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RESUMEN (en español) 

 
Durante los últimos años hemos asistido a un crecimiento exponencial de los datos 
disponibles. Una consecuencia en la comunidad del aprendizaje automático ha sido 
identificar nuevas tareas, como son los problemas que requieren obtener estimaciones 
agregadas para conjuntos de ejemplos, en lugar de realizar predicciones individuales 
para cada uno de ellos. La motivación detrás de esta idea es que, a medida que los 
volúmenes de datos crecen, es menos importante centrarse en los individuos, que en 
cómo esos individuos se comportan colectivamente. El objetivo, por ejemplo, puede ser 
dar respuesta a preguntas como ¿Cuántos clientes están satisfechos con nuestro nuevo 
producto? 
 
La cuantificación es una de esas nuevas tareas de aprendizaje que necesitan producir 
predicciones agregadas. Su objetivo es estimar el número de casos que pertenecen a 
cada clase, es decir, predecir la distribución de las clases en el conjunto. El aspecto 
clave es que los datos usados para entrenar los cuantificadores pueden tener una 
distribución substancialmente diferente respecto a las muestras de test. El método más 
intuitivo para cuantificar es simplemente clasificar y contar los ejemplos que pertenecen 
a cada clase. Sin embargo, la literatura prueba que este enfoque puede ser mejorado. 
 
El concepto de cambio en la distribución es crucial para entender los principios de la 
cuantificación y las propuestas de esta tesis. Un cambio en la distribución de los datos 
ocurre cuando la probabilidad conjunta de la descripción de los ejemplos y sus salidas 
varía entre entrenamiento y test, PT(x,y) ≠ PD(x,y). Dependiendo del problema, es posible 
especificar de antemano que componentes de P(x,y) cambian y cuales pueden ser 
constantes. En cuantificación, la distribución de las clases, P(y), cambia por definición, 
y se asume que P(x|y) es constante. 
 
Nuestra hipótesis principal es que existe una conexión entre los problemas con cambios 
en la distribución y las propiedades de los ensembles, como es la diversidad, que ayuda 
a obtener mejores meta-modelos. La diversidad se puede introducir generando una 
muestra de entrenamiento distinta para cada modelo. Este punto conecta la 
cuantificación con los ensembles. Siguiendo esa idea, analizamos como hipótesis que 
los ensembles pueden ser apropiados en problemas que (i) tienen cambios en la 
distribución y (ii) esos cambios se pueden caracterizar.  



                                                                

	  
	  

 

 
La principal propuesta de esta tesis está basada en generar diferentes muestras de 
entrenamiento, cada una de ellas representando un cambio esperado en la distribución. 
Cuando una nueva muestra debe ser cuantificada, es probable que el meta-modelo 
contenga algún modelo que haya sido entrenado con una distribución de clases similar. 
En primer lugar nos centramos en la cuantificación binaria, proponiendo los llamados 
EoQ (Ensembles of Quantifiers) y nuestros experimentos demuestran que los EoQ 
tienen más precisión que cuantificadores individuales, incluso cuando las estrategias de 
combinación usadas son triviales.  
 
Además, la tesis propone medidas de selección diseñadas para cuantificación. La idea es 
seleccionar los mejores modelos del ensemble en lugar de agregar todos ellos. Por 
ejemplo, para dar más importancia a los modelos cuya distribución de entrenamiento se 
parece más a la de la muestra a predecir. Se introducen tres nuevas medidas de selección 
y dos de ellas permiten realizar una selección dinámica. Los experimentos prueban que 
estas estrategias de selección superan en muchos casos a las estrategias tradicionales, 
como promediar las salidas de todos los modelos o seleccionarlos de acuerdo a su 
precisión.  
  
Por último, se aplicaron los EoQ, junto con las medidas de selección propuestas, a un 
problema real, la cuantificación de sentimientos, en el que se estima la distribución de 
comentarios como positivos, neutrales y negativos. Se emplearon las cuatro últimas 
competiciones de SemEval y los EoQ resultaron tan efectivos como en otros problemas, 
combinando alta precisión y estabilidad. 
 

 
 
 

RESUMEN (en inglés) 
 

During the last years we are assisting to an exponential growth of data availability. One of the 
consequences within the machine learning community is the identification of a new useful 
learning task: to produce aggregated estimations for a full sample rather than giving a specific 
prediction for each instance. The motivation behind this is that, as the data volume increases, 
the less important is to focus on individuals, but on how these individuals behave together as a 
group. The goal is to answer questions like “How many consumers are satisfied with our new 
product?” 
 
Quantification learning is one of the prototypical methods based on giving sample level 
predictions. Its objective is to accurately estimate the number of cases belonging to each class 
(or class distribution) in a test set, using a training set that may have a substantially different 
distribution. At a first sight, the most intuitive way to quantification is to count the predictions of a 
classifier over a test set. This method has already been proved to perform poorly, since it does 
not considerate distribution changes. 
 
The concept of distribution shift is crucial to understand both quantification learning and our 
proposals in this thesis. Distribution shift occurs when the joint distribution of inputs and outputs 
changes between the training and testing phase, PT(x,y) ≠ PD(x,y). Depending on each concrete 
problem, it is possible to specify in advance which components in P(x,y) are expected to 
change, and which ones may remain constant. As for quantification, class distribution, P(y), 
changes by problem definition, and it is assumed that P(x|y) remains constant. 
 



                                                                

	  
	  

 

We have realized that these distribution shift characteristics are closely related to some 
properties of ensemble learning; diversity is one of such key factors contributing to a good 
performing ensemble. Usually, diversity is introduced by generating different training samples 
for each model. This connects distribution shift problems and ensemble learning: each model 
can be trained with a different data distribution. Following this idea, this work analyzes the 
hypothesis that ensembles may be especially appropriate in problems that: (i) suffer from 
distribution changes, (ii) it is possible to characterize those changes beforehand. Our main 
proposal is based on generating different training samples, with each one representing an 
expected distribution change. When a new test set is to be quantified, the ensemble is likely to 
contain some models trained with a similar class distribution. We have focused on binary 
quantification, and proposed EoQ (Ensembles of Quantifiers). Experimental results show that 
EoQ outperform the original counterpart algorithms, even when trivial aggregation rules are 
used. 
 
Our next contribution is to improve EoQ by designing ensemble selection measures particularly 
devised for quantification. The idea is to select some potentially good ensemble models instead 
of aggregating all of them. For example, it would be possible to give more importance to those 
weak quantifiers whose training distribution is closer to the test sample distribution. We have 
proposed three quantification based selection measures and two of them are defined for 
dynamic ensemble selection. The experiments demonstrate that, in many cases, these 
selection functions outperform straightforward approaches, like averaging all models and using 
quantification accuracy to prune the ensemble.  
 
The last contribution of this thesis is to evaluate the effectiveness of EoQ, together with the 
proposed selection measures, in a real-world application. We have studied the usage of a 
decomposition approach based on EoQ for a multi-class sentiment quantification task, where 
each comment is labeled as positive, negative or neutral. The last four SemEval competitions 
have been used as benchmarks, and we have found that ensembles behave as good as in 
other learning problems, combining robustness, stability and a competitive performance. 
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Resumen

Durante los últimos años hemos asistido a un crecimiento exponencial de los
datos disponibles. Una de las consecuencias dentro de la comunidad dedicada
al Aprendizaje Automático ha sido la identificación de nuevas tareas. Una de ellas
la constituyen aquellos problemas que requieren obtener estimaciones agregadas
para conjuntos de ejemplos, en lugar de realizar predicciones individuales para
cada uno de ellos. La motivación detrás de esta idea es que, a medida que los
volúmenes de datos crecen, es menos importante centrarse en los individuos, que
en cómo esos individuos se comportan colectivamente. El objetivo, por ejemplo,
puede ser dar respuesta a preguntas como ¿Cuántos consumidores están satisfechos
con nuestro nuevo producto?

La cuantificación es una de esas nuevas tareas de aprendizaje que están pensadas
para producir predicciones agregadas. Su objetivo es estimar el número de casos
que pertenecen a cada clase, o dicho de otra forma, predecir la distribución de
las clases dado un conjunto de casos. El aspecto clave es que los datos usados
para entrenar los cuantificadores pueden tener una distribución substancialmente
diferente respecto a las muestras de ejemplos que luego deben predecirse. A
primera vista, el método más intuitivo para cuantificar es simplemente clasificar
los ejemplos individuales y contar los que pertenecen a cada clase. Sin embargo,
los estudios realizados prueban que este enfoque puede ser mejorado ya que no
tiene en cuenta los cambios que pueden ocurrir en la distribución de los datos.

El concepto de cambio en la distribución es crucial para entender los principios
del aprendizaje de cuantificadores y las propuestas de esta tesis. Un cambio en la
distribución de los datos ocurre cuando la probabilidad conjunta de la descripción
de los ejemplos y las salidas correspondientes varía entre la fase el entrenamiento
y la de test, PT (x, y) 6= PD(x, y). Dependiendo de cada problema concreto, es
posible especificar de antemano que componentes de P(x, y) se espera que cambien
y cuales deberían ser constantes. En cuantificación, la distribución de las clases,
P(y), cambia por la propia definición del problema, y se asume habitualmente que
P(x|y) permanece constante.

Una de las hipótesis de este trabajo es que existe una conexión entre los problemas
que sufren cambios en la distribución y las propiedades de los métodos basados
en combinar modelos (ensembles). Una de esas propiedades es la diversidad que
contribuye a obtener mejores meta-modelos. La diversidad puede ser introducida
en un ensemble generando distintas muestras de entrenamiento para cada modelo
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individual. Este el punto de conexión con los problemas con cambios en la
distribución: cada modelo puede ser entrenado con una distribución diferente.
Siguiendo esa idea, esta tesis analiza la hipótesis que los ensembles pueden ser
especialmente apropiados en los problemas que (i) tienen cambios en la distribución
y (ii) es posible caracterizar dichos cambios de antemano.

La principal propuesta de esta tesis está basada en generar diferentes muestras
de entrenamiento, cada una de ellas representando un cambio esperado en la
distribución. Cuando una nueva muestra debe ser cuantificada, es probable que
el meta-modelo contenga algún modelo individual que haya sido entrenado con
una distribución de clases similar. Este trabajo se ha centrado fundamentalmente
en la cuantificación binaria, y se ha propuesto una adaptación de los ensembles
que denominamos EoQ (Ensembles of Quantifiers). Los resultados experimentales
realizados demuestran que los modelos EoQ tienen más precisión que los modelos
individuales que los forman, incluso cuando las estrategias de combinación
empleadas son triviales, como devolver la estimación media de todos los modelos
individuales.

No obstante, la tesis propone también mejorar los EoQ mediante medidas de
selección especialmente diseñadas para problemas de cuantificación. La idea es
seleccionar los mejores modelos del ensemble en lugar de agregar todos ellos. Por
ejemplo, sería posible dar más importancia a aquellos modelos cuya distribución
de entrenamiento se parece más a la distribución de la muestra que se va a
predecir. Se introducen para ello varias nuevas medidas de selección adaptadas
a la cuantificación, permitiendo dos de ellas realizar una selección dinámica de
modelos. Los experimentos llevados a cabo demuestran que estas estrategias de
selección superan en muchos casos a las estrategias tradicionales, como promediar
las salidas de todos los modelos o seleccionarlos de acuerdo a su precisión. Además,
los resultados muestran que el rendimiento depende de la combinación entre el
algoritmo de cuantificación base y la medida de selección empleada.

La cuantificación de las opiniones de los usuarios en redes sociales constituye
una tarea interesante, no solo en campos relacionados con las ciencias sociales,
sino también con la economía y los negocios. En ese sentido, se aplicaron los
EoQ, junto con las medidas de selección propuestas, a un problema multi-clase de
cuantificación de sentimientos en el que hay que estimar la distribución de tres
clases de comentarios: positivos, neutrales y negativos. Se emplearon para ello las
cuatro últimas competiciones de SemEval y los ensembles resultaron tan efectivos
como los son en otros problemas de aprendizaje, combinando alta precisión y
estabilidad.
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Conclusiones

En este trabajo se ha estudiado cómo pueden adaptarse los métodos basados en
combinación de modelos (ensembles), a problemas que se caracterizan porque la
distribución de los datos cambia entre la fase de entrenamiento y una vez el modelo
se despliega y se usa en la práctica. La idea principal de este trabajo consiste
en, basándose en dicha asunción, diseñar ensembles que contengan la necesaria
diversidad. Para lograrlo, se generan diferentes muestras de entrenamiento
para representar los cambios esperados en la distribución. En primer lugar, se
probó experimentalmente esta idea en problemas de cuantificación binaria, que
se caracterizan porque la prevalencia de las clases, P(y), cambia, pero en donde
podemos asumir que P(x|y) permanece constante. Las muestras de entrenamiento
se generan bajo dicha asunción de aprendizaje. Como resultado, se espera
que el meta-modelo formado por los cuantificadores individuales aprendidos con
las citadas muestras esté mejor preparado para hacer predicciones sobre nuevas
muestras no vistas en las que la prevalencia de las clases varíe significativamente.
Los resultados experimentales sobre conjuntos de referencia que se exponen en
el Capítulo 3 demuestran que los ensembles de cuantificadores (EoQ , Ensembles
of Quantifiers) propuestos mejoran el rendimiento de cuantificadores individuales
generados con los algoritmos de cuantificación existentes.

Por tanto, una de las contribuciones más importantes de este trabajo es proponer
un método teóricamente razonable para usar algoritmos basados en combinación
de modelos en el contexto de la cuantificación binaria. Sin embargo, es digno de
mencionar que la importancia de la solución propuesta no solamente se limita a
los problemas de cuantificación, sino que la misma idea también podría aplicarse
en otros problemas de aprendizaje en los que se sabe que la distribución cambia,
y donde además es posible caracterizar de alguna forma dichos cambios, como por
ejemplo los problemas en los que se da el denominado covariate shift. Además,
creemos que este trabajo abre nuevas líneas de investigación dentro del aprendizaje
de ensembles, en aspectos como la inclusión de diversidad en función de los cambios
esperados en la distribución.

La segunda contribución de este trabajo es proponer nuevos criterios para la
selección de modelos que pueden usarse para implementar tanto estrategias de
selección estáticas, que aplican los mismos modelos en todos los casos, descartando
el resto, como estrategias dinámicas, donde se pueden usar un grupo de modelos
distinto en función de la muestra que deba predecirse. Además, algunos de
los criterios propuestos están diseñados para ciertos algoritmos concretos de
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cuantificación, explotando sus peculiaridades. Los experimentos del Capítulo 4
muestran que estos criterios usados en combinación con estrategias simples de
selección, mejoran la capacidad predictiva de los EoQ. Otra importante conclusión
de ese estudio experimental es que el rendimiento depende en buena medida de
una correcta combinación entre el algoritmo de cuantificación usado para aprender
los cuantificadores individuales y el criterio empleado para seleccionar los modelos
resultantes. En concreto, los criterios diseñados ad hoc para un algoritmo concreto
funcionan mejor con dicho método que con otros algoritmos de cuantificación, lo
que en parte valida su diseño.

El hecho de que la cuantificación requiera hacer estimaciones sobre conjuntos
de ejemplos y no predicciones sobre instancias individuales, requiere que los
trabajos realizados hasta ahora relacionados con el aprendizaje de ensembles deban
adaptarse a este nuevo tipo de problemas. De acuerdo con los resultados obtenidos
en este trabajo, los criterios de selección que parecen proporcionar resultados
más prometedores son aquellos que miden la similitud entre la distribución de
la muestra de test que debe predecirse, y la distribución de las muestras con las
que se entrenaron los cuantificadores individuales que forman el meta-modelo.

Para finalizar, en este trabajo se ha analizado la aplicabilidad de los EoQ
propuestos en problemas multi-clase de cuantificación de sentimientos en donde
las opiniones de los usuarios pueden ser etiquetadas como positivas, neutrales
o negativas. Los EoQ retornan en este caso la distribución de probabilidad
de estas tres clases dada una muestra que contiene un conjunto de opiniones.
Los experimentos del Capítulo 5 realizados empleando los conjuntos de datos
correspondientes a las competiciones organizadas por SemEval, permiten concluir
que el rendimiento de los EoQ es al menos competitivo con respecto a los
cuantificadores individuales, y en varios casos los supera. De hecho, los EoQ
son los vencedores en la mayoría de los conjuntos de SemEval, y además se pueden
observar algunas propiedades interesantes, como es su robustez frente al sobre-
ajuste.
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Abstract

During the last years we are assisting to an intense and exponential growth of data
availability. One of the consequences within the Machine Learning community is
the identification of a new useful learning task: to produce aggregated estimations
for a full sample rather than giving a specific prediction for each instance. The
motivation behind this is that, as the data volume increases, the less important is
to focus on individuals, but on how these individuals behave together as a group.
The goal is to answer questions like how many consumers are satisfied with our
new product?

Quantification learning is one of the prototypical methods based on giving sample
level predictions. Its objective is to accurately estimate the number of cases
belonging to each class (or class distribution) in a test set, using a training set that
may have a substantially different distribution. At a first sight, the most intuitive
way to quantification is to count the predictions of a classifier over a test set. This
method has already been proved to perform poorly, since it does not considerate
distribution changes between training and testing.

The concept of distribution shift is crucial to understand both quantification
learning and our proposals in this dissertation. Distribution shift occurs when
the joint distribution of inputs and outputs changes between the training and
testing phase, PT (x, y) 6= PD(x, y). Depending on each concrete problem, it
is possible to specify in advance which components in P(x, y) are expected to
change, and which ones are expected to remain constant. As for quantification,
class distribution, P(y), changes by problem definition, and it is assumed that
P(x|y) remains constant.

We have realized that these distribution shift characteristics are closely related
to some of the most desirable properties for ensemble learning. Diversity is one
of the key factors contributing to a good performing ensemble. Usually, it is
introduced by generating different training samples for each model. This is the
connecting point between distribution shift problems and ensemble learning: each
model can be trained with a data distribution that may be different from the
original training set distribution. Following this idea, this dissertation analyzes
the hypothesis that ensembles can be especially appropriate in problems that: (i)
suffer from distribution changes, (ii) it is possible to characterize those changes
beforehand.
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Our main proposal in this dissertation is based on generating different training
samples, with each one representing an specific and expected distribution change.
When a new test set is to be quantified, the ensemble is likely to contain some
models trained with a similar class distribution. We have focused on binary
quantification problems, and proposed an ensemble version adaptation called EoQ
(Ensembles of quantifiers). For each weak quantifier a different training sample
with a random prevalence is generated. Experimental results show that these
ensemble adaptations outperform the original counterpart algorithms, even when
trivial aggregation rules are used.

Our next contribution in this dissertation is to improve EoQ by designing ensemble
selection measures particularly devised for quantification problems. The idea is to
select some potentially good ensemble models instead of aggregating all of them.
For example, it would be possible to give more importance to those weak quantifiers
whose training distribution is closer to the new test sample distribution. We have
proposed three quantification based selection measures, where two of them are
defined for dynamic ensemble selection. The experiments demonstrate that, in
many cases, these selection functions outperform straightforward approaches, like
averaging all models and using quantification accuracy to prune the ensemble.
Moreover, the results show that performance heavily depends on the combination
of the base quantification algorithm and the selection measure.

Quantification of user-generated opinions in social media constitutes an interesting
task, not only in social science related fields, but also to economics and business.
The last contribution of this dissertation is to evaluate the effectiveness of EoQ,
together with the proposed selection measures, in a real-world quantification
application. We have studied the usage of a decomposition approach based on
EoQ for a multi-class sentiment quantification task, where each comment is labeled
as positive, negative or neutral. These quantifiers are designed to predict the
probability class distribution given a new unlabeled set of comments. The last
four SemEval competitions have been used as benchmarks, and we have found that
ensembles behave as good as in other learning problems, combining robustness,
stability and a competitive performance.
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Chapter 1

Introduction

This chapter is intended to provide the reader with a conceptual review of the
main concepts that will be further developed along this dissertation. We start
by introducing the problem that is behind our research work, and we try to
motivate our original approach to solve it. Then, we establish the main goals
and contributions of this dissertation, summing up: to introduce, design, improve
and check for the effectiveness of a novel approach to tackle quantification via
ensemble learning. Finally, we enumerate and analyze the list of publications,
both in conferences and journals, this dissertation has led to, and we describe the
outline of the rest of this document.

1.1 Motivation

During the last years we are assisting to an intense and exponential growth of
data availability; two new players have joined the match, namely, Big Data and
Cloud Computing. We are emphasizing next the causes for this rise: i) businesses
going digital, focusing on data acquisition and retention in order to migrate to
data-driven business models, ii) technology improvements making data storage
and transmission costs to decrease, iii) ubiquitous existence of sensors monitoring,
tracking and recording data (GPS enabled cellphones, credit/debit cards, email
devices, etc.), and iv) the explosion of social network related user created data.
Some examples of these new large volumes of available data are the following:
Twitter user generated opinion feeds, app log data describing how users interact
with the applications, Google search data feeds, or support-call logs detailing user
support issues.

The machine learning community is well aware of this, time and time more
noticeably, explosion in data availability. As a consequence, a new learning task
has recently started to be identified as a real necessity: to produce aggregated
estimations for a full sample rather than giving an specific prediction for each
instance. The motivation behind this is that, as the data volume increases, the less
important is to focus on individuals, but on how these individuals behave together
as a group. Under this framework, the learning evaluation unit changes from
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data instances, to data samples. For instance, there is an increasing demand for
automatic methods to track overall consumer opinions [Gao and Sebastiani, 2015a].
The goal is to answer questions like how many consumers are satisfied with our new
product?. This task requires effective algorithms focused on estimating the class
distribution from a sample. Notice that the goal is not to label individual examples
(solved using traditional classification algorithms), but to obtain estimations at
aggregated level.

We do think that sample level based learning will acquire more attention from
the research community once the utility notion of giving estimates for samples,
vs the traditional example classification task, gets fully assimilated. There exist
situations, particularly in real-world problems, in which training an accurate
classifier is whether complicated or costly. Some real-world concepts are difficult
to distinguish for state-of-the-art classifiers, and special purpose learners are
expensive. Still, under these circumstances, it is possible to give accurate
estimations for the whole sample. Some problems are inherently based on
predicting characteristics for a sample, rather than for each instance comprising it.
This is especially true in the case of tracking trends over time tasks [Rakthanmanon
et al., 2012], such as early detection of epidemics and endangered species, risk
prevalence and ecosystems evolution. In strategy planning applications usually is
sufficient, and sometimes even more relevant, to have an aggregated estimation.
For example, assigning priorities and resources in a product support department
by quantifying specific product issues.

1.1.1 Problem definition

Quantification is one of the prototypical learning methods based on giving sample
level predictions. It is a supervised learning task introduced by Forman in the
recent years [Forman, 2008], aimed at estimating the class distribution in a test
set, using a training set that may have been drawn from a different distribution.
Given a test set, a quantifier outputs an estimation of the number of examples
belonging to each class, without requiring individual predictions for each instance.

