]

High density cholesterol 63 53.3 ± 15.5 mg/dl 13.7 GLGC Willer et al 2013 [25]

Low density cholesterol 50 133.6 ± 38.0 mg/dl 14.6 GLGC Willer et al 2013 [25]

Total cholesterol 67 213.28 ± 42.6 mg/dl 15.0 GLGC Willer et al 2013 [25]

Triglycerides 39 140.85 ± 87.8 mg/dl 11.7 GLGC Willer et al 2013 [25]

HDL rare variants 11 1.4 ± 0.4 mmol/l 4.1 - Helgadottir et al 2016 [26]

Non-HDL rare variants 11 4.0 ± 1.2 mmol/l 4.1 - Helgadottir et al 2016 [26]

Triglycerides rare variants 7 1.3 ± (0.8–2.2) mmol/l 2.4 - Helgadottir et al 2016 [26]

Fasting glucose 25 5.2 ± 0.8 mmol/l 4.8 MAGIC Scott et al 2012 [27]

Fasting insulin 11 56.9 ± 44.4 pmol/l 1.2 MAGIC Scott et al 2012 [27]

2h post-challenge glucose 6 5.6 ± 1.7 mmol/l 1.7 MAGIC Scott et al 2012 [27]

https://doi.org/10.1371/journal.pone.0177875.t001
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Power assessment

Power calculations on MR analyses were performed according to Burgess [30], given the num-

ber of cases and controls of the lung cancer subgroups, for five genetic instruments accounting

for different proportion of explained variance (1%, 2.5%, 5%, 10% and 15%) within the range

of our genetic instrument sets (see Table 1). Power calculations are presented in S1 Fig.

Mendelian randomization analyses on lung cancer

The causal risk effects of metabolic factors on lung cancer overall, as well as by histology and

other subgroups were estimated using a likelihood-based approach, which is considered the

most accurate method to estimate causal effects when there is a continuous log-linear associa-

tion between risk factor and disease risk [20]. The resulting odds ratio (OR) and 95% confi-

dence interval (CI) provide an estimate of relative risk caused by each SD increase in the

exposure. We investigated the heterogeneity of causal effects by histology and by smoking sta-

tus, estimating the I2 statistic assuming a fixed-effect model using the meta R package (R proj-

ect). We also provide OR estimates using the complementary weighted median method

wherein the causal effect estimate is weighted towards the median of the distribution of instru-

mental SNPs [31]. This approach is less sensitive to individual instrumental SNPs behaving as

outliers. Furthermore, because OR estimates can be confounded if the instrumental genetic

variants are also associated with other causal risk factors, i.e. through directional pleiotropy,

we also performed MR-Egger [32]. This approach involves a weighted linear regression of the

SNP to disease effects (βGD) on the SNP to phenotype effects (βGP), and provides a direct esti-

mate of any directional pleiotropy under the assumption that pleiotropic biases affecting the

overall MR risk estimates are acting in the same direction [33]. Additionally, MR-Egger regres-

sion is able to identify SNPs behaving as genetic outliers, providing Bonferroni corrected P-

values. We also provide a funnel plot of the fold risk increase (exp(βGD/βGP)) vs. the instru-

mental strength of each SNP (βGP/SEGD
2) to allow visual assessment of asymmetry of instru-

mental causal estimates. These plots were generated using the ggplot2 R package (R Project).

Assessment of association between the genetic instruments and other

phenotypes

To evaluate whether MR lung cancer risk estimates could be generated by other phenotypes

than the instrumented ones, the association of genetic instruments with other phenotypes was

assessed. The effects of our genetic instruments on cigarette smoking was evaluated using a

novel online platform for Mendelian randomization based on summary genetic association

data from GWAS (MR-Base; http://www.mrbase.org/) [34]. Genetic effects on cigarette smok-

ing (cigarettes per day) were obtained from the Tobacco and Genetics (TAG) consortium [35].

