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Abstract: Modeling of a cylindrical heavy media separator has been conducted in order to predict
its optimum operating parameters. As far as it is known by the authors, this is the first application
in the literature. The aim of the present research is to predict the separation efficiency based on the
adjustment of the device’s dimensions and media flow rates. A variety of heavy media separators
exist that are extensively used to separate particles by density. There is a growing importance in
their application in the recycling sector. The cylindrical variety is reported to be the most suited
for processing a large range of particle sizes, but optimizing its operating parameters remains to be
documented. The multivariate adaptive regression splines methodology has been applied in order
to predict the separation efficiencies using, as inputs, the device dimension and media flow rate
variables. The results obtained show that it is possible to predict the device separation efficiency
according to laboratory experiments performed and, therefore, forecast results obtainable with
different operating conditions.

Keywords: heavy media separation; density separations; multivariate adaptive regression splines
(MARS); LARCODEMS

1. Introduction

Density separation is generally considered to be the most cost effective industrial material density
separation process. It is comparatively simple when compared with other techniques, and easily
automated. A large variety of density separation processes and devices exist and experience in the
mineral processing sector has shown that the type of density separation method or device used must
be selected according to the proximity in the density of the particles to be separated and their size [1].

Density media separation (DMS) is generally considered to be the most precise type of density
separation technology [2]. It is extensively used to separate materials of different densities where
those of a density lower than that of the separation media float, and those greater sink, in the media.
It is used for the recovery of a number of types of minerals, non-ferrous metals and plastics. In the
plastic recycling sector, it is a standard method for preparing many plastic wastes for subsequent
separation methods or to produce a final marketable product. It is possible to process large volumes of
materials with a much wider range of particle sizes than other density separation devices. However,
the efficiency obtained is susceptible to: yield stress and viscosity effects due to ultrafine suspended
media particles; high solids content of the separation media; and the abundance of particles with
densities very close to that of the separation media.
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DMS cyclones are well established as the most precise type of density separation devices and
as having very high throughputs. DMS cyclones traditionally have a cono-cylindrical form and use
centrifugal forces developed in the cyclones to accelerate the float/sink separation of particles by
density. Separation with this type of cyclone is accomplished by tangentially feeding the materials to
separate along with the media into the cyclone, developing centrifugal forces which facilitate the rapid
settling of dense particles and the floating of light particles. This is especially important for separating
fine particles or those with densities approaching that of the separation media. DMS cyclones have
become well established for the separation of particles from 0.5 to 50 mm. Pure density separation
products are not usually obtained with this type of separator as the separation media carrying the
particles drag or short-circuit some of the low-density particles to the high-density (sink) product being
obtained. The degree of this short-circuiting tends to be a function of the volume of media reporting
with the sink product.

There is a significant potential for increasing the volumes and range of particles sizes of waste
plastics separated based on the centrifugal forces developed within DMS cyclones, as outlined by [3].
These cyclones are the most versatile, but most complicated among the density separation devices due
to their operational parameters. There are a number of parameters that affect the separation quality
obtained, including: separation media viscosity; media part size distribution; media flow rate and
separation media pressure; cyclone diameter, length, feed and exit port sizes; and the particle size
distribution of materials to process, as well as the proportion of these particles having densities in
proximity to that of the separation media density.

The large coal density media separator (LARCODEMS) originally developed by British Coal
is a version of the cylindrical version of a DMS cyclone. It is being used effectively for processing
0.5–120 mm particles. This device is quite advantageous compared to the cono-cylindrical type of
DMS in that it is suitable for processing a wide range of particle sizes simultaneously and that the
material to be processed can be fed dry into the vortex of the cyclone. This negates the need to
having to pass through the separation media pumping circuit. In the case of this cylindrical type
cyclone, when particles are fed into the vortex of the cyclone, the high-density particles must sink
through the separation media to exit as a product without the possibility of short-circuiting occurring.
Subsequently, this product fraction contains a minimum, or no, low-density particles. However,
it can also be operated where the particles are fed with the separation media, as is done with the
cono-cylindrical type. The separation media flow paths in the cono-cylindrical and cylindrical type
cyclones are quite distinct and result in distinct types of concentrations. To date the only publication
known to the authors that treats the operating parameters of the cylindrical type of DMS cyclone is
that of Venkoba Rao et al. [4]. Unfortunately, no conclusions can be derived from this article as to the
means for optimization of separations with this type of device. There is no public domain information
as to the operating parameters of cylindrical DMS cyclones. A more theoretical understanding of the
process and its design is necessary for the optimization their application. DMS cyclone separation
tests have been conducted with irregularly-shaped particles with a wide range of particle sizes using a
110 mm diameter demonstration model of LARCODEMS. Results highlight that the highest-density
product fraction produced was virtually pure [5].