It is not a famous task within the machine learning community yet, principally
because of two reasons: i) it has been mistakenly addressed as a trivial problem,
and ii) the omnipresent training set random sampling and cross validation
procedures, prevent the testing distribution from mismatching the training one.
Many practitioners tackle quantification by inducing a classifier over the training
set, and then classifying and counting the test examples. This straightforward
approach has already been proved to perform poorly, because the classifier does
not take into account the class distribution shift, which by definition, appears
in quantification problems [Forman, 2008]. As a consequence, the associated
quantifier inherits the classifier bias, which could lead to a major degradation
when the data distribution effectively changes.
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Interestingly, quantification methods have been lately applied to solve several real-
world problems from different application areas. A typical example is related to
sentiment analysis in social networks [Gao and Sebastiani, 2015b], e.g., to estimate
the percentage of positive comments about a certain topic of interest during
a concrete time period [González et al., 2016b]. Automatic methods based on
quantification have been used to predict the proportion of membrane-intact sperm
cells, which is one of the analyzed aspects in fertility studies and was traditionally
carried out by human experts [Alaiz-Rodríguez et al., 2008]. Quantifiers have
been also applied to quantify recurrent issues based on the analysis of technical-
support call logs recorded by customer services [Forman et al., 2006]. Early
detection of such issues is useful, among others, to identify the problems that may
become epidemics. In Epidemiology, King and Lu [2008] proposed a quantification
approach to estimate the cause of death distribution in a population using,
what it is called, verbal autopsies (surveys on deceased’s symptoms provided by
relatives). This procedure is cheap because physician reviews are not required.
Plankton abundance estimation González et al. [2013]; Solow et al. [2001] is another
paradigmatic quantification task, whose goal is to estimate the abundance of some
taxonomic groups given plankton samples. Other tentative application scopes
include network-behavior analysis [Tang et al., 2010], quality control [Sánchez
et al., 2008], or credit scoring [Hand, 2006].

The main difference between classification and quantification is that a quantifier
produces estimates for bags or samples (groups of instances), instead of making
predictions for individual examples like a classifier does. Thus, given that the
sample is the evaluation unit, a more complex methodology is necessary to
accurately estimate the performance of a quantifier. It is required a large group
of test samples covering the whole prevalence (class distribution) domain. Notice
that, as the class distributions change by problem definition, it is recommendable
to represent these changes in the testing set. Having available this prevalence-
diverse test samples group is not always a situation, and artificially generating it
is not a trivial task neither.

The concept of data distribution drift, also named as dataset shift [Moreno-Torres
et al., 2012], is crucial to understand quantification learning from a conceptual
point of view. Supervised learning makes the assumption that the unknown
distribution P(X,Y), from where the examples are drawn independently and
identically distributed (i.i.d. assumption), does not change between the training
and testing or production phases. That is to say that the probability distribution
of the problem is faithfully represented in the training set. However, in practice,
this assumption often does not hold in real-world applications [Quiñonero Candela
et al., 2009; Storkey, 2009]. Dataset shift occurs when the joint distribution of
inputs and outputs changes between the training phase and the deployment of the
model, PT (x, y) 6= PD(x, y). This may occur for several reasons, but usually due
to the fact that samples are captured at different times and/or places in a changing
environment.

3



Chapter 1. Introduction

Let’s see how we can characterize quantification learning from a dataset shift point
of view. Depending on the causal relation between the covariates, x, and the class
variable, y, Fawcett and Flach [2005] identifies two class of problems: X → Y and
Y → X . The joint distribution is written as P(y|x)P(x) in the former, and as
P(x|y)P(y) in the latter. Moreno-Torres et al. [2012] proposes a categorization for
those learning tasks presenting a drift into the distribution. The type of dataset
shift problem is determined by the components that are expected to change, and
by the ones expected to remain constant. This constitutes a key statement within
the scope of this dissertation, since it means that it is possible to characterize in
advance the distribution drift we are expecting to take place in a concrete problem
or application. In particular, quantification, also referred to as prior probability
shift problem, is defined in terms of P(x|y)P(y), with P(y) changing by own
problem definition, and P(x|y) remaining constant between training and testing
(some proper quantification methods, described in Section 2.4, assume this fact as
a base hypothesis).

1.1.2 Proposing ensembles of quantifiers

At this point, we are already aware of the existence of problems in which:

(i) data distribution changes between training and testing phases, and

(ii) it is possible to characterize those changes beforehand, i.e. which components
are expected to get modified, and which ones to stay unaltered.

Once upon a time, a few months after the start of this dissertation, we realized
that those characteristics were surprisingly related to some of the most desirable
properties for ensemble learning. Two decidedly important design decisions
one has to face when constructing an ensemble are: to select an appropriate
procedure in order to introduce diversity into the ensemble, and to choose an
aggregation function to produce the final ensemble prediction. Usually, diversity
is obtained by generating different training samples. As for our interests, diversity
could be achieved by producing training samples representing the expected
distribution changes (assuming we can a priori define them). Moreover, it was
also possible to introduce specific quantification knowledge into the definition of
the aggregation function. Back then, our intuition was that ensembles clearly
manifested symptoms of being a promising method for solving quantification
problems.

An ensemble is a meta-model that combines the predictions of its single models
to obtain consensus decisions. Diversity is one of the key factors contributing
to a good performing ensemble: the solution implicitly represents some kind
of agreement between the participating models. However, this cooperation is
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not beneficial without diversity. Diversity means that individual models of
the ensemble must produce different predictions given a testing case [Banfield
et al., 2005; Kuncheva and Whitaker, 2003; Brown et al., 2005]. If ensemble
models always make the same prediction, their combination does not lead to any
improvement. Only when models are different and each of them excels for a
particular region of the input space, the ensemble obtains a better performance
than their individual models. An ensemble tends to reduce the variance of its
base classifier, thus reducing the risk of obtaining a particularly bad response
from a single model. Intuitively, the same idea is highly present in the human
decision making processes; a set of opinions is more rich than an isolated opinion,
especially when there exist a high degree of diversity within the opinions. Thus,
from a practical point of view, ensembles generally perform better than a single-
model solution [Bauer and Kohavi, 1999; Breiman, 1996; Freund et al., 1996; Opitz
and Maclin, 1999], although this cannot be guaranteed [Fumera and Roli, 2005].
The fusion strategy defines how model predictions are combined, and depends,
in part, on the learning task. Majority voting is the most popular strategy in
classification problems, while averaging is the predominant rule for regression and
probability estimation tasks. In any case, ensemble models can be treated equally
or not, assigning a different weight to each one; usually the weight is proportional
to its accuracy or precision.

In this dissertation we propose that ensemble learning results appropriate and
effective when applied to problems verifying the next properties: (i) are known
to suffer from distribution changes between training and testing phases, (ii) we
are able to characterize the distributional changes beforehand (i.e. we can define
the conditions that make P(X,Y) to change). The reason is that each model
of the ensemble can be trained with a training set whose data distribution may
be different from the distribution of the original dataset. This fact can be further
exploited in learning problems that suffer a characterizable drift in the distribution.
From an ensemble point of view, we can make the most of this knowledge in order to
introduce diversity into the weak models, a desirable property to boost its efficacy
[Dietterich, 2000b; Kuncheva and Whitaker, 2003; Banfield et al., 2005; Brown
et al., 2005; Wang and Yao, 2009]. The bulk of our idea consists in generating
different training samples, with each one representing an specific and expected
distribution change. When a new test set is to be quantified, the ensemble is likely
to contain some models trained with a similar class distribution.

In order to prove the validity of our idea, we have applied it to binary quantification
problems. In the case of binary quantification the set of class values is restricted
to two and the objective is to correctly estimate the number of positive examples
(prevalence). Quantification tasks fit perfectly our requirements, since, by
definition, the class probabilities may change, and we are also able to characterize
and to restrict ourselves to a certain types of changes. To the best of our
knowledge this is the first attempt to solve quantification by using ensembles.
This approach is different to other propositions that have been suggested to
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tackle tasks that present some sort of drift in the distribution [Kuncheva, 2004],
especially concept drift problems [Widmer and Kubat, 1996]. Those methods are
based on removing, modifying or adding new models to the ensemble, mainly
because the concept P(y|x) changes throughout time and it is not possible to
exploit any prior knowledge. Our approach is different in the sense that, as we
know the characteristics of the expected changes, we can use that knowledge to
build an enriched ensemble from the beginning without the need of subsequent
modifications. A detailed presentation of our proposition is shown in Section 3.2.

1.2 Summary of contributions

The contributions of this dissertation are fourfold:

(i) We have presented the first ensemble method for quantification. Interestingly,
our approach is not just a straightforward application of well-known ensemble
algorithms, like bagging or boosting, but a specially devised method for
binary quantification. Our proposal takes into account, and exploits, the
main characteristic of quantification tasks: how the data distribution is
expected to change.

(ii) The second contribution is to propose several selection criteria appropriately
adapted for some state-of-the-art quantification algorithms. Additionally,
some of them are static, but two of them are defined for dynamic ensemble
model selection. The idea in the latter case is to select the best ensemble
models for each testing sample.

(iii) Besides, these ensembles of quantifiers have been exhaustively tested using
benchmark datasets, analyzing their behavior from different perspectives.
This includes the proposed selection measures, for instance, studying which
selection criterion is more appropriate for each base quantifier. In this
sense, the experiments reported in this dissertation establish a solid point
of departure for future research in the field of ensembles for quantification
learning.

(iv) Finally, ensembles of quantifiers have been applied to tackle a real-world
application, namely sentiment quantification. The method, originally
devised for binary quantification, was extended to the multi-class case
using the one-vs-all approach. This algorithm has been tested over four
datasets coming from SemEval competitions. Our experiments conclude that
ensembles provide a competitive performance and some times outperform
single quantifiers.
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1.4 Document outline

The rest of this document is organized as follows:

• Chapter 2 provides an in-depth explanation to the quantification problem.
This includes a formal definition of the learning task, the notation used
along this document, the description of appropriate evaluation methods, a
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Chapter 1. Introduction

list of potential applications and a comparison between classification and
quantification from a theoretical point of view. Following, we analyze one of
the main properties of quantification tasks, which is that data distribution
changes. Finally, the state-of-the-art quantification algorithms used in the
experiments are described.

• Chapter 3 first gives a general overview of the principal ensemble learning
characteristics. Then, our main proposal to design an ensemble method
for binary quantification is deeply discussed. The chapter ends with an
experimental study in which the proposed ensemble method, using three
different base quantification algorithms, is compared to single quantifiers.
The conclusion is that ensembles of quantifiers significantly outperforms
individual quantifiers in several benchmark datasets. (Based on Pérez-
Gállego et al. [2015, 2017c])

• Chapter 4 proposes three new ensemble selection criteria specially devised
for ensembles of quantifiers: one of them is static in essence and the other
two allow dynamic selection. The resulting approaches are experimentally
compared with the method proposed in Chapter 3, and we conclude
that selection strategies help to improve the performance of ensembles of
quantifiers.

• Chapter 5 is aimed at experimentally checking the effectiveness of our
proposals in a real-world application. Concretely, ensembles of quantifiers
combined with two selection measures are applied to four multi-class
sentiment quantification tasks taken from SemEval competitions. The goal
of such tasks is to quantify the proportion of positive, negative and neutral
users’ comments sampled from Twitter. Ensemble approaches again provides
at least competitive performance and in several cases outperform single
quantifiers. (Based on Pérez-Gállego et al. [2017b])

• Chapter 6 summarizes the main findings and contributions of this thesis and
outlines several directions for future research.
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Chapter 2

Quantification: notation,
definitions and methods

Quantification learning is one of the core concepts in this dissertation. All of
the novel methods we propose in Chapters 3 and 4, as well as the application
in Chapter 5, are ensemble adaptations for the quantification problem. Given
that quantification learning is a fairly new task within the Machine Learning
community, we do think it is necessary to dedicate a full chapter of this dissertation
to provide an in-depth explanation to the problem.

This chapter exhibits a formal view of quantification, defined in terms of
a traditional machine learning task. We start presenting a widely accepted
definition for the problem and its formal notation. A brief comparison between
the classical classification problem and quantification is included. Then, we
describe the necessities for a special evaluation framework in quantification
problems. Following, we analyze one of the main properties of quantification tasks:
distributional changes between training and test sets. Finally, we go into details
about the theory behind some base quantifier algorithms that are employed in the
experimental setting in Chapters 3, 4 and 5.

2.1 Quantification learning

Quantification learning is a supervised learning based task that has emerged in
the past years introduced by Forman in [Forman, 2005]. As stated by Forman,
the task of quantification is to accurately estimate the number of positive cases (or
class distribution) in a test set, using a training set that may have a substantially
different distribution [Forman, 2008]. More practically, it is aimed at, given a test
set, producing an estimation of the number of examples belonging to each class,
without requiring individual predictions for each instance.

Intuitively, it seems a less complex problem than classification, since it is not
necessary to give accurate estimations for each example. We could think of a
first trivial approach to quantification by inducing a classifier, predicting the class
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of each example, and counting the number of predicted examples for each class,
obtaining a class histogram. As we shall see later in this chapter, this baseline
approach of classifying and counting has already been proved to perform poorly
[Forman, 2008].

Next, we are formally introducing the notation for the quantification problem
under the framework of a supervised learning task. In order to formally state
the differences between the classification and quantification problems, we are also
including the notation for classification tasks.

2.1.1 Notation

Let X be an input space and Y an output space. A supervised learning task
requires as input a training dataset D = {(x1, y1), . . . , (xn, yn)} randomly drawn
from an unknown probability distribution P(X,Y) from the product X ×Y. Each
instance, xi ∈ X , is represented by an attribute vector (xi,1, xi,2..., xi,d) and a
target class or label, yi ∈ Y = L = {`1, . . . , `l}.

The objective in a multi-class classification task is to approximate an unknown
function f : X → Y, by inducing a hypothesis or model, h, defined into some
hypothesis space H , from D:

h : X −→ {`1, . . . , `l}, (2.1)

that is able to assign the correct class label, given a new individual test example.
When the number of classes are just two, they are usually denoted as {+1,−1},
and the task is named binary classification.

As regards the quantification learning problem, the main difference with respect
to the previous classification definition, is that predictions are not made for each
single instance, but for a complete sample. Precisely, a multi-class quantifier
returns the class probability distribution for a given sample by inducing a
hypothesis h̄:

h̄ : NX −→ [0, 1]l, (2.2)

where NX is used to represent the number of times that each possible instance,
x, from X appears in the sample, implying that a sample can contain duplicate
examples according to the representation defined by X . NX denotes the set of all
functions from X to N. The quantifier, h̄, returns a predicted vector, [p̂1, . . . , p̂l], in
which each value p̂j represents the probability of class `j in the given sample. Thus,
it holds that

∑l
j=1 p̂j = 1. The goal is to predict a class probability distribution

as close as possible to the true one, [p1, . . . , pl].
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Figure 2.1: Binary quantification learning

Binary quantification

The binary quantification problem is a special case in which each instance is labeled
as positive or negative, yi ∈ {+1,−1}. In this situation, the class distribution
can be summarized with the actual proportion of positives or prevalence p (the
proportion of negatives is n = 1− p). The binary quantification goal is to induce
a model or quantifier:

h̄ : NX −→ [0, 1], (2.3)

able to estimate the prevalence, p̂, of the positive class for an unseen test set, T , i.e.
p̂ = h̄(T ) = PT (y = +1), that may have a significantly different class distribution
(see Figure 2.1). From a learning point of view, the most important assumption
made by quantification methods is that the class probability distribution P(y)
changes between training and test, but P(x|y) remains constant. This issue is
deeply discussed in Section 2.3.

2.1.2 Multi-class quantifiers based on decomposition

Taking into account that most of the existing quantification algorithms are
designed for binary problems, the most straightforward approach to tackle
multi-class quantification is to apply some kind of decomposition strategy, for
instance, the well-known one-versus-all approach [Forman, 2008], using any binary
quantification algorithm. Such approach comprises the following steps:

(i) Given a training set D = {(x1, y1), . . . , (xn, yn)} with l different class values,
l binary quantifiers, {h1, . . . , hl} of the form hj : NX −→ [0, 1] are learned,
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one for each class `j . The dataset for training hj is composed by the same
examples in D, in which those from class `j are labeled as positives, and the
rest are labeled as negatives. Recall that any binary quantification algorithm,
like the ones described in Section 2.4, could be used as base learner.

(ii) In the testing phase, each binary quantifier, hj , is applied to obtain an initial
estimation of the prevalence for class `j , p̂0j .

(iii) These initial prevalences are finally normalized in order to ensure that their
sum is 1:

p̂j =
p̂0j∑l
k=1 p̂

0
k

. (2.4)

This shall be the approach applied in the experiments in Chapter 5. A multi-class
quantifier is required in order to give an estimation of the class distribution in
a sentiment analysis problem comprised by three different class labels: positive,
neutral and negative.

2.1.3 Differences between classification and quantification

Both classification and quantification tasks are defined under the same supervised
learning framework, as we have seen in Section 2.1.1. However, the denotation
of Equations 2.1 and 2.2 (classification and quantification, respectively), clearly
demonstrate that they address different learning problems. It is worth noting that
it is possible to solve quantification by just using classifiers, though. All that is
necessary is to have a classifier giving a class estimate for each example, and then
count.

One of the principal differences is the evaluation unit: while a classifier evaluates
an individual example, a quantifier produces estimates for samples or bags (groups
of examples). The direct consequences are twofold. First, traditional classification
evaluation procedures are not longer valid because a representative group of
samples is required for estimating the quantifier performance. Having just one
test sample is not enough for giving an accurate estimate. Moreover, it would be
recommendable to have enough prevalence diversity within the test sample group,
knowing that class distributions, by definition, may change. Second, given that a
quantifier produces class distribution estimates for the sample, it does not make
sense to use the same performance measures as in classification.

A core disparity between both problems is that the learning assumptions are
totally different. Supervised classification generally assumes that the unknown
distribution from where the examples are drawn independently and identically
distributed, does not change. On the contrary, class distribution in quantification
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problems changes between training and test (see Section 2.3) by the own definition
of the learning task. In symbols, PD(y = +1) 6= PT (y = +1). Otherwise
the quantification problem would be trivial: a quantifier could predict just the
prevalence of the positives observed in the training set: h(T ) = PD(y = +1).

2.2 Evaluation of quantification methods

Evaluating the performance of a quantifier model is more complicated than for
other supervised learning models, as we already highlighted in Section 2.1.3. In
classification, an individual prediction for a test case can be determined right
or wrong independently of others, and the overall goodness of a method can be
estimated on a group of instances. In contrast, a quantifier outputs a single
prediction for a whole batch of test cases. This makes quantifier evaluation a
more complex task because we need a representative group of samples, otherwise
the performance of a quantifier will not be accurately estimated. This batching
requirement calls for a unique research methodology [Forman, 2008]. Two are the
principal conditions this methodology shall accomplish:

(i) a large number of test sample quantifier performance measurements should
be aggregated in order to avoid getting a biased estimation, and

(ii) all the prevalence domain should be represented within the collection of
testing samples, in order to account for the class distribution changes that,
by problem definition, may occur.

The methodology we have employed in this dissertation for assessing the
performance of our ensemble based quantifiers in Chapters 3 and 4 is the following.
As it was not available any test set from the dataset benchmark, we decided
to create artificial drifted testing sets. Under a cross validation framework, for
each test partition, we generated 100 test samples by random sampling with
replacement, in which the positive class prevalence p was randomly/uniformly
(respectively in Chapters 3 and 4) selected from 0% to 100%.

Given a collection of testing samples, {T1, . . . , Ts}, the performance of a quantifier,
h̄, is computed as:

Performance(h̄, L, {T1, . . . , Ts}) =
1

s

s∑
j=1

L(h̄, Tj), (2.5)

in which L(·, ·) represents a quantification loss function. In some cases, the
experimental design may require adapted versions of well-known validation
methods, like cross-validation [González et al., 2016a]. Usually L must compare
the predicted class distribution and the actual one.
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The next two sections are devoted to present a review of the quantification loss
functions that we have used in Chapters 3, 4 and 5.

2.2.1 Binary loss functions

First, let us to formally introduce the concept of prevalence, p, under the
framework of a binary problem. Table 2.1 shows a confusion matrix for a binary
problem, which describes the performance of a classifier on a test data set T whose
true values are known. P represents the actual number of positive examples on T ,
and N the count of negatives. The classifier is applied to the test set to estimate
its classes and we obtain P ′, the number of positive predicted examples, and N ′,
the number of negative predicted ones. TP , FN , TN and FP represent the count
of true positives, false negatives, true negatives and false positives.

Table 2.1: Confusion matrix for a binary problem

P N

P ′ TP FP

N ′ FN TN

(S = P +N = P ′ +N ′)

The true prevalence, p, of the test set can be obtained as:

p =
P

S
=
TP + FN

S
, (2.6)

end the estimated prevalence, p̂, as:

p̂ =
P ′

S
=
TP + FP

S
. (2.7)

In the case of binary quantification loss function, it is enough to compute the
difference between the predicted prevalence of the positive class, p̂, and the actual
prevalence, p.

Estimation bias

The estimation bias of a quantifier is computed as the estimated prevalence minus
the actual prevalence of the test set:

bias(h̄, T ) = p̂− p =
P ′ − P
S

=
FP − FN

S
. (2.8)
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This metric measures whether the model tends to overestimate or underestimate
the proportion of the positive class. According to Forman [Forman, 2008], this is
not a useful function to measure the overall performance of a quantifier over a set
of samples, since positive and negative bias may average out.

Mean Absolute Error (MAE)

The Absolute Error (AE ) [Forman, 2005, 2006, 2008] between the actual and the
predicted prevalence is defined as:

AE (h̄, T ) = |p̂− p| = |P
′ − P |
S

=
|FP − FN |

S
. (2.9)

Averaging it over a group of test samples we have:

MAE(h̄, {T1, . . . , Ts}) =
1

s

s∑
j=1

|p̂j − pj |. (2.10)

MAE has been traditionally the preferred loss function in binary quantification
because it is easy to interpret and simple to calculate.

Mean Squared Error (MSE)

As an alternative to AE , Bella et al. [2010] proposed to calculate the Squared
Error, SE , which is defined as:

SE (h̄, T ) = (p̂− p)2 =

(
P ′ − P
S

)2

=

(
FP − FN

S

)2

. (2.11)

Averaging it over a group of test samples we have:

MSE(h̄, {T1, . . . , Ts}) =
1

s

s∑
j=1

(p̂j − pj)2. (2.12)

WhileMSE is not as easy to interpret asMAE, it is more sensitive to large errors.

Kullback-Leibler Divergence (KLD)

Kullback-Leibler Divergence (KLD), also known as normalized cross-entropy
[Forman, 2008; Esuli and Sebastiani, 2010] can be applied in the context of
quantification. It can be defined for binary quantification as:
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KLD(h̄, T ) = p · log

(
p

p̂

)
+ (1− p) · log

(
1− p
1− p̂

)
. (2.13)

We shall extend the description of KLD in Section 2.2.2, as it is more frequently
used in multi-class environments.

2.2.2 Multi-class loss functions

Most of the binary quantification loss functions can be easily extended to multi-
class quantification.

