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RESUMEN (en español)  

 
 
El enlace químico podría ser considerado como el pi lar central de la química. Sin 
embargo, a razón de no ser un observable mecánico c uántico, su comprensión escapa a 
un fundamento teórico riguroso. En este escenario, los acontecimientos históricos, y no 
el razonamiento científico, han condicionado los mo delos prevalecientes sobre el enlace 
químico. Es de esta manera que la teoría de orbital es moleculares (MO) ha alcanzado su 
estado actual, convirtiéndose en una teoría tan arr aigado en la química moderna que 
gran parte del vocabulario químico proviene de ella . Sin embargo, la teoría MO se basa 
extrañamente en objetos que viven en un espacio mul tidimensional complejo que rara 
vez evoca la intuición química natural, que consist e en considerar a los electrones como 
entidades que viven en el espacio real. Bajo esta p remisa, ha florecido una teoría del 
enlace químico en el espacio real que tiene como un  claro exponente la Teoría Cuántica 
de los Átomos en las Moléculas (QTAIM) propuesta po r Richard Bader y colaboradores.  
Basado en la partición espacial propuesta por QTAIM , destacamos en esta tesis la 
posibilidad de realizar una descomposición energéti ca (IQA), medir las probabilidades de 
las posibles poblaciones de electrones en la cada r egión QTAIM (EDFs), y de explorar 
imágenes efectivas de un electrón válidas para sist emas correlacionados que imitan a 
los del paradigma MO (NAdOs). 
 
 
Específicamente, hemos enfatizado la idoneidad de l a partición de energía IQA para 
definir una energía de enlace teóricamente sólida, llamada energía de enlace in situ. Esto 
combinado con las otras herramientas mencionadas an teriormente nos permite conocer, 
en circunstancias especiales, cuál es el estado de valencia de los fragmentos 
moleculares y cómo se forman los componentes de uni ón, todo esto contribuyendo a 
una comprensión muy íntima de su comportamiento ele ctrónico en equilibrio así como 
en las diferentes etapas de la formación de los enl aces. Teniendo en cuenta las 
tendencias hacia sistemas cada vez más grandes y el  escalado particularmente caro de 
IQA hasta ahora, en parte debido al cálculo de la c orrelación de intercambio entre dos 
cuencas diferentes, también hemos propuesto llevar a cabo una aproximación multipolar 
de este término, del mismo modo que para la energía  de interacción de Coulomb. Se ha 
demostrado que este enfoque es preciso, incluso con  un truncamiento que considera 
como máximo términos de interacción carga-cuadrupol o, si las cuencas que interactúan 
están lo suficientemente alejadas unas de otras. El  enfoque ha sido probado con una 
variada selección de moléculas. También se establec e la conexión del primer término de 
la expansión y uno de los descriptores más importan tes en QTAIM, el índice de 
deslocalización. 
 
 



 

 
 

                                                                

 

También se puede demostrar que los descriptores  de enlace alojados en el marco de la 
Topología Química Cuántica (QCT) están implicados e n la explicación de una clase más 
amplia de fenómenos químicos. En esta tesis se ha s eñalado que existe un vínculo entre 
los índices de enlace y el tensor de localización u tilizado en la teoría moderna del estado 
aislante. El último señala un comportamiento aislan te o conductivo basándose en sus 
propiedades de convergencia o divergencia en el lím ite termodinámico. Después de una 
partición del espacio, hemos demostrado que la conv ergencia/divergencia del tensor 
sólo depende de los componentes interatómicos que a  su vez están dominados por el 
índice de deslocalización. De este modo, se obtiene  una noción químicamente atractiva 
del tensor de localización. Otro tema de interés qu e hemos tratado es el estudio de las 
interacciones débiles en los sólidos moleculares. P ara ello, hemos aprovechado las 
propiedades topológicas que presenta el potencial e lectrostático. Debido a que el trabajo 
previo en la literatura sobre la topología del pote ncial electrostático en sólidos es 
escaso, hemos emprendido primero una exploración de  sus características en el 
complejo de carga BTDMTTF-TCNQ. Las interacciones p redichas tanto por la densidad y 
el potencial electrostático se buscaron exhaustivam ente, siendo más tarde entrelazadas 
para proporcionar una mejor comprensión del empaque tamiento del cristal. También, a 
partir de la partición combinada del espacio, hemos  descifrado cuáles son los actores 
principales que conducen la transferencia de la car ga. 
 

 
RESUMEN (en Inglés) 

 
 
The chemical bond might be considered as the centra l pillar of chemistry. Not being a 
quantum mechanical observable, however, its underst anding escapes a rigorous 
theoretical foundation. In this scenario, historic events, not scientific reasoning, have 
conditioned the prevailing models on chemical bondi ng. It is in this way that molecular 
orbital (MO) theory has achieved its present status , becoming so rooted in modern 
chemistry that much of the chemist vocabulary comes  from it. Taken from a non-MO 
biased perspective, however, MO theory is strangely  based on objects that live on a 
complex multidimensional space that rarely evokes t he natural chemical intuition, made 
up of considering electrons as entities living in r eal space. Under this premise a theory of 
chemical bonding in real space has flourished that has as a clear exponent in the 
Quantum Theory of Atoms in Molecules (QTAIM) propos ed by Richard Bader and 
coworkers.  Based on the space partition proposed b y QTAIM, we highlight in t his Ph.D.  
thesis the possibility of performing an energy part itioning (IQA), of measuring the 
probabilities of the possible electron populations in the QTAIM regions (EDFs), and of 
exploring effective one-electron images valid for c orrelated systems that mimic those of 
the MO paradigm (NAdOs). 
 
 
Specifically, we have emphasized the suitability of  the IQA energy partition to define a 
theoretically sound bond energy, called in situ bon d energy.  This combined with the 
other tools mentioned above allows us to know, unde r special circumstances, what the 
valence state of the molecular fragments are and ho w the binding components are 
formed, all this contributing to a very intimate un derstanding of both their electronic 
behavior in equilibrium as well as at the different  stages of the formation of bonds.  
Considering the trends towards ever larger systems and the particularly expensive 
scaling of IQA so far, in part due to the calculati on of the exchange-correlation between 
two different basins, we have also  proposed to car ry out a multipolar approximation of 
this term, in the same fashion as for the Coulombic  interaction energy. This approach 
has been shown to be accurate, even with a truncati on to at most charge-quadrupole 
interaction terms, if the interacting basins are fa r enough from each other. The approach 
has been tested with a varied selection of molecule s. Also, the connection of the first 
term of the expansion and one of the most important  descriptors in the QTAIM, the 
delocalization index, is also established. 
 
 



 

 
 

                                                                

 

Bonding descriptors housed under the framework of Q uantum Chemical T opology (QCT) 
can also be shown to be involved in the explanation  of a broader class of chemical 
phenomena.  In this thesis, it has been pointed out  that a link exists between bond order 
indices and the localization tensor used in the mod ern theory of the insulating state.  The 
last one signals insulating or conducting behavior based on its convergence or 
divergence properties in the thermodynamical limit.  After  a partitioning of space we have 
demonstrated that convergence/divergence of the ten sor  depends  only on interatomic 
components that in turn are dominated by the deloca lization index.  Thus a chemically 
appealing notion of the localization tensor is gain ed in the process.  Another topic of 
interest that we have deald with is the study of we ak interactions in molecular solids. For 
this, we have taken advantage of the topological pr operties that the electrostatic 
potential presents. Because the previous work in th e literature on the topology of the 
electrostatic potential in solids is scarce, we hav e undertaken first an exploration of its 
characteristincs in the charge-complex BTDMTTF-TCNQ . The interactions predicted both 
by the density and the  electrostatic potential wer e searched exhaustively, being later 
intertwined to provide a better understanding of th e crystal packaging. Also from the 
combined partition of space, we deciphered which ar e the main actors driving the charge 
transfer. 
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I N T R O D U C T I O N

The nature of chemical bonding remains one the most important unanswered
questions in chemistry, joining an interdisciplinary community that tries to dis-
entangle the reasons leading to bonding formation/breaking and their predic-
tion to build new materials, understand biochemical processes, and control
material properties. Much of the technological advances are guided by new
and improved knowledge of the nanostructure of matter and its implication at
the macroscopic level.

The ability to analyze experimental and theoretical densities with a quantum
mechanically grounded theory has led to a great progress of charge density
analysis during the last decades. Books [66, 117, 179, 180] and references therein
show an overview of the last decade. The density is a fundamental variable of
nature as stated through the first Hohenberg–Kohn (hk) theorem. It is the
lingua franca of X–Ray Diffraction (xrd), Density Functional Theory (dft) and
Quantum Theory of Atoms in Molecules (qtaim).

However, the situation is far from desired. The information interchanged is
limited to the one-particle density. Though the topological partition of the elec-
tronic density provides descriptors soon identifiable from chemical intuition,
their meaning isn’t still fully known and the information retrieved isn’t com-
plete enough to fully describe the bonding nature. For example, bond orders
are highly dependent on the correlation. Therefore new descriptors not com-
ing from the density but from the Reduced Density Matrices (n–rdm) are used
instead to complement the results of qtaim. The understanding of their nature
becomes a task of prime importance.

The structure of this thesis is the following: In the first chapters a throughout
introduction of the main theories of the computational modelling of molecules
and materials is presented. Then, in chapter theory of chemical bonding we
deal with the theory of chemical bonding in real space. The results are shown
in part II and part III. On one hand, in part II we first treat the theme of covalent
interactions, trying to asses the, often intrincate, appropriate quantification of
bonding strength in chapter towards a unique measure of bond strength
through intrinsic bond energies and second adopting a multipolar ap-
proximation in the realm of IQA energetic partitioning, chapter multipolar
expansion of the exchange-correlation interaction energy.

On the other hand, in part III we extend the application of current tools
of Quantum Chemical Topology as well as broadening the set of tools. In
chapter a chemical view of the localization tensor we build a bridge be-
tween bond order descriptors and the locazation tensor. Finally, the chapter
titled topology of the electrostatic potential in solids translates the
study of the electrostatic potential to extended phases with the aim of under-

1



2 introduction

standing its topological characteristics. There are many works published about
the electrostatic potential but only a few analyze the topology in molecules,
and even fewer in solids [113, 116, 187]. We considered appropriate the use of
the electrostatic potential to study an organic conductor in crystal phase with
the aim of extending the previous work by Mata et al. Also, among the many
Quantum Chemical Topology (qct) descriptors already present, aside from the
well studied density, the electrostatic potential is the easier target to look at as a
new source of chemical information, specially interesting are its applications in
weakly interacting systems to approximate and predict long range interactions.
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All quantities reported will be in atomic units  h = me = 4πε0 = e = 1,
otherwise the units used will be stated.

1.1 introduction
The state of a N-particle quantum system is defined by a unit norm vector |Ψ〉

in the abstract Hilbert (unit) sphere, that is represented in the position space as

Ψ = 〈{x}Ni=1|Ψ〉. (1–1)

The non-relativistic time evolution of this state is controlled by a unitary trans-
formation conserving the number of particles of the system induced by H, the
Hamiltonian:

i
∂Ψ

∂t
= HΨ. (1–2)

From this master equation, named after Schrödinger, many properties of quan-
tum systems can be discerned: (i) The superposition of any two solutions is
again a solution. This shows that the set of solutions of this differential equa-
tion form a linear space. (ii) Any measurement should leave the system in
another possible state, maybe the same, so the natural way to express a mea-
surement is through a map that takes as an argument any possible state and
returns another possible state, that is, through an operator. It turns out that
measurements have associated an operator that is indeed linear and self-adjoint.
(iii) In addition it is deduced from the Schrödinger equation that for particles
under a Coulomb potential the wavefunction describing the system can only be
complex valued. If it were real the RHS of equation (1–2) would be real because
the Hamiltonian (H = −∆

2

2 + V(r, t)) has no imaginary terms, while the LHS
has an explicit dependence on i.

For a stationary system (i.e. with a time independent Hamiltonian because
there is no external time-varying field) the wavefunction at any time may be
written as

Ψ(t) =
∑
i

cie
−iEitψi, (1–3)

so any eigenfunction of the Hamiltonian can be expressed as the product of a
unitary operator U(t) and the initial wavefunction

Ψ(t) = e−iHtΨ(0) = U(t)Ψ(0). (1–4)

With this factorization of time and spatial variables we can approximate the
master equation as two independent equations leaving a time independent
equation, equivalently written as an eigenvalue equation

−

N∑
i

∂2Ψ

2∂r2i
+ V(r1, r2, · · · , rN)Ψ = EΨ or HΨ = EΨ. (1–5)
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The eigenvalues and eigenfunctions of the Hamiltonian are the quantized en-
ergies and states the system can have. The state of the system at any time
is known if we have all the eigenfunctions and eigenvalues of the Hamiltonian.
Particularly important is the lowest eigenvalue. Guided by the minimum action
principle a quantum chemical system will radiate energy to the surroundings
until it reaches the ground state, i.e. the lower energy attainable.

If the Hamiltonian is real it suffices to contemplate real valued wavefunctions
(from a superposition with the conjugate transpose <(Ψ) = 1

2 (Ψ+Ψ∗)) to find
bounded states. Under a potential that contains only multiplicative factors,
most of them are, the Hamiltonian contains a second order derivative as part
of the kinetic energy operator. As the second derivative of the wavefunction
is determined by Ψ and the third and successive derivatives only require the
knowledge of the function and its first derivative, then the function itself could
be known in the whole space from knowing exactly both entities at a single
point and further propagating the solution through space. Another completely
different thing is to perform this task, but the previous statement reflects how
powerful this equation is. This observation has to do with the effort of some
researchers of extracting chemical information from a subset of points in real
space, i.e. critical points of the density or the source function.

Molecular systems are the pinnacle of quantum mechanics applications, re-
quiring the simulation of hundreds or thousands of electrons simultaneously
interacting among them and the nuclei all together. The computational cost of a
direct attack of the problem increases exponentially, becoming rapidly outside
of reach for current computational resources. Except for really simple systems,
we must be content with approximate solutions. There are four main approxi-
mations at the time of modeling a molecular system:

• The system. We assume that the molecular system under study is isolated
as if it were in the gas phase. In the next section we will reduce the molec-
ular system to one with only electrons in a field of fixed nuclei. A further
simplification is to model only valence electrons approximating the core
electrons from previous calculations with what we call a pseudopotential.

• The model used to describe a system is encoded in the Hamiltonian. Par-
ticles are usually reduced to points in space without any structure. All
known fundamental forces of nature involve two particle interactions, con-
sequently a Hamiltonian of this type only contains one– and two–body
operators. Molecular systems are mainly dominated by electromagnetic
forces unless heavy elements are included. In such cases the electrons oc-
cupy high kinetic energy states with velocities that are a significant frac-
tion of the speed of light, a (special) relativistic framework with scalar,
two or four components is more adequate. For a non relativistic system
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(c → ∞) of n electrons with clamped nuclei (infinite massive nuclei), the
two-particle Coulomb Hamiltonian is:

Hel =

n∑
i=1

(
−
1

2
∇2i + v(ri)

)
+
1

2

∑
i<j

1

|ri − rj|
. (1–6)

• Another is the restriction of the space of possible solutions that is briefly
described in sections 1.3, 1.4,and 1.6. We reduce the space from where
we will extract our final wavefunction.

• Finally in section 1.5 we deal with the discretization of the high dimen-
sional problem to a finite basis.

1.2 decoupling of electronic and nuclear mo-
tion

In a system constituted by M nuclei with an atomic number ZA each and
N electrons, each particle has its own contribution to the total kinetic energy
Te + Tn and interacts with its equals Vee + Vnn as well as with its unequals
Ven + Vne through a Coulomb potential. Paying attention to double counting
of equivalent interactions the non-relativistic molecular Hamiltonian (in posi-
tion space) is

Hmol = Te + Vne + Vee + Tn + Vnn (1–7)

=

N∑
i


−

1

2
∆ri −

M∑
A

ZA
|ri −RA|

+
1

2

N∑
j
j6=i

1

|ri − rj|


 (1–8)

+

M∑
A


−

1

2mA
∆RA +

1

2

M∑
B
B 6=A

ZAZB
|RA −RB|


 , (1–9)

(1–10)

the result of replacing in the classical Hamilton function the coordinates and
the momentum by the linear operators r and −i∇. The Hamiltonian operator
only has a finite spectrum if we get rid of the translational part after separating
the center of mass and the internal motion

Hmol = Htranslation +Hinternal. (1–11)
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As the Hamiltonian does not operate on nuclear spin variables and nuclei
are distinguishable the total wavefunction depends on electronic spin-spatial
coordinates x = (r,σ) and nuclear spatial coordinates R alone

Ψ(x,R). (1–12)

The spatial variables can have any value in R3 and z-axis projected electronic
spin can only take two eigenvalues: a positive or negative ±sz that we codify
with the domain {+,−}. Here we condense in x the tuple of vectors (x1, . . . , xN)

of all particles. The dimensionality of the problem is too high to be solved: it
grows exponentially with exponent 6(N+M). Consequently, it is our duty to
seek a way to reduce the high number of independent variables available using
physical insight.

The motion of atoms in the course of a chemical reaction is in some aspects
analogous to the motion of sailing boats in a regatta. Wind and sea waves turn
and move often at speeds higher than the boat, becoming force directors of the
boats motion. For us the boats are the nuclei and the sea and atmosphere are the
electronic cloud. In the spirit of this imperfect analogy a ground state system
close to stability is a collection of boats (nuclei) floating in a calm sea. Any
turbulence created by the boats is instantaneously recognized by the system
air/sea that automatically acts upon the changes introduced, whereas the boat
feels the average force exerted by the particles that constitute water and air.

Similarly, events that take place inside matter are distributed in a wide range
of time scales. Solvation, chemical reactions, rotations of chemical groups, vi-
brations, inter-system crossing, internal conversion, electronic relaxation, . . . are
all relevant processes that determine the properties of matter. The lighter the
particles involved the shorter the time scale except when quantum selection
rules apply. Thus, for events were electrons are involved shorter time scales
apply. Taking into account that the fastest type motion a nucleus can achieve is
a vibration, we will check that the timescales of nuclear vibrations are usually
greater than for electronic reorganizations. A treatment of nuclei and electrons
as oscillators reveals that their relative frequencies of motion would be pro-

portional to their relative weights, electrons move
√
mN
me
≈ 100 times faster

than nuclei. For a more quantitative analysis on the effect of separating both
see [26, 27]. Therefore, one can examine the electronic distribution considering
the nuclei as being fixed. This argument is the basis for the Born–Oppenheimer
approximation.

Lets assume we can write the wavefunction as a product of a nuclear wave-
function and an electronic wavefunction

Ψ = ΨelΨnuc. (1–13)

To reduce the molecular problem to an electronic problem we have to take the
asymptotic limit of infinitely heavy nuclei mA → ∞. Therefore the kinetic en-
ergy of nuclei vanishes. With an enough localized nuclear function at positions
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R the minimization problem is reduced to the minimization of the electronic
energy

E(R) = min
Ψel

[
〈Ψel|Hel|Ψel〉

]
+

M∑
A

ZAZB
|RA −RB|

(1–14)

where the electronic wavefunction satisfies the normalization condition and

Hel =
∑
i

(
−
1

2
∆i −

∑
A

ZA
|ri −RA|

)
+
∑
i>j

1

|ri − rj|
=
∑
i

hi +
∑
i>j

gij. (1–15)

Within this approximation, solving the molecular problem is equivalent to solv-
ing the electronic structure for each geometrical disposition of the nuclei. Semi-
classical nuclei dynamics can be recovered letting the nuclear positions evolve
on top of the potential energy (hyper)surface (PES) provided by (1–14) at var-
ious molecular conformations. Ψel depends now parametrically in the nuclei
coordinates

Ψel(x;R). (1–16)

The nuclear-nuclear repulsion energy is thus simply a constant that can be
computed as a classical contribution introduced by point particles for a given
nuclei geometry.

The potential exerted by nuclei on electrons and any external field is the
so–called external potential.

Except where there are nearly degenerated states or we are close to cross-
ings of electronic states the approximation works reasonably well. When a
vibrational-electronic (vibronic) coupling is present the nuclear kinetic energy
contains coupling terms that depend on derivatives of the electronic wavefunc-
tion.

From now on every time we mention Ψ it should be understood as Ψel.

1.3 many-electron wave functions
An electronic wavefunction Ψ(x,R) ought to describe a system of N electrons

has to satisfy some restrictions to have physical meaning. Based on the physical
interpretation proposed by M. Born that assures that the interpretation of this
object comes through its complex square, |Ψ({x})|2, that conveys the probability
density for finding one electron at position r1 with spin σ1, another at r2 with
spin σ2, and so on, the integral of this square should remain finite and normal-
ized in order to represent a unit probability of finding all of the N particles of
the system in the whole space ||Ψ|| = 1. We will assume that our wavefunctions
are always normalized. The distribution has to be defined everywhere in space
(continuous) and the kinetic energy has to be bounded to a finite value. Col-
lecting these requirements it may be proven that the wavefunction dwells in a
Hilbert space H1(R3N × {+,−}N).
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A drastic simplification of the problem at hand is to factorize the wavefunc-
tion even further as a Hartree product of one-electron spin-orbitals,

∏N
i=1ψi(xi).

Spinorbitals are the product of a spacial (orbital) and a spin function ψi(x) =
φi(r)si(σ) where each orbital can accommodate up to two electrons with dif-
ferent spin functions attached, si = α and si = β, that satisfy

α(+) = β(−) = 1 α(−) = β(+) = 0. (1–17)

The way orbitals are constructed will be explained later in section 1.5. Notice
that each electron has a well defined spin state. This factorization leads to a
probability density that is simply the product of their squares

|ψ1(r1)|
2|ψ2(r2)|

2|ψ3(r3)|
2 · · ·

The statistical interpretation dictates that no correlation exists in the motion of
electrons in this case. Conversely is not enough to describe a many-fermion
system.

Furthermore, it must be borne in mind that when identical particles are de-
scribed by quantum mechanic rules, they are indistinguishable. The essence
relies in that the coordinates we are working with are not the actual coordi-
nates but the independent variables of the probabilistic distribution function.
This amounts to stating that any permutation of the spatial and spin coordi-
nates of any set of electrons does not change the physical state (the probability
density). Since the permutation operator is idempotent there are only 1 two
representations of the wavefunction that obey this principle: (i) if the wave-
function is totally symmetric under this operation, we are talking of particles
denominated bosons and, (ii) if the wavefunction is totally antisymmetric after
applying the interchange

Ψ(· · · , xi, · · · , xj, · · · ) = −Ψ(· · · , xj, · · · , xi, · · · ) (1–18)

we are dealing with fermions, particles with half integer spin such as electrons.
Therefore the wavefunction can have negative amplitudes. It follows from this
condition Pauli’s exclusion principle, which asserts that two electrons with the
same quantum numbers cannot be found in the same state.

Since fermionic wavefunctions must be antisymmetric under particle inter-
change , they can no longer be built as a direct product of independent one-
electron functions, but instead as a tensor product keeping only antisymmetric

1 To be precise this argument is weak. Symmetric restrictions do not follow from indistinguish-
ablity alone nor from relativistic invariance but we can adopt an additional symmetrization postu-
late [133] to close the loop.
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terms. The simplest solution — as proposed by V. A. Fock — is to use Slater
determinants, i.e. antisymmetrized Hartree products:

Ψ(x) = A

N∏
i=1

ψi(xi) =

N∧

i=1

ψi(xi) =
1√
N!

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(x1) ψ2(x1) · · · ψN(x1)

ψ1(x2) ψ2(x2) · · · ψN(x2)

ψ1(x3) ψ2(x3) · · · ψN(x3)

ψ1(x4) ψ2(x4) · · · ψN(x4)
...

...
. . .

...
ψ1(xN) ψ2(xN) · · · ψN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(1–19)

=
1√
N!

det |ψ1(x1)ψ2(x2) · · ·ψN(xN)| = |ψ1ψ2 · · ·ψN〉. (1–20)

We thus define the wavefunction to belong to the set of Slater determinants 2

with all possible spin-orbitals under the condition of orthonormality:

SN =
{
|ψ1ψ2 · · ·ψN〉 : ψi ∈ H1(R3 × {+,−}), 〈ψi|ψj〉 = δij

}
. (1–21)

A determinantal function is the least correlated 3 state of an electronic sys-
tem, for it includes only some spatial (Fermi) correlation that forbids electrons of
equal spin occupy the same positions. However, it provides a starting point to
approximate the essential features of a many-electron problem. In contrast with
the independent model (Hartree product) the correlation introduced reduces
the mutual repulsion energy of parallel spin electrons,

∑
i>j〈Ψ|gij|Ψ〉, but it

also induces a nodal structure in the wavefunction and the kinetic energy there-
fore increases — it is a steeper function. The missing correlation arises from the
Coulomb interactions and is named accordingly Coulomb correlation. For higher
accuracy it is necessary to describe appropriately the simultaneous influence
in the motion of each electron of all the others. This may be achieved by con-
structing linear combinations of Slater determinants constructed from a large
set of one particle states. In fact, it may be shown that the correct wavefunction
is reached with an infinite (convergent) sum of determinants constructed from
a complete set of orbitals.

Antisymmetrized Hartree products, as a single determinant, are not always
spin eigenfunctions. However, it is always possible to combine determinants
constructed from the same spin-orbitals, to correct the problem introducing a
new component of Fermi correlation that arises from spin symmetry. Electronic
configurations free of this type of correlation, and thus single-determinant sit-
uations are: (i) closed shell systems, for each occupied ψi(r,+) there is also
an occupied ψi(r,−) and/or (ii) high-spin systems where single occupied or-
bitals have electrons of the same spin. In situations where there are quasi-
degenerate eigenstates, being two or more eigenstates energetically similar,

2 The columns of the determinant encode the list of orbitals and similarly the rows describe the
electrons.

3 For clarification, correlation has two possible interpretations: (i) one is the statistical dependence
of particles in the sense of Wigner and Steitz and (ii) other is the energetic difference with respect
to a reference independent particle model.
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the single-determinant representation cannot again describe correctly the true
wavefunction as a single determinant.

To prove that determinants form an orthonormal basis for the multi-electronic
system [102] we start with the expansion of a mono-electronic wavefunction in
terms of an orthonormal and complete basis formed by spin-orbitals

Ψ(x) =
∑
k

Ckψk(x). (1–22)

Repeating this procedure for all particles we see that, in general terms, an
antisymmetric wavefunction is a linear combination of Hartree products like

Ψ(x) =
∑

k1,k2,...,kN

Ck1,k2,...,kNψk1ψk2 · · ·ψkN . (1–23)

The coefficients of the expansion are antisymmetric in their indices, hence only
a fraction of the coefficients are linearly independent: those that fulfill k1 <
k2 < . . . < kN. A particular arrangement of this type is called an ordered
configuration K = (k1,k2, . . . ,kN). Thus, the expansion in terms of the ordered
configurations becomes an expansion in Slater determinants

Ψ(x) =
∑
K

CKΨK, ΨK = |ψk1ψk2 · · ·ψkN〉. (1–24)

Obviously, when there is only one configuration, this expansion is a determi-
nantal function.

Deepening into the connection between its mathematical structure and its
physical interpretation we can add more general conditions that the wavefunc-
tion has to satisfy when two electrons or an electron and a nucleus coalesce [87]:

lim
rij→0

(
∂Ψ

∂rij

)

av.
=
1

2
Ψ(rij = 0) rij = |ri − rj| (1–25)

lim
riA→0

(
∂Ψ

∂riA

)

av.
= −ZAΨ(riA = 0) riA = |ri −RA|. (1–26)

Based on the first cusp correlation condition the first order wavefunctions of
helium singlet states in a perturbative treatment around the singularity have a
dependence on the coordinate r12 that is

Ψ(r1, r2) = Ψ(r12 = 0)

{
1+

1

2
r12

}
+O(r212). (1–27)

Present methods based on expansions in a basis of determinants made of
smooth orbitals have a very poor representation of the correlation cusp. Con-
trarily, trial functions with explicit dependence in the inverse distance of the
electronic positions have a lightning rate of energy convergence as evidenced
by Hylleraas in his landmark calculation of the ground state ionization poten-
tial of helium [83]. Sadly, this method is difficult to extend for larger systems.
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1.3.1 The statistical picture: generalized wave functions

All the correlation is encoded in the exact wavefunction. Besides it is a com-
plicated object that does not attend to particle indistinguishability without ap-
proximations. We can make ||Ψexact − Ψ|| as small as we wish at the expense
of a high computational cost but the orbital character is lost so it is not clear
how correlation is affecting them. Instead, as is manifested by Hamiltonians,
operators admit a one-, two-, three, . . . , n-body expansion in Taylor series

O = O0 +
∑
i

Oi +
1

2!

∑
i 6=j

Oij + · · · . (1–28)

Observations are this way separated by particle rank without violating the in-
distinguishability. Based on this finding if we encounter a state-operator cor-
respondence we can separate the distribution of an electron (any) from the
distribution of two electrons (any pair), and so on. There is, however, a natural
(orthogonal) projector associated with Ψ that takes the role of a density oper-
ator. This establishes the nexus that allows us to set a hierarchy of electron
correlations.

Density Matrices

Density matrices were firstly introduced to apply statistical concepts in quan-
tum mechanics by John Von Neumann and Landau. When a physical system
is at T = 0K it may be understood as being isolated from the environment and
its state may thus be represented by only one state vector (a pure state). At
finite temperatures (T 6= 0K) thermal equilibrium will force it into a superpo-
sition of states (a mixed state) not defined by a single wavefunction pure state
but by a weighted combination of them, or equivalently by a density matrix
which describes the probability of finding the system into any of the available
pure states. From this perspective density matrices generalize the concept of
wavefunction. In our treatment of chemical systems we shall restrict ourselves
to pure states. Notwithstanding, density matrices prove also to be useful under
such circumstances.