The reported quality of density separations obtained with the LARCODEMS relative to cylindrical
cyclone diameter (300 mm to 1200 mm) appears to remain consistent or to improve as the cyclone
diameter is increased [6,7]. This characteristic is contrary to that of hydrocyclone particle size
classification where the separation efficiency of fine particles increases with the reduction in cyclone
diameter due to the higher centrifugal forces present. This improvement is probably due to the increase
in particle flow path and separation residence time with the cyclone diameter. Since longer, flaky, or
finer particles tend to separate more slowly, the increase in particle residence time facilitates separation
of these particles. Lengthening the separation cylinder increases the separation media flow path and,
as such, the particle residence time. However, the extent to which the length of the cyclone may be
realistically increased remains to be determined.
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The LARCODEMS

Originally designed for treating coal, but also used for processing iron ore and plastics [6], the
LARCODEMS is currently manufactured in six versions (300, 500, 850, 1000, and 1200 mm diameters)
with recommended processing capacities and maximum particle sizes varying in proportion with the
diameter of the apparatus. Even the smallest version has an excessive capacity for laboratory scale
tests. The smallest version (300 mm diameter) has a calculated capacity to treat 6 tons/hour of plastics.

The device consists of a cylindrical separating chamber (Figure 1) inclined at 30◦ from the
horizontal, with the separating media pumped tangentially into the lower end. The media circulates
up the interior surface of the separation cylinder until it reaches the top end where part of the media
returns down in counter current along the surface of the media going up the cylinder. A vortex is
formed (VF) with a central air core when a sufficient volume of separation media is pumped into the
separation cylinder. The part of the media not returning down the cylinder exits tangentially through a
sink port. Material to be treated is fed into the top end of the vortex so that dense fragments must settle
through the descending separating media so as to reach the ascending media circulating around the
inner circumference of the cylinder and exit through the sink port. Low-density particles float down
the vortex to exit through a central float port (FP) at the bottom end of the cylinder. A type of siphon
known as a vortex extractor can be connected (VE) to the sink port (SP). The VE provides stability to
the vortex when there are fluctuations in the media flow rate into the separation cylinder and permits
its operation with a significantly greater range of media input flow rates. It has been observed that as
the diaphragm area (DA) is increased so does the diameter of the top end of the vortex. The diameters
and, thus, the areas of the SP and FP regulate the media flow rate required to form the vortex and
the rates of sink and float flow (FF and SF) exiting their corresponding ports. If one port diameter
is maintained constant and the other reduced, the rate of the media flow rate of the port of constant
diameter increases.
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To date virtually no research has been published as to the optimization of separation efficiencies
based on the design of the LARCODEMS or other any cylindrical cyclone separators. The two
publications that are of any relevance in this regard are those of Chiné and Ferrtara [8] and Yang and
Wang [9]. Unfortunately, only the second study has conducted any investigation as to the effect of
cylindrical cyclone design parameters on the efficiencies of the separations obtained.

The aim of the present research consists of creating mathematical models for the operation of
the LARCODEMS in the established mode of feeding material to be separated into the vortex and an
alternative procedure of feeding this material along with the separation media. The models obtained
take into account the dimensional characteristics of the device and the volume flow of dense and light
materials that are introduced. The utility of this type of model is two-fold; on the one hand, they
predict the efficacy of the device with different dimensions and operation conditions and, on the other
hand, allow one to propose changes and design improvements having a forecast of how the device
will behave with such changes.