The most widely used [Barranquero et al., 2013, 2015; Tang et al., 2010; Alaiz-
Rodríguez et al., 2008] loss function for multi-class quantification problems is
probably the Kullback-Leibler Divergence (KLD), previously described for the
binary case. KLD is a special case of a two classes of divergences, f-divergences
and Bregman divergences, and measures the non-symmetric difference between
two probability distributions, in our case [p1, . . . , pl] and [p̂1, . . . , p̂l]:

KLD(h̄, T ) =

l∑
j=1

pj · log

(
pj
p̂j

)
. (2.14)

KLD ranges from 0 (the optimum) to +∞ and has some advantages, for instance
that it is more suitable than other measures for averaging over different test
prevalences, but also some drawbacks, mainly that it is not a true metric because
it does not obey the triangle inequality and is not symmetric in general. It is worth
noting that KLD is not defined when the predicted prevalence, p̂j , of any class is 0
or 1, which can be especially common in cases where the number of classes is large.
In these cases, it is still possible to use the KLD loss function by normalizing it
via the logistic function, as proposed by Gao and Sebastiani [2016].

The other multi-class performance measure that we have considered in this
dissertation is the Mean Absolute Error (MAE). Its extension to multi-class
problems is defined as:

MAE(h̄, T ) =
1

l

l∑
j=1

|p̂j − pj |. (2.15)

A deeper discussion on quantification measures functions can be found in [González
et al., 2017].
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2.3 Characterizing data distribution changes

Our proposal in Chapter 3 assumes that there exist a series of problems or
applications in which data distribution changes between the training and test
phases. Moreover, for some of them, as it is the case of quantification, it is possible
to determine in advance which elements change, and which ones remain constant.
Thus, once the potential distribution changes have been defined, it is possible to
generate diverse training samples simulating them. This dissertation section is
aimed at giving a formal and detailed description about these data distribution
changing environments.

Supervised learning makes the assumption that the unknown distribution
P(X,Y), from where the examples are drawn independently and identically
distributed (i.i.d. assumption), does not change between the training and testing
or production phases. Or to state it differently, it is assumed that the training set
truly reflects the probability distribution of the problem. However, in practice,
this assumption gets often violated in real-world applications [Quiñonero Candela
et al., 2009; Storkey, 2009]. This situation is referred to as dataset shift in the
research community, and it takes place when P(X,Y) changes from training to
testing data [Kull and Flach, 2014; Moreno-Torres et al., 2012]. Characterizing
those changes in the distribution sometimes depend on the target application, and
even though it can be challenging in some cases, it is surprisingly simple, even
trivial, in other problems.

A categorization and a discussion about problems presenting distribution changes,
or using the current terminology, problems suffering from dataset shift, can be
found for instance in [Moreno-Torres et al., 2012; Kull and Flach, 2014]. Supervised
learning problems are defined by a set of covariates, x, a class variable, y, and the
examples are drawn at random from the joint probability distribution of both. To
better understand dataset shift it is important to realize how the data is generated
according to the causal relationship between covariates and the class variable, since
it determines the kind of changes in the distribution that a problem may suffer
from. In this sense, a taxonomy proposed in [Fawcett and Flach, 2005] identifies
two types of problems:

(i) X → Y in which the class value y is causally determined by the covariate
values x, and

(ii) Y → X where the covariates x causally depend on the class label y.

Spam detection constitutes an example of the first type of problems: the mail
content determines whether it is spam or not. On the other hand, medical diagnosis
problems are a typical example of the second; suffering from a determined disease
y cause a series of symptoms x to appear.
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Given an instance x and a class value y, their joint probability P(x, y) can be
written as P(y|x)P(x) in X → Y problems and P(x|y)P(y) in the case of Y → X
problems. Dataset shift arises when any of these elements change between training
and test, that is to say Ptr(x, y) 6= Ptst(x, y). Thus, several types of dataset shift
problems can be identified depending on the elements that change:

(i) covariate shift : P(x) changes but P(y|x) remains constant,

(ii) prior probability shift : P(y) changes but P(x|y) does not, and

(iii) concept shift (o drift): P(y|x) changes but P(x) does not (X → Y problems),
or P(x|y) changes but P(y) remains constant (Y → X problems).

Quantification problems constitute an obvious case of prior probability shift. In
fact, both terms refer to the same concept. In quantification class probabilities,
P(y), change by own definition of the problem. Otherwise, it would be a
straightforward task in which the optimal estimate would always be to predict
the original training test prevalence p. We do know that is not the case.

Let’s illustrate the prior probability shift situation with an example. A typical
application of quantification learning is to estimate the prevalence of positive and
negative opinions. Imagine that we want to track the opinions about a product
in Twitter during a period of time and give just an estimate on how many are
positives (and negatives), without predicting individual opinions (this would be a
classification task). In such a problem, when the class distribution P(y) changes
(e.g. the number of positive opinions increases), the opinions maintain the same
distribution when the class is fixed. The way in which users express their opinions
does not change from one day to another, there would be very good opinions using
strong words expressing that felling, moderately positive comments and so on.
When can assume in that case that P(x|y) is constant.

2.3.1 Ensembles to tackle dataset shift

In practice, there are many important applications suffering from distribution
changes to a greater or lesser extent. These kind of problems are interesting from
an ensemble learning point of view, because some of the aforementioned changes
can be easily characterized. In fact, our idea described in Chapter 3 makes the
most of these expected changes by replicating them into the weak ensemble models.

Although not directly comparable to our proposition, ensembles have been applied
before for problems that present a shift in the distribution [Kuncheva, 2004],
mainly in concept drift tasks [Widmer and Kubat, 1996; Žliobaitė, 2010]. The
main idea is to build an ensemble with models created at different moments in time
and the goal is to have at least one model representing each distinct concept. The
ensemble maintains a memory of models representing past concepts because some
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of them may become useful again in the future [Hosseini et al., 2013]. Different
strategies for training such ensembles can be employed, for instance, to divide
historical sequential data into non overlapping blocks [Wang et al., 2003; Tsymbal
et al., 2008; Karnick et al., 2008] or using different sized training windows [Stanley,
2003; Kolter and Maloof, 2007; Scholz and Klinkenberg, 2007]. The former group
of techniques are useful for sudden and incremental drifts, and the later implicitly
assume that once off sudden drift has happened. After the set of models is trained,
adaptivity is achieved by defining a combination or fusion rule. Basically, the
combination rule consists in assigning weights to the individual models at each
point in time. The weights express the expected competence of the model and
may depend on different factors, typically the estimated performance [Tsymbal
et al., 2008; Scholz and Klinkenberg, 2007] or historical performance in the past
[Karnick et al., 2008; Stanley, 2003; Kolter and Maloof, 2007].

However, our approach differs in several aspects with respect to these concept drift
methods. The first difference is due to the fact that the concept does not change in
quantification applications. For instance, the concept of what a positive opinion is
does not change for a given sentiment analysis problem. The ensembles in concept
drift tasks are usually designed to maintain a memory of models, representing
the evolution of the concept and allowing to reuse models that were obtained in
the past and are valid again. This approach is not aplicable for quantification
tasks because because the concept is always the same, there are no old and new
models in quantification. This is particularly true for Y → X problems for obvious
reasons. The second difference is that models for concept drift based on ensembles
are trained with successive samples. In our case, the samples are not given but
are generated according to the expected changes in data distribution.

2.4 Binary quantification methods

This section of the dissertation is devoted to provide an in-depth review of the
quantification base methods that have been used in the experimental sections of
Chapters 3, 4 and 5. We start by analyzing the most obvious way to quantification:
Classify and Count (CC). Then we review Adjusted Count (AC), the approach
proposed by Forman to reduce the systematic bias of CC. Following, we illustrate
the probabilistic versions of CC and AC, PCC and PAC, respectively. Finally,
we describe a conceptually different method, HDy, and briefly comment a series
of alternative quantification approaches that have not been employed in this
dissertation. Notice that multi-class quantifiers implemented in Section 5, are
based on these binary quantifiers, which have been extended to the multi-class
framework by applying the one-vs-all strategy (See Section 2.1.2).
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2.4.1 The intuitive way: Clasify and Count (CC)

From a practical point of view, the most intuitive way to quantification consists
in classifying each instance on a test set, and then counting the number of
examples belonging to each class. This method is referred to as Classify and Count
(CC) in the literature, and has already been proved to perform poorly [Forman,
2008]. Many practitioners still apply this method when facing quantification
tasks, ignoring more sophisticated quantification algorithms. More formally, the
procedure to classify and count is the following:

(i) a classifier is induced from the training set,

(ii) such classifier is used to classify a testing sample, T , and

(iii) the number of examples predicted as positives is counted in order to compute
p̂.

It is worth nothing that, by following this approach, a perfect classifier (the one
not making generalization errors) would lead to a perfect quantifier. However,
producing a perfect classifier is almost impossible or costly, especially in real-world
applications. Real-world concepts are usually complicated to induce, and special
purpose classifiers are costly to develop. Most of times an imperfect classifier is all
that is available. In that scenario, the underlying quantifier inherits the imperfect
classifier bias, which shall get magnified if the test class distribution changes from
the training set one.

The principal problem of such approach is that the induced classifier does not
take into account that the distribution may change, which, by problem definition,
will happen. In fact, CC performance tends to notably drop when p significantly
changes, by going down or up a high degree. The main reason is because the
underlying classifier will have a systematic bias, tending to produce false positives
or false negatives. As Forman demonstrated by his theorem (see [Forman, 2008],
page 169), the derived quantifier will underestimate the prevalence, p̂� p, when
p increases and the classifier tends to produce false negatives. And the opposite,
the quantifier will also overestimate p, p̂� p, when p decreases and the classifier
produces more false positives. Thus, it is impossible for CC to perform well in the
whole prevalence domain.

Figure 2.2 depicts this behavior for two different datasets. The perfect quantifier
is shown with the thick line and we can observe that CC (dashed line) only makes
perfect predictions for a certain value of p. CC underestimates the prevalence when
it increases from that point; and the other way around, CC tends to overestimate
the prevalence for lower values of p with respect to the optimal point. The CC bias
depends on the classifier accuracy. This behavior was studied by Forman [2008],
both theoretically (the aforementioned theorem), and analytically (see Figure 1,
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Figure 2.2: Bias of the CC approach when the prevalence varies. Testing sets with
different prevalences were generated by random sampling with replacement from
the original training set (spambase dataset on the left figure, and wine2 on the
right one; See Table 3.1 for more details on both datasets). Each result is the
average prediction of 100 sample sets with the same prevalence

page 166). In Section 3.3.3 we shall extend this experiment showing that proper
quantification methods, including the ensemble methods proposed in this work,
alleviate this issue.

2.4.2 Adjusted Count (AC)

Probably, the most popular quantification algorithm is the AC (Adjusted Count)
method. It was proposed by Forman [Forman, 2008] in order to reduce the
systematic bias that CC inherits from the underlying classifier. Its popularity is
due to the fact that AC is designed from an elegant and well-founded mathematical
derivation. Actually, the AC method is built on top of CC, in the sense that it
also uses a classifier and counts the examples belonging to each class. The AC
method starts estimating the class probability distribution using the CC approach.
Conceptually, the key aspect is that AC makes the learning assumption that
within-class probability densities, P(x|y), do not change, i.e. PT (x|y) = PD(x|y).
When such assumption holds, the prevalence of the positive class predicted in the
first step by the CC method depends on three elements: the actual prevalence p
and two characteristics of the underlying classifier, the true positive rate (tpr) and
the false positive rate (fpr):

tpr =
TP

P
, fpr =

FP

N
(2.16)

in which P and N represent the count of actual positives and negatives, while TP
and FP represent the count of true positives and false positives predicted by the
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model.

These two rates can be used to correct the prevalence estimation given by a
classifier. In fact, the probability of a classifier making a positive prediction,
p̂CC = P(h(x) = +1), in a binary problem can be expressed as a function of the
ground truth prevalence p:

p̂CC = P(h(x)=+1|y=+1)·P(y=+1) + P(h(x)=+1|y=−1)·P(y=−1)

= tpr · p+ fpr · n
= tpr · p+ fpr · (1− p).

The first term (tpr ·p) represents that CC only predicts as positives the tpr fraction
of the actual positives (p), but also classifies as positives the negative examples in
the second term (fpr · (1 − p)), that is, the fpr fraction of the negatives (1 − p).
Noting that both rates (tpr and fpr) do not change when P(x|y) remains constant:
the classifier will generate the same proportion of true positives and false positives,
independently of the fact that the probabilities of both classes vary.

The previous expression may be very useful if we are able to accurately estimate
tpr and fpr. Solving for p, the ground truth prevalence can be written depending
on p̂CC , tpr and fpr:

p =
p̂CC − fpr
tpr − fpr

. (2.17)

Therefore, in order to obtain a better estimation of the true prevalence p it will
suffice to:

(i) train a classifier using D,

(ii) estimate the tpr and the fpr of this classifier by using, for instance, a
validation set or cross validation over the training set,

(iii) classify and count the test examples towards obtaining p̂CC , and

(iv) obtain the true prevalence p by substituting the calculated values in (2.17).

The crucial step, which is the estimation of tpr and fpr, is usually performed using
cross-validation over the training set [Forman, 2008]. It is important to emphasize
that such estimations are independent of the distribution changes, since it was
assumed that P(x|y) remained constant. Notice that theoretically AC should
output perfect quantification estimates as long as this assumption is fullfiled.
However, in practice, inaccurate tpr and fpr estimations and/or the assumption
not getting satisfied often lead to imperfect quantifications.

The AC correction is, in general, applicable to any quantifier built on top of
a classifier, like in the case of quantifiers based on decision trees [Milli et al.,
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2013], on nearest neighbors [Barranquero et al., 2013], on structured classifiers that
optimize quantification measures [Barranquero et al., 2015] or even on probabilistic
classifiers, with the necessity of adapting the correction to the probabilistic domain
[Bella et al., 2010].

2.4.3 Probabilistic CC and AC (PCC and PAC)

Probabilistic Classify & Count (PCC) and Probabilistic Adjusted Count (PAC),
introduced in [Bella et al., 2010], are the probabilistic versions of CC and AC,
respectively. The key difference between both families of methods is that CC and
AC are usually implemented using a crisp classifier, while PCC and PAC requires a
probabilistic classifier. In binary quantification, this classifier generally returns the
probability of a given example being positive. Under such setting, PCC obtains
the prevalence of the positive class averaging the probabilities returned for all the
examples in the testing sample:

p̂PCC =
1

n

n∑
i=1

P(yi = +1|xi). (2.18)

Acknowledging that PCC may suffer from the same issues than CC, especially
when there are significant changes in the class probability distribution, the authors
propose a probabilistic version of AC, denoted as PAC here, that corrects the
estimate computed by PCC using a probabilistic variant of (2.17):

p̂PAC =
p̂PCC − FPpa

TPpa − FPpa
. (2.19)

The ratios TPpa and FPpa are estimated applying the following equations:

TPpa =

∑
i∈D+ P(yi = +1|xi)

|D+|
, (2.20)

FPpa =

∑
i∈D− P(yi = +1|xi)

|D−|
, (2.21)

in which D+ and D− denote the set of positive and negative examples in D,
respectively. TPpa and FPpa are therefore the averaged probability of the positive
examples and the averaged probability of the negatives. Both rates may be
estimated using the same procedures described above for the tpr and the fpr
in the AC method.

2.4.4 HDy

The following method, termed HDy [González-Castro et al., 2013], is totally
different to the previously commented approaches, since it does not rely on
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D
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Figure 2.3: HDy Training phase: a probabilistic classifier is learned and applied
to obtain the distribution of D

classifying, counting and correcting. Its core idea consists in measuring
distribution similarities. More precisely, HDy compares training and test
distributions, and seeks for the prevalence p̂ that would make the training
distribution, modified by p̂ and obeying that P(x|y) does not change, the most
similar to the test distribution.

In [González-Castro et al., 2013], the authors propose two different methods to
represent both distributions: HDx uses directly the feature vectors x, while HDy
employs the predictions of a probabilistic model induced from the training set. The
later not only outperforms the former, but it also has the advantage of working
in a space with a smaller dimensionality. In fact, the main advantage of HDx is
that it does not require a classification model, but its main limitation is that its
computational complexity increases with the number of features. Thus, the use of
HDx is unfeasible in high dimensional spaces.

In the case of HDy, its representational space has just L− 1 dimensions, being L
the number of classes. For a binary problem it has only one dimension: the model
predicts the probability of an example to belong to the positive class. The process
is quite simple: the range [0..1] is partitioned into b bins, and a histogram is built
with each classified example being assigned to one of the bins depending on its
probabilistic score. In the training stage, the probabilistic classifier and the actual
distribution of the training set are obtained (see Figure 2.3).

In the testing phase, the distribution of the test set is obtained following the same
procedure:

(i) computing the probabilistic scores of the testing examples using the
probabilistic classifier, and

(ii) calculating the corresponding histogram using the same number of bins b.

Then, the idea is to modify the training histogram to match the testing histogram
varying p̂. For instance, in the example depicted in Figure 2.4 in which red color
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represents the distribution of the positives, p̂ should decrease (and of course n̂ =
1− p̂ should increase in the same quantity) with respect to the prevalence of the
training set in order to match the testing distribution.

The strategy followed for modifying the original training set histogram is a simple
linear search. p̂ is moved over the range [0..1] in small steps and the histogram
associated is calculated applying the following equation:

|D′i|
|D′|

=

∣∣D+
i

∣∣
|D+|

· p̂+

∣∣D−i ∣∣
|D−|

· (1− p̂), (2.22)

in which |D+| is the number of examples in D belonging to the positive class
and

∣∣D+
i

∣∣ the number of positive examples in D belonging to the i-th bin. |D−|
and

∣∣D−i ∣∣ are analogously referred to the negative class. These components are
pre-calculated in the training phase (Figure 2.3).

Similarity between both histograms is measured with the Hellinger Distance
metric:

HD(D′, T ) =

√√√√ b∑
i=1

(√
|D′i|
|D′|

−

√
|Ti|
|T |

)2

, (2.23)

where D′ and T represent the modified distribution of the training set computed
using (2.22) and the testing distribution, respectively. |D′i| is the number of
examples of the modified distribution D′ belonging to the i-th bin and |D′| is
the training set cardinality. |Ti| and |T | refer in the same way to the test set
distribution.

Figure 2.4 schematically shows the testing phase of HDy. For the different values
of p̂ ∈ [0..1] considered, the Hellinger distance to the test set is calculated using
(2.23). The p̂ value minimizing the distance to the test set will be the estimated
prevalence. Note that, as all the bins of the train set distribution are altered
uniformly using p̂, the assumption of P(x|y) being constant is not violated.

2.4.5 Alternative approaches

As stated by Forman in Forman [2006], one of the main drawbacks of the AC
method is that it usually fails to deliver a reasonable performance when the training
class distribution presents a high imbalance. Under this circumstance, classifiers
tend to assign the majority class to the most of the instances, i.e. when the positive
class is scarce, the estimated tpr would be low, resulting in a small denominator
(tpr − fpr) in the correcting Equation 2.17. The smaller the denominator, the
bigger the correction, which could be risky. Forman proposes to train a linear
SVM classifier and to calibrate its threshold in order to increase the number of
true positives, even at the expense of getting many more false positives. The
objective is to reduce the variance on the tpr and fpr estimation, and to avoid
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Figure 2.4: HDy Testing phase: the test distribution is computed using again
the probabilistic classifier. The most important step is to compute a modified
distribution of D, varying p̂ in (2.22). Similarity between both distributions is
calculated using the Hellinger Distance (2.23)

small (tpr − fpr) denominators. A number of proposals are presented depending
on the concrete threshold selection policy: X, Max and T50. The Median Sweep
method obtains an estimation of Equation 2.17 at every threshold, and returns
the median of these estimates [Forman, 2006, 2008].

Contrasting with most of the methods we have reviewed so far, that are based
on classifying, counting and correcting, a number of alternative methods rely
on adapting the base algorithms to the quantification problem. The training
phase of these proposals is specifically devised for quantification estimation. A
multi-class quantification method called Quantification trees, based on decision
trees, is introduced in Milli et al. [2013]. A quantification measure is taking into
account in order to select the best possible split. Barranquero et al. [2013] study
the effectiveness of applying weighted nearest neighbor algorithms to the binary
quantification problem. They support the idea of NN algorithms allowing to
implement more efficient methods for estimating tpr and fpr in the training
step. A different idea, introduced by Esuli and Sebastiani [2010], consists in
optimizing a pure quantification measure in the training phase without taking into
account classification performance. A new measure, termed Q-measure, which
balances quantification and classification performance simultaneously is proposed
by Barranquero et al. [2015]. Including the aforementioned HDy algorithm,
another family of quantification proposals are based on matching the training
an testing distribution. They are usually comprised by a mechanism to represent
distributions, and a criterion to compare two given distributions. Representative
approaches include the Mixture Model [Forman, 2005], a method based on the
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EM algorithm [Saerens et al., 2002], and methods based on the Hellinger distance
(HDx and HDy) [González-Castro et al., 2013].

There exist a series of variations to the original formulated quantification problem.
Forman proposed several solutions for the cost quantification problem [Forman,
2006, 2008], quantification for regression methods have been mainly established by
Bella et al. [2013], and ordinal quantification has been tackled in Da San Martino
et al. [2016].
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Chapter 3

Designing Ensembles of
Quantifiers

From our point of view, the most important contribution of this dissertation is
to introduce a new problem context in which ensemble algorithms can take the
most out of its singular characteristics. These kind of problems, in which the
data distribution changes over time, are often referred to as dataset shift in the
research community. Taking into consideration the taxonomy describing those
data distribution changes presented in Section 2.3, we do claim that ensemble
learning can be an effective technique to deal with those emerging changes, as
long as it is possible to identify them beforehand. The reason is that each model
of the ensemble can be trained with a training set whose data distribution may be
different from the distribution of the original dataset; each ensemble weak model
will represent an specific and expected distribution change. From a conceptual
point of view, this approach obeys one of the main ensemble learning principles,
which is to build a collection of models with some kind of diversity [Banfield et al.,
2005; Dietterich, 2000b; Kuncheva and Whitaker, 2003; Brown et al., 2005].

This chapter describes our proposal to design and build ensembles representing
these expected changes in the distribution Pérez-Gállego et al. [2015, 2017c].
However, before we can keep moving on this subject, we need to specify which
kind of dataset shift problems we are aiming to solve at. It is necessary to delimit
which elements in P(x, y) are expected to change, and which ones remain constant.
We are focusing on Prior probability shift problems (also known as quantification
problems), in which by definition, class probabilities P (y) change. Formally, it
holds that Ptr(x, y) = Ptst(x, y), but Ptr(y) 6= Ptst(y). Our requirements are
decidedly satisfied by the quantification task since, by definition, data distribution
may change, and we are able to characterize and restrict ourselves to a certain
types of changes.

We also include in this chapter all the experimental evidence we have found to
support our ideas. More concretely, we have compared three well known quantifiers
(CC, AC and HDy), to its corresponding quantifier ensemble versions. For the
sake of simplicity in the experiment design phase, we have decided to focus only
on binary quantification problems (Section 2.1.1), which are a special case having
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the number of classes limited to two. However, in Chapter 5 we describe how we
have applied our idea to a multi-class real-world sentiment analysis quantification
problem.