The aforementioned density operator, ΓN, acts on an arbitrary function Φ as
a projector to the state Ψ

ΓN|Φ〉 = 〈Ψ|Φ〉|Ψ〉. (1–29)

This ΓN operator has many fundamental properties: idempotent Γ2Ψ = ΓΨ, self-
adjoint Γ = Γ∗, positive semidefinite 〈Φ|Γ |Φ〉 > 0, possessing one eigenvalue
equal to one ΓΨ = Ψ, and with unit trace Tr(Γ) = 1.

Another important way to define an arbitrary linear operator, O, is by its
kernel, K. The kernel K can be thought of as a generalization of the matrix
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representation, M, of a linear map in finite dimensions, L, when the vectors are
replaced by functions with values at infinitely many points:

(Lu)i =
∑
j

Mijuj finite dim (1–30)

(OΨ)(x) =

∫
K(x; x ′)Ψ(x ′)dx ′ infinite dim. (1–31)

Abusing of notation, the density operator has a Green kernel Γ(x; x ′) as in
equation (1–31) that keeps the equality (1–29)

(ΓNΦ)(x) =

∫
Γ(x; x ′)Φ(x ′)dx ′ =

∫ [
Ψ(x)Ψ∗(x ′)

]
Φ(x ′)dx ′

=

[∫
Ψ∗(x ′)Φ(x ′)dx ′

]
Ψ(x). (1–32)

We used a contracted notation
∫

dx for
∑
σ

∫
dr. Diagonal elements Γ(x; x) are

not defined by the previous equation. Otherwise the integration would also
run over Ψ(x). But we can define them directly as

Γ(x; x) = Ψ(x)Ψ∗(x) = |Ψ(x)|2 (1–33)

to have a formal definition of the trace

Tr(Γ) =
∫
Γ(x; x)dx = 1. (1–34)

With this appreciation we are equipped to evaluate expectation values of mul-
tiplicative operators such as the potential from the density matrix

〈V〉 = 〈Ψ|V |Ψ〉 =
∫
Ψ∗(x)VΨ(x)dx =

∫
VΨ∗(x)Ψ(x)dx =

∫
VΓ(x; x)dx = Tr(VΓ)

(1–35)
but not ready to compute — let’s say — the kinetic energy, for the differential
operator needs non diagonal elements to characterize the situation in other
representations than the coordinate space. Just in case the operator is allowed
only to act over unprimed coordinates at the same time that we prime the
coordinates of Ψ∗(x ′) to avoid the action of the operator. Once the operator has
done its job the primed coordinates are restored, x ′ = x, so

Tr(TΓ) =
∫
TΓ(x; x)dx =

∫
TΨ(x)Ψ∗(x ′)dx =

∫
(TΨ)(x)Ψ∗(x)dx = 〈Ψ|T |Ψ〉 = 〈T〉.

(1–36)
In this way, the functional that obtains the ground state energy from the

wavefunction is mapped into a functional of the density matrix Γ :

inf
Γ

{
Tr(HΓ)

}
= E(Ψ) = inf

Ψ
〈Ψ|H|Ψ〉 (1–37)
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Reduced Density Matrices (RDMs) and density functions

The complexity of the density matrix is on par with that of the wavefunction.
For this reason Husimi proposed a reduction to k-particle internal distribution
functions by integration of the density matrix:

γk(xi6k; x ′i6k) =
N!

(N− k)!

∫
Γ(xi6N; x ′i6k, xk+16i6N)dxi>k. (1–38)

The reader should be aware that several normalization conventions exist [102,
126]. Indistinguishability of electrons imposes that any N− k electrons could
have been picked to be integrated out. All the electrons are equivalent so we can
make an arbitrary choice of the variables to integrate and add a combinatoric
prefactor that takes into account all possibilities. Reduced density matrices
inherit from the wave function several fundamental properties, they are

γk(xi6k; x ′i6k) = γ
∗
k(x
′
i6k; xi6k) hermitian,

(1–39)

γ∗k(· · · , xi · · · , xj, · · · ; x ′i6k) = −γ∗k(· · · , xj · · · , xi, · · · ; x ′i6k) antisymmetric,
(1–40)

γk(· · · , xi, · · · , xi, · · · ) = 0 showing exclusion,
(1–41)

Tr(γk) =
N!

(N− k)!
finite trace,

(1–42)

and positive semidefinite. Not only it is possible to obtain reduced density ma-
trices from the full density matrix, there is indeed a recursive formula relating
a p-density matrix with its lower reduced (p− 1)-density matrices

γp−1(xi6p−1; x ′i6p−1) =
p

N− p+ 1

∫
γp(xi6p; x ′i6p−1, xp)dxp. (1–43)

Each kernel has an associated operator that acts on functions of k variables by
integration

(γkf1...k)(xi6k) =

∫
γk(xi6k; x ′i6k)Ψ(xi6k)dxi6k (1–44)

and returns a function of k variables. Since any wavefunction admits an expan-
sion in products of N spin-orbitals, reduced density matrices should admit an
expansion in k spin-orbitals

γk(xi6k; x ′i6k) =
∑

u1,··· ,uk
v1,··· ,vk

γk(u1, · · · ,uk|v1, · · · , vk)

ψu1(x1) · · ·ψuk(xk)ψ∗v1(x
′
1) · · ·ψ∗vk(x

′
k) (1–45)
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or in Slater determinants as in equation (1–24)

γk(xi6k; x ′i6k) = k!
∑

u1<···<uk
v1<···<vk

γk(u1, · · · ,uk|v1, · · · , vk)

|ψu1(x1) · · ·ψuk(xk)〉〈ψ∗v1(x
′
1) · · ·ψ∗vk(x

′
k)|. (1–46)

Since most interesting operators in Quantum Mechanics are one- and two-
electron operators, the most important DMs are the first and second rank
ones. Diagonalization of γ1 yields an eigenbasis of one particle natural spin-
orbitals [102] with eigenvalues that denote their natural occupation. The occu-
pations lie in the range [0, 1] and are normalized to Trγ1 = N =

∑
i ni. The

second order density matrix has an eigenbasis of geminals with occupations
that comply with equivalent conditions.

Reduced density matrices are not only practical entities, they contain all the
relevant information about the physical system, for example

ρ(x) = γ1(x, x) :=
N∑
k

∫
|Ψ(x)|2 dxi 6=k (1–47)

ρ2(x1, x2) = γ2(x1, x2; x1, x2) (1–48)

are the spin (one-electron) density and the spin (electron) pair density.
In summary we have established a map from the wavefunction to the density

matrix, then we have narrowed down the number of particles described, to
finally represent density matrices in position space through their diagonals as
probability density functions:

Ψ 7→ Γ 7→ · · ·γ16p6N · · · 7→ ρp. (1–49)

Only remains to us the explicit evaluation of density matrices. We will look
first at an easy example to capture their structure.

Example 1.1 (The case of a Slater determinant). A system with N = 2 electrons in
a configuration {ψ11,ψ12} has a wavefunction

Ψ =
1√
2!

∣∣∣∣
ψ1(x1) ψ2(x1)

ψ1(x2) ψ2(x2)

∣∣∣∣ . (1–50)

Its first order density matrix is

γ1(x1; x ′1) =
∫ ∣∣∣∣ψ1(x1) ψ2(x1)

ψ1(x2) ψ2(x2)

∣∣∣∣ ·
∣∣∣∣
ψ∗1(x

′
1) ψ∗2(x

′
1)

ψ∗1(x2) ψ∗2(x2)

∣∣∣∣ dx2

=
[
ψ1(x1)ψ

∗
1(x
′
1) +ψ2(x1)ψ

∗
2(x
′
1)
]
=

N∑
i

ψi(x1)ψ
∗
i (x
′
1) (1–51)

In return γ1(x1; x ′1) ≡ γ1(x2; x ′2). The last equality resembles the closure relation∑∞
i ψi(x1)ψ

∗
i (x
′
1) = δ(x1 − x

′
1) that stems from a complete basis for the mono elec-

tronic space. Any one electron function is f1(x) =
∑N
i ciψi(x). Spinorbitals consti-

tute an eigenbasis for the one-particle density operator with eigenvalues equal to unity
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n1 = n2 = 1 for the orbitals ψ1 and ψ2. This is evident from the beginning since
we stated that the unique configuration is {ψ11,ψ12}. That is not necessarily true for
correlated wavefunctions. These orbitals that diagonalize the first order density matrix
are called natural spin orbitals and their eigenvalues natural occupations. The second
order density matrix, or full density matrix (k = N), needs no integration of ΨΨ∗

γ2(x1, x2; x ′1, x ′2) =
∣∣∣∣
ψ1(x1) ψ2(x1)

ψ1(x2) ψ2(x2)

∣∣∣∣ ·
∣∣∣∣
ψ∗1(x

′
1) ψ∗2(x

′
1)

ψ∗1(x
′
2) ψ∗2(x

′
2)

∣∣∣∣

= ψ1(x1)ψ
∗
1(x
′
1)ψ2(x2)ψ

∗
2(x
′
2) −ψ1(x1)ψ

∗
1(x
′
2)ψ2(x2)ψ

∗
2(x
′
1)

−ψ1(x2)ψ
∗
1(x
′
1)ψ2(x1)ψ

∗
2(x
′
2) +ψ1(x2)ψ

∗
1(x
′
2)ψ2(x1)ψ

∗
2(x
′
1)

=

N∑
k6=l

ψk(x1)ψ
∗
k(x
′
1)ψl(x2)ψ

∗
l (x
′
2) −ψk(x1)ψ

∗
k(x
′
2)ψl(x2)ψ

∗
l (x
′
1)

Identifying the first and fourth terms as part of γ1(x1; x ′1)γ1(x2; x ′2) from (1–51) and
subtracting the missing terms

γ2(x1, x2; x ′1, x ′2) = γ1(x1; x ′1)γ1(x2; x ′2) −
∑
k,l

ψk(x1)ψ
∗
k(x
′
2)ψl(x2)ψ

∗
l (x
′
1)

= γ1(x1; x ′1)γ1(x2; x ′2) − γ1(x1; x ′2)γ1(x2; x ′1)

=

∣∣∣∣
γ1(x1; x ′1) γ1(x1; x ′2)
γ1(x2; x ′1) γ1(x2; x ′2)

∣∣∣∣ (1–52)

Surprisingly, in single determinant cases, high order density matrices can be recovered
from a lower rank one by using the above expansion, which is called the Fock-Dirac
expansion. Using induction, higher order matrices become

γk(xi6k; x ′i6k) = k!
∑

(i1,...,ik)⊆[1,N]

|ψi1(x1) · · ·ψik(xk)〉〈ψi1(x ′1) · · ·ψik(x ′k)|.

(1–53)
The diagonal part of the 1-RDM is the density function

ρ(x1) =

N∑
i

ψi(x1)ψ
∗
i (x1) =

N∑
i

|ψi(x1)|
2 (1–54)

and the diagonal of 2-RDM is the pair density function

ρ2(x1, x2) = ρ(x1)ρ(x2) − |γ1(x1; x2)|2

=

N∑
k6=l

|ψk(x1)|
2|ψl(x2)|

2 −ψk(x1)ψ
∗
k(x2)ψl(x2)ψ

∗
l (x1) (1–55)

follows from the hermitian property γ1(x1; x2) = γ∗1(x2; x1). Both equalities come
from different paths but they are equivalent. To see the link notice that in the last sum
we can eliminate the restriction of self pairing k 6= l because the first and second term
cancel

∑
k |ψk(x1)|

2|ψk(x2)|
2 − |ψk(x1)|

2|ψk(x2)|
2. The first term converts into a
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product of independent probability densities with contribution Tr(ρ(x1)ρ(x2)) = N2,
instead of N(N− 1) as before, that contains part of the direct product and part of the
exchange contribution. The second an “exchange” term with the rest of contributions
of the direct and exchange products that has a trace of Tr(−|γ1(x1; x2)|2) = −N, not 0
as before. The negative correlation −|γ1(x1; x2)|2 or probability reduction of the joint
probability ρ2(x1, x2) with respect to the product, that is named Fermi correlation, is
more due to avoidance of self pairing (Pauli correlation) than to antisymmetry. Already
in this example density matrices and density functions permit us appreciate the subtle
origin for the departure from the uncorrelated motion. If ψ1 and ψ2 share the same
spatial orbitals (closed shell), (i) the density is ρ(x) = 2

∑N/2
i |φi(r)|

2 and (ii) in
this special case of two electrons alone, the second term of (1–55) cancels resulting in
an almost uncorrelated motion. Density matrices of determinantal functions have only
diagonal elements populated. As we increase correlation the non-diagonal elements
become populated.

To make the partition of observables by particle rank more precise, let us con-
sider the Taylor expansion of the density operator, symmetric in all indices, as
a sum of projections over single electron functions fi, geminals (pair products
of spin-orbitals) fij = ψiψj, . . .

ΓN = Γ0 +

N∑
i

|fi〉〈fi|+
1

2!

N∑
i 6=j

|fij〉〈fij|+ · · · .

= Γ0 +

N∑
i

γ1(i) +
1

2!

N∑
i 6=j

γ2(ij) + · · · .

= Γ0 +Nγ1 +

(
N

2

)
γ2 + · · · . (1–56)

Using reduced density matrices the expectation of the two particle projector is
(
N

2

)
〈Ψ|γ2|Ψ〉 =

1

2!

∫
Ψ∗γ2(xi<2; x ′i<2)Ψdx

=
1

2

∫
f∗12(xi<2)γ2(xi<2; x ′i<2)f12(x

′
i<2)dx1 dx2

=
1

2
f∗12(xi<2)f12(xi<2) =

1

2
|f12(xi<2)|

2 (1–57)

a two-electron distribution function. We have operators acting on a space that
is a direct sum of single particle tensor powers spaces with implicit antisym-
metrization.

|Ψ〉 = |f1〉|f12〉|f123〉 · · · . (1–58)

Any physical quantity involving k-particle processes can be stated in terms
of the corresponding k-density matrix. For example, the energy of a general
Hamiltonian involving one-particle operators O1 and two-particle operators
O2 is

E(Γ) = TrHΓ = TrO1γ1 +
1

2
TrO2γ2. (1–59)
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This leads us to think that we only need the second order reduced density ma-
trix to compute the ground state energy instead of all N-particle distributions.
The unique needed element would be γ2, from γ2 the one particle density ma-
trix is straightforward γ1 = 2

N−1 Tr1 γ2. In this sense the wavefunction or the
density matrix contain too much information, they are over–complete.

An appealing feature of the 2RDM is that all interactions can be correctly
represented so the energy functional is completely known. It might seem that
nothing has been lost in the transition from the N particle wavefunction to the
2RDM, though we have missed the Hilbert space boundary conditions or more
commonly called N-representability [36] conditions. A variational computation
of the wavefunction is carried out minimizing the energy with respect to varia-
tions of the trial function so they span the whole space of functions. In any case
those variations are never arbitrary, square integrability and regularity condi-
tions must be satisfied, that way the wavefunction has the properties of a distri-
bution of electrons. The 2-RDM needs additional constraints, apart from being
integrated from the density matrix to compute the energy of the ground state:
and admissible conditions. For a long time, many necessary but not sufficient
or impractical sufficient conditions were known. It has been only quite recently
that fullN-representability conditions have been identified, see [124, 125] for an
account of the latest developments, and partially implemented in polynomial
time [123] for realistic systems.

Cumulants and correlation holes

Let us realize that the density functions are the moments of the electronic
distribution. If a generating function for the moments ρr exists M(ζ) = 〈eζx〉
there is an alternative generating function for the density cumulants lnM(ζ)

that when expanded as a Maclaurin series gives the cumulants κr as r times
the derivative of its generating function at ζ = 0

κr =
dr lnM(ζ)

dζr

∣∣∣
ζ=0

=

r∑
i=1

(−1)i−1(i− 1)!Br,i(ρ1, · · · , ρr−i+1) (1–60)
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With the aid of Bell polynomials Br(ρ1, . . . , ρr) =
∑r
i=1 Br,i(ρ1, ρ2, . . . , ρr−i+1)

Br(ρ1, . . . , ρr) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ1
(
r−1
1

)
ρ2

(
r−1
2

)
ρ3

(
r−1
3

)
ρ4

(
r−1
4

)
ρ5 · · · · · · ρr

−1 ρ1
(
r−2
1

)
ρ2

(
r−2
2

)
ρ3

(
r−2
3

)
ρ4 · · · · · · ρr−1

0 −1 ρ1
(
r−3
1

)
ρ2

(
r−3
2

)
ρ3 · · · · · · ρr−2

0 0 −1 ρ1
(
r−4
1

)
ρ2 · · · · · · ρr−3

0 0 0 −1 ρ1 · · · · · · ρr−4

0 0 0 0 −1 · · · · · · ρr−5

...
...

...
...

...
. . . . . .

...

0 0 0 0 0 · · · −1 ρ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(1–61)

we obtain the usual cumulant densities

κ1 = ρ1 (1–62)

κ2 = ρ2 − ρ1
2 (1–63)

κ3 = ρ3 − 3ρ2ρ1 + 2ρ1
3 (1–64)

κ4 = ρ4 − 4ρ3ρ1 − 3ρ2
2 + 12ρ2ρ1

2 − 6ρ1
4. (1–65)

The reader might question what the purpose for introducing this new formal-
ism is. One of the reasons is that k density functions quantify the probability
of k electrons hitting each other simultaneously as well as k − 1, k − 2, · · · , 2
collisions, nested like a Matryoshka. They include all possible partitions of k
correlation. Cumulants, on the opposite hand, only have genuine k correlations.
The first order cumulant is the difference between an electron distribution and
one electron correlation (not existing), the second order cumulant is the pair
electron density function minus the distribution of two independent electrons,
the third one is the triad distribution minus non equivalent pair correlations
plus non correlated motion. Cumulant densities implement a true correlation
ladder increasing correlation progressively. They are Hermitian and antisym-
metric as the density functions and have the remarkable property of being ad-
ditive for independent variables, the first step to be extensive. The trace of the
cumulants is proportional to the size of the system O(N):

Tr(κ1) = N Tr(κ2) = −N (1–66)

Tr(κ3) = 2N Tr(κ4) = −6N (1–67)

For future purposes a convenient change of definition is due
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1. Divide all terms of κr by the coefficient that is in front of ρr1.

2. Multiply each term ρ
p1
s1 ρ

p2
s2 · · · ρ

pk
sk by

∏k
i=1 pi!(si!)

pi

l! .

introduces a new set of cumulantsρ(x) = ρ1(x)

λ1(x) = γ1(x; x) = ρ(x) (1–68)

λ2(x1, x2) = ρ(x1)ρ(x2) − ρ2(x1, x2) (1–69)

λ3(x1, x2, x3) = ρ(x1)ρ(x2)ρ(x3)

−
1

2
[ρ(x1)ρ2(x2, x3) + ρ(x2)ρ2(x1, x3) + ρ(x3)ρ2(x1, x2)]

+
1

2
ρ3(x1, x2, x3) (1–70)

with two very important properties, namely recursivity

λk−1(xi6k−1) =

∫
λk(xi6k)dxk (1–71)

and extensivity

Tr(λk) =
∫
λk(xi6k)dxi6k = N. (1–72)

The second cumulant is also referred as the exchange-correlation pair density
alluding to the Fermi (exchange) and Coulomb correlation of pairs of electrons
that it integrates and represents the part that cannot be recovered from the
density. In DFT (section 1.7) it is a most valuable quantity. Nonetheless, it
is also appropriate to pay careful attention to its statistical meaning because
we could encounter surprises. A system with two independent electrons and
normalized densities has a normalized joint probability distribution

ρ2(x1, x2) =
n− 1

n
ρ(x1)ρ(x2). (1–73)

Even for a non correlated system the pair density is not just the product of the
individual densities by a factor (− 1/n)ρ(x1)ρ(x2). It results practical to focus
on the distribution of one electron to circumvent the normalization. It would
be a conditional probability to encounter an electron at x2 given the event that
another electron was found at x1

P(x2|x1) =
ρ2(x1, x2)
ρ(x1)

, (1–74)

that quantifies the exchange-correlation charge density hxc by comparison with
the independent density

P(x2|x1) = ρ(x2) + hxc(x1, x2). (1–75)

The probability to encounter an electron in the whole space after fixing the
position of one of them at x1 is∫

P(x2|x1)dx2 = N− 1. (1–76)
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hxc(x1, x2) integrates to minus one over the space of electron 2, hence the name
of exchange-correlation hole. The effect of exchange alone can be isolated tak-
ing a look at single determinant wavefunctions, the Fermi hole

hx(x1, x2) = −
|γ1(x1; x2)|2

ρ(x1)
= −

N∑
k,l

ψk(x1)ψ
∗
k(x2)ψl(x2)ψ

∗
l (x1)

|ψk(x1)|2
(1–77)

also integrates to minus one. Suppose that the fixed electron at r1 is well
localized in an orbital ψk(x1), the excluded density is the occupation of the
same orbital at x2

hx(x1, x2) = −|ψk(x1)|
2. (1–78)

From this expression we can appreciate once again that the source of the exchange-
only hole is not always Fermi statistics, it can be the avoidance of self pairing
in a shell structure. In any case the center of the Fermi hole is

lim
r2→r1

hx(x1, x2) = −

N∑
l

|ψl(x2)|
2 = −ρ(x2). (1–79)

The missing Coulomb correlation is expected to contribute nothing to the trace.
On average it evicts and concentrates charge with no cumulative effect. Since
the origin is the inter-electronic Hamiltonian operator gij and no restriction on
the wavefunction the Coulomb hole is expected to take place only in the vicinity
of the other electrons with a counter effect, a Coulomb heap, in the rest of the
space.

We have seen that the second order density function is recoverable at the
single determinantal level from the first order density matrix and we advance
that any density function of order 2 6 k 6 N

ρk(xi6k) =
∑
τ

(−1)pγ1(x1; xτ1) · · ·γ1(xN; xτN) (1–80)

is a sum of permutations τ of the diagonal first order density matrices with
sign p each. For example,

ρ3(xi63) = γ1(x1; x1)γ1(x2; x2)γ1(x3; x3) + γ1(x1; x1)γ1(x2; x3)γ1(x3; x2)

+ γ1(x2; x2)γ1(x1; x3)γ1(x3; x1) + γ1(x3; x3)γ1(x1; x2)γ1(x2; x1)

+ γ1(x1; x2)γ1(x2; x3)γ1(x3; x1) + γ1(x1; x3)γ1(x3; x2)γ1(x2; x1)

= ρ(x1)ρ(x2)ρ(x3) + ρ(x1)γ1(x2; x3)γ1(x3; x2)

+ ρ(x2)γ1(x1; x3)γ1(x3; x1) + ρ(x3)γ1(x1; x2)γ1(x2; x1)

+ γ1(x1; x2)γ1(x2; x3)γ1(x3; x1) + γ1(x1; x3)γ1(x3; x2)γ1(x2; x1)
(1–81)
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Figure 1: Diagrammatic partitions of three body correlations. (a) Discon-
nected one body correlations γ1(x1; x1)γ1(x2; x2)γ1(x3; x3) (b),(c),(d) Pair
correlations γ1(x1; x1)γ1(x2; x3)γ1(x3; x2), γ1(x2; x2)γ1(x1; x3)γ1(x3; x1),
γ1(x3; x3)γ1(x1; x2)γ1(x2; x1) (e) Clockwise connected three body correlation
γ1(x1; x2)γ1(x2; x3)γ1(x3; x1) (f) Counter-clockwise connected three body
correlation γ1(x1; x3)γ1(x3; x2)γ1(x2; x1)

The first term is independent motion, the next three are pair correlations and
the last two are identical three body correlations (figure 1). Consequently, the
cumulant of third order is the average of the last two terms

λ3 =
1

2

[
γ1(x1; x2)γ1(x2; x3)γ1(x3; x1) + γ1(x1; x3)γ1(x3; x2)γ1(x2; x1)

]

(1–82)

1.4 hartree–fock theory
We have already discussed about the algebraic structure of the wavefunction

and the evaluation of the expected values at length but we have not debated
how to obtain the optimal wavefunction. We know the exact expression for the
Hamiltonian from (1–15) and the conditions to consider a many electron wave-
function admissible from the previous section but the orbitals have not been
determined yet. The Hartree-Fock solution is that one that restricts variation-
ally the multi–electronic wavefunction to a single Slater determinant (1–21). We
are faced with a minimization problem where the Hartree-Fock energy

EHF = inf
Ψ∈S

EHF[Ψ] = inf
Ψ∈S
〈Ψ|H|Ψ〉 > Egs. (1–83)

is always an upper bound for the ground state energy.
The energy functional E[Ψ] adopts a very compact expression on single de-

terminant wavefunctions [37, 175]:

EHF[Ψ] =

N∑
i

〈ψi|hi|ψi〉+
1

2

N∑
i

N∑
j6=i

{
〈ψiψj|gij|ψiψj〉− 〈ψiψj|gij|ψjψi〉

}
=

N∑
i

〈ψi|hi|ψi〉−
1

2

N∑
i

N∑
j6=i

{
Jij −Kij

}
. (1–84)
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Single particle core Hamiltonian operators hi are restricted by orthonormality
of the spin-orbitals to operate on their respective single-particle spaces. Other-
wise, the bi-electronic operators are affected by the antisymmetry of the wave-
function under exchange of pairs. Two terms arise from their action, 4 one
is the Coulomb integral Jij, analogous to the classical Coulomb energy and a
purely quantum exchange integral Kij.

The entry point to model fermionic systems is to reckon the interacting sys-
tem as a mean field where each orbital feels the average potential of the other
electrons. That effect would be reached attaching an effective charge to the bi-
electronic operators to form a new couple of single particle effective operators
that replace the role of the Coulomb operator

Jjψi = 〈ψj|gij|ψj〉ψi (1–85)

and the exchange operator

Kjψi = 〈ψj|gij|ψi〉ψj. (1–86)

The Coulomb operator simulates the effect of the Coulomb potential on an
electron at x1 in the presence of another electron with density |ψj(x2)|

2. The
exchange operator interchanges the orbital in its kernel with its spinorbital
argument. The Coulomb operator is local for it needs only the value of the
orbital in the point where it is evaluated while the exchange operator is not
local, needing the knowledge of the spinorbital it acts upon in the entire space.
The effective Fock operator F is equal for all spinorbitals

EHF[Ψ] =
∑
i

〈ψi|hi +
∑
j

(Jj −Kj)|ψi〉 =
∑
i

〈ψi|F|ψi〉. (1–87)

We do not restrict the sum over the index j for the same reason discussed in
example 1.1.

Invoking the variational principle the best orbitals are those that minimize
the energy functional, thus an arbitrary infinitesimal variation of the orbitals
(ψi → ψi + δψi) should leave the energy unchanged. In addition, the energy
has to be minimized under othonormalization constraints, that is to minimize

LHF[Ψ] = EHF[Ψ] −
∑
ij

λij
(
〈ψi|ψj〉− δij

)
. (1–88)

4 Two different notations are present in the literature:

• physicists’ notation:

〈ij|kl〉 = 〈ψiψj|ψkψl〉 =
∫
ψ∗i (x1)ψ

∗
j (x2)ψk(x1)ψl(x2)dx1 dx2

• chemists’ notation:

[ij|kl] = [ψiψj|ψkψl] =

∫
ψ∗i (x1)ψj(x1)ψ

∗
k(x2)ψl(x2)dx1 dx2
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At a stationary point of the energy

δLHF[Ψ] =
∑
i


〈ψi|F|δψi〉+ 〈ψi|F|δψi〉∗ −

∑
j

(
λij〈ψi|δψj〉+ λij〈ψi|δψj〉∗

)



=
∑
i


〈ψi|F−

∑
j

λij|δψi〉+ 〈ψi|F−
∑
j

λij|δψi〉∗

 = 0. (1–89)

Both the complex and the real solutions are equal and minimize the energy so
we focus in the real part. Apart from the trivial solution to this system of N
coupled differential equations where the spin-orbitals vanish (it has no physical
meaning and does not satisfy normalization Ψ = 0) the inner part within the
integration has to vanish. The wavefunction, a single Slater determinant, is
invariant under unitary transformations U (e.g. permutation of columns), so
the Fock operator and the Lagrange matrix are hermitian and the energy will
remain invariant if we apply such transformation E(ΨU) = E(Ψ). The canonical
equations that the best molecular orbitals must satisfy can be succinctly written
in matrix notation

F(ψ)ψi = εiψi (1–90)

as a non-linear eigenvalue problem. The parenthesis is included to indicate that
a knowledge of the Fock operator requires the knowledge of the spinorbitals,
thus the solution is found iteratively in what is known as Self Consistent Field
(SCF) procedure. The diagonalized matrix of Lagrange multipliers ε represents
the one particle or spinorbital energies. To a good approximation orbital en-
ergies can be used estimate the ionization potential. While the sum over the
occupied state energies is the energy of the system the sum over all minus
the highest occupied orbital energy (HOMO) is roughly the energy of a N− 1

system [91]. Increasing ionization levels are worse represented because the
dismissed electronic cloud relaxation is more important.

Although our discussion has been centered around ground states, by the
Hylleraas–Undheim–MacDonald theorem [84, 103], all excited states are read-
ily available by simply forcing the functions of the variational space to be or-
thogonal to the low lying states.

Remember that we still don’t know how those molecular orbitals are, we
will only mention by now that the Hartree-Fock limit is achieved when the
spinorbitals form a complete basis for the mono-electronic functional space.

A formulation of the HF equations in terms of reduced density matrices is

EHF(Γ) = TrHΓ = Trhγ1 +
1

2
Trgρ2

=
1

2

∫
|∇γ1(x; x ′)|2 dxdx ′ −

∑
A

∫
ρ(x)ZA
|r−RA|

dx+
1

2

∫
ρ(x)ρ(x ′)
|r− r ′|

dxdx ′

−
1

2

∫
|γ1(x, x ′)|2

|r− r ′|
dxdx ′. (1–91)
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Only an off-diagonal operator (like the Laplacian) can feel the spin and sym-
metry properties of a wave function. The kinetic energy functional depends
on the first-order density matrix, γ1, the reason why the kinetic energy cannot
be expressed as a function of the density alone is because it is not the sum of
independent particle kinetic energies, as we stated below the electrons are cor-
related by the Pauli principle. The external potential (multiplicative) depends
on the density, ρ(x), and the electron interaction on the pair density, ρ2(x, x ′).
The multiplicative nature of the Coulombic potential allows to rearrange the
terms of the integrand making the dependence on the primed variables van-
ish. The kinetic energy is the only term that requires information not contained
in the density or pair density. This observation becomes very relevant when
discussing approximations for density functionals in the context of DFT.