TAG data were generated from 16 independent studies which included 38,181 smokers with

information on number of smoked cigarettes per day. We also assessed the association of dysli-

pidemia and hyperglycemia genetic instruments with BMI using data from the GIANT con-

sortium [23].

Results

Obesity and body shape parameters

Based on 72 SNPs used as genetic instruments for BMI, we estimated an overall OR (per SD

increase in BMI (4.6 kg/m2)) of 1.07 (95%CI = 0.96–1.20) for lung cancer risk (Fig 1). How-

ever, stratified analyses by histology subtypes revealed heterogeneity in the causal effect esti-

mates (Pheterogeneity = 4.3x10-3), with no effect on adenocarcinoma (OR [95%CI] = 0.93 [0.79–

Causality appraisal of metabolic factors on risk of lung cancer subtypes
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1.08]), but an increased risk for squamous cell carcinoma (OR [95%CI] = 1.20 [1.01–1.43])

and small cell lung cancer (OR [95%CI] = 1.52 [1.15–2.00]) (Fig 2). Analyses stratified by

smoking status showed a null effect of BMI in never smokers (OR [95%CI] = 0.83 [0.60–1.16])

and in ever smokers (OR [95%CI] = 1.12 [0.97–1.29]) (Pheterogeneity = 0.10) (Fig 2). Weighted

median MR approach provided similar risk estimates for the different lung cancer types (S2

Table). The MR-Egger intercept test revealed the presence of bias on the initial risk estimation

on lung cancer overall and in ever-smokers (S3 Table), with MR-Egger risk estimates indicat-

ing no effect of BMI on lung cancer overall. Potential asymmetry of the SNP’ risk estimates

reflected the presence of directional pleiotropy for lung cancer overall (Fig 3A). Funnel plots

for the other histological types can be observed in the funnel plots included in Fig 3B–3F.

Regarding waist-to-hip ratio, there was no evidence of causal effect on lung cancer overall (OR

[95%CI] = 1.04 [0.87–1.25]) (Fig 1) or histology subgroups (S2 Fig). Sensitivity analyses did

not detect any effect biasing the initial risk estimates (S2 and S3 Tables). Funnel plots can be

observed in S3 Fig.

Blood lipid levels

There was no consistent evidence of a causal effect of HDL on lung cancer overall (OR

[95%CI] = 1.01 [0.94–1.07] for instrumental common SNPs, and OR [95%CI] = 1.07 [0.95–

1.21] for instrumental rare SNPs) (Fig 1), nor any lung cancer subgroup (S4–S7 Figs).

Fig 1. Forest plot of lung cancer overall risk for one standard deviation (Table 1) increase in each phenotype provided by the MR likelihood-

based approach. CI: Confidence interval. P: P value.

https://doi.org/10.1371/journal.pone.0177875.g001

Causality appraisal of metabolic factors on risk of lung cancer subtypes

PLOS ONE | https://doi.org/10.1371/journal.pone.0177875 June 8, 2017 6 / 16

https://doi.org/10.1371/journal.pone.0177875.g001
https://doi.org/10.1371/journal.pone.0177875


Triglyceride levels did not indicate any effect on lung cancer overall; (OR [95%CI] = 0.98

[0.91–1.06] for instrumental common SNPs and OR [95%CI] = 0.87 [0.70–1.08] for instrumen-

tal rare SNPs) (Fig 1), or for lung cancer subtypes (S8–S11 Figs). An inverse relationship was

observed with overall lung cancer risk for each SD increase in LDL (approximately 38.0 mg/dl)

(OR [95%CI] = 0.90 [0.84–0.97] for instrumental common SNPs (Fig 1), although stratified

analyses did not provided a consistent inverse association among histology types (OR of 0.93

for adenocarcinoma (95%CI = 0.85–1.03), 0.88 for squamous cell carcinoma (95%CI = 0.79–