Before going into details about designing and building ensembles of quantifiers,
we think that an introduction of the formal definition, notation, and a general
overview of the principal ensemble characteristics, might be beneficial for the
reader. We also expect it to be useful for better understanding why ensemble
learning is a well-suited technique for those problems in which the data distribution
changes, as it occurs in quantification.

3.1 A general view on ensembles

Ensemble learning consists in constructing a meta-model that results from the
combination of a set of individual models, using a particular aggregation rule.
Ensembles get benefited from the existent diversity in the model set, producing a
solution that implicitly represents some sort of agreement between the individual
models. From a practical point of view, they generally perform better than a
single-model solution [Bauer and Kohavi, 1999; Breiman, 1996; Freund et al., 1996;
Opitz and Maclin, 1999], although this cannot be guaranteed [Fumera and Roli,
2005]. An ensemble limits the risk of obtaining a particular bad response from a
single model; formally this is due to the fact that the ensemble tends to reduce the
variance of its base learning algorithm. Intuitively, the same idea is highly present
in the human decision making processes; a set of opinions is more rich than an
isolated opinion, especially when there exist a high degree of diversity within the
opinions.

3.1.1 Notation

Let us introduce some notation for ensembles under the framework of supervised
learning. Let X be an input space and Y an output space. There exist a training
set D = {(x1, y1), ..., (xn, yn)} drawn from an unknown distribution P(X,Y) from
the product X × Y. Usually each example, xi, is represented by an attribute
vector (xi,1, xi,2..., xi,d) and a target class yi that may belong to a discrete set in
classification problems or to R in the case of a regression problem. The objective is
to approximate an unknown function f : X → Y by generating a function h, called
hypothesis, defined into some hypothesis space H. To do so, many algorithms
search for the best single hypothesis h that approximates f taking into account
the training set D, the selected hypothesis space and a target loss function. In
contrast, an ensemble produces a hypothesis h resulting from the combination of
a set of m (weak) hypothesis {h1, h2, ..., hm}, in which each model hj is usually
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learned using a subsample Dj generated from D. The combination of the set of
hypothesis or models is performed by means of a particular aggregation strategy.

3.1.2 Aggregation and selection measures

Normally, an ensemble method has at least two main steps: 1) in the training
phase, the ensemble models are obtained using some base learning algorithm; and
2) in the prediction phase, the outputs of these models are combined to produce a
collective decision for each testing example. This fusion strategy mainly depends
on the learning task, being majority voting the predominant rule for classification,
and averaging for regression and probability estimation. In any case, ensemble
models can be treated equally or not, assigning a different weight to each one;
usually the weight is proportional to its accuracy or precision.

Ensemble model selection (also referred to as ensemble pruning by some authors
[Tsoumakas et al., 2009]) is a broadly studied subject in the literature [Caruana
et al., 2004; Tsoumakas et al., 2008; Britto et al., 2014]. The underlying idea
consists in, instead of aggregating all the ensemble models, choose an adequate
model subset, according to a defined selection or search strategy, yielding to a
better ensemble accuracy. Some studies reveal that ensembling many models may
be better that ensembling all of them [Zhou et al., 2002]. Ensemble selection
strategies can be categorized into static or dynamic. Static based approaches select
a fixed subset of models and discard the rest, which are not longer considered. On
the other hand, dynamic methods select a different model subset for each testing
example.

3.1.3 Diversity and accuracy

It is widely accepted in the literature that a necessary and sufficient condition
for an ensemble to be more accurate than any of its lone members is that the
models are enough accurate and diverse [Hansen and Salamon, 1990; Dietterich,
2000a]. By enough accurate we are referring to models that can do better than
just random guessing on unseen examples. The error rate of these weak models
should be < 1/2 (assuming a binary classification problem). Diversity implies
models making different generalization errors on new data points (uncorrelated
errors). Thus, the main characteristic of a well designed ensemble is that it is
able to reduce the bias and variance on its predictions because the various errors
of the models "average out". For example, the probability of a majority vote to
be wrong on an ensemble comprised of m hypothesis, is equal to the area under
the binomial distribution where more than m/2 hypothesis are wrong. Figure 3.1
depicts this case for two ensembles withm = 30 (left) andm = 50 (right), and each
hypothesis having an error rate of 0.3. The probability of m/2 or more classifiers
being simultaneously wrong at the same time (the ensemble being wrong) is 0.0169
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Figure 3.1: The probability that exactly m of 30 or 50 hypotheses (left/right) will
make an error, assuming each hypothesis has an error rate of 0.3 and makes its
errors independently of the other hypothesis

and 0.0024 respectively, which is much less that the individual error rate of the
models [Dietterich, 2000a].

Different strategies have been proposed with the objective of introducing diversity
into an ensemble. The most popular one is based on modifying the training set.
The learning algorithm is then executed multiple times over different training sets.
The most representative algorithms following this approach are Bagging [Breiman,
1996] and Boosting [Freund et al., 1996; Freund and Schapire, 1997]. Bagging uses
a random sampling with replacement strategy from the original set in order to
generate each training sample. This strategy is effective when the learners are
unstable and tend to be reactive to little variations within the input space, as in
the case of neural networks or decision trees. On the other hand, Boosting assigns
a weight to each original example. Iteratively, these weights are updated giving
more importance to the misclassified examples. The bigger the weight for an input
data point, the bigger the chance for it to appear in a new sample.

3.2 Designing ensembles for quantification

As we have already been discussing, there exist problems, like covariate shift or
quantification, in which we:

(i) are aware of the distribution changing between training and test,

(ii) are able to characterize the kind of changes to emerge, or at least,

(iii) can make a previous assumption about the nature of such changes.
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Therefore, the core idea in this dissertation contribution is that we can take
advantage of that knowledge to build ensembles with an appropriate diversity
that are prepared to effectively represent the expected changes in the distribution.
The ensemble learning task is separated into three phases:

(i) sample generation with each one representing an expected distribution
change,

(ii) model training on each generated sample, and

(iii) combination of the individual estimates to produce the final ensemble
prediction.

The most important step is certainly the first one, which must be adapted
depending on the dataset shift problem being tackled. In this dissertation chapter
we are showing a simple adaptation for the binary quantification problem. In other
cases, the adaptation may require from additional knowledge about the particular
application nature, as in the case of covariate shift, with P(x) being the changing
component. In the binary quantification case it is more straightforward. It is
important to keep in mind the learning assumption of the problem: quantification
mainly stands for Y → X problems with P(y) changing and P(x|y) remaining
constant. Once the expected distribution changes are defined, the goal is to
generate training samples a priori representing them, so it is possible to effectively
react to its presence. Thus, sampling is not aimed at correctly predicting concrete
examples, even though it is a characteristic to also be considered in the future,
but just at representing the expected distribution changes.

3.2.1 Sample generation, training and evaluation procedures

We propose the following procedure in order to generate each training sample.
First, the sample prevalence pj is randomly selected in [0..1]. Then, simple random
sampling with replacement is performed within the positive class examples until
the number of positive examples, given by the chosen prevalence pj , is obtained.
This process guarantees P(x|y) to be constant. The same operation is repeated
for the negative class, with its prevalence being equal to nj = 1− pj . By changing
the prevalence of each generated sample we obtain the desired diversity. This
procedure is repeated until the number of defined training samples m is reached.
Figure 3.2 describes this process.

The next step is to train the base quantifier algorithm over each generated sample.
In the case of the quantifier using the AC correction (2.17) it is necessary to
estimate the tpr and the fpr using each sample Dj . An important detail to
highlight is that the generated samples Dj should have an adequate number of
examples in order to be able to produce accurate estimates for tpr and fpr. In our

33



Chapter 3. Designing Ensembles of Quantifiers

D

D1 h1

D2 h2

D3 h3

Dm hm

p1=0.70

p2=0.15

p3=0.91

pm=0.33

Q
ua

nt
ifi

ca
tio

n 
Le

ar
ne

r

Sa
m

pl
in

g 
Pr

oc
es

s

Figure 3.2: Training stage of the ensemble. Each sample Dj is generated with a
different prevalence pj

case, we generate samples with the same cardinality as the original training set
but with a different prevalence in general.

Finally, given an unlabeled test set T , each ensemble learned model hj is applied
and an estimate of the test set prevalence, p′j , is obtained. The definitive ensemble
prediction is computed by applying a combination function. In the experiments
reported in this chapter we have just used a simple aggregation function, the
arithmetic mean. Nevertheless, we do think that using quantification devised
aggregation and selection measures may lead to significant improvements in the
ensemble accuracy. Chapter 4 is specially dedicated to analyze the benefits of
using quantification conceived aggregation and selection measures.

3.2.2 Benefits of using ensembles for quantification

We believe that applying ensemble techniques to the quantification problem results
in more benefits than its application in other kind of problems, like classification.
The advantage of using a combination of models instead of a single model, with
the risk of not performing well in some cases, is generic to every kind of problem in
which ensemble technique is applied to. However, in the quantification case there
are additional benefits.
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Figure 3.3: Prediction stage of the proposed ensemble for binary quantification.
Each model hj is applied over test set T , obtained different values for the estimated
prevalence (p′j) of T . These values are combined using a combination strategy to
obtain the final estimate p′

First of all, we actually know how to explicitly introduce diversity into the
ensemble. In the second place, using multiple models when the base quantifier
corrects its estimates leads to major improvements. The AC correction (2.17),
while theoretically produces perfect quantifications, is, in practice, risky. When
having inaccurate tpr and fpr estimates, the correction will cause inappropriate
changes. As we shall show in Section 3.3.2, AC manages to produce very accurate
results for some problems, while it significantly drops its performance for others.
It not only depends on the underlying classifier accuracy, but principally on the
correction quality. Using ensembles reduces both risks. Not only the diversity itself
results in an ensemble specific benefit, but also the combining strategy lessens more
risks than in a typical classification scenario.
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3.3 Experimental setting

The objective of the performed experiments was to empirically verify the
effectiveness of applying ensembles to a problem noticeably suffering from data
distribution changes, as it is the case of quantification. These experiments
compare the performance of a baseline quantifier, CC, and two state-of-the-
art quantification algorithms, AC and HDy, to the performance of its ensemble
adapted versions, ECC, EAC and EHDy. The aim is to improve the performance
of AC and HDy using ensembles.

3.3.1 Experimental design

We basically chose AC and HDy as quantifier representatives because they are
based on very contrasting approaches, thus increasing the study significance. On
the one hand, AC, as an emblematic quantification algorithm based on classifying
and counting with posterior estimate corrections using tpr and fpr. On the other
hand, HDy, even though it also makes use of a classifier to represent sample
distributions, it is based on measuring distribution similarities rather than in
classifying, counting and correcting. Additionally, other three ensemble-based
algorithms, named as CC(bag), AC(bag) and HDy(bag), were included in the
experiments to better study the influence of the design decisions made to propose
EAC and EHDy. These three methods use bagging [Breiman, 1996] as the
underlying classifier, applied with different base learners.

The compared algorithms can be grouped according to two different criteria.
The main criterion depends on the quantification approach: CC methods (CC,
CC(bag) and ECC), AC methods (AC, AC(bag) and EAC) and HDy methods
(HDy, HDy(bag) and EHDy). Notice that the differences between the algorithms
in the same group are due to the different classifier or approach being used.

But from another point of view, we can group the algorithms considering the
models they use. This is important for the fairness of the experiments. First,
we have those quantifiers that only need a single non-ensemble classifier. To this
group belong CC, AC and HDy. In the experiments all these methods share
the same underlying model in order to perform a fair comparison between them.
The second group is formed by CC(bag), AC(bag) and HDy(bag). The bagging
classifier is also the same. Finally, ECC, EAC and EHDy implement the ensemble
strategy proposed in this chapter, using samples with a different prevalence. Again,
the ensemble is composed by exactly the same models. Hence, the performance
differences between the algorithms in the same group, according to the second
criterion, are only due to the different way in which the predictions made by the
classifier are used; the differences between them are not due to the classifier.
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Table 3.1: Summary of datasets: n is the number of examples, d is the dimension
of the input space, P (N) the number of positive (negative) examples and p the
prevalence of the positive class

Dataset Identifier n d P N p

Balance Scale (left) balance.1 625 4 288 337 46%
Balance Scale (balanced) balance.2 625 4 49 576 8%
Balance Scale (right) balance.3 625 4 288 337 46%
Breast Cancer Wisconsin breast-cancer 683 9 444 239 65%
Contraceptive Method Choice (no use) cmc.1 1473 9 629 844 43%
Contraceptive Method Choice (long term) cmc.2 1473 9 333 1140 23%
Contraceptive Method Choice (short term) cmc.3 1473 9 511 962 35%
Cardiotocography Data Set (normal) ctg.1 2126 22 1655 471 78%
Cardiotocography Data Set (suspect) ctg.2 2126 22 295 1831 14%
Cardiotocography Data Set (pathologic) ctg.3 2126 22 176 1950 8%
Pima Indians Diabetes Data Set diabetes 768 8 268 500 35%
Statlog German Credit Data german 1000 24 700 300 70%
Haberman’s Survival Data haberman 306 3 81 225 26%
Johns Hopkins University Ionosphere DB ionosphere 351 34 126 225 36%
Iris Plants Database (versicolour) iris.2 150 4 50 100 33%
Iris Plants Database (virginica) iris.3 150 4 50 100 33%
Mammographic Mass mammographic 830 5 403 427 49%
Page Blocks Classification (5) pageblocks.5 5473 10 115 5358 2%
Phoneme phoneme 5404 5 1586 3818 29%
Semeion Handwritten Digit (8) semeion 1593 256 155 1438 10%
Sonar, Mines vs. Rocks sonar 208 60 97 111 47%
Spambase Data Set spambase 4601 57 1813 2788 39%
SPECTF Heart Data spectf 267 44 55 212 21%
Tic-Tac-Toe Endgame Database tictactoe 958 9 332 626 35%
Blood Transfusion Service Center Data Set transfusion 748 4 178 570 24%
Wisconsin Diagnostic Breast Cancer wdbc 569 30 212 357 37%
Wine Recognition Data (1) wine.1 178 13 59 119 33%
Wine Recognition Data (2) wine.2 178 13 71 107 40%
Wine Recognition Data (3) wine.3 178 13 48 130 27%
Wine Quality Red (6-10) wine-q-red 1599 11 855 744 53%
Wine Quality White (6-10) wine-q-white 4898 11 3258 1640 67%
Yeast yeast 1484 8 429 1055 29%

Datasets

The experiments were carried out over 32 datasets, specifically all of those used in
[Barranquero et al., 2013; González-Castro et al., 2013], except iris.1, acute.a and
acute.b (perfect quantifiers are obtained, so they are trivial problems), and coil,
lettersG and lettersH because the experiments did not finish in a reasonable time.
As we shall see in this description of the experimental setting used, the experiments
reported are quite complex due to several reasons, mainly the use of ensembles,
the grid-search applied for tuning the classifier parameters and the testing phase,
which is more time consuming than in classification problems, because we need
to estimate the prevalence for different test sets. The testing phase is even slower
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when using ensembles. Table 3.1 contains the characteristics of the finally used
datasets. Some of them are originally binary, while others are binary adaptations
of multi-class problems. For instance, iris.2 is a binary problem in which the
original class 2 has been mapped to the positive class, with the remaining classes
being mapped to the negative class. In all cases, the instances with missing values
were removed.

Base classifiers

We decided to use probabilistic base classifiers because HDy uses the scores
provided by the underlying classifier to represent the distributions. This decision
avoids unbounded predictions and homogenizes the obtained histograms. Such
histograms were generated with 8 bins. The results of HDy with other values for
this parameter were similar (with 4 bins), or worse (with 12 and 20 bins).

Three different base classifiers were employed to verify that the obtained results do
not depend on a particular classifier. Each base learner is applied in combination
with the nine compared methods. The selected learners were:

(i) Naïve Bayes (NB), the most classical probabilistic classifier,

(ii) Logistic Regression (LR), to induce linear models, and

(iii) SVM with the Gaussian kernel (RBF ) defined as

K(x,x′) = exp(−γ · ||x− x′||2), (3.1)

and probabilistic output Platt [2000] to produce non linear models.

Parameter tuning

In the case of LR and SVM-RBF, the regularization parameter (C) was
set through a search in C ∈ [10−3, . . . , 103], by optimizing the geometric
mean in binary classification using a 5-fold cross validation with 2 repetitions
(CV5x2). As regards SVM-RBF, the parameter γ was selected within the values
[0.001, 0.005, 0.01, 0.05, 0.1, 1] following the same procedure. NB uses gaussian
distributions to deal with numerical attributes.

The geometric mean of tpr and tnr (true negative rate), defined as

GM =

√
TP

P
· TN
N

, (3.2)

measures the ability of a classifier to balance sensitivity (accuracy on positive
examples) and specificity (accuracy on the negative examples). It was selected to
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deal with imbalanced datasets [Barandela et al., 2003], see details in Table 3.1.
Moreover, in the case of LR and SVM-RBF we equally weighted both classes by
using the −w parameter in LibLinear and LibSVM [Fan et al., 2008]. The weight of
each class multiplies the regularization parameter C, so both classes have the same
influence in the loss term of the optimization problem. Both decisions are tailored
at obtaining well suited classifiers even under important class imbalance scenarios,
a usual situation in quantification problems. Without class weighting, and by only
optimizing the classifier accuracy, both CC and AC performed significantly worse
and the difference with respect to the ensemble versions got accentuated, due to
the classifier tending to predict the majority class in most of the cases.

Evaluation procedure and loss functions

The estimation of tpr and fpr, a critical step for AC-based approaches, was
obtained through a 10-fold cross-validation over the training examples. Notice
that for EAC, each model of the ensemble requires to estimate its tpr and fpr.
The size of the ensemble approaches was set to m = 30. We decided to generate
samples Dj with the same size as the original training set D in order to be able
to get accurate estimates of the tpr and the fpr when needed. The prevalence pi
was randomly chosen in the interval [5%− 95%] for each sample. We deliberately
avoided values near 0% and 100% because in these points it may arise difficulties
when estimating both tpr and fpr, due to the lack of examples in one of the classes.
Given the selected prevalence pi, random sampling with replacement (to ensure
P(x|y) remains constant) was used to generate the number of examples required
for each class.

The results reported in the next section were obtained using 5-fold cross validation
with two repetitions (CV5x2). For each test partition 100 samples were generated
with replacement, in which the positive class prevalence p was randomly selected
ranging from 0% to 100%. Thus, each result in the tables represents the mean
of 1000 quantifications. The error metric represented is the mean squared error
(MSE). Similar results are obtained by analyzing the mean absolute error (MAE).

3.3.2 Experimental results

Table 3.2 shows the scores for each method using Logistic Regression as base
classifier. It is worth noting that EAC and EHDy obtains the best results overall,
not only better than those of their counterparts, AC and HDy, but also better than
the scores of the bagging methods (AC(bag) and HDy(bag)). Analyzing the results
from that point of view, it seems that the use of ensembles helps to produce a slight
improvement in performance, comparing AC vs AC(bag) and HDy vs HDy(bag).
This improvement is boosted when the proposals of this dissertation are applied,
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Table 3.2: Mean squared error using Logistic Regression as base classifier. The
score of the best performer in a group for each dataset is in bold

dataset CC CC(bag) ECC AC AC(bag) EAC HDy HDy(bag) EHDy
balance.1 0.0031 0.0031 0.0025 0.0025 0.0025 0.0021 0.0014 0.0013 0.0012
balance.2 0.1309 0.1436 0.1123 0.1833 0.2185 0.1328 0.3708 0.3298 0.1530
balance.3 0.0021 0.0021 0.0019 0.0010 0.0010 0.0010 0.0006 0.0006 0.0006
breast-cancer 0.0008 0.0010 0.0009 0.0007 0.0008 0.0006 0.0004 0.0004 0.0004
cmc.1 0.0436 0.0439 0.0451 0.0123 0.0121 0.0114 0.0118 0.0117 0.0105
cmc.2 0.0429 0.0429 0.0432 0.0164 0.0167 0.0148 0.0109 0.0107 0.0100
cmc.3 0.0521 0.0524 0.0538 0.0318 0.0281 0.0238 0.0184 0.0178 0.0156
ctg.1 0.0056 0.0056 0.0059 0.0016 0.0017 0.0013 0.0006 0.0005 0.0007
ctg.2 0.0092 0.0080 0.0110 0.0013 0.0010 0.0010 0.0010 0.0010 0.0011
ctg.3 0.0020 0.0025 0.0024 0.0011 0.0014 0.0013 0.0015 0.0017 0.0014
diabetes 0.0211 0.0208 0.0229 0.0102 0.0071 0.0066 0.0057 0.0051 0.0051
german 0.0274 0.0274 0.0300 0.0091 0.0094 0.0085 0.0070 0.0071 0.0075
haberman 0.0777 0.0757 0.0715 0.0780 0.0773 0.0662 0.0966 0.0856 0.0735
ionosphere 0.0152 0.0236 0.0213 0.0068 0.0088 0.0108 0.0131 0.0148 0.0185
iris.2 0.0448 0.0492 0.0438 0.0677 0.0765 0.0457 0.0329 0.0326 0.0189
iris.3 0.0018 0.0014 0.0015 0.0017 0.0009 0.0009 0.0017 0.0014 0.0011
mammographic 0.0168 0.0163 0.0148 0.0101 0.0077 0.0068 0.0048 0.0042 0.0044
pageblocks.5 0.0078 0.0077 0.0264 0.0046 0.0043 0.0052 0.0016 0.0016 0.0010
phoneme 0.0253 0.0255 0.0254 0.0017 0.0019 0.0018 0.0010 0.0009 0.0010
semeion.8 0.0070 0.0089 0.0082 0.0017 0.0024 0.0046 0.0054 0.0042 0.0037
sonar 0.0230 0.0250 0.0254 0.0357 0.0387 0.0187 0.0362 0.0333 0.0220
spambase 0.0079 0.0050 0.0047 0.0021 0.0004 0.0003 0.0002 0.0002 0.0002
spectf 0.0393 0.0407 0.0408 0.0424 0.0515 0.0278 0.0549 0.0475 0.0332
tictactoe 0.0480 0.0476 0.0492 0.0365 0.0369 0.0289 0.0203 0.0198 0.0172
transfusion 0.0471 0.0441 0.0446 0.0293 0.0239 0.0194 0.0214 0.0234 0.0230
wdbc 0.0066 0.0066 0.0063 0.0037 0.0033 0.0031 0.0023 0.0025 0.0024
wine.1 0.0042 0.0044 0.0037 0.0035 0.0038 0.0026 0.0024 0.0027 0.0021
wine.2 0.0094 0.0067 0.0052 0.0089 0.0057 0.0041 0.0058 0.0041 0.0038
wine.3 0.0016 0.0016 0.0014 0.0021 0.0020 0.0015 0.0009 0.0010 0.0008
wine-quality-red 0.0234 0.0232 0.0238 0.0082 0.0062 0.0069 0.0051 0.0044 0.0047
wine-quality-white 0.0333 0.0326 0.0328 0.0030 0.0027 0.0023 0.0017 0.0016 0.0015
yeast 0.0308 0.0316 0.0321 0.0088 0.0085 0.0072 0.0043 0.0045 0.0039
Average 0.0254 0.0260 0.0255 0.0196 0.0207 0.0147 0.0232 0.0212 0.0139
Average ranking 7.1875 7.2500 7.0625 5.5469 5.3125 3.5156 3.7500 3.1719 2.2031

as we can see analyzing the differences between AC(bag) and EAC and between
HDy(bag) vs EHDy.