2. Materials and Methods

2.1. Description of LARCODEMS Test Procedure

The 110 mm diameter laboratory version of LARCODEMS was designed to be operated with a 12,
21.4, 32.9, and 45 cm long separation cylinder lengths (CL). Three scaled versions (52, 72, and 172 mm
diameter) of the 45 cm long 110 mm LARCODEMS were built for inclusion in these tests. Since these
versions were scaled to the same relative dimensions of the 110 mm model, the relative cylinder, SP, FP,
and diaphragm areas (DA) are constant.

Fragments and pellets of 1.5 to 2.8 mm of different types of plastics with a wide range of densities
were selected based on their differences in densities and differences in visual appearances for the
separation tests. Densities of these were controlled to 0.002 g/cc by weight to volume ratios determined
in methyl alcohol (to avoid air bubbles adhering to the plastic particles). The types were selected such
that their densities (e.g., 0.940, 0.955, 0.962, 1.002, 1.034, 1.043, 1.143, and 1.160) were both greater
and less than that of the separation media (water). Approximately 2000 particles for each density
were combined and fed into the vortex of the LARCODEMS. The processing within the device was
accomplished within some 20 seconds. The SP and FP products obtained for a given test were dried,
sorted manually by plastic type, and each fraction weighed. This setup of the test procedure required
some 15 hours per sample to complete. The efficiency of the separation obtained was determined as
the difference in the percentage of recovery of particles denser than 1.0 g/cc in the sink product and
the percentage of recovery of particles with a density <1.0 g/cc in the sink product.

The following are the variables that were employed as input data for the models of the
LARCODEMS efficiency feeding either into the vortex or with media are:

(A) Separation tests with the plastic particles being fed into the vortex were conducted with:

• Twelve, 21.4, 32.9 and 45 cm long separation cylinder versions with and without a vortex extractor
of the 110 mm LARCODEMS.

• Fifty-two, 72, and 172 mm diameter versions of the scaled 45 cm long, 110 mm LARCODEMS.
• Variations in diameter of the feed DA of the 110 mm LARCODEMS.
• Variations in FPA of the 110 mm LARCODEMS.
• Variations in SPA of the 52, 72, 110, and 172 mm LARCODEMS.
• Three variations in total media feed flow rate for all of the above variables when separations of

plastic particles that had received a treatment (TM) to reduce hydrophobic effects were conducted
without a VE.

• Five variations in total media feed flow rate for all of the above variables when separations were
conducted without a VE.
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(B) Separation tests with the plastic particles being fed with the separation media (FPM) were
conducted with:

• The 32.9 cm-long and the 45 cm-long separation cylinder versions with and without a vortex
extractor of the 110 mm LARCODEMS.

• Variations in diameter of the float port of the 110 mm LARCODEMS.
• Three variations in total media feed flow rate for all of the above variables when separations of

plastic particles that had received a treatment (TM) to reduce hydrophobic effects were conducted
without a vortex extractor.

• Five variations in total media feed flow rate for all of the above variables when separations were
conducted without a vortex extractor.

Since the four different versions of the LARCODEMS used in this investigation were scaled to
almost identical proportions, the volumes of media flow are a function of the area of the exit ports and
the feed diaphragm relative to the area of the separation cylinder.

2.2. The Multivariate Adaptive Regression Splines

Multivariate adaptive regression splines (MARS) are techniques in the family of multivariate
nonparametric regression, based in the adjustment of its parameters to the data to be modelled.
These types of models were introduced by Friedman in 1991 [10]. In other words, MARS is a
multivariate method able to generate models based on several input variables. The use of MARS in
the present research is due to its ability to model nonlinearities and interaction between parameters.
At the beginning of the research, the use of linear regression models was checked without satisfactory
results. The main advantage of MARS is that it is able to effectively model relationships and patterns
that are not able for other regression methods. MARS are based on measures of explanatory variables
→
X on sizes nxp for predicting values of the continuous dependent variable