0.98), and 0.96 for small cell lung cancer (95%CI = 0.81–1.14) (Fig 4 and S12 Fig for funnel

plots). Additionally, LDL instrumental rare SNPs did not provide evidence of association with

lung cancer overall (OR [95%CI] = 1.09 [0.93–1.27]) (Fig 1) or subtypes (S13 and S14 Figs for

funnel plots). Finally, total cholesterol showed a similar pattern of association with lung cancer

overall and with subtypes that LDL common SNPs (OR of 0.94 for lung cancer overall (95%

CI = 0.88–1.01), OR of 1.01 for adenocarcinoma (95%CI = 0.92–1.10), 0.89 for squamous cell

carcinoma (95%CI = 0.80–1.00), and 0.93 for small cell lung cancer (95%CI = 0.79–1.10)) (S15

and S16 Figs for funnel plots).

Insulin resistance parameters

Among glucose and insulin parameters, fasting insulin was associated with an increased risk in

overall lung cancer (OR [95%CI] = 1.63 [1.25–2.13] per each SD increase [44.4 pmol/l]) (Fig

1). Stratified analyses provided consistent associations with all histology subtypes (Fig 5), with

a risk increase of 1.60 for adenocarcinoma (95%CI = 1.12–2.31), 1.84 for squamous cell carci-

noma (95%CI = 1.20–2.81), and 2.46 for small cell lung cancer (95%CI = 1.26–4.81). Stratified

analyses by smoking status showed some heterogeneity in causal effects (Pheterogeneity = 0.16)
(Fig 5), with a clear increased risk among ever smokers (OR [95%CI] = 1.86 [1.33–2.60]), but

no association among never smokers (OR [95%CI] = 1.01 [0.46–2.20]). Sensitivity tests identi-

fied rs4865796 as an outlier SNP in the analyses for lung adenocarcinoma subtype and lung

cancer overall in ever smokers. Removing this SNP, the analyses indicated slightly higher levels

of risk associated with this genetic instrument (Funnel plots in S17 Fig).

Fig 2. Forest plot of lung cancer risk for each SD increase in BMI (approximately 4.6 kg/m2) observed in the likelihood-based MR approach.

95%CI: 95% Confidence Interval; P: P value. I2: between-strata heterogeneity. PHet: P value of between-strata heterogeneity.

https://doi.org/10.1371/journal.pone.0177875.g002
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Fig 3. Funnel plots for the distribution of risk estimates of BMI instrumental SNPs along with MR causal effect lung cancer subtypes. OR:

Odds ratio; Int: Intercept; P: P value.

https://doi.org/10.1371/journal.pone.0177875.g003
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Fasting glucose showed little evidence for an association with overall lung cancer risk (OR

per SD of 0.8 mmol/l = 1.10; 95%CI = 0.96–1.26) (Fig 1), nor for adenocarcinoma (OR [95%

CI] = 1.03 [0.85–1.24] or small cell lung cancer (OR [95%CI] = 1.19 [0.83–1.68]), where a posi-

tive association with risk was seen for squamous cell carcinoma (OR [95%CI] = 1.32 [1.06–

1.65]) (S18 and S19 Figs for funnel plots). Finally, 2-hour post-challenge glucose showed no

evidence of causality for lung cancer overall (OR [95%CI] = 0.96 [0.77–1.20]) (Fig 1) or any

lung cancer subgroup (S20 and S21 Figs for funnel plots).

Fig 4. Forest plot of lung cancer risk for each SD increase in LDL (approximately 38.0 mg/dl) observed in the likelihood-based MR approach

using the instrument set of common SNPs. 95%CI: 95% Confidence Interval; P: P value. I2: between-strata heterogeneity. PHet: P value of

between-strata heterogeneity.

https://doi.org/10.1371/journal.pone.0177875.g004

Fig 5. Forest plot of lung cancer risk for each SD increase in fasting insulin (approximately 44.4 pmol/L) observed in the likelihood-based

MR approach. 95%CI: 95% Confidence Interval; P: P value. I2: between-strata heterogeneity. PHet: P value of between-strata heterogeneity.