There are three subordinate implementations of HF:

restricted hartree–fock (rhf) The wavefunction is restricted to have
each spatial orbital doubly occupied (closed shell). It is valid only for systems
with an even number of electrons. The total spin state is a singlet. Dissociation
energies are wrong, both covalent and ionic structures have the same weight.
Example of H2 failure.

F = hi +

N/2∑
j

2Jj −Kj (1–92)

unrestricted hartree–fock (uhf) The description of dissociation ener-
gies is better with the disadvantage of not being an eigenfunction of S2. The
Hamiltonian has no spin dependence, thus it should commute with spin op-
erators [H,Sz] = 0, [H,S2] = 0 and share the same eigenstate basis. Radical
species.

restricted open hartree–fock (rohf) Alleviates the symmetry breaking
problem adding those linear combinations of the uncoupled spinorbitals that
result from permuting only the spin part. It is a multi determinant wavefunc-
tion.

Despite being a naive model, RHF delivers a very good approximation to
the total energy of a system near to equilibrium. The energy that has not been
recovered is the price that we pay for simplifying an interacting system by a
mean field. The RHF solution thereupon will become a basis for later methods
that aim to improve the description of correlations and a reference for Coulomb
correlation measures. For closed-shell states

Ecorr = Egs − E
HF (1–93)

is widely used although it lacks the insight that density matrices provide. Cor-
relation energies have very tiny magnitudes compared to the total energy —
≈ 1% — but are essential to obtain molecular properties accurate enough to
guide future experiments. However, the relevant quantities are the energetic
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differences among chemical compounds rather than the absolute energy of a
system. It has been found that reaction energies predicted with HF are in qual-
itative agreement with experiments. Errors committed for one system are repli-
cated for other similar system. This reflects an attracting feature of theoretical
models: errors are almost systematic.

1.5 discretization of the hilbert space with
one-electron basis sets

Up to this time, we have said nothing about the shape of the orbitals from
which the determinantal functions are constructed. A priori, we should not
know them until the optimization has been performed. While a traditional ap-
proach — in the mathematical sense — is to approximate molecular orbitals
with Legendre, Chebysheb,. . . polynomials, the chosen path has been guided
by the use of chemical intuition. That is, atomic deformations arising from the
transferability of an atom from being isolated to an atom in a molecule should
be small. Hydrogenoid eigenfunctions suggest us the shape of the molecular or-
bitals assuming that the atomic character is almost preserved, which is a good
approach, based on chemical experience. Any multi-electron system may be
described by hydrogen-like orbitals. A clear deficiency of this is that hydrogen
functions do not span the whole space of one electron functions. Following
this principle we find two historical approaches. Molecular Orbital Theory
constructs orthonormal molecular orbitals as a linear combination of atomic or-
bitals (LCAO). There is no loss of generality on imposing orthonormality to the
spinorbitals because what matters is to span the mono-electronic space, then a
basis of linearly independent spin-orbitals is the smallest basis that spans the
whole mono space. Valence Bond Theory (VB), on the other hand, makes combi-
nations of atomic orbitals always trying to preserve their locality. The purpose
is to let the wavefunction mimic Lewis objects to evoke chemical intuition. VB
escapes the optional orthonormality condition set for Slater determinants and
translates them to the coefficients of determinants.

Both MOs and VB present a path to get to the real wavefunction. If we could
expand the wavefunction with an infinite number of atomic orbitals (following
the rules of each approach) we would end up with the same result, but we are
limited to a finite set of combinations so the chosen approach matters. Some-
times one approach converges faster to the true wavefunction, sometimes the
other is more appropriate, sometimes both are equal, and sometimes none is
good. Our election has been MO theory for its wide software offer but VB also
has a number of interesting traits, like an explicit separation of exchange.
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1.5.1 The Linear Combination of Atomic Orbitals (LCAO) expansion

A linear expansion of any molecular orbital in a basis {χν}
Nb
ν=1 of atomic

orbitals χν with finite cardinality Nb

φi =

Nb∑
ν

Cνiχν (1–94)

transforms the orthonormalization condition for molecular orbitals into

δij =
∑
µν

CµiSµνCνj = 1N ≡ C†SC = 1N, (1–95)

where we can identify the overlap matrix Sµν =
∫
χ∗µ(r)χν(r)dr 6= δµν of

atomic orbitals. HF differential equations are continuous and need discretiza-
tion to be solved algorithmically. Therefore, we search for solutions in a finite
dimensional space. The best we can do is to impose the equality Fψ = εψ in
the finite dimensional space ENb and hope that increasing the dimension of the
linear space will drive to the solution in the infinite space. Projecting a spinless
version of (1–90) into ENb

F
∑
ν

Cνiχν(ri) = εi
∑
ν

Cνiχν(ri) (1–96)

and multiplying with a test function χ∗µ(ri)

χ∗µ(ri)F
∑
ν

Cνiχν(ri) = εi
∑
ν

Cνiχ
∗
µ(ri)χν(ri). (1–97)

Forcing the equality to hold after integration yields a weak formulation of the
problem for each electron i:

∑
µ

Cνi

∫
χ∗µ(ri)Fχν(ri) = εi

∑
ν

CνiSµν. (1–98)

The Fock operator in this basis (〈χµ|F|χν〉), including boundary conditions, be-
comes

Fµν(ri) =
1

2

∫
∇χ∗µ(ri) · ∇χν(ri)dri −

∑
A

∫
χ∗µ(ri)

ZA
ri −RA

χν(ri)dri

+

Nb∑
σ,λ

N∑
j

CσjCλj
[
(µσ|gij|νλ) − (µσ|gij|λν)

]

= hµν +

Nb∑
σ,λ

N∑
j

(Jµν −Kµν) (1–99)
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after integration by parts of the kinetic integral. The mono-electronic operator
looses its diagonality (hi → hµν) and bi-electronic integrals 5 are now four-
center (µ,ν,σ, λ) integrals, not (i, j) integrals. Eq. (1–98) reads now∑

ν

FµνCνi = εi
∑
ν

SµνCνi. (1–100)

The minimization problem is converted into a generalized eigenvalue problem
solving the conditions for first order optimality. That gives us any type of criti-
cal point (minima, maxima or saddle) because the energy functional is not nec-
essarily convex. Moreover, the minimum might not be global. All this tells us
that somehow we have to integrate in the SCF process that it is a minimization.
Only a few (Nb), of the possible, eigenvalues are obtained with each iteration
of the N coupled equations (F(C)C = SCE) that appear for a system with N
electrons. Still they are a greater number than electrons. The aufbau principle
states that the lowest eigenvalues ε1 < · · · < εN correspond to an infimum of

EHF(C) =

N∑
i

∑
µ,ν

hµνCµiCνi +

Nb∑
σ,λ

N∑
i,j

(Jµν −Kµν)CµiCνi (1–101)

with an error quadratic in the error of C. The density matrix γ1, represented in
the basis of atomic orbitals

γ1(x, x ′) =
N∑
i

ψi(x)ψ
∗
i (x
′) =

N∑
i



Nb∑
µ

Cµiχµ(x)





Nb∑
ν

Cνiχν(x
′)




=

Nb∑
µ

Nb∑
ν

[
N∑
i

CµiCνi

]
χµ(x)χν(x

′) =
∑
µ,ν

Pµνχµ(x)χ
∗
ν(x
′) (1–102)

as the Fock–Dirac matrix P = CC† is assembled populating only the N molec-
ular orbitals ψ1, · · · ,ψN of lower energy. The remaining Nb −N orbitals are
said to be virtual.

Basis sets of polyatomic molecules are divided in subclasses centered around
atoms A,B, · · ·{

χA1 (r−RA), · · ·χAnA(r−RA),χ
B
1 (r−RB), · · ·χBnB(r−RB), · · ·

}
(1–103)

to sum a total number nA+nB+ · · ·+nM = Nb. Among the basic information
needed to perform an ab initio calculation stands the set of nuclear coordinates
and the atomic basis sets. Whenever the atoms displace integrals have to be
recomputed.

Reduction of the HF model to a finite model as above is a completely gen-
eral procedure, known among the numerical analysis community as a Galerkin

5 Integrals over spatial orbitals (µσ|νλ) continue being in physicists’ notation.
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method, so any basis could be applied. Good basis sets should have the fol-
lowing desirable properties: a small basis set should be enough to properly de-
scribe the ground state eigenfunction, and the functions of the basis set should
be easy to compute and integrate. There is consensus that the angular part
has to be an harmonic function. The radial part, dependent in the potential,
generates more dispute.

Hydrogenoid orbitals are very limited to represent electrons immerse in a
cloud of electrons. For instance, electrons close to nuclei shield the nuclear-
electron attraction felt by outer electrons. Another drawback is that they only
form a complete basis when the unbounded eigenfunctions are accounted. And
unbounded states do not interest us because we aim to study bounded states.

1.5.2 Slater Type Orbitals (STO)

Slater came up with a set of simple functions (STO)

χζnllm =
(2ζnl)

3
2√

(2l+ 2)!
(2ζnlr)

l exp
(
−ζnlr

n

)
Ylm(θ,ϕ) (1–104)

that approximate the molecular orbitals tuning the atomic numbers N 3 Z →
ζ ∈ R+ albeit loosing orthogonality. The combined use of variable quantum
numbers n and exponents ζnl allows to retain high accuracy with small sets.
Even with the crudest approximation, that is, using a minimal basis6, we can
obtain quite accurate energies. The main obstacle for their use in large systems
is that STO integrals do not admit analytical expressions.

Gaussian Type Orbitals (GTOs)

The tensor (σµ|gij|νλ) is a 6N dimensional integral that constitutes the core
of any electronic structure calculation. Its scaling is O(N4b). A pivotal moment
in the development of electronic structure software occurred when Boys de-
cided to change the basis sets, replacing the exponential with gaussian. Only
after that large scale calculations became possible. The advantage of Gaussian
functions is the product formula. Four center integrals are reduced to two cen-
ter integrals and two center integrals are further reduced to one center integrals.
All integral evaluations are turned down to computations of one dimensional
integrals (Boys functions), which is the bottleneck of all electronic structure cal-
culations, determines to great extent the accuracy achieved in the ground state
energy calculation.

6 One basis function per Hartree–Fock orbital (Nb =N/2)



32 computational quantum chemistry

1.6 post-hartree–fock variational methods

1.6.1 Configuration interaction (CI)

We have mentioned, and it is here reinforced, that if {ψi(x)}∞i forms a com-
plete basis for the mono-electronic space then the set of all Slater determinants
filled with electrons in all possible combinations forms an orthonormal basis
for the whole space. The most contracted multi-electronic expansion, given by
Hartree–Fock theory, condensates N electrons in exactly N spinorbitals. How-
ever, correlated electrons cannot be described by a single spinorbital that is per
se an independent distribution function. Instead, the spread over all possible
one-electronic states truly represents any correlated electron. With a number
of spinorbitals greater than N, restricted to orthonormalized spinorbitals, the
unique way to populate partially spinorbitals is to add more ordered configu-
rations K (determinants) to the total wavefunction:

Ψ =
∑
K

cKΨK (1–105)

When both single and multi electronic spaces are complete there is no reduc-
tion of the original variational space the wavefunction belongs to and we can
therefore conclude that diagonalization of H in that basis would be a direct
attack to the Schrödinger equation. Down to earth implementations start from
a finite number of spinorbitals (Full-CI) to get an exact solution given a basis
set, relativistic and Born-Oppenheimer approximations aside. Even so, the scal-
ing is rather acute. Provided Nb spinorbitals have been found previously with
Hartree–Fock, the number of partitions (determinants) with N elements of the
Nb functions is Ndet =

(
Nb
N

)
. The cost of diagonalization being a cubic power

of Ndet.
It is evident that we have to seek the most important determinants that allow

us to converge to the correct solution with a minimum number of them. The
single best determinant is the HF determinant and the next are those that inter-
act more with the reference determinant. Only Slater determinants that differ
by less than two spinorbitals to the HF determinant should interact directly
with it through the Hamiltonian since the later has at most two electron terms.
This fact is evident in equation (1–84) and it is explicit in Slater-Condon rules.
Not even singly excited determinants interact (directly) with the HF determi-
nant as a consequence of the variational formulation of the HF model (Brillouin
theorem). Coupling to other determinants is indirect, rather than being absent.
The Hamiltonian encourages a classification of determinants in:

• First-order interacting space: composed of all singly excited determinants
where the i-th occupied spinorbital is replaced with a virtual spinorbital
a:

Ψai = |ψ1 · · ·ψi−1ψaψi+1 · · ·ψN〉. (1–106)
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• Second-order interacting space: with all double excited determinants,

Ψabij = |ψ1 · · ·ψa · · ·ψb · · ·ψN〉, (1–107)

• and so on forth.

The representation of the Hamiltonian in the ordered basis of determinants is
a block banded matrix (see table 1).

CISD and CISDT are computational models with functions of the first and
second, and up to the third interacting space. A more general CI wavefunction
is taken from

ACI =

Ψ = cΨHF +
∑
i,a

cai Ψ
a
i +

∑
i,j,a,b

cij,abΨ
ab
ij + · · · : c, cai , cabij , . . . ∈ C, 〈Ψ|Ψ〉 = 1


(1–108)

truncating at any level. Fixing the maximum level m of excitations reduces
the number of determinants to be the counting of all possible events where we
choose to excite k 6 m of the N electrons to populate k virtual spinorbitals of
the Nb −N pool. If all electrons are excited the result is the same as full CI

(
Nb
N

)
=

N∑
k=0

(
N

k

)(
Nb −N

k

)
. (1–109)

CI minimizes the functional L(c; λ) = 〈Ψ|H|Ψ〉 − λ (〈Ψ|Ψ〉− 1) with respect
to configuration parameters maintaining constant population. We either diag-
onalize a lower rank CI matrix or solve the system of equations at the critical
point

∂L(c; λ)
∂λ

= 0,
∂L(c; λ)
∂c

= 0. (1–110)

Excitations involve one, two, and higher electron processes and as we include
higher orders the energetic contributions converge monotonically. Inclusion of
higher angular momentum orbitals is the same as taking into account the polar-
ization generated by electron correlations. That part is often quoted as dynamic
correlation. Non-dynamic correlation is present when the HF reference is not
good enough to generate all relevant polarizations. To give an example, an
state that is degenerate or near to degeneracy (quasi-degenerate states) couples
with other states near in the PES to become a unified source of polarizations.
These situations are out of the scope of low rank CI approximations. A first step
selecting the best references would be necessary for later generating the polar-
izations with CI. Equilibrium conformations, closed shell, free of degeneracy,
frequently achieve convergence with the addition of a few excited configura-
tion spaces, e.g. CISDTQ, that contribute a lot to the energetics.

From a practical perspective convergence is optimal when guess orbitals are
the natural orbitals from diagonalizing the first order density matrix.

The cost of cutting the sum over interacting spaces is that the energy does not
scale proportionally to the number of electrons. For example, the simulation of
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|HF〉 |S〉 |D〉 |T〉 |Q〉 · · · |N− 3〉 |N− 2〉 |N− 1〉 |N〉
〈HF| H 0 H 0 0 · · · 0 0 0 0

〈S| 0 H H H 0 · · · 0 0 0 0

〈D| H H H H H · · · 0 0 0 0

〈T | 0 H H H H · · · 0 0 0 0

〈Q| 0 0 H H H · · · 0 0 0 0
...

...
...

...
...

. . .
...

...
...

...
〈N− 3| 0 0 0 0 0 · · · H H H 0

〈N− 2| 0 0 0 0 0 · · · H H H H

〈N− 1| 0 0 0 0 0 · · · H H H H

〈N| 0 0 0 0 0 · · · 0 H H H

Table 1: The matrix representation of H is hermitian. The first matrix element is
〈HF|H|HF〉 = EHF, Brillouin: 〈S|H|HF〉 = 〈HF|H|S〉 = 0. The upper left rank
3 matrix is the matrix of CISD. Singles do not interact directly with the HF
function but indirectly through the double excited functions. 〈S|H|D〉, 〈D|H|S〉,
〈D|H|HF〉,〈HF|H|D〉.

a reaction does not treat reactants and transition states on the same footing. The
wavefunction is said to be not size-consistent. Coupled cluster methods revolve
around this problem with a satisfactory solution.

Quite often only a particular spin state interests us. It can be proven with
algebraic arguments that all the wavefunctions Ψi with different eigenvalue
than the desired S

S2Ψi = S(S+ 1)Ψi (1–111)

will not couple with the true wavefunction Ψ (〈Ψi|H|Ψ〉 = 0). This is true for
any operator that commutes with the Hamiltonian. Broadly speaking, deter-
minants need not be eigenfunctions of the squared spin operator S2. Thus it
is not known a priori what spin eigenvalue will have the linear combination
of determinants. The task of elucidating which Slater determinants will have
correct spin, or non vanishing coupling with the desired spin state function,
can be clarified creating adequate linear combinations of determinants: Con-
figuration State Functions (CSFs). CSFs have definite spin eigenvalues. The
goal of using CSFs is that spin and spatial symmetry reduces the number of
determinants. Another aside is that determinantal implementations can allow
crossings of states with different spin eigenvalue S. If one intends to follow
a state along a PES the relative position in the list of eigenvectors can change
between different computations.

With the CI method we have covered a way to recover accurate wavefunc-
tion. However, to achieve a reasonable accuracy, often, a very large number of
configurations are needed. The reason is that the virtual orbitals have not been
optimized (poorly represented) with the aufbau procedure. Several ways have
been came to the rescue selecting the most important configurations, be it with
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natural orbitals, perturbation techniques or Multi-Configuration Self Consistent
Field (MCSCF). The last one is treated in the following.

1.6.2 Multi Configuration Self Consistent Field (MCSCF)

MCSCF wavefunctions are determinant expansions (1–24) reduced to some
fixed rank (K), i.e. the number of determinants forming the wavefunction is K

Ψ =
∑

i1<...<iN6K

Ci1,...,iN |ψi1 · · ·ψiN〉, (1–112)

with the distinguishing feature, compared with the CI method, that orbitals
where are also optimized. Thus, the set of allowed wavefunctions

AMCSCF =
{
Ψ = cΨ0 +

∑
i,a

cai Ψ
a
i +

∑
i,j,a,b

cij,abΨ
ab
ij + · · · :

c, cai , cabij , . . . ∈ C, 〈Ψai |Ψbj 〉 = δabij , 〈Ψabij |Ψcdkl 〉 = δabcdijkl , . . . , 〈Ψ|Ψ〉 = 1
}

(1–113)

is like ACI but each orbital, with origin in an initial HF step for example, is al-
lowed to be optimized keeping the normalization 〈ψi|ψj〉. The aim is to obtain
better spinorbitals than with HF to allow a faster convergence of the multi-
electronic expansion. Remember that HF does not optimize virtual orbitals and
that CI expansions do it only one or two orbitals at a time.

The range of selected determinants can go from K = N, which is exactly
Hartree-Fock, to K = Nb, that is Full-CI in that basis. At intermediate values
the MCSCF method provides lower upper bounds for the energy than CI trun-
cated at the same level. For practical purposes the MCSCF determinants and
orbitals can be fed to a CI calculation of the same rank and both calculations
are identical because the orbitals are already optimized and the configuration
optimization is supposed to be the same.

The energy has a CI-like expression

E =
∑
J,L

c∗JcLHJL (1–114)

where HJL = 〈ΨJ|H|ΨL〉. With the aid of the creation (a†i) and annihilation (ai)
operators defined by the following operations on the wavefunction

a†p|ψq〉 = |ψpψq〉 a†p|ψp〉 = 0 (1–115)

ap|ψpψq〉 = |ψq〉 aq|ψp〉 = 0, (1–116)

the Hamiltonian in the spinorbital basis has a neat expression

H =
ZAZB
RAB

+

[∑
p,q

hpqa
†
paq +

1

2

∑
p,q,r,s

〈pr|g12|qs〉a†pa†rasaq
]

. (1–117)
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When K = N+ 1 the equations collapse to the Hartree-Fock solution. A Gener-
alized Brillouin Theorem

〈Ψ|[H,a†paq]|Ψ〉 = 0 (1–118)

dictates that a single orbital modification has no effect because those changes
have been accounted by the variational minimization.

An interesting observation is that creation and annihilation operators ap-
pearing in the previous expression, when combined to run over all σ spins
Epq =

∑
σ a
†
pσaqσ, satisfy the commutation relations that are characteristic of

the unitary group U(n) generators. Epq united with the spin-adapted genera-
tor products

Epqrs =
∑
σ 6=τ

a†pσa
†
rτasτaqσ

=
∑
σ,τ

a†pσaqσa
†
rτasτ − δqrδστ

∑
σ

a†pσasσ

= EpqErs − δqrEps (1–119)

helps us writing the elements of the spin-summed first and second order den-
sity matrices

γ(p|q) = 〈Ψmc|Epq|Ψmc〉 =
∑
JL

c∗JcLγ
JL(p|q) (1–120)

γ2(pq|rs) = 〈Ψmc|Epqrs|Ψmc〉 =
∑
JL

〈c∗JcLγJL2 (pq|rs) (1–121)

where γJL(p|q) = 〈ΨJ|Epq|ΨL〉 and γJL2 (pq|rs) = 〈ΨJ|Epqrs|ΨL〉 are quoted as
the coupling coefficients. They only have −1,0, or 1 values. This makes for an
alternative formula of the electronic energy in the spatial-orbital basis

E =
∑
J,L

c∗JcL

[
K∑
p,q

hpqEpq +
1

2

K∑
p,q,r,s

(pq|g12|rs)Epqrs

]

=

K∑
p,q

Nb∑
µ,ν

γ1(p|q)hµνCµjCνi +
1

2

K∑
p,q,r,s

Nb∑
µ,ν,σ,λ

γ2(pq|rs)(pq|g12|rs)CµpCνqCσrCλs.

(1–122)

The wavefunction of the ground state is stationary under variations of config-
uration coefficients and orbitals, under the constraints

∑
K c
2
J = 1 and 〈φi|φj〉 =

δij. Optimizing configuration coefficients is the same as in CI, with Lagrange
multipliers to conserve normality). On the other hand, the optimal coefficients
can be stated as the result of applying a unitary transformation U to the trial
orbital coefficients C = CtrialU. U is parametrized U = exp(R) with a skew-
symmetric matrix R† = −R. The advantage of this parametrization is that
the orbitals are automatically orthogonal, so no constrained optimization is



1.7 density functional theory (dft) 37

needed. Also, only (1/2Nb(Nb − 1)) entries of the lower triangle of R have to
be optimized. It is customary to use a second order optimization with Newton-
Raphson. Since the algorithm used to perform this task solves an optimization
problem we have to provide a good initial guess.

Practical implementations of MCSCF do not take all the determinants of the
expansion (1–112), just a few of them. In principle, MCSCF does not impose sys-
tematic rules to guide the selection of the configurations but some approaches
have been devised. One of the most successful, Complete Active Space SCF
(CASSCF) or Fully-Optimized Reaction Space (FORS), divides the orbital space
in two groups: Nv core (or inactive) and Nv valence (or active) orbitals where
Nv +Nc = K. The resulting wavefunction is of the type [98]

Ψ = |ψ1 · · ·ψNc〉∧
∑

{i1<...<iNc }⊂{Nc+1,...,K}

Ci1...iNv |ψi1 · · ·ψiNv 〉 (1–123)

The core electrons are assumed to be well represented by a HF wavefunction
whereas the electrons that are more correlated are represented by the set of all
configurations that can be created from a pool of active orbitals that are opti-
mized at the same time. It is the same as performing a Full-CI in the space of
active orbitals but this time we only diagonalize a subspace of the Hamiltonian
matrix (vs CI), only the lowest eigenstates interest us. The virtue of CASSCF
resides on the idea of building upon the HF method, the canonical orbital en-
ergies can guide us to select properly which orbitals are sufficiently low in
energy to be almost unaffected by correlation and which ones are susceptible
to be altered by correlation. In any case, chemical intuition is needed to choose
correctly the active space, but less than for a general MCSCF calculation. To
round up, the energy evaluation and optimization is similar to full MCSCF but
now the density matrix is block diagonal with the block corresponding to the
core space being an identity matrix and the other block a density matrix on the
space of valence orbitals. The same applies for the unitary matrix converting
the orbitals between basis.

A final remark: although it is commonly stated that wavefunction methods
are fully ab initio they contain some empiricism underlying the choice of the
basis functions and active spaces that has relevance because actual applications
do not span the whole space so the convergence is conditional on the election.

1.7 density functional theory (dft)
A tantalizing idea is to use the electron density instead of the wavefunction.

In essence it constitutes a completely different attack to the electronic structure
problem, reducing the dimensionality from (R3N × {+,−}) to only R3 at the
expense of not knowing the exact expression for the energy functional in terms
of the density, in contrast with wavefunction methods where it is totally known.
Simultaneously the wavefunction and the Hamiltonian are approximated.
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An informal argument that justifies this theory (for Coulomb potentials) is as
follows: if we knew the electron density we would know that nuclei are located
at the cusps and by a fundamental result of T. Kato we also would know the
charge of the nuclei at those positions. Moreover, the number of particles is
known from the density by integration. With that knowledge we could solve
the Schrödinger equation for the full space.

Originated as an approximation in the theory of solids the first attempts to
build a density functional date back to the decade of 1920, from the early works
of Thomas, Fermi and Slater. Only after the seminal paper of Kohn-Sham it
becomes evident that the density could have a far reaching application. In
the forthcoming years, especially after the adoption in widely used molecular
simulation codes, it has been broadcasted to all the disciplines involved in the
simulation of multiple electronic systems. Today, it is the preferred method of
choice for ab initio simulation of large molecular systems.

1.7.1 Pre–DFT: Thomas–Fermi–Dirac, Slater Xα

Thomas-Fermi Theory comprises various models that try to find the density
and ground state energy of a system with a large number of electrons N →∞. Augmenting at the same time the positive charge bath Z → ∞ entails
an exact theory. The central problem is to find a universal functional of the
electronic density that is independent of the physical nature of the system. The
initial model considered is a gas of electrons in a fixed volume with classical
interactions. On that ground the unique energetic terms are kinetic

T [ρ] = CT

∫
ρ5/3(r)dr (1–124)

and Coulomb attraction-repulsion of charges

EC[ρ] =
1

2

∫
ρ(r1)ρ(r2)

|r1 − r2|
dr1 dr2 +

∫
ρ(r)Vne dr. (1–125)

Further improvements approximate exchange in an equivalent fashion as Hartree-
Fock:

EX = −
1

2

∫
|γ1(x; x ′)|2

|r− r ′|
dxdx ′ = −CX

∫
ρ

4/3(r)dr (1–126)

A dimensional justification takes the eigenfunctions of the kinetic energy oper-
ator in a large box of volume V

ψi,k(x) =
1√
V
e2πkrsi(σ) k =

n

|V |1/3
n ∈N3 (1–127)
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to the limit of a large number of particles maintaining constant density ρ = N
|V |

.

In that setting EX = −CX ρ
4/3|V |∫

ρ(r)dr [=]
V

V
[=]dimensionless∫

ρ
4/3(r)dr[=]

(
1

V

)4/3

V = V−1/3 = L−1[=]

∫
|γ1(x; x ′)|2

|r− r ′|
dxdx ′∫

ρ
5/3(r)dr[=]

(
1

V

)5/3

V = A−1[=]

∫
|∇rρ(r)|2 dr (1–128)

Thus far the energy functional achieves an almost correct form. Later correc-
tions were added to the kinetic energy.

1.7.2 Hohenberg-Kohn density functional

Even if previous work had been done using the density as the fundamental
physical variable, the modern theory of DFT is thought to be born only after
the groundbreaking results of Walter Kohn and P. Hohenberg (HK) in 1964 [82].
They established a bijective mapping between the density and the external po-
tential v : Vne =

∑N
k v(rk) first, and second they defined a functional of the

density that fulfills the variational principle — under restricted conditions—.
The first fact we have to remark is that the only term that prevents us from

knowing the total energy of a universal7 N electron system is the potential v(rk)
created by the nuclei upon an electron placed at rk and a constant Vnn we shall
omit altogether for a more clear exposition. The rest of the energy is intrinsic
to the electronic system. This way

E = Eint + Eext = Eint + 〈Ψ|Vne|Ψ〉. (1–129)

In a precedent theorem of Rosina it was already recognized that the energy
for any unknown two-particle Hamiltonian is known from the second order
density matrix alone, or the tuple of density, 1RDM and 2RDF. Although the
one particle density is not enough to reconstruct the Hamiltonian.