If we focus on the comparison between the original quantifiers, AC/HDy, and
the ensemble adapted versions, EAC/EHDy, we can observe the ensemble versions
winning most of the times. With respect to the EAC vs AC comparison, the former
wins on 26 occasions, losses just 5 times and there is only one draw. As concerns
EHDy, it wins on 22 occasions to HDy, losses on 6 and there are 4 draws. A more
detailed examination reveals that ensemble versions defeats are usually produced
by small margins in low quadratic error problems, while, in contrast, in more
difficult problems generally they get the victory by relatively large margins. These
results are relevant since AC is supposed to produce, at least theoretically, perfect
quantifications independently of the classifier accuracy. However, in practice, the
correction (2.17) often works well in a range close to the training set prevalence,
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but its effectiveness drops as the test set prevalence moves away. Using ensembles
reduces the impact of this situation, since the training sample generation process
ensures all the prevalence domain to be represented within the ensemble models.

Finally, the trivial approximation of classifying and counting, provided by CC-
based methods, attains worse scores than the other approaches. This result is in
line with the experiments reported in the quantification literature, in which CC
is often outperformed by proper quantifiers. Notice that the performance of CC
does not improve even when an ensemble is used as classifier, in fact, the scores
of the three methods (CC, CC(bag) and ECC) are quite similar, but ECC obtains
the best ranking. The reason for such results is motivated by the CC approach
itself. When the classifier is not perfect, CC is only able to provide good estimates
for a small range of the prevalence, for the rest of the values the estimates are
worse. In the best scenario, bagging may improve the accuracy of a single logistic
regression model, but it cannot correct the weakness of the CC approach. This
behavior shall be analyzed graphically in the next section.

Statistical analysis

These results can be analyzed in different ways from an statistical point of view.
First of all, and following [García and Herrera, 2008], we have performed an
statistical comparison in two steps:

(i) a Friedman test rejects the hypothesis of all the methods performing at the
same level, and

(ii) pairwise comparisons using the Bergmann-Hommel test with α = 0.05
indicate that EHDy and EAC are significantly better than CC and AC.

The difference between EHDy and HDy is not significant though. Neither it is
between EAC and AC(bag), and between EHDy and HDy(bag). However, it
is important to note that all these comparisons are deeply influenced by the
inclusion of CC approaches, a group of algorithms that systematically perform
worse than the other methods, and especially because there exist dependencies
and correlations between the studied methods. Table 3.5 contains the complete
results of the Bergmann-Hommel test comparing EHDy and EAC with the rest of
the methods, considering both MAE and MSE.

Having in mind that our objective was to compare the ensemble adapted versions
to its original counterparts, Wilcoxon signed-rank test seems more appropriate
for the performed experiments. This test reveals that EAC performs significantly
better than AC (p = 0.0001), with the same behavior being found for EHDy with
respect to HDy (p = 0.0013). Table 3.6 shows the p-values for the comparison
with all the methods.
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Table 3.3: Mean squared error using Naïve Bayes as base classifier. The score of
the best performer in a group for each dataset is in bold

dataset CC CC(bag) ECC AC AC(bag) EAC HDy HDy(bag) EHDy
balance.1 0.0288 0.0090 0.0210 0.0135 0.0044 0.0025 0.0031 0.0016 0.0017
balance.2 0.2758 0.2758 0.0979 0.2758 0.2758 0.0935 0.2758 0.2758 0.2753
balance.3 0.0297 0.0085 0.0208 0.0082 0.0037 0.0020 0.0023 0.0019 0.0014
breast-cancer 0.0007 0.0007 0.0006 0.0007 0.0006 0.0005 0.0005 0.0005 0.0004
cmc.1 0.0672 0.0786 0.0498 0.0451 0.0266 0.0137 0.0147 0.0101 0.0097
cmc.2 0.1100 0.1223 0.0431 0.0307 0.0299 0.0126 0.0126 0.0120 0.0109
cmc.3 0.3391 0.3391 0.0641 0.3391 0.3391 0.0485 0.0211 0.0186 0.0147
ctg.1 0.0118 0.0119 0.0073 0.0026 0.0024 0.0018 0.0023 0.0016 0.0016
ctg.2 0.0125 0.0133 0.0089 0.0018 0.0014 0.0015 0.0022 0.0017 0.0018
ctg.3 0.0115 0.0148 0.0052 0.0035 0.0045 0.0030 0.0048 0.0045 0.0036
diabetes 0.0318 0.0360 0.0261 0.0133 0.0144 0.0076 0.0109 0.0090 0.0090
german 0.0852 0.0898 0.0396 0.0704 0.0196 0.0096 0.0166 0.0099 0.0094
haberman 0.2257 0.2895 0.0752 0.2689 0.2746 0.0573 0.0725 0.0856 0.0562
ionosphere 0.0119 0.0126 0.0105 0.0052 0.0055 0.0047 0.0054 0.0053 0.0054
iris.2 0.0054 0.0069 0.0043 0.0066 0.0078 0.0034 0.0035 0.0029 0.0026
iris.3 0.0099 0.0044 0.0044 0.0134 0.0047 0.0040 0.0052 0.0044 0.0040
mammographic 0.0148 0.0145 0.0137 0.0054 0.0056 0.0047 0.0046 0.0034 0.0037
pageblocks.5 0.0437 0.0530 0.0897 0.0162 0.0125 0.0905 0.0120 0.0146 0.1049
phoneme 0.0173 0.0178 0.0278 0.0012 0.0016 0.0011 0.0010 0.0010 0.0012
semeion.8 0.0098 0.0099 0.0072 0.0033 0.0026 0.0028 0.0046 0.0044 0.0030
sonar 0.0223 0.0234 0.0236 0.0235 0.0253 0.0147 0.0196 0.0141 0.0173
spambase 0.0072 0.0067 0.0062 0.0004 0.0005 0.0004 0.0004 0.0004 0.0004
spectf 0.0363 0.0341 0.0316 0.0391 0.0356 0.0295 0.0416 0.0394 0.0271
tictactoe 0.1083 0.0684 0.0619 0.1266 0.0322 0.0336 0.0249 0.0181 0.0171
transfusion 0.0703 0.1410 0.0519 0.0398 0.1165 0.0265 0.0316 0.0262 0.0203
wdbc 0.0027 0.0025 0.0022 0.0018 0.0017 0.0012 0.0014 0.0013 0.0014
wine.1 0.0011 0.0013 0.0010 0.0010 0.0014 0.0010 0.0009 0.0013 0.0009
wine.2 0.0016 0.0020 0.0018 0.0014 0.0021 0.0015 0.0017 0.0020 0.0017
wine.3 0.0010 0.0009 0.0008 0.0012 0.0009 0.0007 0.0009 0.0005 0.0006
wine-quality-red 0.0251 0.0229 0.0262 0.0078 0.0061 0.0053 0.0050 0.0062 0.0051
wine-quality-white 0.0367 0.0355 0.0367 0.0031 0.0032 0.0022 0.0024 0.0021 0.0024
yeast 0.0935 0.1018 0.0385 0.0269 0.0169 0.0068 0.0122 0.0077 0.0075
Average 0.0546 0.0578 0.0281 0.0437 0.0400 0.0153 0.0193 0.0184 0.0194
Average ranking 7.4531 7.6562 6.3125 5.6875 5.6562 2.6562 4.0312 3.1406 2.4062

Naïve Bayes and SVM with Gaussian kernel result analysis

Table 3.3 reports the experimental results when Naïve Bayes is used as probabilistic
classifier. On average, it seems that these results are a little bit worse than those
obtained using logistic regression, but the conclusions are similar. However, there
are two interesting changes. In this case, ECC performs much better than CC and
CC(bag). It also occurs in the comparison between EAC and AC(bag); now the
difference is significant.

Studying the ensemble versions results, they again outperform single quantifiers.
On the one hand, EAC wins 28 times, AC wins just 2 and there are 2 ties.
The difference between EHDy vs HDy is less pronounced, with 23 victories for
EHDy, 6 ties and 3 victories for HDy. Statistically analyzing the results by using
a Bergmann-Hommel test, we can see that EAC is significantly better than CC
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Table 3.4: Mean squared error using SVM with RBF kernel as base classifier. The
score of the best performer in a group for each dataset is in bold

dataset CC CC(bag) ECC AC AC(bag) EAC HDy HDy(bag) EHDy
balance.1 0.0000 0.0006 0.0003 0.0001 0.0005 0.0002 0.0002 0.0003 0.0002
balance.2 0.2701 0.2758 0.0337 0.3064 0.2758 0.0456 0.0713 0.1328 0.0613
balance.3 0.0001 0.0003 0.0003 0.0001 0.0002 0.0002 0.0001 0.0003 0.0001
breast-cancer 0.0006 0.0006 0.0005 0.0005 0.0004 0.0004 0.0004 0.0003 0.0003
cmc.1 0.0444 0.0447 0.0392 0.0063 0.0083 0.0099 0.0104 0.0100 0.0158
cmc.2 0.2283 0.2047 0.0495 0.0504 0.0461 0.0147 0.0216 0.0206 0.0164
cmc.3 0.1195 0.1328 0.0581 0.0404 0.0415 0.0236 0.0197 0.0180 0.0209
ctg.1 0.0103 0.0170 0.0082 0.0020 0.0034 0.0063 0.0073 0.0048 0.0041
ctg.2 0.0265 0.0416 0.0111 0.0025 0.0060 0.0097 0.0315 0.0186 0.0161
ctg.3 0.0142 0.0288 0.0064 0.0045 0.0051 0.0049 0.0200 0.0151 0.0055
diabetes 0.0488 0.0524 0.0309 0.0144 0.0161 0.0134 0.0406 0.0174 0.0265
german 0.0804 0.0797 0.0344 0.0174 0.0206 0.0095 0.0136 0.0115 0.0131
haberman 0.1971 0.1992 0.0684 0.1289 0.1304 0.0402 0.0714 0.0742 0.0547
ionosphere 0.0031 0.0043 0.0032 0.0024 0.0026 0.0023 0.0027 0.0033 0.0022
iris.2 0.0030 0.0032 0.0026 0.0032 0.0039 0.0022 0.0039 0.0039 0.0018
iris.3 0.0018 0.0051 0.0016 0.0018 0.0049 0.0011 0.0019 0.0033 0.0012
mammographic 0.0118 0.0131 0.0129 0.0038 0.0042 0.0040 0.0036 0.0034 0.0035
pageblocks.5 0.2900 0.2645 0.1735 0.2476 0.1576 0.1819 0.1743 0.2410 0.2019
phoneme 0.0094 0.0117 0.0076 0.0005 0.0005 0.0016 0.0024 0.0016 0.0026
semeion.8 0.0055 0.0113 0.0641 0.0007 0.0019 0.0621 0.0081 0.0058 0.1110
sonar 0.0106 0.0113 0.0107 0.0123 0.0144 0.0079 0.0083 0.0060 0.0105
spambase 0.0034 0.0034 0.0049 0.0007 0.0005 0.0012 0.0015 0.0010 0.0020
spectf 0.1213 0.1309 0.0529 0.1473 0.1796 0.0394 0.1025 0.0820 0.0508
tictactoe 0.0004 0.0009 0.0007 0.0004 0.0004 0.0003 0.0005 0.0006 0.0006
transfusion 0.3301 0.2884 0.0646 0.2981 0.1254 0.0520 0.0812 0.0762 0.0573
wdbc 0.0033 0.0033 0.0043 0.0021 0.0022 0.0023 0.0133 0.0131 0.0076
wine.1 0.0107 0.0297 0.0298 0.0150 0.0302 0.0206 0.0078 0.0108 0.0074
wine.2 0.0283 0.0291 0.0240 0.0195 0.0220 0.0179 0.0234 0.0271 0.0231
wine.3 0.0530 0.0793 0.0339 0.0296 0.0369 0.0305 0.0623 0.0540 0.0507
wine-quality-red 0.0215 0.0207 0.0291 0.0079 0.0073 0.0051 0.0053 0.0047 0.0066
wine-quality-white 0.0561 0.0567 0.0357 0.0018 0.0023 0.0027 0.0040 0.0027 0.0068
yeast 0.1087 0.1129 0.0358 0.0118 0.0131 0.0050 0.0080 0.0063 0.0068
Average 0.0660 0.0674 0.0292 0.0431 0.0364 0.0193 0.0257 0.0272 0.0247
Average ranking 6.4531 8.1094 5.8438 3.9219 4.7031 2.7656 4.8906 4.5469 3.7656

and its counterpart AC, while EHDy is also significantly better than these two
methods, but it is not with respect to HDy. After applying a Wilcoxon signed-
rank test, we found that EAC performs significantly better than AC (p = 0.00002),
and also EHDy with respect to HDy (p = 0.0002).

The situation changes when using SVM with RBF kernel as base classifier, see
the scores in Table 3.4. The ensemble versions still perform better than their
counterparts; EAC vs AC: 17 wins, 0 ties and 15 losses; EHDy vs HDy: 20 wins 2
ties and 10 losses. However, statistical tests reveal that the differences are no longer
significant. In the EHDy-HDy comparison, test results are near to be significant
though (p = 0.078). In our opinion, this behavior is explained by two facts:

(i) SVM with RBF kernel are complex models and the risk of overfitting
increases, and
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Table 3.5: Average ranking for all methods using different performance measures.
Symbols § y † indicate a significant difference (p < 0.05) between EAC and EHDy
and the corresponding method using a Bergmann-Hommel test, respectively

LR CC CC(bag) ECC AC AC(bag) EAC HDy HDy(bag) EHDy
MSE 7.1875§† 7.2500§† 7.0625§† 5.5469§† 5.3125† 3.5156 3.7500 3.1719 2.2031
MAE 6.9219§† 6.7500§† 7.2812§† 5.7344§† 5.6875§† 3.6094 3.5938 3.2344 2.1875

NB CC CC(bag) ECC AC AC(bag) EAC HDy HDy(bag) EHDy
MSE 7.4531§† 7.6562§† 6.3125§† 5.6875§† 5.6562§† 2.6562 4.0312 3.1406 2.4062
MAE 7.1562§† 7.0000§† 6.5312§† 5.9531§† 5.8125§† 2.9531 3.9688 2.9688 2.6562

SVM CC CC(bag) ECC AC AC(bag) EAC HDy HDy(bag) EHDy
MSE 6.4531§† 8.1094§† 5.8438§† 3.9219 4.7031§ 2.7656 4.8906§ 4.5469 3.7656
MAE 6.0938§† 7.8594§† 6.2500§† 4.0938 4.7344 2.9375 4.7188 4.4375 3.8750

(ii) SVM is not originally a probabilistic classifier, with the probabilities resulting
from an output post-process.

These circumstances have a negative impact on the stability of the results, leading
to some models with a poor performance on one hand, and accurate models on the
other, i.e. a greater model performance variance. Notice that CC and CC(bag)
with SVM-RBF are the worst performing algorithms by far considering the three
base learners.

Table 3.5 contains a summary of the obtained results for all the base classifiers
containing both the mean squared error (MSE), and the mean absolute error
(MAE). Interestingly, EAC and EHDy rank most of the times in the two first
positions. The only exception is when logistic regression is the base learner. The
reason is because HDy algorithm clearly outperforms AC in that case. There are
significant differences for Naïve Bayes and logistic regression, both for MSE and
MAE scores.

3.3.3 Graphical analysis

An additional experiment was performed in order to graphically analyze the
behavior of the quantifiers. The goal was to study the performance at specific
prevalence values. The differences with respect to the first experiment are twofold:
the number of subsamples generated for each test set, 210 instead of 100, and the
values of the prevalence that were used. In this case, only 21 different values were
considered, those nearest to [0:0.05:1]. Notice that sometimes it is impossible to
obtain some of these values depending of the number of examples in the test set.
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Table 3.6: The two proposed algorithms, EAC and EHDy, are statistically
compared with the rest of the methods using Wilcoxon sign-rank tests. The table
shows the p-value of each comparison

LR CC CC(bag) ECC AC AC(bag) HDy HDy(bag)

MSE EAC 4.097e-08 8.338e-07 1.495e-06 0.0001433 0.0011340 0.4564072 0.2536064
EHDy 1.287e-06 1.429e-07 3.174e-05 4.392e-05 5.642e-05 0.0013742 0.0018011

MAE EAC 6.519e-09 8.847e-09 4.417e-06 0.0002057 0.0006889 0.2099543 0.1497597
EHDy 1.727e-07 5.122e-08 6.379e-08 1.119e-05 7.716e-06 0.0012973 0.0016667

NB CC CC(bag) ECC AC AC(bag) HDy HDy(bag)

MSE EAC 7.517e-06 7.517e-06 2.011e-06 2.716e-05 7.653e-05 0.0083313 0.7420193
EHDy 9.761e-06 4.209e-07 6.045e-05 7.935e-05 4.050e-05 0.0002547 0.0110552

MAE EAC 1.287e-06 1.733e-06 5.122e-08 1.263e-05 4.570e-05 0.0803250 0.7719339
EHDy 1.733e-06 3.512e-06 7.716e-06 2.924e-05 2.479e-05 0.0002778 0.1206512

SVM CC CC(bag) ECC AC AC(bag) HDy HDy(bag)

MSE EAC 3.736e-05 6.302e-06 2.692e-05 0.1322391 0.0152215 0.0038533 0.0152188
EHDy 6.136e-05 2.312e-06 0.0148032 0.4388932 0.4890153 0.0786387 0.1681790

MAE EAC 5.433e-05 5.871e-07 6.905e-07 0.1396090 0.0341199 0.0038655 0.0146764
EHDy 0.0001472 3.512e-06 0.0058128 0.6378833 0.6511483 0.2241815 0.4773475

In that case, the nearest possible value is used. Hence, there are 100 results for
each prevalence (10 folds and 10 subsamples per fold, 210 divided by 21 prevalence
values). The next figures represent in different ways such results.

Figure 3.4 shows the bias error (defined as p−p′) of CC, AC, HDy, EAC and EHDy
over four datasets. Apparently, it seems that the overall performance of AC, HDy,
EAC and EHDy is quite good in terms of bias: the average value predicted is
near the true prevalence. But, notice that negative and positive biases cancel each
other in the computation of bias, thus the graphics do not show the magnitude of
the errors in both directions.

However, bias graphics allow us to observe two important facts. First, CC follows
the exact behavior analyzed theoretically by Forman in [Forman, 2008]: CC attains
a perfect quantification at one point of p, and from there, CC underestimates the
prevalence when p increases, and overestimates the prevalence when p decreases
from CC’s optimal point. The deviation with respect to the true prevalence
depends on the classifier accuracy. If the classifier is perfect, the bias is 0. But
the bias increases when the accuracy decreases. This occurs for spambase and
yeast datasets. The bias is smaller in the case of wine2, and tiny for iris3. The
big issue of CC is that it is almost impossible to obtain perfect classifiers for
real applications. The other interesting aspect of bias analysis is that ensemble
versions, EAC and EHDy, have more bias than AC and HDy, mainly in the tails.
This is in part due to the use of the mean as the aggregation strategy.
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Figure 3.4: Analysis of bias when the prevalence varies in [0:0.05:1]. The figure
compares five algorithms: CC, AC, EAC, HDy and EHDy. Each result comes from
the prediction average of 100 sample sets with the same prevalence

Figure 3.5 and Figure 3.6 represent the distribution of the predictions using
box plots. Each box plot comprises a group of 100 predicted test sets for each
prevalence. These graphics demonstrate that the quantification problem is more
difficult that it seems at first glance. The errors are lower in the case of spambase
and iris3 datasets (Figure 3.5), but quite big for yeast and wine2 datasets
(Figure 3.6). The most interesting fact in these graphics is that the variability
of EAC and EHDy is lower than that of AC and HDy. Notice that the body of
the boxplot is usually smaller, and also they often have shorter whiskers and less
outliers. For instance, these aspects can be easily observed in the case of EAC vs
AC over spambase dataset. This result is theoretically expected due to the use of
ensembles. It is well known that ensembles tends to reduce the variance of the
underlying classifier.
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Figure 3.5: The figure shows the distribution of the predictions for spambase (39%
of positives in the training set) and iris3 (33%) datasets using a box plot. The
horizontal lines represent the true prevalence for each group. Only four methods
are displayed: AC, EAC, HDy and EHDy. Such methods appear always in the
same order for each prevalence: first AC, then EAC, HDy is the third method and
the last one is EHDy
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Figure 3.6: The figure shows the distribution of the predictions for yeast (29%
of positives in the training set) and wine2 (40%) datasets using a box plot. The
horizontal lines represent the true prevalence for each group. Only four methods
are displayed: AC, EAC, HDy and EHDy. Such methods appear always in the
same order for each prevalence: first AC, then EAC, HDy is the third method and
the last one is EHDy
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Chapter 4

Selection measures for
ensembles of quantifiers

In the previous chapter of this dissertation we introduced the novel concept of
utilizing ensemble learning techniques to problems suffering from data distribution
changes between training and test phases. More specifically, we applied it to the
binary quantification problem in which, by definition, class probabilities change.
The core idea was to generate different training samples, one for each weak
quantifier, simulating the distributional changes we are expecting to take place
on the new test samples. The final ensemble prevalence estimation was simply
calculated by averaging all the base quantifier predictions. From here, we are
referring to this method as Ensembles of Quantifiers (EoQ).

We do think that the performance of EoQ can be significantly improved by using
more sophisticated aggregation strategies. These also includes consider using
some sort of quantification specific knowledge in order to construct the definitive
ensemble estimation. For example, it would be possible to give more importance to
those weak quantifiers whose training distribution is closer to the new test sample
distribution. This whole chapter of the dissertation is devoted to study quantifier
devised selection measures for EoQ. The idea is to select some potentially good
ensemble models instead of aggregating all of them. Our principal objective is to
analyze the relationship between the base quantifiers and the selection measures;
maybe the best select criterion depends on the base quantifier being used, or maybe
it is independent and we are able to find a single measure outperforming the rest.

In this chapter we are proposing three new ensemble selection criteria specially
devised for quantification [Pérez-Gállego et al., 2017a]. One of them is static in
essence and the other two are dynamic. We present an exhaustive study in which
we compare, for each considered base quantifier, the performance of applying
four different selection measures (the three new proposed ones, plus a baseline
criterion based on the quantifier accuracy). The results obtained by aggregating
all of the ensemble models (original EoQ) are also included. In fact, we extend
the experiments from the previous chapter by adding PCC and PAC as base
quantifiers.
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4.1 Designing selection measures for EoQ

There exist several ways of combining EoQ. In contrast to using all models
with the same importance, the main alternatives are ensemble weighting and
ensemble selection. The former consists in assigning different weights to the models
comprising the ensemble. The idea is that the best models contribute more to the
final prediction than the worst ones. The second method is based on selecting
the best subset of models, discarding the rest. It is worth noting that ensemble
selection is a particular case of the weighting strategy, in which the weights are
just 1 (selected) or 0 (discarded). Notice that they can be used together; selecting
the best models but combining them with different weights. From a conceptual
point of view, both approaches present a comparable complexity in the sense that
they may have the same elements:

(i) a selection/ranking criterion to assess and compare the model contribution
to the ensemble, and

(ii) a method able to assign the concrete weight to each model or to select the
best subset of models.