→
y , of size nx1. The MARS

model can be represented as:
→
y = f (

→
X) +

→
e (1)

where
→
e is the error vector of dimension nx1. With classification and regression trees (CART) models

as the base [11], MARS can be considered a generalization with the capacity of overcoming some of the
limitations of CART, as it does not require any information a priori relating the relationships between
dependent and independent variables. CART is a statistical method for multivariate analysis that
creates a decision tree which strives to correctly classify the members of a population. The MARS
regression model is constructed by piecewise polynomials, also called splines, which have smooth
connections. This is performed through fitting basis functions to distinct intervals of the independent
variables. The polynomials joining points are named as t, and are known as knots, nodes, or breakdown
points. The splines for MARS are polynomials, concretely two-sided truncated power functions, which
can be expressed as follows [12,13]:

[+(x− t)]q+ = {
(t− x)q x ≥ t
0 x < t

(2)

Considering M basis functions, a MARS model can be expressed with the next expression of the
estimation of the dependent variable [14]:

→̂
y = f̂M

(→
x
)
= c0 +

M

∑
m=1

cmBm

(→
x
)

(3)

where c0 is a constant, cm the coefficients of the mth, and its correspondent mth basis function is Bm(
→
x ).
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Then, MARS models use, as required inputs, the model and the knot positions for each individual

variable to be optimized. For a dataset
→
X containing n objects and p explanatory variables, then, the

number of basis functions would be N = nxp pairs of spline basis functions, given by the above
equations Equation (2), with knot locations xij, with i = 1, 2..., n and j = 1, 2..., p.

To reach the expression of the model that MARS provides, a selection of basis functions in
consecutive pairs is necessary. The selection of the basis functions can be done with a two-at-a-time
forward stepwise procedure [15]. This forward stepwise selection of basis function leads to an
over-fitted model; this means that although it fits the training data well, it becomes a very complex
model that is not able to make predictions accurately with new objects. To avoid this issue, basis
functions which are redundant are removed one at a time using a backward stepwise procedure.
The selection of which basis functions must be included in the model, MARS utilizes generalized
cross-validation (GCV). GCV consist of the calculus of the mean squared residual error divided by a
penalty dependent on the model complexity. The GCV criterion is defined in the following way:

GCV(M) =

1
n

n
∑

i=1
(yi − f̂M(

→
xi))

2

(1− C(M)
n )

2 (4)

The model complexity has a penalty, denoted as C(M), that increases with the number of basis
functions required by the model, following the next expression:

C(M) = (M + 1) + dM (5)

which depends on the number of basis function M, and d is the smoothing parameter that characterizes
the penalty for each basis function included into the model. When d takes large values, fewer basis
functions are to be included in the model and consequently, smoother function estimates. The selection
of the parameter d is discussed in [10].

In order to analyse a MARS model, surface plots can be used to visualise the interactions and
relations between the basis functions. Let fi(

→
x i) be the set of all single variable basis functions that

contain only
→
x i. In the same way, fij(

→
x i,
→
x j) is the set of basis functions of two variables,

→
x i and

→
x j,

and fijk(
→
x i,
→
x j,
→
x k) the set of all basis functions of three variables. The MARS model can be rewritten

as a series of sums in the following form:

f̂ (
→
X) = c0 + ∑ fi(

→
xi) + ∑ fij(

→
xi,
→
xj) + ∑ fijk(

→
xi,
→
xj,
→
xk) (6)

where the first sum is with all the basis functions of one variable, the second is with the basis functions
with only two variables. The third sum is over the basis functions of three variables. The expression
above is known as ANOVA decomposition since it is similar to the ANOVA decomposition of
experimental design [10]. The interaction of a MARS model, based on two variables, is determined by:

fij(
→
xi,
→
xj) = fi(

→
xi) + f j(

→
xj) + fij(

→
xi,
→
xj) (7)

For higher level interactions, they are defined in the same way.
The estimated importance [16,17] of the explanatory variables in the model can be used to

construct the basis functions. Determinate predictor importance is, in general, a complex problem
that requires several criteria. To obtain reliable results, GCV is usually used to count the number of
models subsets (nsubsets) in which each variable is included, and the residual sum of squares (RSS).
The definition of the RSS is:

RSS =
n

∑
i=1

(yi − f̂M(
→
xi))

2
(8)
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Then, the expression of GCV can be rewritten as:

GCV(M) =
RSS/n

(1− C(M)
n )

2 (9)

2.3. Model Performance Measurement

The performance and accuracy of the trained MARS models can be tested with a comparison
of the real efficiency values yi of the validation datasets, and with the values of the predictions ŷi.
The root mean squared error (RMSE), the mean absolute error (MAE) and the R2 [18,19] of the model
are measures that can be employed with this aim.