Under variations δv, the Hamiltonian is modified just by δH = δVen. Varia-
tions of the ground state energy are reduced to

δE =

∫
δE

δv(r)
δv(r)dr = 〈δΨ|H− E|Ψ〉+ 〈Ψ|δVen|Ψ〉+ 〈Ψ|H− E|δΨ〉

= 〈Ψ|δVen|Ψ〉 =
∫
ρ(r)δv(r)dr. (1–130)

The last equality can be restated as: the density is the functional derivative
of the energy with respect to the external potential when the state is non-
degenerate. The proof for the converse relation is proved by reductio ad ab-
surdum supposing that two ground states with respective ground state energies

7 In the sense that any N electron system has the same energy functional
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and Hamiltonians, that obviously differ only in δVen, share the same density.
Relying on the variational principle the two densities have to be different if the
wavefunctions that minimize the Hamiltonians are non-degenerate, violating
our initial assumption. In conclusion the claim

v(r) ⇐⇒ ρ(r) = N
∑
σ1

∫
|Ψ|2 dxi>1 (1–131)

follows.
In our treatment of the N electronic problem we can start from the density

or from the potential, in fact the second seems more affordable. Despite of this
there is no clue of how we can select a potential that bounds the N electrons.
In the following HK go around the problem focusing on the density functional
drawing on ρ(r)→ v(r)→ Hel → Ψ. In a deliberate act of optimism we assume
that the energy E(v) is known for a family of potentials that form a linear space.
Hiding the complexity of computing the energy terms that depend on objects
more complicated than the density and keeping the external potential fixed,
which requires only knowledge of the electronic density

Eint = FHK[ρ] = E[v] −

∫
ρ(r)v(r)dr. (1–132)

The total energy is formulated minimizing over proper densities

E[v] = inf
ρ

[∫
vρdr+ FHK[ρ]

]
. (1–133)

The problem with the HK functional is that the definition of the density func-
tional is vague. The density is thought to be resulting from a wavefunction
that is a ground state of a potential v that have a bounded non-degenerate state.
Neither the potential nor the densities are contained in a well defined domain.
That is not enough clear to base a rigorous theory on it but it is so subtle that
no physical effect is found.

1.7.3 Levy–Lieb constrained search

In the Hohenberg-Kohn theorems, one important assumption which has not
been mentioned is that, during the minimization, as we vary the density, we
assume that it remains v–representable. A v–representable density is a ground
state density that can be associated with a Hamiltonian that has an external
potential, v(r). It is, however, not clear that an arbitrary density, which in-
tegrates to an integer number of electrons N, would be the ground state of a
smooth external potential. In order to overcome the v–representability problem,
a more general variational routine was proposed independently by Levy and
Lieb. Their extended minimization algorithm requires only N-representability
of the densities. An N–representable density is one which can be derived from
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an antisymmetric wavefunction. This condition, being much weaker than v-
representability, was proven to be easily satisfied by an arbitrary density.

Independently, Levy and Lieb proposed a constrained–search formulation
that avoids the HK restriction of non degenerate states and v–representatibility
constructing the density from a set of normalized wavefunctions that have den-
sity ρ that integrates to N. In particular, Lieb recognized the Legendre trans-
form as the appropriate tool to carry this task as a two way optimization. First
the Legendre transformation of E[v]

F[ρ] = inf
v

[
E[v] −

∫
ρ(r)v(r)dr

]
= inf
Ψ→Ψρ0

Eint = inf
Ψ→Ψρ0

〈Ψ|T + Vee|Ψ〉 (1–134)

and secondly the inverse transformation for the total energy

E[v] = inf
ρ

[∫
ρ(r)v(r)dr+ F[ρ]

]
. (1–135)

The bijective mapping between the potential and the density is interpreted in
the context of the Legendre transform as conjugate variables. DFT is a theory of
local potentials, both are of Coulomb type, hence the conjugate density is local.
This is a point in contrast with Hartree-Fock that has a non-local exchange
potential.

1.7.4 Kohn–Sham equations

The idea of Kohn and Sham is to use as a first approximation for the kinetic
functional an ideal system of non interacting particles. The non interacting
system can then be connected adiabatically to the real one by a parameter 0 6
λ 6 1 in the Hamiltonian

Hλ = T + λ[Vne + Vee]. (1–136)

As long as the same density and total energy are maintained when applying
the variational principle to different λ. The real energy is approached when the
parameter λ→ 1.

Whereas the solution of the non-interacting Hamiltonian

F0[ρ] = inf
Ψ
〈Ψ|H0|Ψ〉 (1–137)

is not necessarily a monodeterminantal wavefunction, the ensemble of all rep-
resentable first order density matrices that define any possible outcome of the
kinetic operator H0 are well known (Gilbert). After diagonalization of the den-
sity matrices the result is expressed in terms of an infinite linear combination
of spin-orbitals

F0[ρ] = inf
γ1

Tr(H0γ1) = inf
γ1

[
1

2

∞∑
i

ni

∫
|∇ψi|2

]
(1–138)
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such that the density is ρ =
∑∞
i ni|ψi|

2.
In stationary conditions the Euler-Lagrange equations stemming from the

energy functional E(v) are

δρ̂

[
δF̂0
δρ̂

+ v− ε

]
= 0 =

[
−
1

2
ni∇2 + v− εi

]
ψi. (1–139)

If the density is stationary so is γ1. The point is that the solution is known
exactly. The philosophy behind the Kohn-Sham formalism is to take this as
a reference and include the effect of interactions later always trying to get as
close to the result as possible with information of the density whereas unknown
terms are separated. This way we fence our limited capability to treat the elec-
tronic system based only on the density. Increments of λ induce modifications
of the first order density matrix, translated to errors in our estimation of the
kinetic energy. Also interactions cannot be simulated in their full extension,∫ ∫
gijρ2 =

∫ ∫
gijρρ −

∫ ∫
gijρxc, only Coulomb interaction of independent

particle densities (self-repulsion included)

EH[ρ] =
1

2

∫
ρ(r1)ρ(r2)

|r1 − r2|
dr1 dr2 =

1

2

∫
ρ(r1)vH(r1)dr1 (1–140)

is accessible. In the DFT community vH is known as the Hartree potential.
Exchange and correlation, jointly with self-repulsion and kinetic corrections
are part of a grab-bag called exchange-correlation energy functional,

Wxc[ρ] = F[ρ] − F0[ρ] − EH[ρ] = (T [Ψ] −H0[ρ]) +

(
Eee[ρ] −

1

2

∫
ρ(r1)ρ(r2)

|r1 − r2|
dr1 dr2

)

= Tc[ρ] +
1

2

∫
ρxc(r1, r2)
|r1 − r2|

dr1 dr2. (1–141)

Another way to separate the terms of Wxc, on the basis that it is a Slater
determinant (ρxc(r1, r2) = ρx(r1, r2)), is to take the exchange in one side
WX[ρ] = Eee[ρ] − EH[ρ]. The correlation is WC[ρ] = Tc[ρ] + (Eee[Ψ] − Eee[ρ]).
Now, adding all terms F[ρ] = F0[ρ] + EH[ρ] +Wxc[ρ].

The expression for the energy

E[v] = inf
[∫
ρ(r)v(r)dr+H0[ρ] + EH[ρ] +WXC[ρ]

]
(1–142)

The variational Euler–Lagrange equation for the KS real system is

δρ

[
δF0[ρ]

δρ(r)
+ veff(r) − ε

]
= 0 (1–143)

where

veff(r) = v(r) + vH(r) +
δEXC[ρ]

δρ(r)
. (1–144)
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The external potential is computed solving Poisson’s equation from the density.
veff is a local effective potential (multiplicative). The effective potential is chosen
to make the density exact. Implementations of KS–DFT approximate the value
of veff without needing to get the truly wavefunction.

(
−
1

2
∇2 + veff(r)

)
ψi(r) = εiψi(r) (1–145)

The process of solving the Kohn–Sham equations is self–consistent. KS orbitals
ψi are a completely different thing from HF orbitals. They are mono-electronic
functions of a non-interacting system associated with the real one. Recently
they were proved to yield good optical transition energies.

All in all DFT comprises a theory that is in principle exact. Only the ex-
change correlation functional escapes our knowledge. The approach to deduce
its analytical expression is the major concern of its developers.

1.7.5 Functionals

Exchange-correlation functionals are approximated with varying levels of
sophistication. The most primitive functionals, inherited from the praised
Thomas-Fermi models, will be local. After that the non-locality of the HF ex-
change is increasingly included. Usually more evolved expressions perform
better but the improvement is not guaranteed as we evolve in the ladder. This
fault is indebted to the non existence of a variational principle for approximated
functionals.

Much of the development of functionals has been guided more by numerical
purposes than from mathematical verification. Some functionals do not respect
the N-representability ending in the loss of variationality.

Local Density Approximation (LDA)

Already in their paper HK used a LDA for a non-uniform electron gas

WXC = −

∫
ρ(r)εXC(ρ(r))dr (1–146)

based on the formula for a uniform electron gas i.e. a system of interacting
particles with constant density, with energy per particle εXC(ρ(r)). Comparing
with the previous equation for the TF model the exchange energy per particle is
CXρ(r)

1/3. There is no expression for the correlation energy as for the exchange
but formulas exist (VWN,PW92) from interpolating Monte Carlo simulations of
UEG.

When incorporated in the KS recipe: (i)the density of a non-uniform non-
interacting gas is computed with λ = 0, then (ii) interactions, based on a uni-
form gas, are applied to the inhomogeneus density.

LDA is good for slowly varying densities, riding out molecules where sharp
peak densities appear and high accuracy is needed. In solids the results are



44 computational quantum chemistry

better but not because the density is more smooth, which is false. Cancellation
errors between exchange and correlation are the reason for its success. While
around 80% of the exchange correlation is exchange and 20% is correlation, cor-
relation is underestimated and exchange overestimated in a smaller percentage
but at the end nearly cancels.

Generalized Gradient Approximations

Attempts to formalize the nonlocality of the interaction began pointing to
a power series expansion of ρ(r) starting with the gradient and then going to
higher order terms. The original Generalized Expansion Approximation was

Wxc =W
LDA
xc +

∫
CXC(ρ(r))

|∇ρ(r)|2
ρ(r)4/3

. (1–147)

An aside effect that goes in detriment of the accuracy, it can be even worse
than LDA, is that the sum rules of the exchange hole (negativity and integra-
tion to −1) and correlation hole (integration to 0) are not always met. Then,
a non trivial discovery was that the series expansion had to be left apart to
look for more diverse functions of the density, and gradient, that are consistent
with the fundamental properties of the correlation holes. Generalized Gradient
Approximations (GGA) come in many flavors but all share a similar expression

Wx =

∫
ρ(r)εx(ρ(r), s(r)), s(r) =

|∇ρ(r)|
2ρ(r)kF

(1–148)

with dependence on a dimensionless gradient s(r), where kF = (3π2ρ(r))
1/3 is

the Fermi momentum. GGA reflects how important is to model holes correctly.
Approximate functionals of this type, PBE, PW91, or B88, each one of them

tries to satisfy a different set of exact conditions when densities are smooth and
not very small. In those situations GGAs give reliable results for strong bonds,
reducing the overbinding tendency of LDA, but for van der Waals interactions
fail. Nor have GGAs achieved the claimed accuracy, of around 1 kcal/mol,
needed to discern processes of chemical nature.

Hybrid functionals

Hybrid functional approximations came to birth from the observation [17]
realized by Becke that while LDA functionals exaggerate the delocalization
of the exchange hole, with correlation localizing the hole progressively as the
coupling parameter approaches λ = 1, GGA localizes it excessively at any value
of λ. Therefore, a fraction of the exact hole WHF

x [{ψ}] energy from a Hartree-
Fock calculation is used for not incurring in the error.

Wx[ρ] = aW
HF
x [{ψ}]+bWGGA

x [ρ]+ (1−a−b)WLDA
x [ρ]+cWGGA

c [ρ]+ (1−c)WLDA
c [ρ]

(1–149)
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An inflection point happened with the hybrid functionals in the way param-
eters were fitted. Until their appearance only atomic ionization energies were
part of the fitting but from then on molecular data was also responsible for the
adjustment of the optimal parameters.

Range-separated and dispersion-corrected functionals

The corrections included by a series expansion revolve around the vicinity of
a point r1 where the integration is done but truly non-local effects like charge
transfer or dispersion require information of the density at distant locations.
Often, dft over-estimates and over-stabilizes charge transfer. The situation
with dispersion interactions is more dramatic, it has resisted the assault of local
or semi-local density functional approximations.

A limit that is very relevant for the development of functionals that correctly
describe long-range interactions is the dissociation limit (Heitler London). The
well known 1/R6 fall off is not respected by those functionals, instead they
have an exponential decay. A strategy based on a split Coulomb operator, in
the same vein as the Ewald summation,

1

r12
=

erfc(ωr12)
r12

+
erf(ωr12)
r12

(1–150)

provides a good starting point. The philosophy behind this separation is that
local or semi-local DFT approximations correctly treat the short-range electron
correlation, while the long-range correlation is better treated by wavefunction
methods.

The instantaneous electron-electron interactions distort the electron cloud
charge creating temporal (electronic excited states) atomic formal charges that
interact with other elements creating an attraction depending on the nature
of the charges. It might seem a good option to put an eye on corrections to
the exchange-hole, after all GGA functionals have benefited substantially from
this approach. Expanding the pairwise interaction of exchange-holes with a
perturbation expansion. This yields interaction of multipoles that can be trun-
cated to second order (dipole-dipole interactions). A parameter-free functional,
XDM [19, 139].

The quest for more accurate functionals has not ceased, and new functionals
have continued appearing at a high pace. Among the functionals that we do
not treat but deserve a mention are meta-GGA, pure exchange (EXX-based),
and double-hybrid functionals. All these functionals can be organized in a
hierarchy 2 that slowly approximates to the definitive universal functional, ide-
alized as Jacob’s ladder to heaven in the mind of Perdew. When confronted
to demanding systems, DFT approximations have sometimes kicked over the
traces, challenging the established philosophy behind DFT The fitting of pa-
rameters against large datasets of molecules, the use of exact exchange or the
theme of debates today but should not hide from us the fruitful understanding
that we have gained in the process.
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Table 2: Functional Jacob’s ladder. s is the reduced density gradient and τ is the kinetic
energy density. EXX-based are exact exchange functionals. Hyper-GGA do not
resemble GGA at all, the functional exchange is completely replaced by the
exact exchange and the non-locality is moved to the correlation functional.

Rung Name εXC

1 L(S)DA εXC(ρ)

2 GGA εXC(ρ, s)
3 meta–GGA εXC(ρ, s, τ)
4 Hybrid–GGA εXC(ρ, s, τ) + EHF

X

4 Hyper–GGA, EXX-based εC(ρ, s, τ) + EHF
X

5 Double Hybrid, RPA εXC(ρ, s, τ) + EHF
X + unoccupied orbitals

- Non-local (curvature), GLDA1 εXC(ρ,η)
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2.1 materials research
The history of our evolution is tied to our ever increasing use of materials.

Today our lives are invaded by new smartphones, computers, . . . but what is
not stressed enough is that all that development has been seeded by research
on materials at a nanoscale level.

Some minerals have nearly perfect polyhedric shape that induces us to think
that there is a repeating pattern at the atomic level. Why would atoms dis-
tribute periodically in their most stable configurations. That raises a compli-
cated question, difficult to solve even in the most naive models. The number of
particles to simulate is in the order of Avogadro’s number.

Symmetry takes an important role simplifying the problem. It was Kepler,
400 years ago, who first observed that symmetry underlies the disposition of
atoms or molecules in condensed matter while inspecting snowflake patterns.
We know today that symmetry is present everywhere. Many solids in nature
are periodic arrangements of atoms presenting a type of space group symme-
try [75].

2.2 ideal crystals
Perfect monoatomic crystals are periodical arrangements of atoms in a lattice

defined by the positions

R =

3∑
i=1

niai ∀n1,n2,n3 ∈N (2–1)

that can be generated by translation in any of the three dimensions with the
basis vector ai a number of times ni. The region enclosed by the vectors has
enough information to regenerate the crystal ad infinitum by repetition. Any
point r of the crystal is reduced to an interior point of the primitive cell rp by
translation: r =

∑3
i=1 niai + rp. When the atoms are not placed at the lattice

points the coordinates can be specified by a set of fractional coordinates x,y, z
such that

rp = xa1 + ya2 + za3 ∀x,y, z ∈ [0, 1). (2–2)

If the volume VΩ of cell is minimal we call it a primitive cell.
A crystal can have more symmetries than translation. The additional sym-

metry operations form groups with point symmetry, at least one point of space
is left fixed. Those point group operations RiΨ(r) = Ψ(r ′) have a matrix repre-
sentation A that transforms linearly the coordinates r of one atom to another
position r ′ = Ar. Only a select group of rotations, reflections or combinations
of those operations with translations are compatible with an infinite periodicity.
The operations defined by Wigner-Seitz symmetry operators

{Ri, TR}Ψ(r) = Ψ(Ar+R) (2–3)
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rotate and translate with a vector of the lattice the coordinates of the atoms.
Primitive cells are not unique, however all of them contain only a single point

of the Bravais lattice (or atom). There is a unique primitive cell (Wigner-Seitz
cell) created via Voronoi partitioning that that satisfies the desirable property
of being invariant under the action of all symmetry operations that can be
possible in the crystal. Other less compact choices of cell are also common to
have a more clear representation of the crystal structure.

In three dimensions fourteen Bravais classes of lattices arise. Adding a motif
to the lattice points can increase the number of point groups to 32. When they
are combined the set of all possibilities is 230 space-group types. The space-
group is not totally characterized until we set the cell parameters: moduli and
angles of the primitive vectors.

The dual of the Bravais lattice has many applications, among them the un-
derstanding of crystal diffraction and electron density functions with the peri-
odicity of a Bravais lattice. The reciprocal lattice is in itself a Bravais lattice

G =

3∑
i=1

kibi ∀ki ∈N (2–4)

with primitive reciprocal vectors such that ai ·bj = 2πδij. An analogue of the
Wigner-Seitz cell in the reciprocal lattice is the first Brillouin zone of volume
VΩ∗ =

8π3

VΩ
.

Sooner or later one has to admit that the crystalline order is an idealization
of the arrangement that atoms exhibit in macroscopic solids. Even under the
assumption that the most stable structure is achieved when atoms have a per-
fect order, there is no crystal free of defects at finite temperature. Solely the
entropic contribution of lattice vibrations can provoke a transition to another
nuclei disposition. The often mild pressure conditions can turn drastic in some
places and favor exotic structures.

2.3 experimental structure determination: crys-
tallography

2.4 diffraction
X-ray radiation is of particular interest for its similitude in wavelength to

interatomic spaces that allows us to “see” the atoms. The usefulness of X-ray
techniques relies on a proper description of rays-matter interactions. When a
X-ray beam strikes a crystal, the beam is absorbed or scattered from the crystal.
Atomic nuclei are thousands of times smaller than the diameter of the atoms
and they mostly do not participate in the scattering process. Scattered photons
may or may not undergo an energy transfer, both are termed inelastic and
elastic scattering respectively. If the wavelength of the incident beam and the
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lattice spacing are comparable constructive interference occurs. The process is
called diffraction.

The path difference is conditioned by atomic spacings and the orientation of
the beam. W. H. Bragg and his son used a simple model of atoms contained in
equally spaced planes and found a law,

λ = 2d sin θ, (2–5)

that rules the conditions needed to be satisfied for diffraction to happen. The
wavelength of the beam (λ) must equal twice the interplanar distance (d) mul-
tiplied by the sine of the incident beam angle (θ). The same law works as well
for neutron or electron diffraction.

2.5 elastic x–ray diffraction
There are two main techniques associated to X–Ray Diffraction. One is single

crystal diffraction and the other is powder diffraction. A powder difractogram
has not enough peaks to correctly determine the huge number of density mod-
eling parameters. Our data has been gathered with the first technique.

The orientation of scattered X-Ray beams is defined by the scattering vector
H = 2πG. Scattered peaks are collected by a bi-dimensional ccd detector.
The amplitude, A(H), of the diffraction peaks is proportional to the Fourier
transform of the thermally averaged electron density, ρdyn(r), in the unit cell:

I(H) = |A(H)|2 ≈ |F(H)|2 =

∣∣∣∣
∫
V
ρdyn(r)e2πiH·r dr

∣∣∣∣
2

. (2–6)

The first step towards achieving a high quality density description is obtaining
a good crystal. Another less relevant factor is the type of crystal (ionic crystals
usually diffract better than molecular ones with the same quality, because they
have tightly bounded electrons) and mosaicity.

Obviously we cannot realize an infinite number of measurements. The limit

|H|max =
2 sin θmax

λ
(2–7)

is set by the type of radiation used and the geometry of diffractometers. The
signal is each time weaker as we augment the incidence angle. As a result, we
have to truncate the Fourier sum. A huge number of peaks need to be measured
to complete the Fourier sum as much as possible. Radiations with small wave-
lengths increase the number of measurable peaks but the intensity is inversely
proportional to the wavelength, so the expected improvement is canceled. The
decreasing ratio of amplitudes is emphasized with the temperature.

The main problem comes here. The structure factors are complex numbers
of which we only have information about its complex product, |F|2. The phase
has been lost during the experiment and we need to recover it anyway to solve
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the structure and density properly. The relevance of the phase information is
crucial because most of the information is coded in the phase.

Once the diffraction peaks are obtained, absorption and other experimental
effects introduced in the intensities are corrected.

The most valuable experimental technique for the determination of the 3D
structure of crystalline samples is X-ray diffraction (xrd). It is of utmost im-
portance to allow the discovery of new materials for the next technological era,
drugs to treat human diseases or investigate minerals underpinning the geol-
ogy of Earth. Nowadays X-ray crystallography is recognized as an essential
tool.

2.6 density modeling
The unit cell dynamical density can be formally decomposed in pseudo-

atomic densities and Dirac’s deltas at average atomic positions. The dual of
pseudo atomic densities are atomic form factors. Atomic form factors include
the Debye–Waller factor, that measures the average thermal motion. Atomic
form factors are diminished with increasing Bragg angles. Even at very low
temperatures. Heavy atoms have a longer tail, although the maximum angle
achieved is barely increased.

Thermal factors are deconvoluted from the static density using a harmonic
model of nuclei motion. Low temperature is needed to decrease nuclei motion.
Thus the harmonic approximation becomes a better model and the deconvolu-
tion of thermal factors from static density fitting parameters is improved. The
static density has relativistic, matrix and correlation effects included, and does
not correspond to the ground state. The static density is described by a super-
position of pseudo-atomic densities

ρ(r) =

Nat∑
i=1

ρat(r). (2–8)

There are three basic models to refine the density with different levels of
sophistication: A naïve approach, the iam model, is to consider spherical atomic
densities. This approximation is good for core electrons. The difficult part
to model is the valence density. The aim of other models is to recover the
anisotropy of the valence density. In our next approximation, the density is
allowed to contract or to expand, that is the kappa model. If we go further, we
can allow the density to be non spherical adding multipolar expansions, the
multipolar model.

The Maximum Entropy Method (mem) is an alternative to the multipolar
model to refine charge densities. It treats directly the dynamical density. The
dynamical density obtained can be used [131] to apply qtaim analysis but we
should remember that it is not the same as the static density.
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The static density is refined following a least-squares minimization of

M = wH

(
Fobs(H)2 − Ftheo(H)2

)2
(2–9)

the difference between observed and calculated intensities, each one has a
weight wH.

2.6.1 The Independent Atom Model (IAM)

Under the isolated spherical approximation (iam) the density of each atom
is build up from the radial part of ab initio wave functions . Therefore, the
atomic scattering factors are known from Hartree–Fock calculations of ground
state free atoms. Even though this model is simplistic it works well for heavy
atoms owing to the small proportion of valence shell electrons against total
density. For hydrogen atoms the approximation is not good enough even to
describe properly atomic coordinates. They have only one electron and their
contribution is usually too small. iam overestimates their bonding because the
unique electron that it has is displaced towards the bond and therefore the
centroid that determines the atomic position is shifted in the same direction.
The problem remains even with better models. When the system has hydrogen
atoms, the X-ray parameters refinement has to be complemented with neutron
diffraction data.

Only thermal parameters and atomic coordinates are refined within this
model.

The envelope of core electron form factors do not decrease much with Bragg’s
angle incrementation. The easiness of the iam model suggests to perform first
a refinement with high angle data and then proceed with low angle data to
refine the valence shell charge. The problem of this high order refinement is that
the intensity of peaks is very small.

2.6.2 Kappa formalism

Two new parameters have to be refined in the kappa model. The κ parameter
allows the density to contract or expand scaling the radial function. κ3ρval(κr)
is normalized to be a one electron density.

ρat(r) = ρcore(r) + Pvalκ
3ρval(κr) (2–10)

Pval is the valence shell population parameter. It contains information to ana-
lyze charge transfer.

The density is spherically symmetric.

2.6.3 Multipolar pseudo-atom model

The kappa model does not recover angular anisotropy at all. Atoms in
a crystal are surrounded by others that disturb the electronic density of its
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neighbors. Some directions are preferred for interatomic interaction. Nearest
neighbors of different electronegativity induce charge transfer and dipole mo-
ments appear. Non spherical orbitals produce the same effect. Is there any
function that fills the gap between the theoretical and experimental densities
∆ρ(r) = ρ(r) − ρ0(r)? The framework [181] to generalize the atomic scattering
factors was set by Stewart, after some previous work with multipolar functions.
Years later Hansen and Coppens developed the definitive model to extract accu-
rate electronic densities [38, 76]. There are three implementations with similar
characteristics: MOLLY, LSEXP and POP.

The pseudo-atomic multipolar density is

ρat(r) = ρcore(r) + Pvalκ
3ρval(κr) +

lmax∑
l=0

m=l∑
m=−l

κ ′3Rnl(κ ′r)PlmYml (θ,φ). (2–11)

It is a fuzzy atomic
partitioningThe first two terms are the same found in the kappa model. They contain all

the charge of the pseudo-atoms. The last term is a multipolar expansion that
interchanges charges between the lobes of real spherical harmonic functions
Yml (θ,φ).

The density fitting is very sensitive to the choice of the optimal radial func-
tion, Rnl(κ ′r). The monopole P00 is usually zero to simplify physical interpre-
tation.

Typical is the case of lmax = 1 for hydrogens, lmax = 3 for the second row
elements in the periodic table, and lmax = 4 for the rest. The model cannot be
easily extended to heavy elements because the valence shell is very thin and
high angular orbitals delocalize the charge making it nearly spherical, so high
order multipoles are needed to describe correctly the density. Thus, the physi-
cal interpretation of multipolar terms becomes difficult. The model reaches its
limits. κ ′ is analogous to κ.

The ratio parameters to fit over data available is too high. Using the multi-
polar model 27 or 36 parameters have to be fitted for each non hydrogen atom.
High order refinement is necessary to avoid correlation of thermal factors and
multipolar parameters. They recover different types of anisotropy.

The great benefit of this model is that phases are also improved.

The expansion given by the multipolar model for the density is analogous
to the expansion by the LCAO formalism, but all terms are atom-centered 1.
The multipolar model has limitations to describe diffuse electronic distribu-
tions, ρ(r) ≈ 0, such as interatomic regions, due to the nucleus-centered nature
mentioned above.

1 Remember that the density resulting from the LCAO formalism expands the wave function in one
and two center terms.



54 solid state chemistry

2.6.4 Density maps

Deformation maps, ∆ρ(r) = ρ(r)−ρ0(r), reveal redistributions of the electron
density with respect to spherical non interacting isolated atoms, mapped on a
suitable molecular plane. Density arrangements appear at bonds, lone pairs.
For a long time density maps were the main source of chemical information [38],
but now they have been replaced by qtaim analysis. Nevertheless, density
maps are a good assessment tool to decide the quality of the refinement.

2.7 other experimental observables
The electrostatic potential is the main byproduct of the density we are inter-

ested in. It can be obtained directly from the structure factors or from the total
density 2

φ(r) =
1

V

∑
H

F(H)

H2
e−2πiHr =

∫
ρt(r

′)
|r− r ′|

dr ′ =
∑
R

∫
Ω

ρt(r
′)

|r− r ′ +R|
dr ′ (2–12)

The inconveniences of these expansions are that the reciprocal space series is
not defined at H = 0, and the direct space sum is conditionally convergent.

If the unit cell has neutral charge
∫
Ω ρt(r)dr = 0 and no dipole, converting

the sum over direct lattice vectors to a sum over spherical shells [104] trans-
forms it into an absolutely convergent sum. With an Ewald like separation of
the integration range in two ranges delimited by a sphere of radius µ2, the is-
sues of direct and reciprocal space are overcomed to get the best of both. Then,
the electrostatic potential is

φ(r) =

∫
Ω

(
G(r, r ′) −

2π

3Ω
r ′ · r ′

)
dr ′. (2–13)

where

G(r, r ′) =
∑
R

erfc(µ|r− r ′ +R|)
|r− r ′ +R|

+
4π

Ω

∑
K 6=0

e−k
2/4µ2

k2
eik·(r−r

′). (2–14)

Standard experiments cannot provide an electrostatic potential reference, which
has to be understood as arbitrary. Nevertheless, since we are basically inter-
ested in relative differences and topological features do not depend on rigid
translations of scalar fields, this is not such an important issue. In any case,
the zero potential can be obtained from electron diffraction, but that technique
usually destroys soft molecular crystals, because electron beams interact more
strongly with matter than X-rays. That makes it amenable to experimental de-
termination only for ionic compounds. So, we usually don’t talk about the

2 knowing that the density has translational symmetry ρt(r) = ρt(r+G).
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Figure 2: F(H) are the experimental structure factors. The experimental density is the
one that best regenerates the experimental structure factors. Both are related
by a Fourier transform. The Laplacian is obtained with numerical derivation
of the density, and the electrostatic potential by using Poisson’s equation.

electrostatic potential of the solid, but instead we take a moiety of the crys-
tal and from the multipolar parameters associated to the atoms in the moiety
we obtain its isolated electrostatic potential. The expression is similar to the
multipolar expansion and the evaluation is analytic. We are analyzing pseudo-
isolated molecules 3, however, the parameters are those of the crystal. The
short-range part of the electrostatic potential from the multipolar model apply-
ing the scheme of (2–14) is [4]

φsr =
∑
A

∑
i

lmax∑
l=0

l∑
m=−l

CAilmY
∗
lm(θ,ϕ)

∑
R

∫
r2AR

Ai
l (rA)Fl(|r−Ra+R|,RA,µ)drA.

(2–15)
where

Fl(R, r, t) = (2N+ 1)

∫t
0

e(R
2+r2)/4τ

2
√
πτ3

il

(
rR

2τ

)
(2–16)

and il(z) is the modified spherical Bessel function of first kind.
As well, the electric field, electron density gradient, and Laplacian of the

electron density may be obtained through their corresponding Fourier transfor-
mation of the structure factors. Here, the completeness of the Fourier series is
critical for the density gradient and Laplacian, the latter being

∇2ρ(r) = 1

V

∑
H

H2F(H)e−2πiHr. (2–17)

So, instead it is evaluated by numerical differentiation of the multipolar density.