These two problems should be solved separately to reduce the complexity of
obtaining optimal EoQ [Ko et al., 2006]. In fact, assigning optimal weights is
a problem hard to solve and the search problem to find the best group of models
is NP-complete [Tamon and Xiang, 2000]: the searching space has 2m−1 different
non-empty subsets, being m the ensemble size.

Following the above reasoning, in this dissertation we have just focused on selection
measures/criteria: the main aim is not to obtain the best possible combination
strategy with optimal weights or with an optimal selection, but to study what
kind of criterion works better for selecting or ranking the ensemble models. The
selection/ranking criteria can be better analyzed if they work in isolation, without
an additional method to select models or to assign weights. Our main goal is
to study the quality of the rankings provided by different criteria. We shall
analyze, for instance, the performance of different subsets of models, increasing
the size by including first those models with highest ranking. Our primal interest
is to find out which is the best selection measure for some state-of-the-art base
quantifiers. The use of selection algorithms proposed in the literature, like hill-
climbing search [Caruana et al., 2004], clustering [Zhang and Cao, 2014], greedy
search [Partalas et al., 2008], weight thresholding [Krawczyk and Woźniak, 2016],
reinforcement learning [Partalas et al., 2009], genetic algorithms [Ruta and Gabrys,
2005], quadratic integer programming [Zhang et al., 2006] or hybrid methods [Lin
et al., 2014] is out of the scope of this dissertation.

We have considered two different groups of selection measures. The first group
leads to static ensemble selection, meaning that the same subset of models is used
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for all testing samples, discarding the rest. The second group allows dynamic
selection, that is, applying a different subset for each sample. Static selection
principal advantages are mainly that predictions can be delivered faster and less
memory is required to store the models. On the other hand, dynamic ensemble
selection allows a flexible structure of the ensemble and an adaptive behavior [Lin
et al., 2014].

4.1.1 Static measures: ACC and MAX

The most commonly used static selection measures are based on the
accuracy/precision of the models. The idea is straightforward: select the best
(strongest) models, discarding the worst (weakest) ones. This kind of selection
criterion is defined in terms of performance measures. For instance, accuracy is
a natural choice for classification problems: select the models with the highest
accuracy. We also apply here this approach, named as ACC, but adapted to
binary quantification. This means to use a binary quantification measure instead
of classification accuracy. In the experiments of this chapter, the models are
ranked and selected according to their MSE scores (2.12). It is worth noting that,
in addition to the selected performance measure, it is important to define the
validation process to estimate such errors. As it was discussed in Section 2.2,
in quantification, it is essential to employ a representative collection of samples
with a suitable range of prevalences. In our experiments, error estimation for each
model is made by using the training samples generated for the rest of models.

In this dissertation we propose a new selection criterion that it is related to ACC,
but adapted to the characteristics of some paradigmatic quantification algorithms.
This selection measure is called MAX, and is especially devised for AC and PAC
quantifiers. MAX was inspired by the method of the same name proposed in
[Forman, 2008]. The idea is to select those models that maximize the difference
tpr− fpr for the AC method and TPpa −FPpa for the PAC method. This means
that MAX measure prefers those models with a large value for the denominator
in the correction equations, (2.17) and (2.19). A smaller value in the denominator
implies a bigger correction, which it is risky. It is preferable a smooth correction,
in the sense that the prediction of CC/PCC is rather accurate and only needs a
small correction.

Notice that this criterion is somehow similar to ACC, but at the same time,
presents subtle differences that become relevant for imbalanced domains, in which
the class distribution is skewed, since examples of one class (usually the negative
class) appear much more frequently. For balanced domains, a model with a higher
accuracy will also have a high tpr and a low fpr, resulting in a large value for the
difference between both. But in an imbalanced situation, one model may have a
high accuracy, but a small value for tpr − fpr, for instance, if the model predicts
always the negative (majority) class (tpr = 0, fpr = 0).

51



Chapter 4. Selection measures for ensembles of quantifiers

4.1.2 Dynamic measures: Ptr and DS

The main characteristic of a quantification problem, the fact that data distribution
changes, makes that dynamic quantifier ensemble selection seems a much more
appealing approach than static selection. Our proposal is to select those models
that were trained using a training distribution more similar to the distribution
of the testing sample. The key issue is how to compare such distributions in
a computationally efficient manner, avoiding other complex approaches like, for
instance, density estimation [Silverman, 1986; Scott, 2015]. We propose two
different and novel criteria in this dissertation.

The first selection criterion assumes that both distributions are similar when the
prevalence of the positive class is also similar in both distributions. The problem
is that we know the prevalence of the positive class in the training distribution,
but we totally ignore the prevalence of the testing sample. This is precisely what
we want to estimate. Our idea is to use all the models in the ensemble to obtain
a first estimate of the prevalence for the testing sample. Then, in a second round,
we will rank the models according to the difference between the prevalence of
their corresponding training samples, and the first estimation obtained using all
the models. The aim is to select the models that are close to such first estimate,
discarding those that are far away.

This criterion, called Ptr in the experiments, seems very simplistic at first sight,
but is closely related to several formal algorithms, namely AC, PAC and HDy.
Actually, Ptr makes exactly the same learning assumption that those quantification
algorithms, that is, Ptr also assumes that P(x|y) does not change. When such
assumption holds, a change in the data distribution is only due to a variation in
the prevalence of the classes. Notice that HDy follows a similar idea when applies
linear search to obtain the value of the prevalence that makes the combination of
the positive distribution and the negative distribution most similar to the testing
distribution (2.22).

The second criterion, called DS (Distribution Similarity), is inspired in the HDy
algorithm. The idea is to compare the distribution of the y values for the testing
and the training samples. The procedure is analogous to the one described for
the HDy algorithm in Section 2.4.4. First, during the training phase, the training
distribution of each ensemble model is summarized computing the histogram of its
y values using the own model. The same y-histogram is computed for the testing
sample, and both histograms are then compared using the Hellinger distance
(2.23). The models are then ranked according to these distances. This procedure
is similar to the one depicted in Figure 2.4.

Notice that, from a computational point of view, Ptr and DS are very similar.
Both methods require to apply all models over the testing sample: in the former
case, to calculate a first estimation for the testing sample prevalence, and in the
latter, to obtain the distribution of the testing examples output values. Comparing
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these two approaches with ACC and MAX criteria, presented above, we find that
Ptr and DS are less efficient in the testing phase, because static approaches do
not require to make any calculation during the testing phase (the best models are
selected in the training phase). And for the same reason, ACC and MAX are
less efficient in the training phase, because they require to estimate quantification
accuracy or the difference between some rates (e.g. tpr − fpr).

4.2 Experimental setting

The experiments described here analyze the performance of the different selection
measures we presented and discussed in the previous section. The main goal is
to prove that selecting a group of models by applying these proposed criteria,
outperforms the straightforward approach of taking the average prediction of all
the ensemble models. Additionally, ensembles were built considering a group of
representative base quantifiers to extend the significance of the experiments. The
idea was to analyze whether the best criterion depends on the base quantifier or,
in contrast, one of the criterion prevails over the rest, independently of the used
quantification method.

4.2.1 Experimental design

We considered five different base quantification algorithms to learn the ensemble
models: CC, PCC, AC, PAC and HDy (see Section 2.4). The corresponding
ensemble versions shall be denoted as ECC, EPCC, EAC, EPAC and EHDy,
respectively. In this sense, this section extends the results reported in Section 3.3
by the addition of EPCC and EPAC. Notice that all these quantification methods
need an underlying classifier. We decided to use probabilistic classifiers for all of
them because some of the algorithms, namely PCC, PAC, require a probabilistic
classifier, and it is also preferable for others, like HDy. Additionally, this decision
allows us to ensure that all the ensembles are comprised by the same models for a
given dataset. Thus, despite we are just interested in studying the selection criteria
for each EoQ separately, the reader could also compare all ensembles methods with
the new selection measures.

Two distinct aggregation strategies were studied. First, we computed the average
prediction of all the models, that is, the strategy employed by original EoQ in the
previous chapter. This approach is denoted as ALL in the results. Our goal was
to analyze if these results can be significantly improved. The second strategy is to
select 50% of the models, just the best models given a new test sample, according
to the four selection measures we have presented in this chapter:

(i) ACC: selects those models with the highest quantification accuracy, or lowest
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error measure in terms of mean square error (2.12),

(ii) MAX: picks those models that maximize the denominator of equations (2.17)
and (2.19) depending on the base quantifier used: tpr − fpr for ECC and
EAC, and TPpa−FPpa for the probabilistic-oriented methods (EPCC, EPAC
and EHDy),

(iii) Ptr: chooses those models that were trained with a sample that had a similar
prevalence than that of the testing sample, and

(iv) DS: selects those models whose training distribution is most similar to
the distribution of the testing sample, measured in terms of the Hellinger
distance. Probabilities were discretized in 8 bins to compare both
distributions.

Datasets

Thirty two datasets were used in the experiments, exactly the same employed
in Section 3.3.1. Table 3.1 describes their main properties. Approximately half
of them are multi-class problems (balance, cmc, ctg, iris, pageblocks and wine) in
which one of the classes was mapped as the positive class and the others comprised
the negative class. The rest are originally binary problems. The most important
characteristic for binary quantification problems is the prevalence of the positive
class (last column in Table 3.1). Notice that this value ranges from 2% to 70%,
thus providing enough variability.

Base classifiers and parameter tunning

The probabilistic classifier employed was Logistic Regression [Fan et al., 2008].
The regularization parameter (C) was selected through a search in the interval
[10−3, . . . , 103], optimizing the geometric mean using CV5x2 (cross validation, 5
folds and 2 repetitions) over the training examples. As in the previous chapter,
geometric mean (3.2) was chosen to deal with imbalanced datasets which frequently
appear in quantification tasks. Besides, the positive class and the negative class
were balanced (−w parameter in LibLinear [Fan et al., 2008]) to obtain good
classifiers even for severe imbalanced cases. The estimates for (tpr, fpr) in (2.17)
and (TPpa ,FPpa) in (2.19) were obtained using CV10x1 over the training data.

Evaluation procedure and loss functions

The number of models to build the ensembles was set to m = 50. The procedure
for generating the training sample for each model was the following: the prevalence
of each training sample, pi, was uniformly selected from [5% − 95%], and then,
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the examples belonging to the sample were chosen using random sampling with
replacement (trying to maintain P(x|y) constant). The size of the sample was
always equal to the size of the original training set.

Results in Section 4.2.2 and Section 4.2.3 were computed with CV5x2 experiments.
101 samples were generated with each test fold in order to adequately measure
quantification performance. The prevalence of these samples varies uniformly
ranging from 0% to 100%. Thus, each reported result in the next sections
corresponds to the average of 1010 quantification tests. In order to study the
behavior of the considered approaches, we have chosen two of the measures
discussed in Section 2.2.1, MAE (2.10) and MSE (2.12).

4.2.2 Experimental results

Tables 4.1-4.5 show the MAE scores for the ensemble method using one particular
base quantifier and applying different selection measures. For instance, Table 4.1
reports the results using CC as the base quantifier. The difference between the
scores are just due to the selection strategies, because the ensemble models are the
same. It is worth noting that ALL is the worst approach in this case. All selection
approaches clearly boost the results of ALL. The best two methods are DS and
ACC. In fact, they obtain the best results in 28 out of 32 datasets; ALL is not the
best in any.

Table 4.2 shows the scores when PCC is the base quantifier of the ensemble method.
Here, it is clear that ACC is the best performer: not only it ranks first in terms
of average ranking, but it also obtains the best score for 25 datasets. The second
best approach is MAX: so it seems that, in this case, the static selection and the
criteria based on the performance of the underlying quantifiers are better than
dynamic selection and those measures based on distribution similarity. Again,
ALL does not obtain the best result in any of the datasets and is outperformed
by all selection approaches.

Table 4.3 contains the MAE scores for the ensemble method based on the AC
quantifier. Three approaches obtain similar results with this method: DS, ALL
and MAX. The difference between them is small, both in terms of average ranking
and the number of wins (13, 8 and 10 wins respectively). Interestingly, MAX
achieves better performance than ACC, something that did not happen with ECC
and EPCC. This could be somehow expected because MAX criterion was inspired
by the equation that defines the AC quantifier.

Table 4.4 shows the results for the EPAC ensemble. MAX is the selection function
that achieves the best average ranking, winning in 19 cases. This result is in
line with the one described before for EAC ensemble. It makes sense that MAX
outperforms other selection measures because it is designed for EPAC ensembles.
The results for the rest of the approaches are pretty similar, being DS the second

55



Chapter 4. Selection measures for ensembles of quantifiers

Table 4.1: Mean absolute errors using different selection functions for the ensemble
version of the Classify & Count (CC) quantifier. The best score for each dataset
is in bold

ECC - Ensembles of CC
dataset ALL ACC MAX Ptr DS
balance.1 0.0404 0.0417 0.0396 0.0397 0.0396
balance.2 0.3024 0.3116 0.3032 0.3042 0.2875
balance.3 0.0365 0.0373 0.0367 0.0359 0.0360
breast-cancer 0.0783 0.0757 0.0753 0.0624 0.0619
cmc.1 0.1809 0.1801 0.1808 0.1794 0.1778
cmc.2 0.1995 0.1982 0.1987 0.1981 0.1978
cmc.3 0.0624 0.0596 0.0620 0.0609 0.0605
ctg.1 0.0796 0.0749 0.0778 0.0803 0.0792
ctg.2 0.0379 0.0378 0.0377 0.0362 0.0361
ctg.3 0.1514 0.1492 0.1506 0.1502 0.1508
diabetes 0.1488 0.1470 0.1487 0.1429 0.1418
german 0.0983 0.0948 0.0962 0.0962 0.0956
haberman 0.2064 0.2030 0.2042 0.2090 0.2085
ionosphere 0.1307 0.1145 0.1247 0.1283 0.1269
iris.2 0.1766 0.1671 0.1731 0.1779 0.1701
iris.3 0.0232 0.0233 0.0253 0.0218 0.0215
mammographic 0.0237 0.0228 0.0229 0.0218 0.0217
pageblocks.5 0.1391 0.1218 0.1258 0.1451 0.1441
phoneme 0.0596 0.0478 0.0518 0.0643 0.0615
semeion.8 0.1337 0.1318 0.1332 0.1321 0.1315
sonar 0.1406 0.1327 0.1398 0.1308 0.1356
spambase 0.1795 0.1778 0.1790 0.1781 0.1782
spectf 0.1598 0.1580 0.1587 0.1498 0.1444
tictactoe 0.1865 0.1857 0.1862 0.1844 0.1827
transfusion 0.1703 0.1701 0.1704 0.1701 0.1702
wdbc 0.0625 0.0602 0.0633 0.0629 0.0631
wine.1 0.0443 0.0398 0.0461 0.0449 0.0442
wine.2 0.0538 0.0496 0.0549 0.0540 0.0526
wine.3 0.0210 0.0210 0.0223 0.0201 0.0197
wine-quality-red 0.1333 0.1326 0.1333 0.1315 0.1312
wine-quality-white 0.1462 0.1435 0.1454 0.1491 0.1473
yeast 0.1381 0.1343 0.1365 0.1362 0.1358
Avg. rank 4.1250 2.2500 3.5781 2.9375 2.1094
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Table 4.2: MAE results using different selection functions for the ensemble version
of the Probabilistic Classify & Count (PCC). The best score for each dataset is in
bold

EPCC - Ensembles of PCC
dataset ALL ACC MAX Ptr DS
balance.1 0.0861 0.0750 0.0755 0.0836 0.0847
balance.2 0.2609 0.2639 0.2631 0.2612 0.2587
balance.3 0.0575 0.0531 0.0539 0.0553 0.0554
breast-cancer 0.1416 0.1278 0.1278 0.1292 0.1272
cmc.1 0.2184 0.2155 0.2157 0.2175 0.2158
cmc.2 0.2302 0.2286 0.2287 0.2299 0.2293
cmc.3 0.0809 0.0767 0.0782 0.0789 0.0785
ctg.1 0.1044 0.0994 0.1003 0.1028 0.1020
ctg.2 0.0485 0.0473 0.0477 0.0462 0.0462
ctg.3 0.2076 0.2014 0.2016 0.2054 0.2072
diabetes 0.1932 0.1897 0.1903 0.1907 0.1885
german 0.1334 0.1280 0.1291 0.1322 0.1319
haberman 0.2276 0.2225 0.2226 0.2265 0.2287
ionosphere 0.1283 0.1169 0.1285 0.1209 0.1221
iris.2 0.2085 0.2008 0.2017 0.2056 0.2093
iris.3 0.0427 0.0378 0.0399 0.0393 0.0391
mammographic 0.0296 0.0271 0.0274 0.0276 0.0276
pageblocks.5 0.1166 0.1066 0.1089 0.1182 0.1168
phoneme 0.1192 0.0984 0.1042 0.1248 0.1199
semeion.8 0.1866 0.1813 0.1814 0.1841 0.1859
sonar 0.1893 0.1805 0.1829 0.1772 0.1835
spambase 0.2148 0.2128 0.2128 0.2145 0.2134
spectf 0.1913 0.1865 0.1871 0.1825 0.1817
tictactoe 0.2159 0.2138 0.2139 0.2154 0.2133
transfusion 0.2136 0.2097 0.2105 0.2142 0.2131
wdbc 0.0776 0.0723 0.0734 0.0753 0.0751
wine.1 0.0610 0.0548 0.0587 0.0588 0.0587
wine.2 0.0788 0.0693 0.0730 0.0768 0.0757
wine.3 0.0331 0.0277 0.0314 0.0312 0.0299
wine-quality-red 0.1756 0.1725 0.1731 0.1753 0.1738
wine-quality-white 0.1901 0.1862 0.1870 0.1922 0.1902
yeast 0.1814 0.1732 0.1761 0.1836 0.1801
Avg. rank 4.5625 1.4062 2.5156 3.5625 2.9531
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best method.

Table 4.5 contains the latest scores, those corresponding to EHDy ensembles. As
one could expect in this case, DS is the best criterion. However, the difference with
respect to ALL and ACC is small. The worst method is MAX, maybe because the
correction idea has nothing to do with EHDy ensembles.

Results for MSE are very similar to those previously discussed for MAE. The
complete MSE scores have been omitted but the average rankings and their
corresponding statistical analysis are included in the next section.

4.2.3 Statistical analysis

The obtained results may be analyzed using several statistical tests. First, we
compare all the methods together taking into account their average ranks [García
and Herrera, 2008]. This procedure comprises two steps:

(i) a Friedman test to reject/accept the null hypothesis (all approaches perform
equally well from a statistical point of view), and

(ii) a set of pairwise comparisons using the Bergmann-Hommel test to analyze if
one particular method is significantly better than other.

We are mainly interested in comparing ALL with the proposed selection measures.
The average rankings of all ensemble methods using MAE and MSE are presented
in Table 4.6.

The Friedman test rejects the null hypothesis (so there are significant differences
among the methods) except for EPAC (p = 0.3084) and EHDy (p = 0.2248), both
using MSE as the performance measure. Analyzing the pairwise comparisons using
the Bergmann-Hommel test (α = 0.05), we can observe that most of the significant
differences occur for ECC and EPCC: all the selection measures are significantly
better than ALL, except MAX when MAE is the performance measure, and Ptr

for MSE. For the rest of ensemble models (EAC, EPAC and EHDy), the only
significant difference is between ALL and ACC (MSE scores for EAC). There are
other cases in which the difference is close to be significant, for instance MAX
versus ALL (EAC and MAE, p = 0.057).

Regarding the rest of pairwise comparisons (not involving ALL), we see that
ACC is significantly better than other selection functions for ECC and EPCC
ensembles, for instance ACC is significantly better than DS, Ptr and MAX for
EPCC ensembles, but it is worse for EAC, EPAC and EHDy ensembles, e.g. ACC
is significantly worse than DS(EAC), MAX(EPAC). This suggests that ACC is
a better criterion for those quantifiers that are based on the classify and count
approach; more sophisticated quantifiers require other specific selection measures
like the ones proposed in the paper.