https://doi.org/10.1371/journal.pone.0177875.g005
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Assessment of association between the genetic instruments and other

phenotypes

Using MR-Base, we also evaluated the association between cigarette smoking for each genetic

instrument associated with lung cancer risk, including BMI, LDL, and fasting insulin. Each SD

increase in BMI increased cigarette consumption by 1.27 cigarettes (95%CI = 0.46:2.07;

P = 2.1x10-3; MR likelihood-based approach), while the other metabolic genetic instruments

were not associated with cigarette smoking (MR likelihood-based estimate per SD increase

[95%CI] = -0.35 [-0.92:0.22] for LDL and 1.21 [-0.67:3.08] for fasting insulin). Additionally,

each SD increase in LDL was inversely associated with BMI (-0.02 SD in BMI (95%CI = -0.04:-

3.8x10-3; P = 0.02), while each SD increase in fasting was not associated with BMI (0.07 SD in

BMI (95%CI = -0.01:0.15; P = 0.10)).

Discussion

We have used existing data from large GWAS on metabolic factors to identify potentially

causal risk factors of lung cancer that are amenable to intervention. Our results suggested that

higher BMI is associated with an increase in risk of squamous and small cell carcinoma of the

lung, and that this relation may be mediated by altered smoking behavior. Additionally, we

found consistent evidence of a positive association between fasting insulin and overall lung

cancer risk, as well as an inverse relationship between LDL levels and lung cancer risk.

Obesity and related metabolic factors are associated with risk of several cancers [36], but

traditional observational studies are not reliable for assessing the association between meta-

bolic factors and cancers strongly associated with smoking. The strength of the association

between BMI and lung cancer subtypes found in this study, were weaker than those reported

in previous MR analyses (45%-81% of risk increase) [18,19]. These previous studies were

based on smaller sample sizes (12,160 and 16,572 lung cancer cases, respectively), whereas our

current study provides causal estimates from 29,266 lung cancer cases and 56,450 controls,

including the samples of previous studies. Our analysis also detected a strong positive effect of

each unit increase in BMI on number of cigarettes smoked per day, indicating that the associa-

tions with risk of squamous and small cell carcinoma lung cancer are caused by an influence of

BMI on smoking behavior. Given that this association was derived from genetic data on BMI,

and therefore not influenced by any inverse effect that tobacco consumption may have on

BMI levels, it has important implications beyond this study on the smoking behavior and

smoking prevention.

Our results lend further support to epidemiological studies showing an increased lung can-

cer risk for the effect of reduced lipid levels [9] and elevated circulating insulin [11]. Several

studies have reported an inverse relationship between total cholesterol levels and cancer

risk [37], which has been previously interpreted as an effect of preclinical cancer due to an

increased uptake of cholesterol by tumor cells [9]. In contrast, our study suggests a potential

relationship between cholesterol levels and lung cancer. However, cholesterol genetic instru-

ments using common and rare SNPs did not provide homogeneous results. This could be

explained by different observations: by the inverse relationship between the instrument set of

common SNPs for cholesterol and BMI revealed by a sensitivity analysis using MR-Base, by a

multiple testing effect, but also by the different proportion of exposure that genetic instru-

ments represent (instrument sets of rare SNPs were weaker and had less power to detect poten-

tial causal associations). Further MR mediation analyses are needed in order to clarify the

causal relationship between lipid levels and lung cancer accounting for the potential effect of

BMI and smoking. Finally, the risk increase observed by fasting glucose and fasting insulin is

unlikely to be driven by cigarette smoking or BMI, since the relevant instrumental sets are not
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associated with smoking or BMI. A potential causal relationship between increased insulin

and cancer risk using genetic instruments has also been reported for endometrial cancer [38]

and pancreatic cancer [39]. These results lend further support for an important role of the

insulin-pathway in cancer aetiology [40–42].

One of the main caveats in Mendelian randomization studies is the potential violation of

methodological assumptions, in particular the lack of directional pleiotropic effects biasing

association estimates. In the current study we evaluated the extent to which pleiotropy may

have affected our risk estimates using MR-Egger regression, as well as the MR-Base platform

to directly assess the relation between genetic instruments and potential confounders.