2.8 electronic structure of solids
One of of the first challenges that quantum mechanics faced was the explana-

tion of metal properties. The simple change of Boltzman statistics for a Fermi-

3 Pseudo-isolated analysis is a common crystallographic procedure to focus on the interactions in
specific parts of the crystal.



56 solid state chemistry

Dirac distribution of velocities in the classic Drude model has strong conse-
quences on paramagnetism, thermal and electric conductivity, as discussed by
Pauli and Sommerfeld. Notwithstanding, the underlying free electron model
seemed to Felix Bloch an oversimplified model of metals. Pursued by the im-
petus of the new emerging theory, Bloch scored a bullseye showing how the
eigenstates of a particle under a periodic potential should be.

2.8.1 A toy model of one electron per cell

For a one-dimensional toy model of one particle per cell in a periodic poten-
tial V(r) = V(r+R) there is no physical justification to think that the electron
density will be different from cell to cell.

The fact that the Hamiltonian is invariant to lattice translation operations
(commutes with all translation operators that displace the coordinates by a vec-
tor of the lattice) and translation operators commute among them constitutes
enough evidence to say that all operators can share a simultaneous common
eigenbasis set {ψn}

Hψn = εnψn, TRψn = τ(R)ψn. (2–18)

Translations have to preserve normalization,

|ψn(r)|
2 = |ψn(r+R)|

2 = |TRψn(r)|
2 = |τ(R)ψn(r)|

2 = |τ(R)|2|ψn(r)|
2,
(2–19)

thus the wavefunction is allowed to change only in a phase factor. Any combi-
nation of translations complies with the identity τ(R+ R ′) = τ(R)τ(R ′). Irre-
mediably leads to τ(R) = eik·R. The index n indicates the principal quantum
number or excitation level of the state.

The continuum of translational invariances in the free electron model is trans-
lated to a discrete translational invariance given by the vectors of the lattice. In
other words, momentum was preserved everywhere and now only between
equivalent points in different cells. Following the tradition of quantum theory
the wavefunctions are labeled by the crystal momentum k. That is, a Bloch
state is

ψnk(r) = e
ik·runk(r) (2–20)

a plane wave modulated by a periodic function unk(r) = unk(r + R). The
periodic functions are an orthonormal basis

1

Ω

∫
Ω
u∗nk(r)upk(r)dr = δnp (2–21)

inside the cell. The role of k in this crystal should not be confused with its
counterpart in a free electron gas due to ψnk not being eigenfunctions of the
momentum operator

− i∇ψnk(r) = eik·r(k− i∇)unk(r). (2–22)
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Bloch’s theorem maps the problem of expressing the wavefunction in terms
of an infinite number of electrons to an infinite number of k-points in the 1BZ.
To alleviate the problem the points are discretized in a grid.

Generalization to many-electron wavefunctions is somewhat analogous.

2.8.2 Band structure

Formulated in the reciprocal space, the Schrödinger equation

Hkunk = εnkunk Hk = (k− i∇)2 + V (2–23)

does not change when applying reciprocal lattice translations, because the
boundary conditions allow us to state that

ψnk(r) = ψnk+G(r), (2–24)

so we can bound the k points to be in the irreducible Brillouin zone (1BZ). There
are infinite k points in the 1BZ that lead to an infinite number of parametrized
Hamiltonians, therefore an infinite of continuous energy values for a band n
dispersed in a range of energy values that may overlap with other bands or not.

Being the case a non-interacting system of electrons, the Hamiltonian is a one
body operator that can act on unk as well as on the first order density matrix.
The latter is not so different from the stated expression for a determinantal
wavefunction. It is a sum over the occupied band states n with the addition of
being integrated in the 1BZ. Bands are filled in increasing order of energies in
the ground state and each one can be populated at most with two electrons per
cell (spinless model).

γ1(r, r ′) =
2Ω

8π3

∑
n

∫
Ω∗
θ(εF − εnk)ψnk(r)ψ

∗
nk(r

′)dk (2–25)

where θ is a step function with value 1 when its argument is positive, 0 oth-
erwise. The Fermi energy εF is a parameter controlling that the sum is only
over occupied states. Its definition arises when a variable dependent γ1(ε) is
integrated in the unit cell

N(ε) =
2Ω

8π3

∑
n

∫
Ω∗
θ(ε− εnk)dk (2–26)

and forced to be equal to the number of electrons per cell N(εF) = N.
The ground state energy of this spinless model is

E =
2Ω

8π3

∑
n

∫
Ω∗
θ(εF − εnk)εnk dk. (2–27)

When the maximum energy (like HOMO) value in the full range of k of the
band εN/2 is separated from the minimum energy (like LUMO) over k of the
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next band by a gap greater than zero the system is an insulator. An amount
of energy greater or equal to the gap separating the bands is needed to excite
electrons from valence bands to conducting bands. If the highest occupied
band is not full the excitation only requires a very small supply of energy to
have conducting electrons.

In a broader sense band properties are more amenable to be discussed in
terms of the density of states

g(ε) = dN(ε)/dε =
2Ω

8π3

∑
n

∫
Ω∗
δ(ε− εnk)dk =

∑
n

gn(ε). (2–28)

2.8.3 Plane waves and pseudopotentials

Electrons treated in a mean-field approximation have a wavefunction that
is an antisymmetrized product of Bloch states {|ψnk〉} with eigenenergies εnk.
The most obvious choice to expand the periodic part of a Bloch statefunction
is to use plane waves. In favor they have that the kinetic operator is diagonal,
orthogonality of the basis vectors rules out the clinging basis-set superposition
error, fast algorithms exist, and they are already Bloch functions. Much to our
regret, the regions of high electronic concentration involve a huge number of
basis functions to reach a good approximation of their oscillations, in opposi-
tion to the Gaussian basis-sets that are present in most molecular calculations.

Apparently such problems to accurately describe the nuclear region with
plane waves do not hinder the success that the free electron model has achieved
modelling electrons in simple metals. However, if we insist in treating equally
crystals made of atoms with a large number of electrons, where not all electrons
become conducting, the description of valence states by everywhere smooth
functions (plane waves) fails at the now not so small nuclear regions. Simply
shortcutting the wavefunction to contain only valence states and applying the
same Hamiltonian has the undesired effect of converging to core states. In
consequence, we would need a large number of functions, the first ones would
converge to core states and only after all core states have been filled would
valence states be represented. The method of Orthogonalized Plane Waves
(OPW) [80] prevents this issue orthogonalizing core and valence states as we
will see below.

The eigenstates of the mean-field Hamiltonian are conveniently categorized
in valence ψv and core ψc states each with eigenvalues εv and εc. All-electron
valence states are expanded as a linear combination

|ψv〉 = |ψPP
v 〉−

∑
c

〈ψc|ψPP
v 〉|ψc〉 (2–29)

of a smooth valence function ψPP
v and core electron functions ψc, the latter as-

sumed to be known. The purpose is to have new valence functions that bypass
the oscillations inside the atomic core regions. Meanwhile they are intended to
be identical to the all-electron valence functions outside. Albeit pseudo-valence
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functions are not orthogonal the coefficients of the core expansion ensure a
Gram-Schmidt orthogonalization between all-electron valence and core func-
tions.

Examined more carefully, the imposition of orthogonality to avoid valence
electrons collapse onto core states is the same as saying that valence electrons
do not feel the true nuclear potential in nuclear regions, as it is somehow
screened by inner electrons, so that the potential that valence electrons feel is
smooth enough to let the valence electrons be described by plane waves. OPW
can be recast [150] as the equations for valence states with an effective potential

HψPP
v −

∑
c

〈ψc|ψPP
v 〉Hψc = εvψPP

v −
∑
c

〈ψc|ψPP
v 〉εvψc (2–30)

[
H+
∑
c

(εv − εc)|ψc〉〈ψc|
]
|φPP
v 〉 = εvφPP

v

(H+ VR)|φ
PP
v 〉 = εv|φPP

v 〉. (2–31)

The new term VR takes care of the effect of the core electrons on the valence
electrons, altering the potential so that Vpseudo = VR + V . Since core states are
lower in energy than valence states VR is repulsive mimicking the disturbance
produced by core electrons. The pseudopotential can be precomputed but care
has to be taken because it is dependent on the basis. Heavy atoms susceptible
to relativistic effects can be treated with more sophisticated methods without
affecting the efficiency when calculating the valence electronic structure. Thus,
in one shot we have avoided the oscillations at the core region, reduced the
number of states to simulate, and added an easy scheme to include relativistic
effects.

The non-uniqueness of the pseudopotential operator has fomented the ap-
pearance of several types. The most important ones: conserve the total charge
inside a given radius, these are norm-conserving pseudopotentials; try to reduce
the number of plane wave coefficients in the pseudo-valence expansion, ultra-
soft pseudopotentials; or intend to map the complete Hilbert-space, formed by
all electronic states to a pseudo-Hilbert space with only pseudo-valence states,
that is easier to treat, denominated projected augmented wave pseudopotentials.

We return now to the use of plane waves. Statefunctions written as a Bloch
function that expand the periodic part unk(r) with plane-waves through a
Fourier series

ψnk(r) = unk(r)e
ik·r =

(∑
G

unk(G)eiG·r
)
eik·r =

∑
G

unk(G)ei(k+G)·r

(2–32)
with coefficients unk(G). A remarkable feature of plane waves is that unlike
for Gaussian basis-set expansions the accuracy is here monotonically improved
with the size of the basis. This means we can truncate the expansion to be less
than a cutoff parameter

1

2
|k+G|2 < Ecut (2–33)
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beyond which we have previously checked that no improvement is appreciated.
The kinetic operator is diagonal with entries Tk(G) = 1

2 (k+G)2 so Ecut is the
maximum allowable kinetic energy that a plane-wave can have.

Wavefunctions of insulators or semiconductors vary smoothly from point to
point in the reciprocal space so a rapid convergence is achieved with weighted
average sums over special points designed after the lattice point group of the
crystal. The most widely used grid, a Monkhorst-Pack grid [140], for integrat-
ing properties is derived from the special point integration. Metals can pose a
challenge because the occupied bands can vary a lot from one point to other,
being the Fermi surface a complicated manifold that destroys the beauty of
the averaging process. To maintain a good average, many times the Fermi sur-
face itself is smoothened, replacing the Heaviside function with some smearing
function like a Gaussian spreading, Methfessel-Paxton [128] or the Fermi-Dirac
distribution. For metals, the tetrahedron method [23] is often advised.

The most direct approach to calculate the electronic structure of a solid is
to employ DFT, whereas the extrapolation of HF for periodic systems is not
as straightforward. Within DFT an initial density, for example from a super-
position of atomic densities, is provided, and upon it the selected exchange-
correlation functional is applied. The external potential is divided in ionic con-
tributions with a form that depends on the pseudopotential chosen. The local
part is better calculated in direct space since it is more or less diagonal. On the
other hand, the computation of the long-range part is more efficient in direct
space when the unit cell is big, otherwise is done in reciprocal space. After all
evaluations in direct space have been performed the terms are transformed to
reciprocal space through Fourier transforms. The density and wavevectors

unk(G) =
1

Ω

∫
Ω
e−iG·runk(r)dr (2–34)

n(G) =
1

Ω

∫
Ω
e−iG·rn(r)dr (2–35)

(2–36)

are restricted to a maximum cutoff 12 |G|2 6 4Ecut to be in line with the kinetic
energy cutoff. Then, the kinetic energy and the remaining parts of the potential
can be calculated so we are ready to evaluate the Schrödinger equation

∑
G ′
Hk+G,k+G ′cn,k+G ′ = εncn,k+G ′ (2–37)

with matrix elements

Hk+G,k+G ′ =
1

2
|k+G|2δG,G ′ +Vion(k+G,k+G ′)+VH(G−G ′)+VXC(G−G ′).

(2–38)
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Returning back to direct space is easy with the Fourier transform. The new
density is

ρ(r) =
2Ω

8π3

∑
n

∫
Ω∗
θ(εF − εnk)|ψnk(r)|

2 dk. (2–39)

We repeat from the beginning until convergence in the energy and wavefunc-
tions is reached.

Plane-waves plus pseudopotential calculations can be very incredibly effi-
cient and accurate predicting the energies but reconstruction of the density can
be problematic. Indeed, pseudopotentials are not the only choice. All-electron
methods use a mixed basis, a Gaussian basis set inside the core region defined
by a radius and plane-waves at interstitial regions. So, instead of freezing elec-
trons this time the full electronic structure is simulated with the consequent
computational cost.

2.8.4 Projected Augmented Waves (PAW)

Those of you interested in reconstructing the density functions from the
pseudo-valence orbitals and the core pseudo-cation orbitals without resorting
to all-electron methods can adopt the projection technique of plane augmented
waves (PAW) [22]. PAW unifies the pseudopotential and the all-electron method
of linearized augmented plane waves based on the assumption that the Hilbert
space of all the valence states (Ψ) orthogonal to the core states and the Hilbert
space of the pseudo-valence states (Ψ̃) are related by a linear transformation

Ψ = TΨ̃ (2–40)

that relates operators in both spaces through

〈Ψ|A|Ψ〉 = 〈TΨ̃|A|TΨ̃〉 = 〈Ψ̃|T∗AT|Ψ̃〉 = 〈Ψ̃|Ã|Ψ̃〉. (2–41)

Also, the KS energy accepts a variational formulation in the pseudo-Hilbert
space.

Of the many possible linear transformations we can guess that the appropri-
ate ones will mostly affect nuclear regions and be close to identity in interstitial
regions. Thus the ansatz

T = 1+
∑
RA

TRA (2–42)

where RA are the nuclear regions. There, the true valence wavefunction finds a
expansion in terms of true partial waves

Ψ =
∑
v

cvψv (2–43)

and since pseudo-plane waves are related to the former by ψv = TψPP
v ,

Ψ =
∑
v

cvTψ
PP
v = T

∑
v

cvψ
PP
v = TΨ̃, (2–44)
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both expansions share the same coefficients cv. Therefore the difference in core
regions has to be ∑

v

cv(ψv −ψ
PP
v ). (2–45)

The corresponding operator

T = 1+
∑
v

(
ψv −ψ

PP
v

)
〈pv| (2–46)

needs a set of projectors pv that when applied to Ψ̃

Ψ = TΨ̃ = Ψ̃+
∑
v

(
ψv −ψ

PP
v

)
〈pv|Ψ̃〉 (2–47)

project with the coefficients of the true wavefunction, cv = 〈pv|Ψ̃〉. The projec-
tors, dual to the pseudo-plane waves ψPP

v , 〈pi|ψPP
j 〉 = δij, have to be generated

by some orthogonalization procedure.
Expectation values of operators in terms of the pseudo-waves

〈Ψ̃|Õ|Ψ̃〉 = 〈Ψ̃|O|Ψ̃〉+
∑
i,j

〈Ψ̃|pi〉
(
〈ψi|O|ψj〉− 〈ψPP

i |O|ψPP
j 〉
)
〈pj|Ψ̃〉. (2–48)

The real space operator O = |r〉〈r| can be used to obtain the electron density

ρ(r) = 2

N∑
n


|ψPP

v (r)|2 +
∑
i,j

〈ψPP
v |pi〉Dij(r)〈pj|ψPP

v 〉


 (2–49)

with functions
Di,j(r) = ψi(r)ψj(r) −ψv,i(r)ψv,j(r). (2–50)
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3.1 chemical innermost conundrums for quan-
tum mechanics

Since its origin chemistry has been an empiric science. Chemists had to deal
with entities that were out of their reach, tiny particles beyond observation, so
they elaborated mechanistic descriptions that agreed with phenomenological
observations. The concepts distilled out of elaborated works by Lavoisier, Dal-
ton, Pauli, . . . have been always mere devices to embody the corpus of knowl-
edge in a consistent way but today it is impossible to conceive chemistry with-
out bonds, electronegativity, lone pairs, acidity or functional groups. The rise
of quantum theory in the beginning of the twentieth century shocked many
chemists with an outrageous interpretation of matter. None of the previous
concepts found a natural placement in the theory.

The picture of electrons rushing between atoms (chemical arrows) with a
defined trajectory is not possible. Distinction of core and valence electrons van-
ishes, all electrons are indistinguishable now and contribute equally to bonding.
Moreover, the reasoning of wave mechanics is not as straightforward as it was
with classical mechanics. For example, can we map our physical interpreta-
tion of the covalent bond, sharing of electrons between atoms, with an energy
lowering? If we try to be consistent with the virial theorem we could guess
that there is a lowering of potential energy accompanied by an increase of ki-
netic energy but if we attend to the spread of electrons we would be driven
to the opposite conclusion, therefore violating the virial theorem. Definitively,
both are extrema cases of a more realistic compromise, found by variational
minimization.

The construction of the wavefunction as a product of orbitals reintroduced
the distinction of electrons and a link with the old electronic theory. The
bridge was broadened specially after Pauli connected the theory of Heitler-
London with Lewis formulation of covalent bonding. A long record of suc-
cesses (Woodward-Hoffman rules, Hückel’s rule, HOMO-LUMO reactivity, . . . )
explains the presence of molecular orbitals as common objects in organic chem-
istry. Despite of it, their choice is arbitrary. Equivalent classes of orbitals can
represent electrons with diverse spatial localizations, changing completely the
interpretation. When a quantitative analysis is needed problems appear be-
cause they are not correlated images of one electron distributions.

The message that is left is that chemists need real space representations of
the electronic distribution that are compatible with the dictates of quantum
mechanics. This road has been started in the 60’s and still continues being
developed. In this chapter we will tell how quantum mechanics has included
those concepts in its glossary and how it requires upon us a proper definition
of atoms in molecules.
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3.2 electron population and bonding indices
on a probabilistic footing

In the previous chapters we have shown the fundamentals of quantum meth-
ods that solve the non–relativistic Schrödinger equation to reach the best ap-
proximation to the wavefunction of the system. Henceforth, we can obtain
any measurable quantity as an expectation value of a proper operator. Our
objective is to give explanations for chemical concepts based on the electronic
distribution and ultimately distinguish and predict bonding types.

When analyzing the wavefunction, one often focuses on the bond distances,
total energy or vibrational frequencies to get insight. However, very limited in-
formation is contained in those values. It would be a waste of time to compile
the full wavefunction for later dismissing most of the information contained in
it knowing that all is coded in it. A most important observable for chemists
is the electron density because electron are the main characters in atomic inter-
actions. The density of a monodeterminantal wavefunction whose molecular
orbitals are expanded as a LCAO is expressed in terms of the basis orbitals as

ρ(r) =
∑
µν

Pµνχ
∗
µ(r)χν(r) (3–1)

Single determinant
wavefunctionsThe spin-less density matrix P obtained in Hartree–Fock theory is not idem-

potent, because the basis where it is represented is not orthonormal (primitive
or AOs if minimal basis) as it is in the basis of best molecular orbitals. The
choice of a MOs basis to represent the density matrix would destroy our pur-
pose because they are delocalized over the whole space and the association
to atoms is blur. The matrix PS would be a better choice, N =

∑
µν PµνSνµ.

From this density matrix representation we can divide the electron population
in atomic contributions. Counting separately the atomic orbitals associated to
each atom, the average is

NA =
∑
ν∈A

(PS)νν. (3–2)

The populations determined this way are called Mulliken’s atomic populations.
A drawback is that they might not be positive. Pairs, triads, quartets and so on
are as well accessible taking advantage of the idempotency (PS)2 = PS

NA =
∑
ν∈A

(PS)νµ(PS)µν +
∑
ν ∈ A
µ 6∈ A

(PS)νµ(PS)µν. (3–3)

The first term is orbital net population and the second is overlap population,
connected with the non-orthogonality of the basis. Indices of populations that
distribute among more than two orbitals are not equal because the matrix PS
lacks symmetry, Löwdin’s orthogonalization is a way to symmetrize Mulliken
population matrix

NA =
∑
ν∈A

(S
1/2PS

1/2)νν. (3–4)
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The use of the pseudo density matrix PS is useful because the orbitals used
to represent it can be easily mapped to atomic components. In this formulation
the choice of the orbitals is not unique as any unitary transformation (a rota-
tion with respect to the laboratory frame) of the orbitals leaves invariant the
wavefunction. The matrix P is therefore modified in the process. The signifi-
cance of individual elements of the P matrix (configuration space objects) lack
physical meaning. Luckily Mulliken analysis remains invariant but Löwdin
populations are only invariant under certain rotations. We should seek an-
other mathematical representation of n-RDM objects where discretization of
the system in atomic elements meets the requirement of invariance under uni-
tary transformations.

3.2.1 Electron Population Distribution Functions

The difficulties that arise when one seeks a connection between chemistry
and quantum mechanics are due to the fact that state functions strictly belong to
a R3N configuration space, in contrast to standard chemical concepts, usually
envisioned in the R3 physical space. In terms of the theory of probability, each
configuration is an event worth of consideration, but when we are interested
in a particular chemical event only states located in a fragment of the physical
space, where chemical action takes place, are relevant. On taking this path we
transform the problem of partitioning the orbital space to dividing the physical
space into the best set of finite volumes.

The number of electrons in an atom or bond, designed as Ω ⊂ R3, with
characteristic functionωΩ, is an observable that can be obtained from a particle
number operator [165]

N̂Ω =

N∑
i=1

ωΩ(ri) ωΩ(ri) :=

{
1 if ri ∈ Ω
0 if ri ∈ Ωc

(3–5)

This operator does not commute with the Hamiltonian, so the local population
of Ω fluctuates around an average particle population

NΩ = 〈Ψ|N̂Ω|Ψ〉 =
N∑
i

∫
Ω

dxi

∫
R3

dxj6=i |Ψ|2 =

∫
Ω
ρ(r)dr, (3–6)

with variance

σ2Ω = 〈Ψ|N̂2Ω|Ψ〉− 〈Ψ|N̂Ω|Ψ〉2 =

∫
Ω
ρ(r)dr+

∫
Ω
ρ2(r1, r2)dr1 dr2 −N2Ω

(3–7)

determined using the expression of one- and two-body operators in terms of
density matrices for

N̂2Ω =

[
N∑
i=1

ωΩ(ri)

]2
=

N∑
i=1

ω2Ω(ri) +

N∑
j 6=i

ωΩ(ri)ωΩ(rj). (3–8)
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A fundamental unanswered question is: what “do electrons do”? From their
point of view there are two primitive options: either entering Ω or stay outside.
Intermediate actions include electrons being in Ω a fraction of the time πΩ
and 1 − πΩ of the time outside. Their attitude is ultimately driven by the
election that is more beneficial in energetic terms for the whole system. A
correlated equilibrium. Non-commutativity says that electrons cannot have
a pure strategy, determined by a well defined condensation, e.g. exactly n
electrons inside and N− n outside. Instead, a mixed strategy where at least
some (indistinguishable) electrons are indecisive to take the action of localizing
in Ω or Ωc is the experimentally observed choice.

Quantification of the probability for each pure strategy is accomplished with

p(n ∈ Ω,N−n ∈ Ωc) ≡ pn(Ω) =

(
N

n

) ∫
Ω

dx[1,n]

∫
Ωc

dx(n,N] |Ψ|
2. (3–9)

A combinatoric number of indiscernible electron condensations add up with
the same weight. Satisfies normalization

∑N
n=0 pn = 1.

The probability is also expressed as a sum of coarse-grained integrations
of reduced density functions. The smallest reduced density function that can
describe a n electron condensation in Ω is obviously ρn. ρn is the result of
integrating n+1 toN electrons in all space. Notice that integration domains are
different. There is no constraint, as in (3–9), to the complementary space of Ω.
Therefore, integration of ρn inΩ gives an overestimation ifN > 1. This is easily
seen when Ω = R3:

∫
Ω γ1 = Trγ1 = N. Next, subtracting the integration of∫

Ω

∫
Ω γ2 creates a lower bound because a bunch of triads or more electrons live

in Ω, and we have subtracted them off more than once. Successive repetition of
this procedure until ρN eventually gives the right answer. The correct formula
applying the inclusion-exclusion principle is

pn(Ω) =
1

n!

N−n∑
i=0

(−1)i

i!

∫
Ω
ρn+i(x[1,n+i])dx[1,n+i]. (3–10)

More general probabilities are also the result of linear combinations of integra-
tion of reduced density functions.

Further insight on the probabilities can be gained by building the distribution
from scratch assuming independence. Let the independent random variable
Πi, related to an electron i falling (Πi = 1) or not (Πi = 0) inside Ω, follow a
Bernoulli distribution with parameter πi. The number of electrons condensed
will be the sum of N independent events n =

∑N
i Πi. To decipher the dis-

tribution we use the probability generating function to exploit the assumed
independence:

G(t) = 〈tn〉 =
N∏
i=1

〈tΠi〉 =
N∏
i=1

1∑
k=0

tkπki (1− πi)
1−k =

N∏
i=1

(tπi + 1− πi).

(3–11)
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When the electrons are also identically distributed (πi → π)

(tπ+ 1− π)N =

N∑
ν=0

tn
(
N

n

)
πn(1− π)N−n =

N∑
n=0

tnpn (3–12)

n electron condensations have a binomial distribution. On the other hand, from
this result we can infer

G(t) =

N∏
i=1

(tπi + 1− πi)

=

N∑
n=0

tn
∑

In ⊆ |[1,N]|

card(In) = n


∏
i∈In

πi




∏
i/∈In

(1− πi)


 =

N∑
n=0

tnpn

(3–13)

a Poisson-Binomial distribution. In the case we knew the parameters, efficient
algorithms to compute the distribution would be available. That information
will be given by a careful analysis of the wavefunction.

It has been only quite recently that computation of probabilities has become
feasible even for the crudest wavefunctions. Starting from a monodeterminan-
tal wavefunction with real spinorbitals, the squared wavefunction is

|Ψ|2 =
(

det{ψi(xj)}Ni,j=1
)2/

N!

= det

{
N∑
k=1

ψi(xk)ψj(xk)

}N
i,j=1

/
N!

=
∑

k∈{1,...,N}N

det
{
ψi(xkj)ψj(xkj)

}N
i,j=1

/
N!

=
∑
k∈SN

det
{
ψi(xkj)ψj(xkj)

}N
i,j=1

/
N! . (3–14)

First, the fundamental property of determinants (det(A)det(B) = det(AB)) is
used to get a single determinant with elements that are sums of orbital pair
products. Next, using the multilinearity of the determinant, columns

∑
kAk,∑

k Bk, etc. are simplified with elementary operations |
∑
kAk,

∑
k Bk, · · · | =∑

k,l |Al,Bk, · · · |. The last sum of (3–14) runs over all permutations in the
symmetric group SN instead of a N power set {1, . . . ,N}N as in the previous
equality because when ki = kj(i 6= j) the columns are not linearly independent,
therefore the determinant is zero.
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Further simplification makes use of local overlap matrices, with elements

Sij(Ω) =

∫
Ω
ψi(x)ψj(x)dx,

Sij(Ω
c) =

∫
Ωc
ψi(x)ψj(x)dx. (3–15)

It is understood that if the orbitals are orthonormal the overlap matrix extended
to all space is the identity matrix S(R3) = 1N. After replacing |Ψ|2 from equa-
tion (3–14) inside equation (3–9) we arrive to a formula

pn =

(
N

n

)
1

N!

∑
τ∈SN

det
{
Ŝiτj

}N
i,j=1

(3–16)

simplified with

Ŝiτj =

{
Siτj(Ω) if τj ∈ [1,n]
Siτj(Ω

c) if τj ∈ (n,N].
(3–17)

pn is the sum over all determinants where n columns of S(Ωc) have been
replaced with columns of S(Ω). The overlap matrix S(Ω), apart from commut-
ing with S(Ωc) = 1N − S(Ω), admits a similarity transformation D = RtSR,
employing a unitary matrix R such that RtR = 1N, into a diagonal matrix D
with elements πi that are the parameters we needed. That relates the Poisson-
Binomial probabilities (3–18) with the probabilities of condensing electrons of
a determinantal function in bipartite spaces. Recognition of this link allows for
taking advantage of the mathematical literature to pick an efficient algorithm.
Ending the development of the generating function we arrive to a identity

G(t) =

N∏
i=1

(tπi + 1− πi)

= det |(tD+ 1N −D)|

= det |RtR(tD+ 1N −D)|

= det |Rt(tD+ 1N −D)R|

= det |tRtDR+ RtR− RtDR|

= det |tS+ 1N − S| =

N∑
ν=0

tnpn ∀t ∈ R3 (3–18)

first put in context by Cancès et al. [30], that serves to implement the computa-
tion of the probabilities as a linear system of equations in t. Importantly, one
can calculate the probabilities with a recurrence formula that scales quadrati-
cally.
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Once the underlying distribution is known selected domain properties can
be easily evaluated in terms of the probability measure pn. As a result the
average population is

NΩ = 〈n〉 =
N∑
n=0

npn. (3–19)

Remark that an average value of NΩ = k ∈ N∗<N does not mean, in general,
that there are exactly k electrons localized in Ω. Any distribution symmetric
around the leading event has the same mean but differing multi body fluctu-
ations. In turn, the dispersion of electron pairs is contained in the variance,
recovered this way:

σ2Ω =

N∑
n=0

(n−NΩ)2pn =

N∑
n=0

(n2 −N2Ω)pn =

N∑
n=0

(n2 −n+n−N2Ω)pn

=

N∑
n=0

[
n(n− 1)pn +npn −N2Ωpn

]
= 〈ρ2〉Ω,Ω +NΩ −N2Ω = NΩ − λΩ.