The MAE is a quantity employed to measure how close forecasts are to eventual outcomes [20]
and which equation is as follows:

MAE =
1
n

n

∑
i=1
|ŷi − yi| (10)

The RMSE is a general-purpose measure used in a wide range of applications as a measure of the
error for numerical predictions [21,22]. Compared to MAE, RMSE amplifies and severely punishes
large errors. The RMSE is defined as follows:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (11)

2.4. Model Training and Validation

The steps followed during the training and validation of all the models are detailed below:
Firstly, data were split in training and validation datasets. As the calculus of efficiency is

a regression problem, the function determines the quantiles of the dataset and samples within
those groups. The split of the data in training and validation sets was performed using the k-fold
cross-validation methodology for k = 5. The data was randomly split into five distinct blocks of equal
size. Afterwards, the first block of data is left out and the model is fit. This model is used to predict the
held-out block. This process was continued until all five held-out blocks had been predicted. A total of
1000 versions of the five-fold cross-validation for both models was created. The k-fold cross-validation
is a well-known methodology that was already used in previous studies by the authors with successful
results [23–25].

For each one of the five models of the five-fold cross-validation, the performance parameters
MAE, RMSE, and R2 were calculated. This permitted the determination of the minimum, average, and
maximum values of those parameters in each one of the 1000 models replications.

After the calculus of all the models referred above, an average model was calculated for the vortex
feed scenario and another for the with-media scenario with the two sets of variables, indicating both
its performance and the importance of the variables that take part in them.

The 1000 replicas of the five-fold cross-validation methodology are made in order to assure that
with independence of the data subset selected, the trained MARS model is able to perform a good
prediction of the efficacy. In the case of the average model, it is calculated in order to know the
importance of the different variables for the prediction of the efficiency, and also having a parametric
model of the LARCODEMS efficiency for both feeds. This model could help in order to know the
behaviour of the efficiency variables when changes are performed in both the machine and the volume
of flow.

3. Results

In this work, four average MARS models were obtained for the efficiency of the LARCODEMS
device, two with feed into the vortex and another two for feed with media, using the two sets of
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variables referred in the Materials and Methods section. Their equations are listed in Tables 1–4. As all
the equations are MARS models of the first degree, all their terms can be graphically represented.
Please note that the function h(x) is equal to x in when x is larger than 0 and 0 in the rest of the
cases. The graphical representation for these models are in Figures 2–5, respectively. This helps in
the interpretation of the results. Figure 2 corresponds to model number one for feed with the media.
It demonstrates that the efficiency of LARCODEMS improves with its length and that there is a linear
relation between the improvements in separations obtained and the length of the cylinder. The same
relationship also exists between the FPA and efficiency. The increase in efficiency with separation
CL can be attributed to the increase in residence time within the separation cylinder and, as such, a
greater degree of separation is obtained. Similarly, as the FPA increases, separation media transporting
low-density particles increases in thickness, providing more opportunity for only dense particles to
pass into the ascending media reporting to the sink port. As the DA increases, efficiency decreases
due to the vortex been forced to a diameter where there is insufficient thickness of low-density media
resulting in low-density particles reporting to the sink port and, thus, resulting in a decrease in
separation efficiency. In general, efficiency is constant with the sink flow, except in a limited number of
cases corresponding to data with the minimum CL. Figure 3 shows a substantial increase in efficiency
with a cylinder length up to 21.4 cm, and then a less accentuated, but still consistent, increase in
efficiency with length up to 44 cm. On the other hand, efficiency is optimum with a minimum FF,
and then a maximum after which it consistently decreases with the increase of FF. This decrease in
efficiency corresponds to a certain degree of the increase in SF above 0.588 litres per second. Below this
value, efficiency is constant. Although in some of the basis functions it would seem possible to reach
efficiencies over 100%, as the efficiency in each model is the sum of all the basis functions, none of the
MARS models gives an efficiency value above 100% for real working conditions.