In conclusion, using a two-sample Mendelian randomization approach, this study assessed

a range of metabolic factors in relation to lung cancer risk. Our results revealed that genetic

associations between BMI and lung cancer subtypes could be mediated by a positive relation-

ship between BMI and cigarette consumption. Our results are also consistent with observa-

tional studies that indicate an inverse relationship between lipid levels and lung cancer risk,

and an increasing risk caused by elevated fasting insulin levels.

Supporting information

S1 Fig. Power calculations for Mendelian randomization analyses on lung cancer using

genetic instruments accounting for different proportion of phenotypic variance (15.0,

10.0, 5.0, 2.5, and 1.0%).

(PDF)

S2 Fig. Forest plot of lung cancer risk for each SD increase of waist-to-hip ratio observed in

a likelihood-based MR approach. 95%CI: 95% Confidence Interval; P: P value. I2: between-

strata heterogeneity. PHet: P value of between-strata heterogeneity.

(PDF)

S3 Fig. Funnel plots for the distribution of risk estimates of waist-to-hip ratio-instrumen-

tal SNPs along with MR causal effect lung cancer subtypes. OR: Odds ratio; Int: Intercept; P:

P value.

(PDF)

S4 Fig. Forest plot of lung cancer risk for each SD increase in HDL observed in a likeli-

hood-based MR approach using the instrument set of common SNPs. 95%CI: 95% Confi-

dence Interval; P: P value. I2: between-strata heterogeneity. PHet: P value of between-strata

heterogeneity.

(PDF)

S5 Fig. Forest plot of lung cancer risk for each SD increase in HDL observed in a likelihood-

based MR approach using the instrument set of rare SNPs. 95%CI: 95% Confidence Interval;

P: P value. I2: between-strata heterogeneity. PHet: P value of between-strata heterogeneity.

(PDF)

S6 Fig. Funnel plots for the distribution of risk estimates of HDL instrumental common

SNPs along with MR causal effect lung cancer subtypes. OR: Odds ratio; Int: Intercept; P: P

value.

(PDF)

S7 Fig. Funnel plots for the distribution of risk estimates of HDL instrumental rare SNPs

along with MR causal effect lung cancer subtypes. OR: Odds ratio; Int: Intercept; P: P value.

(PDF)

Causality appraisal of metabolic factors on risk of lung cancer subtypes

PLOS ONE | https://doi.org/10.1371/journal.pone.0177875 June 8, 2017 11 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177875.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177875.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177875.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177875.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177875.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177875.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177875.s007
https://doi.org/10.1371/journal.pone.0177875


S8 Fig. Forest plot of lung cancer risk for each SD increase in triglycerides observed in a

likelihood-based MR approach using the main instrument set of common SNPs. 95%CI:

95% Confidence Interval; P: P value. I2: between-strata heterogeneity. PHet: P value of

between-strata heterogeneity.

(PDF)

S9 Fig. Forest plot of lung cancer risk for each SD increase in triglycerides observed in a

likelihood-based MR approach using the instrument set of rare SNPs. 95%CI: 95% Confi-

dence Interval; P: P value. I2: between-strata heterogeneity. PHet: P value of between-strata

heterogeneity.

(PDF)

S10 Fig. Funnel plots for the distribution of risk estimates of triglycerides instrumental

common SNPs along with MR causal effect lung cancer subtypes. OR: Odds ratio; Int: Inter-

cept; P: P value.

(PDF)

S11 Fig. Funnel plots for the distribution of risk estimates of triglycerides instrumental

rare SNPs along with MR causal effect lung cancer subtypes. OR: Odds ratio; Int: Intercept;

P: P value.

(PDF)

S12 Fig. Funnel plots for the distribution of risk estimates of LDL instrumental common

SNPs along with MR causal effect lung cancer subtypes. OR: Odds ratio; Int: Intercept; P: P

value.