(3–20)

Firstly, check out that it is the same as equation (3–7). When the variance is
zero there is a pure pair population 〈ρ2〉Ω,Ω = NΩ(NΩ − 1). The term NΩ
counterbalances the self-interaction present in 〈ρ2〉Ω,Ω. From another point of
view the process we describe is quantified by counting particles in a subsample
of the space. If particles are randomly distributed in the region, the pair popu-
lation will oscillate the same extent as the average number of electrons ascribed
to the volume. Any reduction from this value is a measure of both pair corre-
lation and localization. Certainly, the deviation originated by the correlation of
electron pairs contained in Ω, or localization index,

λΩ =

∫
Ω
ρxc(r1, r2)dr1 dr2 = 〈ρ2〉Ω,Ω −N2Ω (3–21)

that appears after replacing ρ2 = ρ(r1)ρ(r2) − ρxc(r1, r2), is such quantity. In
the limit case of zero variance attains a value of NΩ [8] meaning that all the
pairs of electrons found inside are localized.

Pursuing the idea that covalent bonding is due to electron sharing in real
space we can inspect the variance of two domains Θ = Ω ∪ Λ with average
populations NΩ and NΛ now that we have a deeper insight of the variance
from a probabilistic perspective. With n population for Ω and v for Λ and total
population in Θ of n+ v the joint variance is

σ2Θ = E

[(
[n+ v] − [NΩ +NΛ]

)2
]
= E

[(
[n−NΩ] − [v−NΛ]

)2
]

= E

[(
n−NΩ

)2
+
(
v−NΛ

)2
− 2(n−NΩ)(v−NΛ)

]

= σ2Ω + σ2Λ − 2cov(n, v) (3–22)
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λΩ,Λ = −2

∫
Ω

dr1

∫
Λ

dr2 ρ2(r1, r2) −NΩNΛ = −2cov(n, v) (3–23)

pays attention to the two way fluctuation of charge through the boundary that
separates both domains. In other words, it is the charge of Ω delocalized in
Λ and vice versa. A symmetric measure of electronic excess for completely
general correlated state functions

δΩΛ = +λ(Ω,Λ) + λ(Λ,Ω) = 2

∫
Ω

dr1

∫
Λ

dr2 ρxc(r1, r2) (3–24)

is known as the delocalization index. During the last decade an increasing
number of works have widened the relation that exists between the delocaliza-
tion index and covalent bonding. On a separate issue, part of our research in
chapter 6 has been focused on finding the relation between the DI and electrical
conductivity.

Electrons with different spin can be differentiated with a label as alpha or
beta electrons: N = Nα +Nβ. Structures consisting in nαΩ and nαΩc α electrons
in the domains Ω and Ωc, Nα = nαΩ+nαΩc ; and equally for beta electrons: nβΩ
and nβΩc β electrons in domains Ω and Ωc, Nβ = n

β
Ω + nβΩc , are described

by a S ≡ {nαΩ,nαΩc ,nβΩ,nβΩc } nomenclature. Note that this distinction doubles
the number of basins to four, two of them for alpha electrons and two for beta
electrons.

The average population of alpha electrons in Ω is

nαΩ =

Nα∑
n=0

np(nαΩ = n)

=

Nα∑
n=0

n

Nβ∑
x=0

p(nαΩ = n,nαΩc = N
α −n,nβΩ = x,nβΩc = N

α − x) (3–25)

runs through all possible nβΩ, nαΩc , nβΩc .
Hartree–Fock wavefunctions include no correlation among alpha and beta

electrons [112], so a factorization in α and β probabilities is due

p(nα1 ,nα2 ,nβ1 ,nβ2 ) = p
α(nα1 ,nα2 )× pβ(nβ1 ,nβ2 ). (3–26)

It is evident that with the only determination of one of them, e.g. pα(nα1 ,nα2 ),
we have complete knowledge of the entire probability.

In principle, all the properties discussed up to now can be extended to an
arbitrary decomposition of space into m mutually exclusive regions R3 =

∪mi=1Ωi, Ωi ∩Ωj = ∅ (i 6= j). We accordingly fragment the total electron dis-
tribution in spatial domains to see how much electronic charge is condensed
in them by exploring the probabilities of all possible arrangements of electrons
in those domains. If we ascribe the distribution to a finite set of volumes, a



72 theory of chemical bonding

configuration of n1 electrons in domain Ω1, n2 in domain Ω2, . . . , conforming
a total ofN electrons inm domains, has a probability given by a multiset choice

p(n1,n2, · · ·) =
N∑

i1,...,iN=1

ωΩi1
(r1) · · ·ωΩiN (rN)

∑
σ1,...,σN

∫
|Ψ|2 dr[1,N]

=
N!

n1!n2! · · ·nm!

∫
Ω1

dxi6n1

∫
Ω2

dx(n1,n1+n2] · · ·
∫
Ωm

dx(N−nm,N]|Ψ|
2.

(3–27)

Inter-domain population probabilities are independent for the integrations are
multiplied in any order. Correlation is implicit. When all electrons inside basin
Ωi are identically distributed a multinomial distribution

p(n1,n2, · · ·) = N!
n1!n2! · · ·nm!

m∏
i=1

π
ni
Ωi

(3–28)

with unconditional one particle probabilities

πΩi =
1

N

∫
Ωi

ρ(r)dr. (3–29)

During this section it has been dropped the idea that the race to achieve the
best electronic arrangement can be seen as a game played by electrons, the latter
developing a series of strategies to maximize the total payload, the energy. In
fact, it is interesting to realize the new perspective that is given of traditional
concepts in chemistry without violating the rules of quantum mechanics. The
commitment displayed by many chemists to cling to localized electrons can be
replaced by a more realistic concept of strategy, that is between the otherwise
funny and totally delocalized picture defended by those that strictly stick to
quantum mechanics and the localized picture. Well then, there might exist
a series of predominant strategies, applicable to a single domain or a union
of domains — it always depends on the choice of the domain —, that gather
the ideas we all are used to in chemistry. One can only wonder about how
such common chemical concepts could be encapsulated. In the end, EDFs are
destined to enhance our understanding of the optimal strategy followed by
electrons to distribute over space.

3.2.2 Domain Averaged Fermi Holes

An analogous scheme to Mulliken’s condensation for multi–center indices of
a single determinant wavefunction is also possible in real space with reduced
density matrices exploiting the Fock-Dirac expansion, here

NΩ =

∫
Ω
ρ(r)dr =

∫
Ω

∫
Ω
γ1(x1, x2)γ1(x2; x1)dx1 dx2 (3–30)

+

∫
Ω

∫
Ωc
γ1(x1, x2)γ1(x2; x1)dx1 dx2. (3–31)
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For more general wavefunctions the ρXC includes in addition to the cyclic
kernel product of non-diagonal 1RDMs (exchange factor) a correlation factor
not obtainable from lower order reduced density matrices, precisely both are
contained in the cumulant density for an arbitrary wavefunction λ2(x1, x2) ≡
ρxc(x1, x2) = γ1(x1; x2)γ1(x2; x1). In our statistical definition we will regard
the exchange contribution as part of the correlation. We have seen in sec-
tion 1.3.1 recurrence relations that hold for a general wavefunction. Opposite
to reduced density matrices the cumulants are extensive and allow a consistent
truncation scheme.

Owing to the tight link between cumulants and particle fluctuations of the
electron distribution, the first and second components on the right hand side
of equation (3–31) are a measure of the variance and covariance of electronic
population in Ω and Ω ↔ Ωc. Thus, the interpretation of net and overlap
populations in this picture is as fluctuations of the electronic population among
spatial domains.

Let us consider the integration of the exchange-correlation density before
going with more general cumulant densities. The inner integration can be sub-
stituted with the averaged exchange-correlation hole over one domain, gΩ(x),

NΩ =

∫
Ω
gΩ(x)dx+

∫
Ω
gΩ

c
(x)dx (3–32)

that results from a charge weighted exchange-correlation hole, hXC(x1, x2),

gΩ(x) = NΩ

∫
Ω
hxc(x, x2)dx2 = NΩ

(
ρ(r) −

∫
Ω γ2(x, x2)dx2∫
Ω ρ(x2)dx2

)
. (3–33)

This quantity, known as Domain Averaged Fermi Hole (DAFH), is an exclusion
density that captures the spatial localization of one electron inΩ. It is a very im-
portant object for getting insights about bonding in molecules. An exhaustive
partition of space permits us recover the density

ρ(r) =

m∑
a=1

∫
Ωa

gΩa(r)dx. (3–34)

It has been used mainly for single Slater determinants because of the unavail-
ability of ρXC(r). In this case the representation in the spin orbital basis is

gΩ(x) =
∑
ij

ψi(x)G
Ω
ijψj(x) (3–35)

where
GΩij =

∑
ij

SΩij δ(σi,σj) (3–36)

and SΩij is the atomic overlap matrix (AOM) that results from restricting the
integration to the domain Ω.
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Diagonalization of G with a proper unitary matrix U yields a new set of
domain natural (occupied) orbitals (DNO) η = φU and their respective occu-
pations n of GΩU = nU such that

gΩ(x) =
∑
i

ni|ηi(x)|
2 NΩ =

∑
i

ni 0 6 ni 6 1. (3–37)

When the occupation ni is close to 1 the associated DNO is localized in center
A indicating that there is a lone pair or core electron. Other than that, the small
values of ni manifest the existence of delocalization over two or more centers.
In such a case the DNO is a one electron density delocalized (with non-zero
values in r ∈ Ωc) outside the basin where we are integrating. Unfortunately for
the analysis of multi-center bonding with DAFHs, the DNO has the symmetry
of centerΩ hardening the analysis of their spatial visualization and consecutive
association with bonding types. Isopycnic transformations are useful but they
are not an optimal solution. We will see how generalization of DAFHs allows
a more convenient dissection of multi-center bonds.

The density of a monodeterminantal wavefunction can be recast into

ρ(r) =
∑
i

|ηi(x)|
2. (3–38)

Remembering that we are partitioning the space in two regions Ω ∪Ωc = R3,
the following relations are satisfied

nΩi = nΩ
c

i φΩi = φΩ
c

i sΩi = 1− sΩ
c

i = nΩi = 1−nΩ
c

i (3–39)

with
sΩi =

∫
Ω

|ηΩi (r)|2dr sΩ
c

i =

∫
Ωc

|ηΩ
c

i (r)|2dr (3–40)

From these relations it is straightforward to derive the sum rule in equation (3–32)

NΩ =
∑
i

(nΩi s
Ω
i +nΩ

c

i (1− sΩ
c

i ))

=
∑
i

(nΩi s
Ω
i + (1−nΩi )(1− (1− sΩi ))

=
∑
i

(nΩi s
Ω
i + (1−nΩi )(sΩi ))

=
∑
i

(nΩi s
Ω
i + (1−nΩi )(nΩi ))

=
∑
i

(nΩi n
Ω
i + (1−nΩi )(nΩi ))

=
∑
i

(nΩi )2 +
∑
i

(nΩi − (nΩi )2)

=
∑
i

nΩi (3–41)
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becomes the sum of DNO occupations as in equation (3–37). From the penul-
timate equation we can see that localization and delocalization (except for a
multiplicative factor) indices are

λΩ =
∑
i

n2i , δΩΩ
c
=

∫
Ωc
gΩ(x)dx+

∫
Ω
gΩ

c
(x)dx = 2

∑
i

ni(1−ni)

(3–42)
Given that single determinant functions are invariant under unitary trans-

formations the transformation of the spin-orbital basis to the DNO basis does
not change anything. In this basis acquired by orthogonal projection to the do-
mains Ω and Ωc the overlap matrix Ŝij of equation (3–17) is diagonal in both
regions with eigenvalues πi or 1− πi substituted here by ni or 1−ni.

Multideterminant wavefunctions have a similar expression for (3–35)

gΩ =

Nb∑
ij

ψi(x)G
Ω
ijψj(x), (3–43)

replacing GΩij by

GΩij =

Nb∑
kl

CijklS
Ω
klδ(σi,σj), (3–44)

with coefficients Cijkl needed for the expansion of the second order exchange-
correlation probability density

λ2(x1, x2) ≡ ρxc(x1, x2) =
Nb∑
ijkl

Cijklψi(x1)ψj(x2)ψk(x3)ψl(x4) (3–45)

in terms of spin-orbitals. Diagonalizing in the basis of correlated DNOs we
obtain

gΩ(x) =

Nb∑
i

nΩi |ηΩi (x)|2. (3–46)

3.2.3 Natural Adaptive Orbitals

To end this section, and returning to the generalization of DAFH to greater
number of centers we will consider an exhaustive partition of physical space
R3 = ∪mj Ωj such that integration of the coordinates of one electron over all
space can be divided as

∫
=
∑m
j

∫
Ωj

. Based on the equation (1–72) the electron
population is recovered summing all condensations

N =

∫
λN(ri6N)dri6N =

N∏
i

m∑
j

∫
Ωj

λN(r1, · · · , rN)dri. (3–47)
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The average population of one region A is the same previous equation restrict-
ing the integration of one of the electrons to only the domain A. The same
way, the average population of two centers is obtained with the restriction
of two electron integrations to those domains. Furthermore, from the norm-
conserving property of the recursive formula (1–71), we know that the smallest
order cumulant needed to get the desired ν-center average population is λν

Nij...ν =

∫
Ωi

∫
Ωj

. . .

∫
Ων

∫
· · ·
∫

︸ ︷︷ ︸
N−ν

λN(r1, · · · , rN) =

∫
Ωi

∫
Ωj

. . .

∫
Ων

λν(r1, · · · , rN).

(3–48)
Given that the interchange of integrals does not affect the result it is possible to
obtain densities averaged over an arbitrary number of centers ρij...ν(r) simply
avoiding one of the integrations that covers all space

Nij...ν =

∫
ρij...ν(r)dr =

∫ ∫
Ωi

∫
Ωj

. . .

∫
Ων

λν+1(r1, · · · , rN). (3–49)

The most important ones are one-center averaged densities (ρi = gΩi ) and
two-center (A and B) averaged densities. The last requires the third order cu-
mulant density

ρij(r) =

∫
Ωi

dr1

∫
Ωj

λ3(r1, r2, r3)dr2. (3–50)

That partition recovers the total density

ρ(r) ≡ λ1(r) =
∑
i,j

ρij(r), (3–51)

when summing over all pairs of domains in the same fashion as DAFHs (3–34),
and can be generalized to a maximum condensation of N− 1 electrons in any
N− 1 centers (may be it the same region repeated N− 1 times)

ρ(r) =
∑

i,j,...,N−1

ρij...N−1(r).

(3–52)

ν-center generalized densities can be represented in the basis of molecular
orbitals

ρij...ν(r) = φ(r)Dij...νφ†(r), (3–53)

where Dij...ν is a symmetric matrix and φ(r) is a vector containing all occu-
pied orbitals. The result of diagonalizing Dij...ν is a set of natural adaptive
orbitals (NAdOs: ηij...ν) with eigenvalues na called natural adaptive occupa-
tions (NAdOccs)

ρij...ν(r) =
∑
a

nij...νa |ηij...ν(r)|
2. (3–54)
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The orthonormality of NAdOs
∫
|ηij...ν(r)|

2 = 1 assures that the sum of all
n
ij...ν
a NAdOccs is equivalent to the Ωi–Ωj–Ων delocalization index

Nij...ν =
∑
a

nij...νa . (3–55)

And the case of ν = 1, (3–41), is well known from the previous subsection.
In contrast to DAFHs, NAdOccs directly give the delocalization index

δΩiΩj = Nij +Nji =
∑
a

(nija +njia ) (3–56)

without requiring a two basin partition, that otherwise would reduce to nija =

nian
j
a = n

ji
a recovering (3–48). A sign that there are bonding contributions

involving more than two centers is the spread of ηij...ν(r) outside of the re-
gions Ωi and Ωj. Multi-center bonding indices can be captured if we integrate
higher order cumulants into three-, four-,. . . , ν-center NAdOs until they are
fully localized. NAdOs can be seen as a generalization of Natural Bond Orbitals
(NBO) [158], in the same spirit promoted by Zubarev et al. [192], although this
time correlation is included explicitly.

3.3 partitioning real space into chemically
meaningful entities

EDFs, DAFHs, and NadOs are tools that are settled to work for a broad
spectrum of domains. Depending on the chemical property desired to be ex-
plained one or another domain partition may be better suited but if one of
them enjoys universal acceptance is the atomic partition. The concept of an
atom is very clear when we only consider it isolated. There, a set of atomic or-
bitals with boundaries at infinite describe the electron distribution when they
are squared. But it vanishes as we embed it in a molecule. Atomic orbitals of
different atoms are combined (LCAO) and no single solution exists to separate
individual atomic terms.

Probably the first attempts to divide space in chemically relevant regions are
those rooted in EDF distributions. Aslangul et al. proposed [6] a variational
minimization of the missing information

I[P,Ω] =

[
−

N∑
n=0

pn lnpn

]
(3–57)

where stationary Ω loges minimize the entropy of the distribution. In other
words they tried to find the regions where the probabilities deviate more from
a uniform distribution pn(Ω) = 1/N, without being strictly localized. Thus, in
each loge there is a high probability of finding some number of electrons. This
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idea went rather unnoticed and has been followed only recently by Savin [165],
who searched for those domains that maximize the probability of a single event.

At a time that nobody payed attention to the electron density, Richard Bader
et al. discovered [12] from close inspection of density maps that the similarity
among different molecules of electron densities in regions that surround atomic
nuclei is related to the transferability of kinetic energy densities. Immediately
after, Bader and coworkers found that zero-flux surfaces of the density create
a natural partition of space in mononuclear basins that maximizes the transfer-
ability of kinetic energy densities whatever definition of kinetic energy density
is used. Based on these findings, an atomic virial theorem for stationary states
was conjectured. Eventually, the virial theorem was proved [177, 178] so a solid
foundation for atoms in molecules was settled.

The atomic virial and related atomic theorems that were later derived have in
common a variational formulation of a free boundary problem that replaces the
functional from which the Schrödinger equation is derived for the functional

I[Ψ,∇Ψ,Ω] =

∫
Ω

dr1

∫
F(Ψ,∇Ψ)dr ′1 F(Ψ,∇Ψ) = 1

2

N∑
i

|∇iΨ|2+(V−ε)|Ψ|2,

(3–58)
that integrates one electron over the variable domain and the rest dr ′1 = dr2 · · ·drN
over all space. Variations of the wavefunction δΨ = Φ − Ψ originate three
sources of modification in I:

δI[Ψ,∇Ψ,Ω] =

∫
Ω

dr1

∫
δF

δΨ
δΨdr ′1 (3–59a)

+

∮
∂Ω

dS1

∫
δF

δ∇Ψ
δΨdr ′1 (3–59b)

+

∮
∂Ω

dS1

∫
FδS1 + c.c.. (3–59c)

Both F (3–59a) and ∆F (3–59b) change, and within this type of variational prob-
lem the surface ∂Ω is also allowed to vary (3–59c). The reader interested in
more details is referred to [11, 106, 130]. After some mathematical manipula-
tions one arrives at the following condition for the stationary solutions

δ

[∫
Ω
∇2ρ(r)dr

]
= 0. (3–60)

A sufficient condition for the solutions of this variational problem is that the
stationary surfaces have zero net flux

∇ρ(r) ·n = 0 ∀r ∈ ∂Ω (3–61)

and that they do not go through the nuclei [42]. This separatrix divides the
space in regions with different flow behaviour. We now briefly present the link
with well known ideas from topology.
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3.3.1 Topology induced by a vector field

In the same fashion that a massive particle blends space-time, the charge of
an atom nucleus blends the electron density. At the position of the nucleus the
curvature is maximum and as we go further away the curvature vanishes in the
limit of infinite distance as it approaches zero. Since the forces acting among
the protons and electrons are attractive, electrons will preferentially be placed
near the nucleus hence the density will have a cusp. If we include another atom
there will be two cusps. Starting from the position of one atom and going along
the line that connects two atoms, the curvature of the density will be negative,
as it decreases, but at some point it will have to turn its trend, a saddle point,
and start to increase (positive curvature) to reach the next maximum located at
the other nucleus. The ridge of maximum electron density concentration, in the
directions perpendicular the path connecting the nuclei, is a trail of preferable
electron interchange.

More than the electron density itself, it is the gradient field which is unveil-
ing the characteristics of the density, standing out points where the gradient
vanishes. These points, so-called critical points, are points with vanishing first
derivatives (∇ρ(r) = 0). There are several types of critical points that can be
distinguished using the Laplacian. The procedure would be the same for any
field although the physical interpretation varies. For now, the density will be
our guiding example. At a point of R3 space the electron density Laplacian is,

∇2ρ =
∂2ρ

∂x ′2
+
∂2ρ

∂y ′2
+
∂2ρ

∂z ′2
= Tr(Hρ) =

3∑
i=1

λi, (3–62)

the sum of diagonal components resulting from the diagonalization of the Hes-
sian (Hρ) in principal curvatures (λi). Provided that the scalar field is smooth
and has no degenerate critical points (non-singular Hessian) nor critical points
with the same value (image), then critical points compress the global shape of
the density.

Critical points are characterized by the rank of the Hessian (r) and signature
(s =

∑
i
λi/|λi|), commonly abbreviated as (r, s). There are four types of non-

degenerate density critical points:

• Nuclear critical points (3,−3): A maximum in the three main axes. They
are almost always located at nuclei positions.

• Bond critical points (3,−1): they are located in a minimum between two
nuclei. The density is a maximum in the other two directions. They are
located at the border of two basins. The set of points connecting it with
other nuclear points following the maximum gradient define what has
been called bond paths.

• Ring critical points (3,+1): They appear in the center of aromatic rings.

• Cage critical points (3,+3): A minimum in the tree main axes.
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Bond critical points are the most interesting ones because the properties at
them can be correlated with chemical behavior. The density value is related to
the strength of covalent bonds. The Laplacian values are related to the strength
of non-covalent (closed shell) interactions. Only equivalent bond pairs can be
compared. The ellipticity is often used as an indicator of π character for an
interaction. The ellipticity, using λ1 < λ2 < λ3, of a bond critical point is
defined as

ε =
λ1
λ2

− 1. (3–63)

It gives a measure of the electron distribution anisotropy in the principal axes
perpendicular to the bond path. For σ and triple bonds cylindrical symmetry
is presented and the ellipticity value is ≈ 0, for π interactions electron concen-
trates preferentially in one of the planes which give a maximum for the charge
at the critical point, so its value is 6= 0.

The topology of any scalar field is determined by its critical points and
asymptotic behavior at an infinite sphere, the mathematical relation is con-
tained in the Hopf-Poincaré relationship. In molecules the relationship of the
electron density is

n− b+ r− c = 1, (3–64)

where n,b, r and c denote the number of nuclear, bond, ring and cage critical
points. In periodic systems the asymptotic behavior is different, the relation
equals 0.

The content of this section could be called chemical topography. The fol-
lowing section describes how to assign physical properties to chemical entities
using the topology of the field.

3.3.2 The atomic partitioning of molecular properties

Topological methods aim at the segmentation of a vector field into real space
areas of different flow behavior. All vector lines can end either at an attractor
(nuclear critical point) or at a saddle point and the spatial region given by all
points whose vector lines end at the same attractor are called basins. In the
dynamical systems jargon they are stable manifolds. qtaim selects attractor
basins to divide the real space domain. The surface that delimits the basins
obeys the zero-flux condition

∂ρ(r)

∂x

∂S(r)

∂x
+
∂ρ(r)

∂y

∂S(r)

∂y
+
∂ρ(r)

∂z

∂S(r)

∂z
= 0. (3–65)

This topological partition distinguishes from alternative partitions for being
exhaustive and in real space. That is, basins recover the whole space, R3 =

∪AΩA, while being mutually exclusive, ΩA ∩ΩB = ∅.
For domains defined by a separatrix with the above property, the average

potential is the average of the virial forces applied to them. As well, the hyper-
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Figure 3: Aragonite structure and its non equivalent atomic basins: Ca (green), C
(brown), O (red).

virial theorem leads to the definition of domain properties after the integration
of any mono-electronic quantum operator (O)

OΩ =
N

2

∫
Ω

dr
∫
[Ψ∗OΨ+ (OΨ)∗Ψ] dr ′. (3–66)

Note that the kinetic energy values are invariant when the zero-flux condition
is met. Having a measure of the local potential and a unique definition of local
kinetic energy we have definitively a decomposition of the energy in domains.
Unifying all the clues disposed might guess us that the basins can be identified
as proper quantum atoms.

Two of the most important properties are the volume, VΩ, and electronic
charge, NΩ, of each molecular subunit Ω

VΩ,ρ =

∫
Ω

dr, NΩ,ρ =

∫
Ω
ρ(r)dr.

Since the properties are additive,

〈O〉 =
∑
Ω

OΩ, (3–67)

Ω may be a single atom or an atomic group. The net charge of Ω is the sum
of nuclear and electronic charge, QΩ,ρ = ZΩ +NΩ. These formulas will be
useful to figure out intermolecular charge transfer in Chapter 7. Moreover, the
integration could be over basins of other fields.
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3.3.3 The electron density Laplacian

The Laplacian is a measure of the density field curvature. When the density
has a maximum the curvature is negative, ∇2ρ(r) < 0, and when it is a mini-
mum the curvature is positive, ∇2ρ(r) > 0. Thus, the Laplacian identifies local
charge depletions or concentrations.

The values of the Laplacian for an atom oscillate along radial directions, be-
tween positive and negative values. The function reveals the atomic shell struc-
ture. Each shell has a local maxima and minima along a radial direction. The
outer shell is the most important because it is involved in bonding interactions.
If it is a charge accumulation shell we call it a Valence Shell Charge Concentra-
tion (vscc), else if it is a charge depletion we call it Valence Shell Charge Deple-
tion (vscd). Local maximum points (3,−3) and local minima points (3,+1) in
vscc regions are physically interpreted as nucleophilic and electrophilic sites
in the acid-base Lewis theory. Critical points are also applied to identify the
lone pairs of Valence Shell Electron Pairs Repulsion (vsepr) theory.

The main characteristic of a covalent bond is that the valence shell electrons
are shared. The value of the Laplacian at the bond critical point is negative.
Non covalent interactions (e.g. chalcogen, halogen, hydrogen, ionic) involve
two closed shell atoms. The Laplacian is positive at bond critical points and is
related to the strength of the interaction.

The results obtained from integration over topological basins are negative [105,
136].

In the next section we will focus on the Electrostatic potential.
Other fuzzy partitions exist where a point in real space is not unequivocally

assigned to an atom. Develop the weight functions

3.3.4 The electrostatic potential and its meaning

The Molecular Electrostatic Potential (mep) at a point (r) in space (R3) is
defined as the energy required to bring a positive particle of unit charge from
the infinite to that point. In a molecule the potential at infinite is zero by
definition, φ0 = limr→∞φ := 0. It is also the interaction energy between the
net charge density of a molecule, ρt(r), and a test positive unit particle that
mimics a proton, their interaction energy being evaluated without polarization
or nuclear rearrangement effects,

φ(r) :=

∫
V

ρt(r
′)

|r− r ′|
dr ′ +φ0. (3–68)

The net charge contains the contributions of the electron density distribution
and the nuclei ρt(r) =

∑
A ZAδ(r−RA) − ρ(r). It is important to note that the

Electrostatic Potential is a physical observable that can be determined by X–Ray
Diffraction.

The seminal paper [24] by Bonaccorsi, Scrocco and Tomasi in 1970 brought
attention to the Molecular Electrostatic Potential (mep) in quantum chemistry
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for the first time. Since then, many works have emphasized the role of mep
determining the interactions of a molecule with its environment [129]. The
interaction between two molecules placed at long distances one apart another
is dominated by the electrostatic potential with leading 1/r terms.

The study of the topology of the mep was started by Gadre et al. [141].
Tsirelson identified zero-flux surfaces in solids [187] and Mata and co-workers
investigated the zero-flux surfaces and the alternative nucleophilic/electrophilic
partitioning [113] using the multipolar model.

Our approach to obtain the Electrostatic Potential (esp) in a crystal is the
same. The electrostatic potential is related to the electronic density by the Pois-
son equation

∇2φ(r) = −4πρt(r). (3–69)

Solving for φ we obtain equation 3–68, where nuclei positions are given by
structural determination and the electron density by the multipolar model. We
cannot recover the potential of reference (φ0), so it is arbitrary. The absolute
values of the esp are arbitrary too, otherwise, the relative values are kept intact.

Properties of the scalar field

The esp field exhibits the same type of critical points found in the electron
density: maxima, minima and saddle points are the most frequent. Thus, the
esp can be characterized by critical points of the gradient field, which is mi-
nus the electric field, E = −∇φ(r). 1 The Hessian Hφ is determined by the
curvatures of the field γi

PHφP
−1 =



γ1 0 0

0 γ2 0

0 0 γ3


 . (3–70)

In contrast with the electron density, esp maxima (3,−3) can only occur at nu-
clear positions. Minima (3,+3) identify local concentrations of electron density,
such as lone pairs. Maxima and minima are identified as nucleophilic and elec-
trophilic sites. (3,−1) saddle points are analogous [58] to density bond critical
points.

In contrast with the electron density, the esp has positive (electrophilic re-
gions) and negative values (nucleophlic regions). For example, in a cation (see
figure 4), gradient field lines go from a positive value at nuclei to zero at infinite.
In an anion, gradient field lines go from zero at infinite to a negative value at
a localization of electron charge density. In a neutral molecule, gradient lines
go from a positive value at nuclei to infinite and return to end at a minima
describing a loop that fills all the space. Therefore, the asymptotic behavior is
different and so is the Poincaré–Hopf relationship:

n−3 −n−1 +n+1 −n+3 = n+ −n−. (3–71)

1 The zero potential has no effect in the topology.
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Cation: A+—B+ Neutral: A−—B+ Anion: A−—B

A B A B A B

2− 1+ 0− 0 = 1− 0 2− 1+ 0− 1 = 1− 1 2− 2+ 0− 1 = 0− 1

Figure 4: Diagrams of projected electric field lines for hypothetic AB diatomics and the Poincaré-Hopf
relationship (3–71). Zero-flux surfaces have no gradient line crossing them. Critical points
appear where gradient lines diverge or converge. Out of the plane critical points also appear,
making the interpretation more difficult.

The terms in the left hand side are the number of critical points with signature
s (ns). The terms in the right hand side are the number of asymptotic maxima
(n+) and minima (n−).