58



Section 4.2. Experimental setting

Table 4.3: Mean absolute errors using different selection functions for the ensemble
version of the Adjusted Count (AC) quantifier. The best score for each dataset is
in bold

EAC - Ensembles of AC
dataset ALL ACC MAX Ptr DS
balance.1 0.0371 0.0374 0.0349 0.0367 0.0368
balance.2 0.3284 0.3926 0.4067 0.3163 0.2970
balance.3 0.0252 0.0258 0.0257 0.0252 0.0252
breast-cancer 0.0559 0.0570 0.0598 0.0524 0.0521
cmc.1 0.0952 0.0947 0.0970 0.0950 0.0940
cmc.2 0.1186 0.1180 0.1122 0.1176 0.1167
cmc.3 0.0272 0.0271 0.0268 0.0283 0.0282
ctg.1 0.0254 0.0257 0.0254 0.0254 0.0253
ctg.2 0.0285 0.0289 0.0283 0.0284 0.0283
ctg.3 0.0662 0.0658 0.0663 0.0678 0.0666
diabetes 0.0692 0.0721 0.0692 0.0701 0.0702
german 0.0659 0.0677 0.0630 0.0683 0.0680
haberman 0.1929 0.1941 0.1892 0.1910 0.1880
ionosphere 0.0853 0.0915 0.0947 0.0891 0.0884
iris.2 0.1810 0.1857 0.1737 0.1782 0.1740
iris.3 0.0208 0.0213 0.0229 0.0208 0.0202
mammographic 0.0186 0.0194 0.0188 0.0192 0.0189
pageblocks.5 0.0535 0.0561 0.0527 0.0544 0.0546
phoneme 0.0128 0.0131 0.0130 0.0143 0.0139
semeion.8 0.0335 0.0341 0.0336 0.0331 0.0331
sonar 0.1072 0.1089 0.1092 0.1134 0.1105
spambase 0.0793 0.0798 0.0791 0.0799 0.0803
spectf 0.1165 0.1109 0.1193 0.1213 0.1159
tictactoe 0.1427 0.1426 0.1376 0.1423 0.1423
transfusion 0.1070 0.1082 0.1106 0.1087 0.1054
wdbc 0.0450 0.0455 0.0447 0.0452 0.0450
wine.1 0.0395 0.0389 0.0398 0.0402 0.0394
wine.2 0.0483 0.0479 0.0491 0.0508 0.0492
wine.3 0.0262 0.0261 0.0238 0.0239 0.0237
wine-quality-red 0.0637 0.0639 0.0647 0.0633 0.0632
wine-quality-white 0.0371 0.0371 0.0378 0.0377 0.0379
yeast 0.0672 0.0697 0.0699 0.0710 0.0681
Avg. rank 2.6875 3.5469 2.8438 3.4531 2.4688
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Table 4.4: MAE results using different selection functions for the ensemble version
of the Probabilistic Adjusted Count (PAC) quantifier. The best score for each
dataset is in bold

EPAC - Ensembles of PAC
dataset ALL ACC MAX Ptr DS
balance.1 0.0340 0.0338 0.0335 0.0332 0.0333
balance.2 0.3486 0.4748 0.4497 0.3253 0.3039
balance.3 0.0257 0.0262 0.0259 0.0257 0.0256
breast-cancer 0.0506 0.0511 0.0531 0.0475 0.0476
cmc.1 0.0843 0.0800 0.0808 0.0832 0.0840
cmc.2 0.0979 0.0980 0.0967 0.0981 0.0980
cmc.3 0.0240 0.0237 0.0235 0.0242 0.0241
ctg.1 0.0289 0.0294 0.0282 0.0285 0.0284
ctg.2 0.0311 0.0310 0.0305 0.0308 0.0307
ctg.3 0.0564 0.0559 0.0545 0.0553 0.0554
diabetes 0.0674 0.0680 0.0708 0.0681 0.0684
german 0.0521 0.0536 0.0516 0.0534 0.0534
haberman 0.2040 0.2096 0.1984 0.2023 0.2017
ionosphere 0.0784 0.0809 0.0884 0.0829 0.0825
iris.2 0.1660 0.1689 0.1662 0.1662 0.1652
iris.3 0.0288 0.0277 0.0283 0.0276 0.0269
mammographic 0.0179 0.0181 0.0178 0.0182 0.0181
pageblocks.5 0.0456 0.0459 0.0438 0.0473 0.0469
phoneme 0.0151 0.0130 0.0141 0.0188 0.0163
semeion.8 0.0311 0.0316 0.0309 0.0311 0.0311
sonar 0.1088 0.1092 0.1085 0.1097 0.1123
spambase 0.0865 0.0888 0.0856 0.0861 0.0864
spectf 0.1137 0.1129 0.1125 0.1142 0.1145
tictactoe 0.1233 0.1248 0.1189 0.1220 0.1221
transfusion 0.1150 0.1181 0.1103 0.1153 0.1166
wdbc 0.0409 0.0401 0.0413 0.0411 0.0410
wine.1 0.0407 0.0419 0.0402 0.0406 0.0405
wine.2 0.0550 0.0549 0.0524 0.0575 0.0560
wine.3 0.0253 0.0244 0.0243 0.0236 0.0234
wine-quality-red 0.0602 0.0597 0.0605 0.0590 0.0591
wine-quality-white 0.0336 0.0335 0.0327 0.0342 0.0343
yeast 0.0609 0.0616 0.0608 0.0631 0.0623
Avg. rank 3.1406 3.5000 2.1719 3.2344 2.9531
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Table 4.5: Mean absolute errors using different selection functions for the ensemble
version of the HDy quantifier. The best score for each dataset is in bold

EHDy - Ensembles of HDy
ddataset ALL ACC MAX Ptr DS
balance.1 0.0282 0.0277 0.0288 0.0281 0.0279
balance.2 0.3537 0.3573 0.3469 0.3312 0.3406
balance.3 0.0195 0.0197 0.0205 0.0201 0.0200
breast-cancer 0.0482 0.0478 0.0571 0.0422 0.0412
cmc.1 0.0783 0.0764 0.0813 0.0776 0.0776
cmc.2 0.0891 0.0889 0.0906 0.0894 0.0891
cmc.3 0.0210 0.0197 0.0223 0.0198 0.0198
ctg.1 0.0260 0.0260 0.0261 0.0252 0.0252
ctg.2 0.0266 0.0267 0.0268 0.0264 0.0262
ctg.3 0.0482 0.0483 0.0483 0.0476 0.0474
diabetes 0.0704 0.0673 0.0719 0.0657 0.0664
german 0.0501 0.0507 0.0506 0.0518 0.0518
haberman 0.1980 0.2107 0.1950 0.1926 0.1904
ionosphere 0.1221 0.0992 0.1151 0.1234 0.1207
iris.2 0.1221 0.1288 0.1267 0.1252 0.1221
iris.3 0.0229 0.0236 0.0227 0.0253 0.0246
mammographic 0.0162 0.0152 0.0149 0.0157 0.0156
pageblocks.5 0.0252 0.0255 0.0252 0.0256 0.0251
phoneme 0.0102 0.0101 0.0103 0.0100 0.0101
semeion.8 0.0239 0.0240 0.0241 0.0240 0.0240
sonar 0.1095 0.1088 0.1164 0.1105 0.1082
spambase 0.0785 0.0796 0.0772 0.0802 0.0799
spectf 0.1206 0.1207 0.1208 0.1193 0.1085
tictactoe 0.1047 0.1063 0.1012 0.1049 0.1047
transfusion 0.1160 0.1215 0.1101 0.1180 0.1148
wdbc 0.0363 0.0351 0.0387 0.0364 0.0362
wine.1 0.0328 0.0334 0.0334 0.0322 0.0325
wine.2 0.0440 0.0429 0.0425 0.0443 0.0432
wine.3 0.0177 0.0168 0.0181 0.0191 0.0180
wine-quality-red 0.0542 0.0543 0.0552 0.0543 0.0543
wine-quality-white 0.0320 0.0321 0.0325 0.0322 0.0322
yeast 0.0581 0.0559 0.0592 0.0582 0.0588
Avg. rank 2.8594 2.8438 3.7656 3.1719 2.3594

61



Chapter 4. Selection measures for ensembles of quantifiers

Table 4.6: Average ranking for all ensemble methods using MAE (top) and MSE
(bottom) as performance measures. Symbol † indicates that the selection function
in the corresponding column is significantly better than ALL using a Bergmann-
Hommel test (p < 0.05). Symbol § indicates the opposite

MAE average rankings
Algorithm ALL ACC MAX Ptr DS
ECC 4.1250 2.2500 † 3.5781 2.9375† 2.1094†
EPCC 4.5625 1.4062† 2.5156 † 3.5625† 2.9531 †
EAC 2.6875 3.5469 2.8438 3.4531 2.4688
EPAC 3.1406 3.5000 2.1719 3.2344 2.9531
EHDy 2.8594 2.8438 3.7656 3.1719 2.3594

MSE average rankings
Algorithm ALL ACC MAX Ptr DS
ECC 4.0156 2.1250† 3.5938 † 2.9531 2.3125 †
EPCC 4.6094 1.4219† 2.5156 † 3.4844† 2.9688 †
EAC 2.4531 3.6250 § 3.1250 3.1875 2.6094
EPAC 2.9219 3.4219 2.5938 2.9219 3.1406
EHDy 2.9688 3.1250 3.4688 2.8750 2.5625

However, the Bergmann-Hommel test discussed before presents some issues
[Benavoli et al., 2016], basically because it depends on the set of compared
methods: the outcome of the comparison between a pair of approaches also
depends on the performance of the rest of the methods included in the study. This
problem can be even worse in our experiments because some of the approaches are
correlated (ACC and MAX, and DS and Ptr). Following [Benavoli et al., 2016] we
perform multiple comparisons using the Wilcoxon signed-rank test. The obtained
p-values are shown in Table 4.7.

The Wilcoxon tests confirm that all the selection functions are significantly better
than ALL for ECC and EPCC, both for MAE and MSE. This includes MAX for
CC ensembles, whose difference was not significant using the Bergmann-Hommel
test. However, the most interesting results from our point of view are that:

(i) MAX significantly outperforms ALL for ensembles based on PAC,

(ii) DS also significantly improves the scores of ALL for HDy ensembles, and

(iii) ALL is significantly better than ACC for EAC ensembles.

The first two results point out that ad-hoc criteria, specifically designed to work
with a concrete quantifier, can help to boost the performance of the ensemble
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Table 4.7: p-values for the comparison between ALL and the proposed selection
functions using the Wilcoxon signed-rank test

ECC ACC MAX Ptr DS
MAE 0.000069 0.012080 0.034120 0.000381
MSE 0.000044 0.006810 0.079819 0.000633

EPCC ACC MAX Ptr DS
MAE 0.000002 0.000002 0.000641 0.000008
MSE 0.000005 0.000008 0.002938 0.000031

EAC ACC MAX Ptr DS
MAE 0.004080 0.537180 0.180012 0.658280
MSE 0.004387 0.316767 0.626407 0.834729

EPAC ACC MAX Ptr DS
MAE 0.099776 0.016635 0.975385 0.945307
MSE 0.266549 0.015474 0.903040 0.637021

EHDy ACC MAX Ptr DS
MAE 0.929713 0.263913 0.940368 0.026648
MSE 0.577523 0.745263 0.483749 0.084681

methods. MAX criterion is defined to prefer those models that maximize TPpa −
FPpa which is the denominator of the correction formula (2.19) of PAC models.
Therefore, it is reasonable that the performance of MAX for EPAC is good. Even
more interesting is the case of the combination of EHDy and DS. The idea behind
HDy quantifiers is to match the test distribution with the training distribution.
Thus, it makes sense that best models in the EHDy ensemble are those trained
with a distribution similar to the test distribution. In fact, EHDy with DS obtains
the best overall results. If we perform Wilcoxon signed rank tests between the
best method for each ensemble we obtain that: EHDy-DS is significantly better
for MAE than: ECC-DS (p = 5.771e−06), EPCC-ACC (p = 1.603e−05), EAC-DS
(p = 0.0011) and EPAC-MAX (p = 4.392e− 05); and for MSE is also better than
the rest with the following p-values: ECC-ACC (p = 2.313e − 06), EPCC-ACC
(p = 2.313e − 06), EAC-ALL (p = 0.00941) and EPAC-MAX (p = 0.0009569).
Be aware, however, that these differences are not just motivated by the selection
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measure, but by the combination of both elements.

4.2.4 Analysis of the selection strategy

The results discussed in the previous section were obtained selecting the 50% of
the models. The main question regarding this policy, is what is the behavior of
the ensemble methods when this percentage varies. The goal of this section is
to graphically analyze this issue. Figures 4.1-4.20 show the performance for the
ensemble method using one particular base quantifier and varying the percentage of
selected models between 2% (using just the best model) and 100% (ALL strategy).
The selection measure applied for each ensemble was the best performer in the
previous experiment. For instance, Figures 4.1-4.4 depict the MAE scores using
the combination of ECC ensembles and DS selection measure for all the benchmark
datasets. The difference between the scores are just due to the ability of the
selection measure to rank the best models of the ensemble.

By analyzing the results for the ECC-DS combination (Figures 4.1-4.4), we can
observe that taking just the best model (2%) or averaging all of them (100%),
achieves bad results: the best model rule wins just in 4 datasets (balance2, ctg2,
ionosphere and wine3 ) and ALL in 3 cases (iris2, wdbc and wine1 ). The most usual
behavior is that the scores tend to improve when the percentage of selected model
increases from 2% until some point, in which the minimum (best) score is obtained.
From that point the scores degrade again. This pattern occurs in 19 out of 32
datasets. A paradigmatic case is, for instance, the figure corresponding to balance1
dataset. The position of the minimum depends on the problem: sometimes is
reached early, between 10% and 30% (e.g. breast cancer), most of the times in
the middle of the range, but it hardly happens for values greater than 70% (such
cases mostly correspond for the datasets in which ALL is the winner rule).

Figures 4.5-4.8 show the graphs for the EPCC-ACC method. These results are
quite surprising and totally different from those observed for the rest of the
ensemble methods. In the most frequent pattern, the minimum is reached with
the best model, and the scores degrade from there, almost linearly, when the
percentage of selected models increase. This occurs in 26 datasets. There are
other 4 cases (ionosphere, iris3, semeion and spectf ) in which the pattern is quite
similar and the difference is that the minimum is reached when taking between
10% and 25% of the models. Only 2 datasets show a clearly different behavior
(balance2 and ctg3 ). These results suggest that EPCC ensembles contain many
bad PCC models, probably because it is difficult to provide good probabilities for
some domains.

Figures 4.9-4.12 contain the results of the ensemble method based on AC
quantifiers selecting the models using the DS criterion. Here, we observe that
taking all the models produces good results in more cases than in the two previous
methods. ALL rule attains the best result in 6 datasets (cmc1, german, ionosphere,
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Figure 4.1: MAE scores selecting a different percentage of models using ECC-DS
(part I)
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Figure 4.2: MAE scores selecting a different percentage of models using ECC-DS
(part II)
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Figure 4.3: MAE scores selecting a different percentage of models using ECC-DS
(part III)
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Figure 4.4: MAE scores selecting a different percentage of models using ECC-DS
(part IV)
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Figure 4.5: MAE scores selecting a different percentage of models using EPCC-
ACC (part I)
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Figure 4.6: MAE scores selecting a different percentage of models using EPCC-
ACC (part II)
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Figure 4.7: MAE scores selecting a different percentage of models using EPCC-
ACC (part III)
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Figure 4.8: MAE scores selecting a different percentage of models using EPCC-
ACC (part IV)
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pageblocks, sonar and spambase) and its score is very close to the minimum in
another 6 (ctg2, diabetes, haberman, iris2, spectf and wine2 ). Despite the behavior
is somehow unstable (different patterns with no one clearly prevailing), we can
identify a pattern that occurs in near half of the cases. We called it the “L”
pattern: it starts with a bad result for the best model (2%), then the scores
improve rapidly achieving the minimum around 30%, and then the curve remains
almost flat from that point. This happens for approximately half of the datasets.

Figures 4.13-4.16 the scores of the EPAC methods using the MAX selection
function. The performance of ALL is similar to the case of EAC ensembles: it
is the best performer in 4 domains (balance2, german, iris2 and semeion) and
achieves very good scores in another 10 datasets (balance3, cmc3, ctg1, diabetes,
iris3, phoneme, wdbc, wine1, wine quality red and white). However, here the “L”
pattern appears more frequently. This implies that most of the models in an
ensemble based on PAC quantifiers should be reasonably good. These results can
be explained by the fact that PAC quantifiers should be much better than the
corresponding PCC methods due to the correction procedure. Recall that EPCC
and EPAC use the same models. Nevertheless, there are also a few domains in
which ALL performs quite poorly, noticeably ctg3, pageblocks, spampbase, tictactoe,
transfusion and wine3.

Finally, Figures 4.17-4.20 contain the results of the combination of EHDy and DS.
Here, the “L” pattern is again present in more than half of the graphs. As we
have observed, this kind of behavior tends to appear more often for the ensembles
based on sophisticated quantifiers (AC, PAC and HDy) than for those based on
the classify and count approach (CC and PCC).
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Figure 4.9: MAE scores selecting a different percentage of models using EAC-DS
(part I)
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Figure 4.10: MAE scores selecting a different percentage of models using EAC-DS
(part II)
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Figure 4.11: MAE scores selecting a different percentage of models using EAC-DS
(part III)
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Figure 4.12: MAE scores selecting a different percentage of models using EAC-DS
(part IV)
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Figure 4.13: MAE scores selecting a different percentage of models using EPAC-
MAX (part I)
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Figure 4.14: MAE scores selecting a different percentage of models using EPAC-
MAX (part II)
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Figure 4.15: MAE scores selecting a different percentage of models using EPAC-
MAX (part III)
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Figure 4.16: MAE scores selecting a different percentage of models using EPAC-
MAX (part IV)
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Figure 4.17: MAE scores selecting a different percentage of models using EHDy-DS
(part I)
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Figure 4.18: MAE scores selecting a different percentage of models using EHDy-DS
(part II)
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Figure 4.19: MAE scores selecting a different percentage of models using EHDy-DS
(part III)
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Figure 4.20: MAE scores selecting a different percentage of models using EHDy-DS
(part IV)
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Chapter 5

Applying ensembles of
quantifiers to the sentiment

analysis problem

In Chapter 3 we introduced the idea of ensemble learning being an adequate
approach to solve those problems with some kind of shift in the distribution,
as long as it is possible to determine which factors change in advance. We
described our proposal, EoQ, and experimentally showed that in most cases it
significantly outperforms other state-of-the-art quantifiers (the own ensemble base
quantifiers), over a principally academic group of datasets. Then, in Chapter 4 we
improved EoQ by designing specially quantification oriented selection measures.
The idea was to select a subset of models according to a defined measure, instead
of getting the final estimation by aggregating all the model predictions, like in
original EoQ. The next logical step in this dissertation was to experimentally
check the effectiveness of our propositions in a real-world problem and application.
With that objective, we are applying EoQ to the sentiment analysis quantification
problem.

Quantification of user generated opinions in social media constitutes an interesting
task, not only in social science related fields, but also to economics and
business. Practitioners have been routinely tackling these applications following a
suboptimal approach, applying the so-called Classify & Count method, in which
the examples are classified using an off-the-shelf classifier and then counted to
compute the number of positive and negative opinions. As we have discussed
in Chapter 2, this approach is usually outperformed by proper quantification
methods.

This chapter is fully dedicated to compare the performance of EoQ, together
with the selection measures we defined in the previous chapter, to the one
of current state-of-the-art quantifiers in the context of sentiment analysis
quantification [Pérez-Gállego et al., 2017b]. Given that it is a multi-class
problem, in its more generic form the class variable domain is defined within
{Positive,Neutral,Negative}, we have the opportunity to extend and to evaluate
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EoQ in a multi-class environment. We have chosen the one-vs-all decomposition
method (see Section 2.1.2) in order to adapt the binary quantification methods to
the multi-class requirements, where each comment is labeled as Positive, Negative
or Neutral. The last four SemEval competitions have been used as benchmarks,
and we have found that ensembles behave as good as in other learning problems,
combining robustness, stability and a competitive performance.

Next, we are introducing the general framework of sentiment analysis problems,
and then we give a more detailed view on tackling this task via quantification. All
the details regarding our experimental settings are presented afterwards, including
the dataset specifications and our experiment design decisions. We finalize by
discussing the obtained results.

5.1 Sentiment Analysis

During the last years we are assisting to an intense web transformation process. It
is no longer a mere static information repository but a dynamic system in which
users have become the main content contributors. They actively participate in
sharing their opinions, thoughts and views about products, events and almost
anything in social networks, forums, blogs, etc. With the latest advances in
mobile technologies, users can actually interact anytime from anywhere; real time
information has become a reality. All these mixture of social networks, discussion
groups, forums and blogs are collectively called the user-generated content [Liu,
2010a]. It is a new source of information that noticeably represents the word-of-
mouth behavior that is present on the Internet.

It has many practical applications and has a potential major value from both
the user and business points of view. On one hand, knowing other user opinions
is useful when having to take a decision in our daily life. We can learn from
other user experiences who have already faced the same situation or decision in
the past (wisdom of crowds). On the other hand, it is an invaluable information
source about user preferences and tastes. A key circumstance is that users on the
Internet share their opinions by their own free will, without expecting anything
in return and without coercion. Due to the large and diverse number of opinion
sources, it appears the necessity of systems able to automatically discover, analyze
and summarize the expressed sentiment in the so-called user-generated content.
Sentiment Analysis grows out of this need.

Sentiment analysis is the computational study of people’s opinions, appraisals, and
emotions toward entities, events and their properties [Liu, 2010b]. The objective
is to determine the text author’s attitude, whether (s)he is giving an opinion
about an entity/event, expressing an emotional state (s)he is in, or on the other
hand trying to cause that state on the text reader. An opinion is considered as a
positive or negative sentiment expressed by a user on a entity or event, by means
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of a written commentary. Over the past few years this problem has attracted the
attention of both, research in academia, and applications in business and industry.
The principal reasons are that on one hand it is a very challenging problem from
the research point of view (leading to a potential high number of publications),
and on the other it offers a wide range of practical applications.

Sentiment classification can be divided into several specific subtasks [Esuli and
Sebastiani, 2005]:

(i) Determining subjectivity, consists in separating texts with factual
information from texts with opinions. It is a binary classification task with
classes being whether Objective or Subjective [Wiebe, 2000; Wiebe et al.,
2004; Yu and Hatzivassiloglou, 2003].

(ii) Determining polarity, from a subjective text, determine whether the
expressed opinion is positive, negative or a mixed one [Pang et al., 2002;
Turney, 2002; Dave et al., 2003]. It is a binary or multi-class classification
task depending on the consideration of the neutral class. Each instance is
labeled as Positive or Negative, and in some problems it is also considered
the Neutral class.

(iii) Determining the strength of polarity, consists in quantifying the degree of
the sentiment. It is a multi-class problem with classes usually following a
range like: weakly positive, mildly positive or strongly positive. It is also
called affective classification, when trying to predict users mood, such as
happiness, sadness, kindness, sureness and so on [Subasic and Huettner, 2001;
Grefenstette et al., 2004; Bollen et al., 2011].

5.1.1 Sentiment Quantification

The popularity of social networking and microblogging services, with platforms like
Twitter, has made the task of automatically analyzing emotions in user generated
content, named as sentiment analysis, a ubiquitous learning application, as we have
discussed above. In some cases, sentiment analysis is tackled from the point of view
of classifying individual comments. The main task in sentiment classification is to
predict the polarity of a given text (e.g. a microblog post), that is, if the comment
expresses a positive, a negative or a neutral opinion [Pang et al., 2002]. The
interest of this application is that companies may analyze the reasons that make
their customers happy, and even more importantly, the causes of their complaints.
Despite this approach requires some kind of human intervention at the last part
of the process, it has been applied in numerous applications, see for instance [Yu
et al., 2013; Schumaker et al., 2012].

However, firms sometimes require another kind of surveys aimed at numerically
measuring whether their products meet the consumer expectations or not. In
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Quantification

Classification

Figure 5.1: Classification vs Quantification: In the top, two graphs show the
distribution of positives and negatives. In the bottom, the list of tweets are
classified as positives (green), negatives (red) or neutral (white)

marketing, this concept is termed as consumer satisfaction, which is defined in the
Wikipedia as “the number of customers, or percentage of total customers, whose
reported experience with a firm, its products, or its services (ratings) exceeds
specified satisfaction goals” [Farris et al., 2010]. Customer satisfaction provides
companies with a useful metric allowing them to manage, monitor and, lately, to
improve their businesses. Traditionally, this kind of rates have been computed
through customer satisfaction surveys. But nowadays, consumer opinions can be
obtained online, reducing costs and increasing speed to address consumer issues.

In this context, quantification learning seems the most appropriate approach to
obtain models able to automatically measure rates related to consumer satisfaction
by the processing of online comments. In fact, the goal of quantification is precisely
to learn models that do not return predictions for each individual instance, but
an aggregate estimate for a group of such examples. For instance, a company
may perform a daily tracking of the acceptance of their products, obtaining a
numerical estimate of the proportion of positive and negative comments that users
have posted in social networks. The unit, in this case, is the set or a sample of all
the comments published each day.
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It seems obvious that sentiment quantification [Esuli and Sebastiani, 2010; Gao and
Sebastiani, 2015a] fits better than sentiment classification for the requirements of
applications that numerically measure consumer satisfaction. Figure 5.1 illustrates
the difference between sentiment classification and sentiment quantification using
an example taken from www.sentiment140.com. In the top, a pie graph and a
bar graph show the distribution of positive (green) and negative (red) comments,
representing a typical sentiment quantification prediction. The list of tweets
related to the entity appears below, and each tweet is labeled as positive, neutral
or negative, which is a sentiment classification task. Both tasks should be tackled
separately because they require different, and specially devised, learning methods.