(PDF)

S13 Fig. Forest plot of lung cancer risk for each SD increase in LDL observed in a likeli-

hood-based MR approach using the instrument set of rare SNPs. 95%CI: 95% Confidence

Interval; P: P value. I2: between-strata heterogeneity. PHet: P value of between-strata heteroge-

neity.

(PDF)

S14 Fig. Funnel plots for the distribution of risk estimates of LDL instrumental rare SNPs

along with MR causal effect lung cancer subtypes. OR: Odds ratio; Int: Intercept; P: P value.

(PDF)

S15 Fig. Forest plot of lung cancer risk for each SD increase in total cholesterol observed in

a likelihood-based MR approach. 95%CI: 95% Confidence Interval; P: P value. I2: between-

strata heterogeneity. PHet: P value of between-strata heterogeneity.

(PDF)

S16 Fig. Funnel plots for the distribution of risk estimates of total cholesterol instrumental

SNPs along with MR causal effect lung cancer subtypes. OR: Odds ratio; Int: Intercept; P: P

value.

(PDF)

S17 Fig. Funnel plots for the distribution of risk estimates of fasting insulin instrumental

SNPs along with MR causal effect lung cancer subtypes. OR: Odds ratio; Int: Intercept; P: P

value.

(PDF)

S18 Fig. Forest plot of lung cancer risk for each SD increase in fasting glucose observed in

a likelihood-based MR approach. 95%CI: 95% Confidence Interval; P: P value. I2: between-

Causality appraisal of metabolic factors on risk of lung cancer subtypes

PLOS ONE | https://doi.org/10.1371/journal.pone.0177875 June 8, 2017 12 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177875.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177875.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177875.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177875.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177875.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177875.s013
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177875.s014
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177875.s015
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177875.s016
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177875.s017
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177875.s018
https://doi.org/10.1371/journal.pone.0177875


strata heterogeneity. PHet: P value of between-strata heterogeneity.

(PDF)

S19 Fig. Funnel plots for the distribution of risk estimates of fasting glucose instrumental

SNPs along with MR causal effect lung cancer subtypes. OR: Odds ratio; Int: Intercept; P: P

value.

(PDF)

S20 Fig. Forest plot of lung cancer risk for each SD increase in glucose 2h post-challenge

observed in a likelihood-based MR approach. 95%CI: 95% Confidence Interval; P: P value.

I2: between-strata heterogeneity. PHet: P value of between-strata heterogeneity.

(PDF)

S21 Fig. Funnel plots for the distribution of risk estimates of glucose 2h post-challenge

instrumental SNPs along with MR causal effect lung cancer subtypes. OR: Odds ratio; Int:

Intercept; P: P value.

(PDF)

S1 Table. Association parameters of instrumental SNPs for the corresponding metabolic

factor and for different lung cancer groups. CHR: Chromosome. BP: Base pair. SE: Standard

error. BMI: Body mass index. HDL: High-density lipoprotein, LDL: Low-density lipoprotein.

(PDF)

S2 Table. Risk increase on lung cancer phenotypes for each standard deviation increase in

the phenotype provided by weighted median MR approach. HDL: High-density lipoprotein,

LDL: Low-density lipoprotein. Chol: Cholesterol. OR: Odds ratio. LCI: Lower confidence

interval. UCI: Upper confidence interval. P: P value.

(PDF)

S3 Table. Overall pleiotropic effect assessment of causal estimates of potential risk factors

on lung cancer phenotypes provided by MR-Egger test. Int: Intercept. HDL: High-density

lipoprotein, LDL: Low-density lipoprotein. Chol: Cholesterol. OR: Odds ratio. Est: Estimate.

LCI: Lower confidence interval. UCI: Upper confidence interval. P: P value.

(PDF)

Author Contributions

Conceptualization: MJ JMK PB.

Data curation: RCT.

Formal analysis: RCT.

Funding acquisition: MJ JMK PB PCH KHW CLR RMM GDS.
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