Table 1. List of basis functions of multivariate adaptive regression splines (MARS) model number one
and their coefficients for feed with media.

Bi Definition Ci

B1 Constant 87.045425
B2 Cylinder length 0.263318
B3 Float port area 0.292959
B4 Diaphragm area –0.198685
B5 h(Sink flow − 0.677) –164.231069
B6 h(Sink flow − 0.677) 193.832769

Table 2. List of basis functions of MARS model number one and their coefficients for feed into
the vortex.

Bi Definition Ci

B1 Constant 88.024967
B2 h(21.4 − Cylinder length) –3.149586
B3 h(Cylinder length − 21.4) 0.491264
B4 h(Float flow − 0.243) –22.817374
B5 h(Sink flow − 0.588) 19.200122

Table 3. List of basis functions of MARS model number two and their coefficients for feed with media.

Bi Definition Ci

B1 Constant 81.97549
B2 Cylinder length/Cylinder Area 21.50694
B3 Float port area/Total Area 41.73611
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Table 4. List of basis functions of the MARS model number two and their coefficients for feed into
the vortex.

Bi Definition Ci

B1 constant 99.00408
B2 h(0.35 − Cylinder length/Cylinder Area) –157.73737
B3 h(Cylinder length/Cylinder Area − 0.35) –13.58808
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Figure 4 shows that, contrary to the results reported by Yang and Wang [8], the separation
efficiency is determined by the medium inlet diameter and shape and that the separation density is
determined by SP, and efficiency increases as the cylinder length to area increases. Similarly, as the
diameter of the float port with respect to the area increases so does the efficiency. In Figure 5 it can be
seen how the increases of about 0.09 to 0.35 correspond to an increase in the cylinder length of one of
the devices reaching an optimum condition, while the relation of the length to area about 0.35 below
this level efficiency tends to decrease.

Results indicated in Figure 4 are dominated by the data for the 110 mm version with 12, 21.4,
32.9, and 45 cm CL and the four diameters of the LARCODEMS versions tested. The increase in
separation efficiency for CL/CA values of 0.1–0.38 reflect the increase in the separation efficiency with
the increase in CL of the 110 mm model. The subsequent moderate decrease in separation efficiency
with an increase in CL/CA from 0.38 to 1.0 is related to the increase in CL/CA with the reduction in
the size of the model tested. The efficiency decrease indicates that the separation efficiency obtained
increases with the size of the device. This effect is attributed to the increase in the proportion of the
surface area affecting the flow of the separation media to the total area of the media going up the
separation cylinder, and the relative proportion of thickness of the turbulence layer between the media
going up and the media going down, and the separation cylinder to the total area of the separation
cylinder occupied by the separation media.

The MARS models make it possible to know which variables take part in each model and
their relative importance. Tables 5–8 indicate the relative importance of the variables. These are
presented according to the three metrics for importance classification described in Materials and
Method. The classification of these three metrics in all of the models is the same.
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Table 5. Relative importance of variables in MARS model number one and their coefficients for feed
with media.

Variable Nsubsets GCV RSS

Diaphragm area 5 100 100
Cylinder length 4 69.9 79.3

Sink flow 3 41.8 61.7
Float port area 1 13.2 32.3

Table 6. Relative importance of variables in MARS model number one and their coefficients for feed
into the vortex.

Variable Nsubsets GCV RSS

Cylinder length 4 100 100
Float flow 1 17.2 16.4
Sink flow 1 17.2 16.4

Table 7. List of basis functions of MARS model number two and their coefficients for feed with media.

Variable Nsubsets GCV RSS

Float A/Total A 2 100 100
Cyl L/Cyl A 1 40.1 55.2

Table 8. List of basis functions of MARS model number two and their coefficients for feed into
the vortex.