The Laplacian at a ebcp 2 (figure 5) is related to the total density at that point
by the Poisson equation, (3–72). We can relate the strength of an electrostatic
interaction with the value of the Laplacian.

∇2φ =

3∑
i

γi = −4πρt(r) = −∇E (3–72)

We can even decompose 3 the electrostatic force in two components, an at-
tractor term along the bond path and a repulsion term perpendicular to the
bond using the curvatures of the field [115]

FE(r) = −ρ(r)E ≈ ρ(r)
[
γ‖(z− z0)ẑ+ γ⊥rr̂

]
.

Orientation of the interactions rationalized with the aid of σ-holes

The electrostatic potential is positive almost everywhere. Negative regions
can be clearly identified as nucleophilic regions that are expected to interact
with an electrophile. Electrophilic regions are more difficult to find out because
there is no well localized region with positive values. The solution goes through
mapping the electrostatic potential on a representative low density isosurface
such as the van der Waals surface.

If we map the esp on a low density isosurface and search for maxima on it
we find areas that act as lewis acids and can interact with charge donors . It

2 ebcp: (3,−1) electrostatic bond critical point.
3 With cylindrical symmetry.
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BCP

EBCP

A B

Figure 5: Topology of the electron density and electrostatic potential superimposed. Re-
gions with partial negative (red), neutral (green), and positive (blue) charge
conform the basins. Electron density basins of A (green+red) and B (blue)
contain their respective atomic charges. esp basins of A (green) and B (red +
blue) are neutral. ebcp appears in the esp surface. bcp appears in the density
basins surface.

has been found that in atoms of groups 14 to 17 areas of low density appear on
the opposite side of established sigma bonds (see figure 6), called σ-holes, that
let the atoms act as acids.

A σ-hole is a low electron density, and therefore relatively positively charged,
area adjacent to a σ-bonded element from groups 14 to 17. These areas appear
on the opposite side of such atoms to the bond, along the same axis. The
positive charges let the atoms act as Lewis acids, and bond non-covalently with
electron donors. In this way σ-holes are located where charge densities provide
viable bonding sites between atoms.

R

R

D

D

S σ-holesρ=0.01 a.u. 

Figure 6: Sigma holes are maxima of the esp on a low density isosurface.

Partition of the electrostatic field

Surfaces without any gradient line crossing them define the esp basins (Λ) [187]

∇φ(r) ·n(r) = −E(r) ·n(r) = 0 ∀r ∈ S(r). (3–73)

In the case of anions there is a region of space containing the negative charge
of the molecule that does not belong to any atom. Otherwise closed basins have
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ΛA ΩA, δ− ΩA, δ+ ΛA

Figure 7: Basins of the electrostatic potential and the electron density. Anion (left),
cation (right).

no net charge inside [113] because there is no electric field line crossing their
boundary. Besides the net charge inside is 0 applying the Gauss theorem

QA,φ =

∫
ΛA

ρt(r)dr =
∫
Sφ

E ·ndS := 0. (3–74)

esp basins have no monopole interactions with the rest of the molecule so the
calculation of interactions between basins should converge very fast. It is not
clear if other multipoles should vanish but a sufficient condition to make all of
them go to zero is exemplified by spherical symmetric distribution of charge in
the basin (Newtons’theorem).

In anions the electron density basins (Λ) enclose esp basins (Ω). The excess
of charge falls outside esp basins and inside electron density basins, figure 7.
The opposite happens for cations. If we compare electron density and esp
basins we can find out where are partial charges located. What is still unknown
is if those partial charges can be related to lone pairs or bonds.

At the ebcp the nuclear charge is fully shielded by the electronic distribution.
This suggests that the value of the electrostatic potential at the ebcp is related to
the strength of the ionic interaction between both atoms. 4 The position of the
ebcp can also be related to the electronegativity of the interacting pair of atoms.
If (3,−1) points are present in both fields, the relative distance from an atom to
the saddle point dA−BCP > dA−EBCP implies that A is more electronegative
than B, χA > χB.

3.4 partition of the binding energy
We have seen that within QTAIM the atomic energy partitioning is done

transforming the Hamiltonian operator into an effective one electron operator.
Then, the potential energy is obtained from the virial of the forces. Therefore,
the computation of 〈E〉Ω follows from the virial theorem. But out of equi-
librium it does not hold so the present challenge is to cast the exact energy
expression in a form that allows a resolution into physically interpretable ex-
pressions and to find out the principles that drive their interactions. Ultimately
that information belongs to the wavefunction.

4 The potential at the ebcp is the Coulombic energy generated by the excess of charge (red region in
figure 5) of A on the other atom (B in figure 5)
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Attempts to get exact energetic partitions based on the wavefunction are fu-
tile because a separation of the wavefunction as a product of subsystem prod-
ucts Ψ = ΨΩ1ΨΩ2 is not possible. Nor electrons neither basis functions can
be disentangled [127]. Although this approach is worth in its own, in fact it
is a very good approximation in some cases, it is not what we are interested
in. Since the energy is a magnitude that is carried by the second order den-
sity matrix we can think that a partition of this object would be enough and
preferable.

3.4.1 Interacting Quantum Atoms (IQA) energy decomposition

In the following we focus our interest in QTAIM partitions defined by zero-
flux separatrices to divide space in basins R3 = ∪MA=1ΩA. Following [106], the
physical part of the functional I[Ψ,Ω] presented in equation (3–58) is

XA =

∫
ΩA

dr1

∫ [
1

2

N∑
i

|∇iΨ|2 + V |Ψ|2
]

dr ′1. (3–75)

Recognizing the presence of only one- and two-body operators we can integrate
out N− 2 electrons and express it with the first order density matrix and the
pair density (since the r−112 operator is diagonal)

XA =

∫
ΩA

[
1

2
|∇γ1(r; r ′)|2 +

M∑
B

ZB
rB
ρ(r)

]
dr+

1

2

∫
ΩA

dr1

∫
ρ2(r1, r2)
r12

dr2.

(3–76)

Besides, we may ask: how do we get a partition of the first order density
matrix and pair density from a partition of the density ρ(r) =

∑
A ρ

A(r) =∑
AwA(r)ρ(r) for any partition of unity∑

A

wA(r) = 1 ∀r ∈ R3? (3–77)

Li and Parr showed [99] that a scheme addressing this question has to preserve
indistinguishability of electrons and the physical meaning of the kinetic energy

TγA1 (r; r
′)

γA1 (r; r
′)

∣∣∣
r ′→r

=
TγB1 (r; r

′)
γB1 (r; r

′)

∣∣∣
r ′→r

=
Tγ1(r; r ′)
γ1(r; r ′)

∣∣∣
r ′→r

. (3–78)

as well as all other energy contributions, so that the partition is

γ1(r; r ′) =
∑
A

wA(r
′)γ1(r; r ′) =

∑
A

γA1 (r; r
′)

ρ2(r1, r2) =
∑
A,B

wA(r1)wB(r2)ρ2(r1, r2) =
∑
A,B

ρAB2 (r1, r2), (3–79)
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with the characteristic functions of each basin wA(r).
Moreover, XA has a series of energetic terms that parallel those of the elec-

tronic energy for the entire molecule

XA = TA + VAAen + VAAee +
∑
B 6=A

(
VABen +

1

2
VABee

)
, (3–80)

where

TA =
1

2

∫
ΩA

|∇γ1(r; r ′)|2 dr

VABen = −ZB

∫
ΩA

ρ(r)

rB
dr

VAAee =
1

2

∫
ΩA

dr1

∫
ΩA

ρ2(r1, r2)
r12

dr2

VABee =

∫
ΩA

dr1

∫
ΩB

ρ2(r1, r2)
r12

dr2. (3–81)

A clarifying reorganization, inspired by McWeeny’s ideas, is to agglomerate
mono-centric and self-interaction terms as atomic net energies

EAnet = T
A + VAAen + VAAee (3–82)

and, as well, two-body interatomic interactions

EABint = VABnn + VABen + VBAen + VABee . (3–83)

Therefore, the total molecular energy is

Emol =
∑
A

XA =
∑
A


EAnet +

∑
B 6=A

EABint


 . (3–84)

The large nucleus-nucleus, electron-nucleus and electron-electron quantities
nearly cancel each other when they are collected to define EABint . The tiny values
yielded account for the subtle changes during chemical interactions. On the
other hand, it does not happen the same for the net energy. Taking advantage
of the fact that at dissociation the net energy reaches the energy of an isolated
atom, the large intra-atomic components can be reduced subtracting the energy
of the vacuum or any other reference state, to get a deformation energy

EAdef = E
A
net − E

A
ref. (3–85)

If the reference is the vacuum energy then the binding energy can be calculated
as

Ebind =
∑
A

EAdef +
1

2

∑
A 6=B

EABint . (3–86)
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Once the energy expression has been condensed to the maximum (3–86) one
can envisage other more verbose ways to recast Eint, dividing Vee in Hartree
potential energy, exchange, and correlation, as in DFT

Vee = VH + VX + VC, (3–87)

so that classic interaction energies

Vclassic = Vnn + Vne + Ven + VH (3–88)

can be separated from exchange and correlation Vxc, such that

Eint = Vclassic + Vxc. (3–89)

With this second rearrangement we achieve a cancellation of terms in Vclassic.
Including electrons and the nucleus altogether a large part of the interaction
cancels, whereas the energy could be said to be due to small changes of the
valence electronic distribution. So atoms without much charge transfer would
have small classical interactions. Then the interaction is almost dominated by
Vxc, which is a signature of covalent interactions.

To be more precise about the sources of deformation energy we can mention
charge reorganization and charge transfer

EAdef = E
A
def(CT) + E

A
def(CR), (3–90)

where the former agglutinates the changes that affect to the electronic config-
uration of the neutral atom. The more familiar hybridization or promotion
energies are part of that term.

In essence, the virtue of this energetic decomposition is the ability to extract
very detailed information of the interactions that can later be condensed in
many ways to enlighten our perception of chemical interactions. Domains, as
well, can be grouped together to describe the nature of, for example, functional
groups.





Part II

How to appraise bonding
energetics

91





4 TO W A R D S A U N I Q U E M E A S U R E
O F B O N D S T R E N GT H T H R O U G H
I N T R I N S I C B O N D E N E R G I E S

contents
4.1 The quest for reliable bond energy descriptors . . . . . . . . . . . . . . . 94

4.1.1 Controversial views . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2 Intrinsic bond energies in the realm of real space theories . . . . . . . . . 97
4.2.1 Relaxation and interaction energies . . . . . . . . . . . . . . . . . 98

4.2.2 Tracking local spin states . . . . . . . . . . . . . . . . . . . . . . . 98

4.3 Computational details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.4.1 Methane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.4.2 Dinitrogen molecule N2 . . . . . . . . . . . . . . . . . . . . . . . . 108

4.4.3 Ethene/Ethylene . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.4.4 Ethyne/Acetylene . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5S ∼ 10%

3P ∼ 65%
1D ⊗ 1S ∼ 25%

3B1 ∼ 60%

1A1 ∼ 40%

2D ⊗ 2S ∼ 80%
4S ∼ 20%

2D ⊗ 2S ∼ 80%
4S ∼ 20%

Spin states weight for carbon in methane; methylene in ethene; nitrogen in the
molecule N2; and carbine in acetylene (marked in blue). All species are considered at

equilibrium.

93



94 towards a unique measure of bond strength through intrinsic bond energies

Chemical substances are conglomerates that result from the constellation of
atoms, some of them tightly linked together. This bonding of atoms becomes an
essential part for the study of chemical compounds as it constitutes the build-
ing glue needed to stabilize more complex molecules. Moreover, the relation of
structure with reactivity rests on the properties of chemical bonds. Often, syn-
thetic routes achieve their goal of reaching a desired product by breaking the
weakest bonds in the molecule, requiring us to know their relative strengths,
to substitute some fragments by others. At this point we envisage the need of
methods to calculate bond strength.

Despite being a very intuitive concept there is no physical observable as-
sociated to bonding yet. This also implies that there is no related quantum
mechanical operator. But that does not take away from the fact that there is
a reasonable chance that developing a measure of bond strength can make a
significant contribution to the understanding of chemical reactivity. However,
from the above description it appears that the energy is an essential aspect of
bonding. While there are also other properties like bond length, density at the
associated critical point, or stretching force constant, that have intimate con-
nection with the bond strength, the energy seems the natural choice. For this
reason we will focus on energetic measures of bond.

4.1 the quest for reliable bond energy de-
scriptors

Maybe the easiest and most direct approach to do measurements about the
energetic stability contributed by a bond are thermodynamical experiments.
There are two variables frequently used and tightly related to bonding. Both
are taken from the process of bond making/breaking. The enthalpy change in
the process

A−B(g)→ A(g) +B(g) (4–1)

of fragmenting 1 mol of a molecule A− B under standard conditions in two
fragments A and B that were originally linked by a single bond shall be defined
as the bond dissociation enthalpy (BDH). BDH quantities in turn reduce to
bond dissociation energies (BDE) in the limit that the temperature is 0 K and
neither reactives nor products have zero point vibration. As well, they can
be obtained from numerical computation of the ground state energies of the
molecules involved

BDE(A−B) = Egs[A] + Egs[B] − Egs[AB]. (4–2)

Then, BDE and BDH can be related if all vibrational plus rotational plus trans-
lational effects are known. For the rest of the present chapter we will be more
interested on BDE.

Even if BDE are reported elsewhere as a proper descriptor of bond strength
only for diatomic molecules the strength of a bond can be effectively measured
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using bond dissociation energies (BDE) from calculation or bond dissociation
enthalpies (BDH) from experiment. However, taking methane as an example,
the successive breaking of bonds

CH4(g)→ CH3(g) +H(g) ∆Hr(1 atm, 298 K) = 104 kcal/mol (4–3)

CH3(g)→ CH2(g) +H(g) ∆Hr(1 atm, 298 K) = 106 kcal/mol (4–4)

CH2(g)→ CH1(g) +H(g) ∆Hr(1 atm, 298 K) = 106 kcal/mol (4–5)

CH1(g)→ C(g) +H(g) ∆Hr(1 atm, 298 K) = 81 kcal/mol (4–6)

reveals bond dissociation enthalpies with uneven values. reveals that a different
amount of energy is needed to break each of the four C-H bonds. Every time
you break a hydrogen atom off the carbon, the environment of those left be-
hind is altered. That variability of BDHs undermines their use as bond energy
indicators as all C-H bonds in methane are equal by symmetry. To get proper
bond energies that obey the equivalence of all bonds imposed by symmetry,
the different BDEs are averaged to define a new thermodynamical bond energy
(BE). That is the same as one fourth of the reaction enthalpy of the atomization
process

CH4(g)→ C(g) + 4H(g) ∆Hr(1 atm, 298 K) = AE. (4–7)

Although this procedure is immediate, there exist many molecules for which
the procedure cannot be replicated since they can have several non equivalent
bonds or not all of them have the same connectivity with the central atom. The
answer commonly used assumes that bond energies can be transferred between
different molecules provided that they connect the same pair of atoms. Only
then we can calculate the bond energies of all the bonds present in the molecule.
It is not necessary to mention that this approximation, that only considers the
topology of the bond, is a very rough one.

In effect, by reducing the molecule to a molecular graph a lot of information
is lost. A possible refinement would include the equilibrium bond length as
well as an indicator. This way information about the geometry also takes part
in deciphering bond energies. However, it does not ensure a satisfactory result
because Badger’s rule, which states that a shorter bond is always stronger, is
not always obeyed. The definitive way to solve the issue is to include also the
overlap. As the reader might guess from the commentaries poured in previous
chapters the overlap has a strong dependency in the method used to calculate
the wavefunction. If anything we need to have clear is that to define a proper
bond energy we have to combine geometrical with electronic structure informa-
tion altogether.

The bond energy problem does not end there. Less obvious than the issue
of transferability is the appropriateness of atomization energies. Recap that
two basic assumptions were necessary to get bond energies: (i) the sum of all
bond energies will be the same as the atomization energy given by a stepwise
breaking of all bonds

AE =
∑
i

BDEi =
∑
i

BEi, (4–8)
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(ii) equal bonds have equal BEs, so they can be transferred. AE (BDE) are
dynamical quantities that depend on the reactive as well as the products of
the atomization (dissociation), they are a delta of deltas. Hence it cannot be
said that AE are indicators of solely the resistance that the molecule opposes
to break apart in atoms, even for a diatomic. But the stability of the result-
ing atoms also counts. This situation can be exemplified by several dramatic
examples. 2NaH→ H2 + Na2, 2HgO→ Hg2 + O2, and 2HgCl→ Hg2 + Cl2 are
endothermic reactions and they only involve the breaking of one bond. Would
this mean that the bond is destabilizing? The same could be said of many high-
energy molecules. Or the near to 90 kcal/mol energetic difference between
the hydrogenation of dinitrogen and acethylene suggest that the triple bond
of dinitrogen is so much stronger than that of acethylene [25]? It seems more
plausible to associate part of the energetics to the stabilization of the fragments.
AE are reflecting the instability of a electronic configuration with respect to the
dissociated states but not of the bond.

In the end we are interested in a bond energy descriptor that depends only in
the stabilization generated by the specific characteristics of the bond and gets
rid of the superfluous stabilization of the molecule relative to the fragments.
For this purpose valence states, i.e. states of the fragments that retain the
electronic structure exhibited in the molecule, are key. We could devise an in
silico scheme to separate energetic contributions inside the atomization energy
into intrinsic bond energies (IBE) [100, 101, 173] and relaxation effects [39] (ER)

IAE = AE+ ER; IAE =
∑
i

IBEi (4–9)

splitting the dissociation process in two steps: first scaling bond lengths with a
frozen electronic configuration; then turning to their most stable isolated elec-
tronic states. This last component (ER) would encompass promotion, hybridiza-
tion, geometric freezing and charge reorganization terms. The adequacy of this
argument has been extensively rationalized by Cremer et al. [39].

New types of bonding, such as tetrylones [55, 56, 185] or quadruple bonding
in representative elements might now be accepted when those states rather than
the fundamental ones represent the backing for bonding measurements.

4.1.1 Controversial views

However, when the atomic reference states are not clearly established bond
strengths can be misleading [39]. This is the case of carbon atoms when they
bond as C2. Although it is an apparently easy to understand molecule, it has
uncovered a lengthy discussion full of elaborate arguments to sustain or tear
down the possibility of a quadruple bonding [41, 54, 70, 167, 168]. The ori-
gin of the dispute is not the multiplicity. All seem to agree in that there are
four components of bonding with different spatial distributions, or so to speak
electrons adopt four different strategies to reach maximum stability. Instead,
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the confrontation is in the strength of the bond, on whether the bond of C2 is
stronger than in acethylene or not.

There are two arguments encountered in those articles that should not be
used as the only evidence to support the choice of the reference state. One is
that the reference of a n-bonded molecule is a state with n unpaired electrons.
The idea behind it is that for creating a covalent bond two orbitals occupied by
different spin electrons and localized in the two fragments would couple. The
counterexample could be, by way of orbital reasoning, a dative bond. In that
situation there would be no need to unpair electrons. Other argument is that
the valence state of a fragment can be reached following the dissociation path
that has no avoided crossings. The changes that are reflected on the potential
energy curve or in the molecular state affect to the whole molecule and should
not be taken as a justification for the election of valence state. Besides, only
pure spin states could be considered. It is highly unlikely that the state of an
atom-in-the-molecule will correspond exactly to a dissociated state.

Shaik et al. made an enthusiastic effort to understand the reference state with
quasi-classical states or coefficients of either valence structure expansions or de-
terminants made of molecular orbitals showing that the valence structures with
more weight at equilibrium are related at dissociation to a pair of quintuplet
states [169]. Whether those structures are capable of capturing the atomic states
in-the-molecule and to show them clearly is a matter that should be addressed.
The history of the C2 bonding debacle and the rising number of controversies
in computational chemistry [71] should not prevent us from trying to establish
a firm ground for those concepts that are shaky.

Taking the states of the fragments out of the molecule is difficult in general.
In fact, it requires from us to give a precise meaning to an atom in a molecule,
be able to identify the contribution of each atomic state and simultaneously
compute their energies (irrespective of the type of wavefunction). We aim to
identify systematically the reference, in a way that the procedure to select va-
lence state is always the same and does not depend on unjustified heuristic
chemical insight.

4.2 intrinsic bond energies in the realm of
real space theories

Modern real space theories of bonding constitute an ideal framework to de-
fine atoms-in-the-molecule and examine their properties. For instance, QTAIM
gives good definition of atoms that is invariant to changes of the method used
to calculate the wavefunction whilst IQA separates energetic contributions in
a convenient manner. Energetic terms devised from IQA (for a brief overview
see section 3.4.1) partitioning comply with the separation of relaxation from
interaction terms needed to compute intrinsic bond energies. Furthermore, the
QTAIM restriction to equilibrium geometries imposed by the virial theorem is
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no longer an issue. Electronic distributions are the perfect complement to IQA
as the foundation for electronic spin states quantification. As if this were not
enough, we will put an eye on the spatial distribution of bonds with orbitals
adapted to include correlation or natural adaptive orbitals (NAdOs). At the
end we hope to find a solid basis for further discussions.

4.2.1 Relaxation and interaction energies
iqa: intrinsic bond

energies

qcs: in-situ bond
energies(no

polarization)

In the context of IQA the atomization energy is conveniently organized as
the sum over all A atoms of their intra-atomic components EAnet and their inter-
actions EA,B

int with the rest of atoms B.

AE =
∑
A

(
EAnet +

∑
B>A

EA,B
int

)
. (4–10)

Intrinsic bond energies find a very natural place in the inter-basin interaction
energy whereas to have an equivalent to the relaxation energy we have to refer
to the ground state energies of the fragments

EAdef = E
A
net − E

A
gs. (4–11)

EAdef accounts for the charge reorganization that happens while the fragment is
embedded in the molecule in the same way that Cremer describes for the relax-
ation energy. From now on relaxation energies will correspond to deformation
energies (EAdef) and intrinsic bond energies to interaction energies (EA,B

int ). You
see that with very small changes we already have a way to measure intrinsic
bond energies.

The most complicated part of our analysis regards the identification of atomic
spin states and their linkage to the changes that EAdef exhibit as will be seen in
the next subsection.

4.2.2 Tracking local spin states

Although we are not in a position to assess spin state energetics with IQA
alone, a combined effort with electron population distributions can clarify some
questions. Before addressing the relation of spin states and EDFs we will make
some general considerations: (i) molecules will be bi-partitioned Ω∪Ωc = R3,
resonance structures denoted by (nΩ,nΩc), (ii) total wavefunctions will be
restricted to be a simultaneous eigenbasis of the Hamiltonian and total spin
operators

Ŝ2Ψ = S(S+ 1)Ψ, ŜzΨ =
1

2

N∑
i

(nαi −nβi )Ψ =
1

2
(Nα −Nβ)Ψ =MSΨ.

(4–12)
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−2 −1 0 +1 +2

MS

5S

3P

1D ⊗ 1S

Figure 8: Electron distribution functions count electrons in space either as alpha or
beta electrons. Resonance structures, here represented as columns, are labeled
accordingly by the MS eigenvalue. The structures with maximum multiplicity
are the key to disentangle the states. The MS = ±2 states are definitively part
of a quintuplet (or higher spin) state, thus multiplying that probability by the
degeneracy of the state (five in this case) we get the weight of the quintuplet.
To maintain the normalization we have to subtract those from the pile with two
excess electrons (twice) and no excess electrons (once), which is equivalent to
removing the upper row. Applying this technique recursively to the remaining
structures we end up with singlets, where no further separation can be done
unless we have additional information from other sources. A dot represents
an unpaired electron.
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with average net spin quantum number zero (S = 0) and spin componentMS ∈
{−S, · · · ,S} also zero — a singlet state. That is, the number of alpha and beta
electrons in the whole system is equal (Nα = Nβ). Otherwise, this might not
be true in each fragment.

Counting spin labeled electrons in both domains is not very different from
plainly counting electrons. The formalism, that was first introduced in sec-
tion 3.2.1, declares a probability space made of all partitions of the total number
electrons inΩ and its complementary space, and alpha or beta labeling, the out-
comes being Spin Resolved Resonance Structures [112] S ≡ {nαΩ,nβΩ,nαΩc ,nβΩc }.
For instance, α/β-population probabilities computed in the basin are already a
measure of local spin [159], although not a complete one, since we have no well
defined spin-squared operators within domains, S2ΩΨ = SΩ(SΩ + 1)Ψ.

During the last decade there has been a flurry of interest in local spin by
several authors for its applicability to a better understanding of the interaction
between open-shell subsystems. Several schemes have been proposed with a
common origin in the work of Clark and Davidson [35]. There, they used a
Hilbert-space projection of the spin operators in the basis of atomic orbitals as
a sum of atomic and diatomic components. However, that method, and others
derived upon it, have not uniquely defined projectors because they depend on
the choice of the basis set. Another difficulty comes with correlated functions.
Approaches inspired in population analyses take as fundamental variable the
spin density matrix [1, 120, 186]. And yet the spin quantum numbers predicted
with them are not always in accordance with some well known necessary con-
ditions [81, 121]: (i) closed-shell RHF wavefunctions have local singlet states (ii)
in the dissociation limit the values are the same as for the free atoms. (iii) in the
limit of no correlation reduces to the determinantal values. Later works have
been correcting those unphysical results. The first application of the local spin
concept to real space is that of Alcoba et al. [2].

Returning to our alternative approach to get local spin, we take for granted
that we know the probability that each spin resolved structure has. To pro-
ceed with the determination of local spin we take the maximum multiplicity
|MS| = S structures first, those that have 2|MS| unpaired electrons. For a
schematic representation see figure 8. The weight of the highest spin state
is straightforward. It is the probability of one of the structures MS = S or
MS = −S multiplied by the multiplicity of the state (2S+ 1). Each atomic multi-
plet has MS components that span from −S to S. Besides, states of lower multi-
plicity within that spin-squared state have to be subtracted from the subsequent
spin-squared state. Applying this recursive algorithm we reach an endpoint in
the lowest spin-squared state. Remark that only when there is one spin state
per spin quantum number S we can fully decompose spin states. In that situa-
tion we have to infer the spin states out of mixed probabilities by other means.
The components of lower multiplets mix with those of greater spin. The prob-
abilities are reported after the degeneracy of each atomic spin state has been
accounted, from −S to S. Our approach is correct in the dissociation limit and
reduces to the single-determinant case when there is no correlation. In contrast
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with the schemes presented up to now, in our treatment correlation is included
without fuss. We have a set of limitations that are different, we believe that can
contribute to a development of the local spin concept. Our insight comes from
having information about the probability that each electron condensation has
and not just their average. Summing up, the quest for a (coarse-grained) lo-
cal, unique real space representation, of the S2 operator, S2ΩΨ = SΩ(SΩ + 1)Ψ,
to help us polish up the analysis, and therefore we would know the S spin
quantum number of the domains is still open. As will be seen below these
structures allow us to study the genuine spin states of each fragment giving
us more insight about the electronic arrangements at stages previous to bond
formation.

In principle there are four variables that drive the behaviour of the electronic
distribution. Since the two domains cover all space the population is fixed to
be N. Therefore the last variable is completely determined. The singlet state
global condition allows us to simplify the expression for the spin resonance
probabilities of two centers as

p(nαΩ,nβΩ,nαΩc ,nβΩc) = p(n
α
Ω,nβΩ,N/2−nαΩ,N/2−nβΩ) = p(nαΩ,nβΩ) (4–13)

to focus solely on one fragment knowing that the conditional probability of
having a given excess (or defect) of alpha electrons in the domain Ωc is one
when the number of electrons with alpha spin is equal to those with beta spin
in domain Ω and otherwise is zero. The same applies for beta electrons.

On top of the assumptions made we group together probabilities with fixed
Ω population nαΩ + nβΩ = nΩ. Each group corresponds to a Pauling resonant
structure {nΩ,nΩc } [147]. In particular, the structure with the same number of
electrons inside each basin as their isolated counterparts represents a system
without charge transfer between two domains Ω and Ωc, that means a purely
covalent system. Pauling structure probabilities are thus branched in several
spin resolved resonance probabilities

p(nΩ = n) =

n∑
x=0

p
(
nαΩ = x,nβΩ = n− x

)

=

n∑
x=0

p (nαΩ = x|nΩ = n)× p(nΩ = n) (4–14)

conditioned to have the above mentioned restriction or partitioned with weights
given by the conditional probability of having n electrons in Ω.

Previous works already pointed [110], in accordance with chemical insight,
that the probabilities of Pauling resonant structures where sharing of core elec-
trons is involved have very low values. With the appropriate choice of the
valence electrons we can adjust very accurately the calculated probabilities. We
therefore use a bonding model that takes apart core electrons, so they do not
contribute neither to covalent bonding nor to charge transfer. Instead of us-
ing a model of centers and electrons, in the frame of spin structures it is due
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to propose a model of electrons distributed in spin-orbitals. For example, a
model of n electrons in nαo α spin-orbitals and nβo β spin-orbitals is denoted by
(nαo ,nβo ,ne). Henceforth, a way to interpret (nαΩ,nβΩ,nαΩc ,nβΩc) structures is as
the result of arranging nαΩ electrons in all α-spinorbitals (ψαΩ) and nβΩ electrons
in β-spinorbitals (ψβΩ) of basin Ω, and nαΩc electrons in α-spinorbitals (ψαΩc)
and nβΩc electrons in β-spinorbitals (ψβΩc) of basin Ωc.

the model of quasi-independent spin particles. It is reasonable to
think what would happen if electrons were totally independent. Thereupon
the relative weight of spin resolved structures with respect to the fixed Pauling
structure {nΩ = n,ncΩ = N−n} is

p (nαΩ = x|nΩ = n) =
p(nαΩ = x,nβΩ = n− x)

p(nΩ = n)

≈ p(n
α
Ω = x)× p(nβΩ = n− x)

p(nΩ = n)

≈

(
nαo
x

)(
n
β
o

n− x

)

(
nαo +nβo

n

) = h(x;n,nαo ,nβo ), (4–15)

where 0 6 x 6 n. The first approximation considers α− β population inde-
pendence. The second approximation goes further stating that all electrons are
independent. Since the tree variables nΩ, nαΩ, and nβΩ follow binomial distribu-
tions that share the same parameter, the result is a hypergeometric probability
mass function h characterized by three parameters: (i) the population of the
basin n, (ii) the number of spin-up orbitals (nαo ) and (iii) the same for spin-
down orbitals (nβo ). With them we can guess the probability values.