One may think that sentiment quantification can be solved using classification,
by applying the Classify & Count (CC) approach (Section 2.4.1): comments are
classified using a model learned with our favorite classification algorithm, and then
counted to compute the percentage of each class. Actually, many practitioners
solve sentiment quantification using the CC approach. This is motivated for two
main reasons. First, quantification learning is almost unknown yet and many
experts and users are unaware that proper quantification algorithms do exist. And
secondly, when some practitioners face a quantification application, they have the
misleading idea that quantification accuracy depends on the accuracy of a classifier
and that both things are related. Or to state it in another way, if they obtain
an accurate classifier, then the quantification estimates will be accurate as well.
Quantification literature has proven that this conception is incorrect, or at least
that genuine quantification algorithms can be more precise than just applying the
CC approach.

In this chapter we analyze the applicability of EoQ for multi-class sentiment
quantification. The idea is to extend the use of EoQ, discussed in Chapter 3,
to the multi-class case using the well-known one-vs-all approach. To increase
the exhaustiveness of this study, four different base quantification algorithms
and three fusion strategies, introduced in Chapter 4, are considered. The
resulting group of methods have been tested over datasets coming form SemEval
(Semantic Evaluation) competitions (http://aclweb.org/aclwiki/index.php?
title=SemEval_Portal).

SemEval is an ongoing series of challenges organized by the Association for
Computational Linguistics in order to evaluate the improvement of computational
semantic analysis systems. In the beginning, SemEval competitions were just
focused on word sense disambiguation, but the workshops have been evolving
and including new tasks each year, like semantic role labeling, coreference and
sentiment analysis (SemEval 2007). During the last years, SemEval evaluations
have mainly been centered on Twitter tasks motivated by the popularity of this
microblogging service. Noticeably, in 2016 the first quantification challenge was
proposed. Here, we employed the datasets from SemEval 2013 to SemEval 2016
to compare quantification algorithms. This chapter describes the experiments
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Table 5.1: Summary of the main characteristics of SemEval competition datasets
between 2013 and 2016

Competition Training Validation Testing Training Distribution Testing Distribution
Pos Neu Neg Pos Neu Neg

SemEval13 9684 1654 3813 37.1% 47.0% 15.9% 41.2% 43.0% 15.8%
SemEval14 9684 1654 1853 37.1% 47.0% 15.9% 53.0% 36.1% 10.9%
SemEval15 9684 1654 2390 37.1% 47.0% 15.9% 43.4% 41.3% 15.3%
SemEval16 6000 2000 2000 49.2% 35.1% 15.7% 49.7% 34.1% 16.3%

performed using EoQ over such SemEval competitions. The main goal is to
compare the performance of single quantifiers and their counterpart versions based
on EoQ in the context of sentiment quantification.

5.2 Experimental setting

The rest of the chapter is organized as follows. First, we describe the settings
used in the experiments. This includes a complete description of: SemEval
datasets, quantification algorithms compared and the processes to select the
learning parameters of such algorithms. Finally, the results are presented in terms
of two different quantification performance measures, KLD (2.14) and MAE (2.15),
analyzing several aspects.

5.2.1 Datasets

The datasets used in these experiments correspond to SemEval competitions,
concretely, those celebrated between 2013 and 2016. The set of tweets composing
each dataset can be downloaded using Twitter’s tools, but probably some of them
may be unavailable now, maybe because the user account has been canceled or
some tweets have been deleted. For that reason, we preferred those dataset versions
that were previously employed in [Gao and Sebastiani, 2015a]1. These versions
have three advantages:

(i) they are complete, no tweet is missing,

(ii) tweets are already represented in a vectorial form, and

(iii) it is easier to reproduce the experiments.

1These datasets can be download from http://alt.qcri.org/~wgao/data/SNAM/tweet_
sentiment_quantification.zip
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We used exactly the same representation because our goal is not to propose a new
one that could lead to better scores, but to compare quantification approaches.
Besides, this vectorial representation, introduced in [Kiritchenko et al., 2014], was
used by the winners of SemEval 2013 and SemEval 2014.

All the four datasets have three classes (positive, negative and neutral comments),
and they are split into three subsets: training, validation and testing. The
validation part was used to adjust the learning parameters of the algorithms. After
that, the model is trained with the combination of the training and validation
subsets. Finally, the score for each algorithm is obtained using the testing subset.
Table 5.1 contains the main characteristics of the four datasets: the number of
examples of each subset and the class probability distribution of the training and
testing subsets. Also notice that SemEval13, Semeval14 and Semeval15 share
the same training and validation parts, but they differ in the testing set. As we
can observe, the distribution drift between the training set and the testing set is
reduced, except in the case of SemEval14 dataset. All the details regarding these
datasets and the competitions can be respectively found in [Nakov et al., 2013;
Rosenthal et al., 2014, 2015; Nakov et al., 2016].

5.2.2 Experimental design

In the experiments reported here we analyzed eight multi-class quantification
algorithms, all of them implemented using the one-versus-all approach discussed
in Section 2.1.2, Chapter 2. The difference among them is the underlying
binary quantifier that was employed. Four binary quantification algorithms were
considered: CC, PCC, AC and PAC, and their corresponding ensemble versions,
denoted as ECC, EPCC, EAC and EPAC, respectively. Moreover, the ensemble
algorithms were implemented using the three different combination strategies
described in Section 4.1, Chapter 4:

(i) ALL that combines the predictions of all the models,

(ii) ACC that selects the best models according to their KLD scores, and

(iii) MAX that combines the models that maximize the denominator of the
correction equations depending on the base binary quantifier used: tpr−fpr
(2.17) for ECC and EAC, and TPpa − FPpa (2.19) for the probabilistic-
oriented methods (EPCC and EPAC).

50% of the models were selected for ACC and MAX selection measures, the same
value proposed in Section 4.2.1.

The number of models to build the ensembles was set to m = 30. In order
to generate the training samples for the ensemble models, the prevalence of the
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Table 5.2: KLD and MAE scores for all the compared algorithms. Each group
contains a single multi-class quantifier and their ensemble versions. Best scores
of each group are in bold and * means that this is the overall best score for that
dataset

Algorithm Loss Semeval13 Semeval14 Semeval15 Semeval16

CC MAE 0.058865 0.069524 0.102074 0.014175
KLD 0.017470 0.024149 0.053693 0.001670

ECC-ALL MAE 0.068942 0.075188 0.100867 0.051114
KLD 0.021763 0.027255 0.051862 0.020237

ECC-ACC MAE 0.064791 0.069864 0.096536 0.040939
KLD 0.018968 0.023442 0.047160 0.013165

ECC-MAX MAE 0.058316 0.068850 0.099722 0.011442*
KLD 0.016759 0.023341 0.051172 0.001142

PCC MAE 0.039744 0.063110 0.074472 0.016267
KLD 0.007992 0.019126 0.027624 0.002209

EPCC-ALL MAE 0.046741 0.065015 0.073954 0.048341
KLD 0.010016 0.021350 0.026795 0.015448

EPCC-ACC MAE 0.034001* 0.061446 0.070910* 0.018432
KLD 0.006216* 0.017619* 0.025855* 0.002501

EPCC-MAX MAE 0.037999 0.064884 0.074177 0.019734
KLD 0.007560 0.019873 0.027803 0.002409

AC MAE 0.082287 0.058669 0.105278 0.048955
KLD 0.031335 0.023954 0.058398 0.014290

EAC-ALL MAE 0.079243 0.073523 0.109456 0.021778
KLD 0.028510 0.026486 0.062021 0.002140

EAC-ACC MAE 0.078635 0.070563 0.109880 0.018944
KLD 0.028243 0.024235 0.062571 0.001910

EAC-MAX MAE 0.079026 0.074877 0.108600 0.011512
KLD 0.028476 0.028108 0.061039 0.000718*

PAC MAE 0.077845 0.055166* 0.105354 0.054161
KLD 0.028070 0.028634 0.057657 0.019889

EPAC-ALL MAE 0.065677 0.068032 0.090424 0.015329
KLD 0.019701 0.024476 0.040986 0.001271

EPAC-ACC MAE 0.064984 0.068048 0.090240 0.016565
KLD 0.019338 0.026141 0.040797 0.001413

EPAC-MAX MAE 0.064579 0.069276 0.089810 0.012387
KLD 0.019064 0.025504 0.040407 0.000793
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positive class was uniformly selected in the range [p − 0.1, p + 0.1], that is ±10%
of the actual prevalence p of the training set. The size of each sample was always
equal to the size of the training set and the examples were selected using random
sampling with replacement, as it was explained in the previous chapters.

Taking into account that PCC and PAC require probabilistic classifiers, we decided
to use probabilistic classifiers for all binary quantifiers. This decision ensures that
the differences between CC, PCC, AC and PAC are not due to the underlying
classifier, because all of them use exactly the same classifier. The same occurs for
all ensemble methods. This means that, for instance, EAC-ALL contains exactly
the same classifiers as EPAC-ALL, so the differences between them are only due
to the use of AC or PAC quantifiers, and in the comparison between EAC-ALL
and EAC-MAX the differences are due to the combination strategies.

The probabilistic classifier employed was Logistic Regression [Fan et al., 2008]
instead of using Support Vector Machines like in [Gao and Sebastiani, 2015a].
This decision was motivated by the fact that the implementation of LibLinear
provided in [Fan et al., 2008], led to faster training times for these datasets than
LibSVM [Chang and Lin, 2011], which is an important aspect for training EoQ.
The regularization parameter (C) was selected through a search in {10e : e ∈
{−6,−5, . . . , 5, 6}} optimizing the KLD over the validation set. This same policy
was employed in [Gao and Sebastiani, 2015a]. Besides, the positive class and the
negative class were balanced (−w parameter in LibLinear [Fan et al., 2008]) to
obtain good classifiers when dealing with imbalanced cases. The estimates for
(tpr, fpr) and (TPpa ,FPpa) for AC and PAC-based methods were obtained using
CV10x1 (10 folds and 1 repetition) over the training data.

5.3 Experimental results

Table 5.2 shows the KLD and MAE scores of all the algorithms studied. Our
main interest is to compare single multi-class quantifiers with their corresponding
ensemble versions. In such analysis, we can observe that EoQ algorithm obtain
better results than their counterpart single quantifier in 25 out of 32 cases. Only
in the cases of PCC for SemEval16, AC for SemEval14 and SemEval15 and PAC
for SemEval14 (only in terms of MAE), the single quantifier is better than all
the ensemble versions. This result is well known in the literature, several studies
conclude that ensembles usually perform better than individual models but not
always, see for instance [Fumera and Roli, 2005].

Analyzing each group separately, we see that for CC-based methods, ensemble
versions are always better than CC but the differences are small. Besides, the
scores of this group are worse than those of the rest of groups in general; this is
a common result of quantification papers in which CC is usually outperformed by
other quantifiers, see for instance [González et al., 2016b]. However, ECC-MAX
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obtains the best overall MAE score in SemEval16 dataset. Actually, this ensemble
algorithm seems to be the best one in this group, winning in 3 datasets. Comparing
combination strategies, ACC and MAX clearly outperform the baseline approach
(ALL).

PCC methods attain the best results. In fact, EPCC-ACC is the overall winner in 5
out of the 8 cases, namely, in SemEval13 and Semeval15 for both measures and also
in SemEval14 for MAE. The comparison between ensembles and single quantifiers
is also in favor of ensemble algorithms with 3 wins and 1 loss. These results
are particularly significant because the single quantifier PCC was the winner in
SemEval13 and Semeval15 and ranked second in SemEval14 in the study presented
in [Gao and Sebastiani, 2015a]. As it occurs in the previous group, ACC and MAX
perform better than ALL.

The group of AC-based quantifiers presents mixed results. On the one hand, the
AC method outperforms ensemble algorithms in two of the datasets, SemEval14
and SemEval15. But on the other hand, the opposite result is obtained in
SemEval13 and SemEval16. Nevertheless, the scores of this group are clearly
worse than those of PCC-based methods, thus it seems that the AC approach
does not perform particularly well in these domains. Only in Semeval16, EAC-
MAX attains the best overall KLD score. The comparison ALL versus ACC and
MAX is usually in favor of the latter approaches but the difference is smaller than
in the previous groups.

Finally, PAC-MAX is the best performer in the PAC-based groups being the winner
in all datasets except SemEval14, in which PAC (MAE) and EPAC-ALL (KLD)
attain the best results, in this last case, it is also the best overall score. As it
occurs in the other groups, ALL combination strategy is outperformed by the
fusion strategies based on model selection.

In our opinion, one of the main issues of SemEval competitions, that should be
considered in future editions, is that the adjustment of the learning parameters and
the final performance are computed using just one testing set. This procedure is
inadequate because quantification learning tasks demand several testing samples to
accurately estimate the performance of a given algorithm. Thus, it may occur that
a given method achieves worse results than other just due to a bad selection of the
optimal values for the learning parameters (C in our experiments). Figures 5.2-5.5
allow to analyze this aspect. The aim of these figures is to compare the scores of
the algorithms for the considered values of C, analyzing if the parameter selection
process captures the optimal values, and also the robustness of the methods against
over-fitting.

Figure 5.2 and Figure 5.3 depict the KLD scores for CC and PCC based methods,
respectively. Notice that all the algorithms usually reach the optimal score (the
minimum value) with the same value of C and the differences at that point are
small. This is logical because they use the same quantification method, and in
the case of ensemble methods, they are composed of exactly the same models.
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However, the curves still show some interesting facts. First, the combination
strategies based on selecting models, ACC and MAX, are more robust than the
baseline strategy. This is particularly evident when the value of C is large,
increasing the risk of over-fitting. In that cases, the performance of ACC and
MAX algorithms are clearly better than that of CC, PCC and the ensembles using
ALL strategy. Perhaps the best examples occur for SemEval15 datasets, in which
the curves corresponding to ACC and MAX are below for almost all values of C.

Figure 5.4 and Figure 5.5 show the same graphs but for AC and PAC methods.
In this case, the pictures are totally different; the behavior is less uniform and
the methods present much more variations. The reason is due to the fact
that correction equations (2.17) and (2.19) may produce unstable adjustments.
The clearest examples are the graphs corresponding to SemEval16 in which AC
produces poor scores for small values of C (usually the optimal ones for the rest
of the methods). An interesting case happens in this same dataset, according to
Table 5.2, EPAC-ALL obtains a better KLD score than EPAC-ACC, however,
looking at both graphs the impression is that the latter seems a better method for
this dataset. A similar situation occurs for SemEval13, AC is the worst algorithm
in terms of KLD, but it is just due to a bad selection of the optimal value for
C. Still, overall, it seems that ensembles versions, especially those based on ACC
and MAX strategies, are the most stable algorithms, independently of the base
quantifier.

Another issue regarding these ensemble methods has to do with the procedure
to generate the samples used to train an EoQ. In the previous experiments, the
training samples prevalence was uniformly selected in the range [p− 0.1, p+ 0.1],
where p is the prevalence of the positive class in the training set. This means that,
for instance, the range of the prevalences in SemEval13 dataset (see Table 5.1)
is [0.271, 0.471] because the prevalence in the training set is p = 0.371. Notice
that the true prevalence of the testing set falls in that range. The same happens
for other classes in Table 5.1. In real-world applications, testing prevalences
may be totally unknown, thus EoQ are trained with larger ranges of prevalences,
see evaluation experimental design in Sections 3.3.1 and 4.2.1, in an attempt of
covering a reasonable number of situations. One may think that the previous
experiments were somehow adapted taking into account the class probability
distributions of the testing subsets. For that reason, and in order to get more
insights about the actual behavior of the quantifiers studied, we performed an
additional experiment to analyze the performance of EoQ when they are trained
with a larger range of prevalences, concretely [p − 0.2, p + 0.2]. In the previous
example, the range would be [0.171, 0.571]. The results of this experiment are in
Figures 5.6-5.9.

Figure 5.6 and Figure 5.7 contains the comparison for CC and PCC based methods.
The conclusion is that the optimal scores are similar, maybe a little bit better in
same cases for the EoQ generated with ±10% of the actual prevalence. However,
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Figure 5.2: KLD scores for all the methods based on CC quantifiers when the
training prevalences for the ensembles are uniformly selected in the range [p −
0.1, p+ 0.1] and C takes the values in {10e : e ∈ {−6,−5, . . . , 5, 6}}
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Figure 5.3: KLD scores for all the methods based on PCC quantifiers when the
training prevalences for the ensembles are uniformly selected in the range [p −
0.1, p+ 0.1] and C takes the values in {10e : e ∈ {−6,−5, . . . , 5, 6}}
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Figure 5.4: KLD scores for all the methods based on AC quantifiers when the
training prevalences for the ensembles are uniformly selected in the range [p −
0.1, p+ 0.1] and C takes the values in {10e : e ∈ {−6,−5, . . . , 5, 6}}
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Figure 5.5: KLD scores for all the methods based on PAC quantifiers when the
training prevalences for the ensembles are uniformly selected in the range [p −
0.1, p+ 0.1] and C takes the values in {10e : e ∈ {−6,−5, . . . , 5, 6}}
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those generated with ±20% seems even more stable. For instance, it is quite
remarkable their behavior for SemEval14, SemEval15 and SemEval16 because
the curves are almost flat once the optimal value is reached. The larger level
of diversity injected into the ensembles seems to imply that in these algorithms,
it is easy to tune the learning parameters to obtain a reasonable model. Besides,
ACC and MAX strategies also outperform ALL methods in line with the previous
experiment.

Figure 5.8 and Figure 5.9 show the same graphs for AC and PAC based methods.
The conclusions are quite similar. First, there are very small differences in the
optimal results. This is especially true for SemEval14 and SemEval15 datasets,
where all methods almost obtain the same scores for all values of C. The differences
are larger for SemEval13 and SemEval16. EoQ generated with ±20% seems again
more stable than those generated with ±10%, but the curves are not as flat as in
Figure 5.6 and Figure 5.7.
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Figure 5.6: Comparison of KLD scores for EoQ based on CC algorithms when the
training samples are generated with ±10% and ±20% of the actual prevalence and
C takes the values in {10e : e ∈ {−6,−5, . . . , 5, 6}}
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Figure 5.7: Comparison of KLD scores for EoQ based on PCC algorithms when
the training samples are generated with ±10% and ±20% of the actual prevalence
and C takes the values in {10e : e ∈ {−6,−5, . . . , 5, 6}}
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Figure 5.8: Comparison of KLD scores for EoQ based on AC algorithms when the
training samples are generated with ±10% and ±20% of the actual prevalence and
C takes the values in {10e : e ∈ {−6,−5, . . . , 5, 6}}
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Figure 5.9: Comparison of KLD scores for EoQ based on PAC algorithms when
the training samples are generated with ±10% and ±20% of the actual prevalence
and C takes the values in {10e : e ∈ {−6,−5, . . . , 5, 6}}
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Chapter 6

Conclusions

This chapter summarizes the main contributions of this dissertation and points
out some future lines of research.

6.1 Conclusions

In this work we have studied how ensembles behave in a problem characterized by
the assumption of data distribution changing between training and test phases.
Our core idea is to take advantage of that assumption and to use it in order
to appropriately introduce diversity into the ensemble; we generate different
training samples with each one representing a particular expected distribution
change. First, we have experimentally applied our idea to the binary quantification
problem, which is characterized by class prevalence P(y) changing, but P(x|y)
remaining constant. Training samples are generated under this assumption, and
as a result, the ensemble meta model is better suited for dealing with unseen
prevalence test sets. Experimental results over benchmark datasets in Chapter 3
demonstrate that the ensemble quantifier adapted versions outperform its original
counterparts.

One of the major contributions of this work is to propose a reasonable approach for
using ensembles in quantification learning that performs better than state-of-the-
art quantifiers. However, we also claim that the significance of this approach is not
only limited to presenting the first ensemble-based quantifiers, but to introduce an
idea that is applicable to other learning problems in which it is possible to define
how the data distribution changes throughout the time. Moreover, we think that
this work opens new lines of research within this type of learning tasks, in aspects
like diversity inclusion in function of the expected changes.

The second contribution of this work is to propose three new selection criteria for
ensembles of quantifiers that can be used to implement both static and dynamic
ensemble selection methods. Moreover, all the proposed criteria are devised for
tackling quantification problems, exploiting their peculiarities. In particular, two
of them are especially designed to work in combination with some state-of-the-art
quantifiers, namely AC, PAC and HDy.
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The experiments reported in Chapter 4 show that using these criteria with a simple
selection scheme based just on ranking improves the performance of the ensembles
when all the models are averaged. Our results are in line with those reported
in Britto et al. [2014] in the sense that most of the times ensemble selection
performs better, but not always. Interestingly, these new criteria outperform
in some cases the well-know competence measure based on accuracy. Another
important conclusion is that the performance strongly depends on an appropriate
combination between the selection criterion used and the base quantifier. In this
sense, dynamic ensemble selection using both the HDy algorithm and the HDy
selection function seems the overall best method.

The fact that quantification learning needs to make estimations for sets of examples
instead for individual instances, requires to extend the work that has been done
in the field of ensemble selection for other learning tasks, like classification or
regression. According to our results, the most promising approach is the one that
has into account the similarities between the training and testing distribution.
Besides, adequate selection methods, more sophisticated that the ones used here
will boost the performance of this kind of ensembles.

Finally, in this work we have analyzed the applicability of multi-class EoQ
in the context of sentiment quantification, where a user opinion can be
considered positives, negatives or neutrals. These ensembles return the probability
distribution of the three classes given unlabeled samples. The study in this case
was aimed at analyzing whether these EoQ perform as well as those ensembles
used in other supervised tasks, like classification and regression. Our experiments
over SemEval datasets allow us to conclude that the performance of EoQ is at
least competitive with respect to single quantifiers and sometimes better. In fact,
ensembles algorithms are the winners in most of the datasets in terms of KLD and
MAE scores. Moreover, they show a nice behavior regarding robustness against
over-fitting and stability with respect to some of their components, namely the
procedure to generate the training samples.

6.2 Future work

There are several possible lines for future research. Among them, we would like
to highlight the following:

(i) To develop ensembles of quantifiers for multi-class quantification. Here,
we have just applied a straightforward solution –the one-vs-all approach–
but other methods could be applicable. Additionally, some elements of our
proposal, namely the process to generate training samples, should be refined
for the multi-class case.
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(ii) To study new methods to combine ensemble models. In addition to the
selection measures introduced in this work, there are a bunch of alternatives
in the literature that have been proposed for ensembles in other kind of
learning tasks, such as classification or regression. Some of them could be
applicable for ensembles in quantification learning. Besides, new approaches
specially devised for quantification could also be developed.

(iii) To apply ensembles of quantifiers for other real-world applications. Our
main interest in this case would be to find a problem where the training
data is composed of several training samples, obtained at different time for
instance. In this scenario, each weak ensemble model could be trained using
one of these training samples. We could compare then the performance of
such approach to the one presented here, analyzing whether actual samples
are more appropriate than artificially generated ones or if both could be
combined for boosting ensemble performance.
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