Variable Nsubsets GCV RSS

Cyl L/Cyl A 2 100 100

Figure 6 shows the real value of efficacy versus the value calculated by MARS model one for into
the vortex (blue colour) and with media feed (red colour). Figure 7 shows the same but for those results
calculated with the variables of model two. The R2 for the models of the LARCODEMS tests performed
were as follows: model one with media: 0.6254; into the vortex: 0.9553; model two with media: 0.4820;
and into the vortex: 0.8630. This shows a high correlation coefficient of real and predicted efficiencies.
In the case of model one, the RMSE, for the test performed with feed into the vortex has a value of
1.9894; while for those test with media feed it is 2.3741. For model two, RMSE values are 2.421 with
the media, and 4.8996 into the vortex. In the case of the MAE, for model one with media, the value is
1.7404, and into the vortex, 1.3456. Finally, for model two, the MAE value is 1.8419 with media, and
3.7928 into the vortex. The R2 values obtained show a high correlation for the case of the LARCODEMS
test performed with media. In the case of the model for the test performed into the vortex, although
the correlation is significant, it is not as high. As far as it is known to the authors, there are no other
studies that would allow us to compare the RMSE and MAE obtained in this work.
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In order to know the performance and stability of those models, the average values of the R2,
RMSE, and MAE of the 1000 different five-fold cross-validation sets created are summarized in Table 9
for both models one and two with media and into the vortex. The average value of R2 is better in the
case of both models with into the vortex feed when compared with the model with media feed. In the
case of both RMSE and MAE, the average value is larger in the models trained and validated with the
into the vortex media test.
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Table 9. Performance measurements of models one and two trained with the media feed and the feed
into the vortex.

Variable With Media Into the Vortex

MODEL 1 Min. Avg. Max. Min. Avg. Max.
R2 0.3543 0.5080 0.6776 0.6303 0.7001 0.8078

RMSE 2.1672 2.9757 6.3582 7.4346 9.2680 22.1758
MAE 1.8560 2.3265 4.8040 6.2205 7.9052 15.6619

MODEL 2 Min. Avg. Max. Min. Avg. Max.
R2 0.3355 0.4333 0.5519 0.6838 0.7785 0.8601

RMSE 2.6046 3.3521 4.6182 5.5193 7.4982 13.0074
MAE 2.1771 2.7911 4.0124 4.3370 6.2126 10.9078

4. Discussion and Conclusions

In this research, the performance of the MARS models has been tested by means of a five-fold
cross-validation methodology. The referred methodology is used to assess the ability of the MARS
model to fit to any validation set using, for each model, 5000 different sets (five subsets per test and
1000 replications of the test). The results obtained are in line with previous research that has proven
the capability of MARS models to deal with noisy data in the solution, creating a trade-off between the
goodness of fit to the amount of data in the structure. Additionally, with the help of MARS models, it
is possible to establish an importance order of all of the variables included in the model.

From a technical perspective, it is shown that:

• Separation efficiencies increase with both the length and size of the separation cylinder. This is
reflected by the relation between the separation efficiency and media flow rates in the sink and
float ports and by the relation between the cylinder length to the cylinder area.

• For a given separation cylinder size there is an optimum length above which the separation
efficiency does not increase.

The results of this investigation indicate that the LARCODEMS is a relatively robust density
separation device suitable for obtaining efficient separations, provided that a suitable CL is maintained.
It is indicated that since the FF and SF rates are related to the SPA, FPA, and the DA, such separations
may be optimized based on an adequate control of the FPA and, to a lesser extent, the DA.

The increase in separation efficiency with a decrease in CL/CA indicates that, for this type of
DMS cyclone, the larger it is, the better the results. Furthermore, unlike the cono-cylindrical type of
DMS, the diameter of the cyclone does not appear to be limited to the >500 micron particle size that
may be treated, and supports the observations of previous works [6,7].

It is suggested that this methodology could also be applied to analyse the operation of other
heavy media separator density separations to optimize the efficiencies obtained. Finally, we would like
to also remark that, as far as it is known by the authors, the efficiency model proposed in this research
is the first parametric model proposed for the efficiency of a LARCODEMS device.
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