Previously it has been shown that spin-less probabilities at saturated delocal-
ization stages are close to a binomial distribution [110] and some kind of aufbau
principle appears for spin resolved probabilities [112] when we measure the
relative proportion of a given spin structure over all structures with the same
spatial distribution, i.e. same number of electrons in each basin. The principle
found there is now quantitatively described by a hypergeometric distribution.
To demonstrate this we will take an example of a basin with four spin-orbitals
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and two electrons (nαo = 2,nβo = 2, 2e). Applying the simplification mentioned
in equation (4–15) the probabilities

p(nα = 0|nΩ = 2) = p(nα = 2|nΩ = 2) =

(
2

0

)(
2

2

)

(
4

2

) =
1

6
, (4–16)

p(nα = 1|nΩ = 2) =

(
2

1

)(
2

1

)

(
4

2

) =
2

3
. (4–17)

form a vector p2 = (p(2, 0),p(1, 1),p(0, 2)) = (1/6, 2/3, 1/6), which clearly favors
intra-atomic pairing over a binomial distribution p2 = (1/4, 1/2, 1/4).

The same effect applies to all Pauling resonant structures. On the basis that
the total probability distribution is a convex combination of Pauling structures
we can claim that the net effect is that electrons liken to be coupled inside do-
mains. The total distribution set as a convex combination of Pauling structures
also favors pairing. Thus pairing is showed to be favorable in the independent
model. We conclude that as soon as there are two electrons in a basin a spin
quenching effect is present.

We will see that valence CASSCF calculations determine probability values
at equilibrium in close agreement with those predicted from the model. The
correlation that that is included with the multiconfiguration is mainly static,
whereas at equilibrium the correlation is mostly dynamic.

4.3 computational details
The processes that we will examine are the atomization of methane

CH4(
1Σg)→ C(3P) + 4H(1S), (4–18)

scaling all C-H bond lengths with the same factor whereas bond and dihedral
angles are maintained, the dissociation of dinitrogen

N2(
1Σg)→ 2N(4P), (4–19)

and the cleavage of C-C bonds of ethene and acetylene

C2H4(
1Σg)→ 2CH2(

3B1), (4–20)

C2H2(
1Σg)→ 2CH(2Π). (4–21)

In the last two reactions hydrogen positions were optimized at each point.
Acetylene is broken in two carbyne fragments following the minimum energy
path, oriented in a trans configuration [172] to reduce the repulsion of head-to-
head filled orbitals, instead of a collinear rapprochement.



104 towards a unique measure of bond strength through intrinsic bond energies

Size-consistent calculations with full-valence CASSCF functions were per-
formed with GamessUS [166]. A Def2-TZVPP one-electron basis is used for
all systems except for the dinitrogen dissociation, where a larger basis that
includes d functions (Def2-TZVPPD) was needed to achieve size-consistency.

All EDFs have been obtained with our EDF code [50] reading atomic (QTAIM)
overlap integrals generated with Promolden [145]. For the integrations in QTAIM
domains the radii of the beta spheres chosen is roughly half the distance from
the respective nucleus to the nearest bond critical point in order to get accurate
results both for the charges and the energy. Almost all systems presented diffi-
culties with geometries in the repulsive region either because a group was ion-
ized (carbon in methane) or because a non-nuclear maxima appeared. Natural
Adaptive Orbitals (NAdOs) were obtained with another internal code: denmat.

For methane we want to test if the 5S state of carbon is formed to the extent
that is often claimed. However, it is known from long ago that the valence
state is lower in energy, as a superposition that includes contributions of intra-
configurational states (1D, 1S, 3P) in an unknown proportion [100]. Neverthe-
less, it could never be proven because no theoretical information was available
due to the nonexistence of a proper framework to treat it. As a consequence
the explanation was later assumed to be true. Here we provide the weight of
each electronic state of neutral CH4 along the atomization.

Triply bonded nitrogens are interpreted as the result of coupling two 4P

states. By casual coincidence that is the ground state of the isolated nitrogen
atom so from that argument nitrogen atoms do not need to be excited to a
higher excited state to create three bonds. So is suggested by the absence of
irregularities in the energy dissociation curve. Another question that we will
try to answer is if the formation of σ- and π-type bonds occurs at separate
stages.

The behaviour encountered inN2 and CH4 should be somehow mimicked by
methyne (CH2) and carbyne (CH) radicals during their dimerization. Methynes,
as nitrogen atoms, do not need to be excited to reach their state-in-the-molecule.
That electronic state is presumed to be a triplet state since two bonds need to be
created. Like the nitrogen atom, the state of carbynes in the acetylene molecule
is thought of as a quartet [54] but the ground state of carbyne is a doublet
(2Π). Hence the need of a previous excitation in the course of the dimerization.
Equipped with our tools we will prove how accurate is this picture.

4.4 results and discussion

4.4.1 Methane

There are few more enduring concepts in the mind of a chemist than the
hybridization of carbon to enable covalent bonding to other four atoms. The
bonding description of methane from its constituents assumes that one electron
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of the carbon 2s orbital promotes to a 2p orbital and then all valence orbitals
(2s+3×2p) mix through a unitary transformation to create four single occupied
hybrid orbitals of type sp3 with the adequate geometrical orientations to form
bonds in the directions of the vertices of a tetrahedron. This reasoning is more
based on heuristics than on a priori theoretical evidence. In this regard we try
to find an explanation with the aid of electron distribution functions.

We studied the concerted atomization of the most stable energetic state, a
singlet 1A1 state.

If any configurational change happens it should be reflected in the IQA defor-
mation energies. This term incorporates charge reorganization and the config-
urational changes we are interested in. The deformation energy of the carbon
atom exhibits self reorganization during the process of bond formation. A se-
lected region close to the equilibrium (figure 9) suggests an internal change of
carbon atoms. The energetic differences are very small to be associated with
a 3P → 5S transition, but it is evident that there is an energetic barrier origi-
nated by a non-optimal configuration of the fragments for creating bonds. After
reorganizing the system is stabilized. Two possible reasons may drive this be-
havior: charge reorganization or configurational changes. We seek to achieve
a further decomposition with EDFs. Both the carbon and hydrogens present a
local minimum close to the binding energy minimum.
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Figure 9: Carbon deformation energies with respect to the 3P state, similarly the defor-
mation energy of hydrogen takes as reference the 2S fundamental state. The
vertical line indicates the equilibrium geometry.

The approach of atoms has the effect of increasing delocalization between the
two groups, carbon on one side and hydrogens on the other. If we consider the
spinless EDF probabilities of finding a given number of electrons in the C and
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Figure 10: Spinless resonance structures of methane. Carbon constitutes the first group
and equivalent hydrogens the other group, (nC,n4H) meaning the number of
electrons of carbon and of the hydrogens respectively. Vertical lines indicate
equilibrium geometry, minimum of the hydrogens deformation energy, min-
imum of the carbon deformation energy, hillock of the carbon deformation
energy, and the conic intersection geometry respectively.



4.4 results and discussion 107

4H subsystems, The “aufbau” structure (6,4) looses weight (figure 10) letting
others, (7,3)[C−H+

4 ] and (5,5)[C+H−
4 ], increase. The purely covalent nature is

broken at shorter distances, with an unbalanced weight of the newly populated
structures (charge transfer) due to a difference in electronegativity of the atoms
involved. Similarly, other resonant structures with even more delocalization are
populated. Coincidentally, at the equilibrium geometry the polarization almost
vanishes, in turn hydrogens become more attractive for electron delocalization.
This condition allows us to avoid charge reorganization effects in the choice of
the prepared state.

The (6,4) structure identifies the distribution of carbon that is isoelectronic
with the isolated atom. If we would like now to describe it in an atomic-like
fashion, it would be a mixture of the many atomic states. Restricting ourselves
to intra-configuration excitations, a combination of the well known 3P,1D and
1S carbon multiplets. In the dissociation limit the fundamental state of carbon
is a 3P with three degenerated MS components. One component with an equal
number of alpha and beta electrons MS = 0 and two with one extra alpha
MS = 1 or beta MS = −1 electron, respectively. The corresponding spin reso-
nant structures are (3,3,2,2)[MS = 0], (4,2,1,3)[MS = 1] and (2,4,3,1)[MS = 1],
where the first two numbers describe the number of alpha and beta electrons
in the carbon domain, and the second two the number of alpha and beta car-
bons in the remaining four hydrogen atoms. The weight of each component is
obviously 1/3. Our results are in tune with this fact (figure 11). As the distance
is shortened the degeneracies are lost leading to the more important dynamic
correlation. Even more, a higher multiplicity state is created at intermediate
distances between bond dissociation and equilibrium that satisfies our expec-
tations. The proposed bond formation mechanism relied on the formation of
the 5S state that is shown here as a (5,1,0,4) or (1,5,4,0) resonant structure. A
non-intra-configurational state has been populated indicating that the afore-
mentioned promotion has taken place. The existence of the 5S state is localized
in a specific range of geometries previous to bond formation.

It would be misleading to judge the weight of spin states taking spin res-
onance structures as reference because they contain various spin states and
multiplicity has to be accounted. After this nuances are corrected we arrive at
a much higher contribution by quintuplet states (figure 12). There is no doubt
that the emergence of the quintuplet represents an essential step in the forma-
tion of the bonds, notwithstanding, it is not as predominant as it is usually
assumed.

This hump has also been observed in electron correlation profiles. If two
fragments do not interact as we bring them closer they will excite to their cor-
responding higher energy states. In the opposite situation, if they interact, the
probability of the excited fragment states will increase smoothly (sigmoid). In
the case of the methane formation, carbon opposes to interact a little bit and
then all goes as expected.

The triplet transits from being absolutely dominant to the corresponding con-
tribution of independent bonds without getting any fright. Singlets are mixed
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Figure 11: Spin resonance structures of methane that correspond to a neutral carbon,
with notation (nαC,nβC,nα4H,nβ4H).

together in an unknown proportion. Singlets and quintuplet have the same
proportion near the carbon deformation energy hillock. Whereas the quintu-
plet has its maximum peak there, the singlets continue increasing steadily.

The bonding energy 4 · BE(CH) = 4 ·−92.8 kcal/mol hinders a large relax-
ation of the fragments ER(CH4) = 170 kcal/mol. Remarkably the relaxation
of hydrogens is not negligible: ER(H) = 27kcal/mol in contrast with ER(C) =
62kcal/mol. In summary the intrinsic bond energy is Eint(CH) = −128 kcal/-
mol. Our results are not far from a similar calculation of Cremer et al. that
estimates a relaxation of 162 kcal/mol and IBE(C-H) of 140 kcal/mol. Notwith-
standing, the source of relaxation is completely different. Carbon atoms do not
promote completely and hydrogens relax more than expected.

At large distances we hope to find only distributions with single electrons
in each orbital. Among those the Slater determinants with MS = ±2 are not
possible. So we are tied to 14 possible determinants, 6 with MS = 0 couple
with the determinants that generate the (3,3) resonant structure (probability
1/3). And sets of 4 determinants with MS = ±1 conform the (1,3) and (3,1)
resonances, each with probabilities 1/3. This means that not all determinants
have the same probability: those with MS = 0 have probability 1/18 and those
of MS = ±1 have 1/24.

4.4.2 Dinitrogen molecule N2

The nitrogen atoms having all electrons unpaired in their ground states do
not need to excite to a higher energy configuration to form three bonds, The
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Figure 12: Probabilities of carbon reference states along the bonding process.

Table 3: A model of eight electrons and four independent bonds has probabilities that
follow a B(8,1/2) binomial distribution. Probabilities are expressed as p(6 +
δ, 4− δ) or p(6− δ, 4+ δ). The probability values for the condensed geometry
(dCH = 0.8860 angstrom) compare reasonably well.

δ = 0 δ = 1 δ = 2 δ = 3

pbinom. 0.2734 0.2188 0.1094 0.0312

p(δ,−δ) 0.2853 0.1700 0.1516 0.0101

p(−δ,δ) 0.2853 0.2769 0.0574 0.0429

Table 4: Electron distribution functions including spin in the limit case of independent
particles. The core of carbon is fixed (1s2). Eight electrons are free to create four
bonds, of those four belong to a group basin in the neutral resonant structure,
half α and half β in a spin un-polarized structure. Thus the probabilities of the
carbon structures are p(2+ σ, 2− σ) = p(2− σ, 2+ σ). Calculated values are at
dCH = 0.5361 angstrom.

σ = 0 σ = 1 σ = 2

h(2− σ; 8, 4, 4) 0.5143 0.2286 0.0143

p(σ,−σ) 0.5085 0.2304 0.0153
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Figure 13: Natural adaptive occupation numbers of CH4.

-0.5

0.0

0.5

1.0

1.5

 0.5  1  1.5  2  2.5  3  3.5  4

E
n
e
rg

ie
s 

[H
a
rt

re
e
]

Distance N--N [Angs]

Nitrogen N2

Edef(N)

Eint(NN)

Ebind(N2)

Figure 14: Nitrogen deformation energy with respect to the 4S state, Edef(N), interac-
tion energy, Eint(N,N), and binding energy of the molecule Ebind(N2).



4.4 results and discussion 111

0.0

0.2

0.4

0.6

0.8

1.0

 0.5  1  1.5  2  2.5  3  3.5  4

P
ro

b
a
b
ili

ty
 o

f 
n
it

ro
g
e
n
 r

e
fe

re
n
ce

 s
ta

te
s

Distance N--N [Angs]

Neutral nitrogen atoms NN

2D + 2S
4S

Figure 15: The electronic states of the fragment constituted by a nitrogen atom.

terms provided by the configuration 2s22p3 suffice to create the bonding be-
tween nitrogen atoms. Therefore, there is no need to prepare the electronic
configuration with an excitation to a higher energy state from a classical per-
spective. However, based on our previous results for methane, an increase of
the weight of other intra-configurational states 2S and 2D is possible, but not
of an inter-configurational state.

Table 5: A model of six electrons and three independent bonds has probabilities that
follow a B(6,1/2) binomial distribution. Probabilities are expressed as p(7 +
δ, 7− δ) or p(7− δ, 7+ δ) for this homonuclear case. Calculated values are at
dCH = 0.5700 angstrom.

δ = 0 δ = 1 δ = 2 δ = 3

pbinom. 0.3125 0.2344 0.0938 0.0156

p(δ,−δ) 0.3366 0.2386 0.0814 0.0112

Table 6: Electron distribution functions including spin in the limit case of independent
particles. The core of each nitrogen is fixed (1s2). Ten electrons are free to create
three bonds, five of those belong to each basin in the neutral resonant structure,
half α and half β in a spin un-polarized structure. Thus the probabilities of
the nitrogen structures are p(3+ σ, 2− σ) = p(3− σ, 2+ σ) = p(2+ σ, 3− σ) =
p(2− σ, 3+ σ). Calculated values are at dCH = 1.4700 angstrom.

σ = 0 σ = 1 σ = 2

phgeom 0.3968 0.0992 0.0040

p(σ,−σ) 0.3969 0.1031 0.0000
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As previously indicated for methane, dinitrogen has also a deformation en-
ergy minimum in the vicinity of the equilibrium structure (see figure 14). This
behaviour was already discovered ([67], chapter 13).Spin quenching

One surprising feature of the equilibrium is that the doublets have larger con-
tribution than the quadruplet, which is assumed to be the most important state.
Those are statements which, although chemically appealing, are nevertheless
misleading. The results follow almost directly from the independent particle
model (see table 6).

N2 is a prototypical molecule with a triple bond. One strong σ bond and two
weaker π bonds. A point to be discussed is if it is observed that the creation
of σ bonds takes place before than for π bonds, as it is indicated in the natu-
ral orbital occupations. With two-NAdOs we have a clear picture of bonding
formation aside of the abstract molecular orbital reasoning commonly used for
these explanations. Our results ratify the two step, σ and π, bonding formation
scenario at the correlated level. A characteristic point to mark the half-bond cre-
ation is the inflection point. The inflection point for sigma bonding is 1.9338054

angstroms whereas it is 1.70300731 angstroms for π bonding formation. The
contribution of sigma orbitals starts at long distances, before the π bonding in-
creases due to correlation. As soon as π bonding appears the combination of 2s
orbitals and pz hybridize into sp type orbitals and couple to form four orbitals.
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Figure 16: Natural adaptive occupation numbers of N2.

4.4.3 Ethene/Ethylene

Methylene has two states very close in energy [5, 170, 171], a triplet 3B1 and
a singlet 1A1. The former is only slightly more stable than the singlet.
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The lowest energy state of ethene close to dissociation, i.e. 8 angstroms of
separation between carbons, is a singlet with energy −77.9445687087 Eh. This
corresponds to the energy of two 3CH2, −38.9723018576 Eh with a small size-
consistency error. In the dissociation limit this state is degenerate with a
quintuplet that is the result of the coupling of both triplets with maximum
multiplicity. They do not intersect at least until 9.25 angstroms, the greatest
separation we could achieve. Another singlet state was found, with higher
energy, that correlates with the lowest energy CH2 (1A1) + CH2 (1A1) asymp-
tote (of two 1CH2 placed infinitely far apart). And it is size-consistent up to
1.76957550003465e− 04 Eh.

The deformation energy of CH2 increases linearly as the bond is formed (see
figure 17), as expected. The ground state of CH2 is a triplet so there should be
no need to create and intermediate state in the course. This is confirmed by the
probabilities of the electronic states (figure 18), although the relative weights
of the states at equilibrium do not match with the standard assumption that
the triplet will be predominant. Instead the singlet dominates with almost 60%.
However, this is in line with our previous results wich indicated a sequence
with hypergeometric probabilities (table 7).

The small energetic difference between the triplet and the singlet make for
a small deformation energy of CH2 also, 31.6 kcal/mol, whereas the interac-
tion energy is 211.2 kcal/mol. Then, most of the binding energy is involved
in the sharing of electrons. The two main components are two NAdOs that
can be interpreted as the sigma and pi bond (figure 19). Those are formed
asynchronously, the sigma bond can start its creation at longer distances.
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Figure 17: Energetic components of the C2H4 binding energy.



114 towards a unique measure of bond strength through intrinsic bond energies

0.0

0.2

0.4

0.6

0.8

1.0

 0  0.5  1  1.5  2  2.5  3  3.5  4

P
ro

b
a
b
ili

ty
 o

f 
m

e
th

y
le

n
e
 r

e
fe

re
n
ce

 s
ta

te
s

Distance C--C [Angs]

Neutral methylene fragments

1A1
3B1
5X

Figure 18: The spin states of the CH2 fragment.
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have seen for dinitrogen, the bonding is created at two states, differentiating
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Table 7: Electron distribution functions including spin in the limit case of independent
particles. The core of each carbon is fixed (1s2). Twelve electrons are free to
create two bonds, of those six belong to each basin in the neutral resonant struc-
ture, half α and half β in a spin un-polarized structure. Thus the probabilities
of the nitrogen structures are p(3+σ, 3−σ) = p(3−σ, 3+σ). Calculated values
are at dCC = 0.5 angstrom.

σ = 0 σ = 1 σ = 2

phgeom 0.4329 0.2435 0.0390

p(σ,−σ) 0.4150 0.2561 0.0363

4.4.4 Ethyne/Acetylene

Methylidyne (CH) has a minimum in the deformation energy close to the
equilibrium geometry. So the internal state finds some stabilization that favors
the equilibrium. At this point we can figure outh how the probabilities of the
states will be. Being the ground state of acetylene a doublet (methylylidene)
we can expect in advance that the quartet (methanetriyl) will be generated in
some extent during the reaction, in contrast to dinitrogen where the quartet
is already the ground state. However, at equilibrium the quartet should come
back to a lower probability. In fact that is what is seen, albeit the weight that
the quartet reachtes at half bonding formation is notably greater than what
we would expect from inpecting the antecedent of methane. We also remark
how abruptly this state is formed at around 2.5 angstroms of carbon-carbon
distance.

If we take a look at the probabilities of both dinitrogen and acetylene refer-
ence states we can realize that close to equilibrium the weights of the doublets
and quartets are roughly the same, the electronic combinations of the indepen-
dent model dictate the behaviour.

4.5 conclusions
In this chapter we have found that bonding energies in polyatomic molecules

cannot be measured unless some approximations are made. Even for diatomic
molecules a reference needs to be fixed. Assigning a reference we can obtain an
indicator of bond strength, but there is no computational method to realize such
measure. This is where IQA partitioning plays a fundamental role establishing
a solid foundation for the concept of intrinsic bond energy. Furthermore, this
quantity is available for any pair of atoms that we conceive, without being
restricted to the shortcomings of experimental accessibility. Together with the
rest of QCT tools we can characterize the reference, i.e. by identification of
the electronic state that better represents the valence state of the fragments
that unite to form the bond. It is deducted from the results that high spin
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electronic configurations are less prone to happen than it is often claimed. This
indicates us that we should be particularly careful when attributing valence
states without a clear justification. Apart from this there are no great changes,
with respect to standard assumptions, in the electronic behaviour. Also, we
have appreciated the overestimation of bonding energies because interactions
between atoms that are not supposed to be bonded are by mistake included in
the bond energy estimation.
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Interatomic exchange-correlation energies correspond to the covalent ener-
getic contributions to an interatomic interaction in real space theories of the
chemical bond, but their widespread use is severely limited due to their com-
putationally intensive character. In the same way as the multipolar (mp) expan-
sion is customary used in biomolecular modelling to approximate the classical
Coulomb interaction between two charge densities ρA(r) and ρB(r), we exam-
ine in this work the mp approach to approximate the interatomic exchange-
correlation (xc) energies of the Interacting Quantum Atoms method. We show
that the full xc mp series is quickly divergent for directly bonded atoms (1−2

pairs) albeit it works reasonably well most times for 1−n (n > 2) interactions.
As with conventional perturbation theory, we show numerically that the xc se-
ries is asymptotically convergent and that, a truncated xc mp approximation
retaining terms up to l1 + l2 = 2 usually gives relatively accurate results, some-
times even for directly bonded atoms. Our findings are supported by extensive
numerical analyses on a variety of systems that range from several standard
hydrogen bonded dimers to typically covalent or aromatic molecules. The ex-
act algebraic relationship between the monopole-monopole xc mp term and the
inter-atomic bond order, as measured by the delocalization index of the Quan-
tum Theory of Atoms in Molecules, is also established.

5.1 introduction

The role of the quantum mechanical exchange-correlation (xc) energy as the
basic glue binding together atoms and molecules has been clearly stressed in
the past [96]. In the chemical literature, however, this insight is less well known.
Although exchange-correlation functionals, for instance, are the essential ingre-
dients in modern implementations of Density Functional Theory (DFT) [89],
not much work has been devoted to examine the importance of the exchange-
correlation energy itself in the theory of chemical bonding from the DFT view-
point [14].

Actually, almost all that is known about the chemical relevance of the xc en-
ergy has been derived in the last decade through the study of bonding in real
or position space [51]. With this term we gather together a number of tech-
niques that are being actively explored [32, 90, 143] which use orbital invariant
reduced densities (or density matrices) to develop a new paradigm that may
one day replace the standard molecular orbital approach [69]. Usually, these
techniques use a partition of real space into regions endowed with chemical
meaning, be them atoms, bonds, cores, lone pairs, etc. In many cases, the space
is divided using the topology induced by the gradient field of an orbital invari-
ant scalar, like the electron density (which gives rise to the atomic partioning of
the quantum theory of atoms in molecules (QTAIM) developed by Bader and
coworkers [10], or the electron localization function (that isolates core, bond
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and lone pair regions) [18, 174]. When this topological tools are used we say
that we are under the Quantum Chemical Topology umbrella [154].

In the context of the QTAIM/QCT, we proposed a number of years ago an ex-
act, general decomposition of the total molecular energy E into atomic and inter-
atomic terms that we called the interacting quantum atoms (IQA) approach [51].
All the expectation values of the standard Coulomb Hamiltonian that make up
E are written in IQA as a sum of domain contributions, and E is obtained by
adding atomic self-energies, which tend to the free atomic energies when the
atoms that interact are sufficiently far apart, and pairwise additive interaction
energies. The latter are composed of a classical term that depends only on
classical electrostatic contributions, and an exchange-correlation energy, Vxc
which accounts for the quantum mechanical effects. As we and others have
shown over the years [73, 109], the classical part of the interaction measures
its ionic component, while the Vxc energy is to be associated with its covalent
counterpart.

In these years, the interatomic xc energy has become an important ingredi-
ent of any quantitative account of chemical bonding in position space [33, 67].
For instance, it has been shown to be intimately related to the appearance of
the bond critical points of the QTAIM, leading to the concept of priviledged
exchange-correlation channels [148]. It has also been used to reconstruct molec-
ular graphs from purely energetic quantities [64], to shed light on new concepts
like halogen bonding [15, 16], to recover stereolectronic effects [144], or to find
new long-range electronic anomalies [63].

Interatomic Vxc energies are intimately linked to the delocalization or shared
electron delocalization indices (DIs) used in the QTAIM, defined almost 40

years ago by Bader and Stephens [9]. These are obtained by directly integrating
the xc density of very two different atomic domains and measure the number
of shared pairs of electrons between them. They have been successfully used
as real space generalization of the bond order concept, reducing to the Wiberg-
Mayer [118, 190] bond orders if atomic domains are imagined to collapse onto
their nuclei. In a sense, Vxc’s are the energetic counterparts of DIs, and both
have been empirically found to correlate very well when a given couple of
atoms is examined in different molecular environments.

The computational complexity of obtaining DIs is considerably smaller than
that of calculating Vxc’s, since the former may be factorized into sums of prod-
ucts of atomic overlap matrices (3D numerical integrals), while the latter need,
in principle, very costly 6D quadratures. Thus, if we are not interested in
very accurate results, but only in semi-quantitative estimations of covalent
energies, any procedure that might approximate the Vxc values in terms of
cheaper to compute quantities like the DIs should be welcome. That proce-
dure was initially examined by Rafat and Popelier [157], that wrote each inter-
atomic Hartree-Fock (HF) Vxc interaction as a multipolar series, exploring the
convergence of this series in different closed-shell molecules computed at this
level of theory. In this work, we generalize their algebraic formalism to multi-
determinant wavefunctions. This generalization is possible thanks to the use of
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the monadic diagonalization of the exchange-correlation density [146], custom-
ary used within the IQA methodology [51]. Our expressions converge to those
of Ref. 157 when HF exchange-correlation densities are employed in the calcu-
lation. We will show that, regardless the type of calculation, the monopole-
monopole term of the multipolar xc interaction between two atoms A and
B of the molecule coincides with that of Rafat and Popelier, being equal to
−δAB/(2R) (R is the AB internuclear distance), and that the series is usually di-
vergent although many times asymptotically convergent. Moreover, our results
clearly establish in what conditions Vxc can be safely approximated by a trun-
cated series, and how in some situations retaining up to the charge-quadrupole
terms may give reasonable results even for directly bonded atoms. In the latter
cases, the use of the crudest approach VAB

xc ∼ −δAB/(2R) is even preferable to
using the multipolar expansion up to very high order.

We will first consider the multipolar expansion of Vxc, including a short
account of the IQA methodology. Then we will turn to examine how the series
converges or diverges for a number of selected systems.

5.2 multipolar expansion of VAB
xc

In this section, we briefly describe the Interacting Quantum Atoms (IQA)
method and the role played by the exchange-correlation (xc) interaction in this
energy partition method (Subsection 5.2.1), the exact computation of this in-
teraction (Subsection 5.2.2), and its multipolar approximation with or without
truncating the expansion of the angular momentum series (Subsection 5.2.3).
It is worth noting that the experience gained to date with the IQA method,
both by us and by other groups, clearly indicates that the magnitude of VAB

xc
correlates very well with the degree of covalency between the pair of atoms
A and B as measured by means of the delocalization index defined by Bader
and Stephens, and weighted through the inverse of the distance between both
atoms. As we will see, this correlation would be perfect as long as the crudest
multipolar approximation to VAB

xc (consisting in truncating the multipolar series
in the term l1 = m1 = l2 = m2 = 0) were exact.

5.2.1 The Interacting Quantum Atoms (IQA) method

The IQA method [51] is a real space energetic partition inspired in the Quan-
tum Theory of Atoms in Molecules (QTAIM) that focuses on domain-averaged
integrated quantities. The total energy in this approach is given by

E =
∑
A

TA + VAA
en + VAA

ee +
∑
A>B

VAB
nn + VAB

en + VBA
en + VAB

ee (5–1)

=
∑
A

EA
self +

∑
A>B

EAB
int . (5–2)
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where A runs over all the atoms in the molecule, VAB
nn = ZAZB/RAB is the

repulsion between the nuclei A and B, VAB
en = −ZB

∫
ΩA

dr1 ρ(r1)r
−1
1B is the

nuclear attraction of the electrons within the basin of A (ΩA) to the nucleus B,
and VAB

ee is the total electron repulsion between ΩA and ΩB. The latter is given
by VAB

ee = JAB + VAB
xc where

JAB =

∫
ΩA

dr1

∫
ΩB

dr2 r−112 ρ(r1) ρ(r2), (5–3)

is the classical or Coulomb electron-electrons repulsion, and

VAB
xc =

∫
ΩA

dr1

∫
ΩB

dr2 r−112 ρxc(r1, r2), (5–4)

where ρxc(r1, r2) is the exchange-correlation (xc) density, is the purely quantum-
mechanical electron-electron xc interaction, which is the main subject of this
work. In this way,

EAB
int =

(
VAB

nn + VAB
en + VBA

en + JAB
)
+ VAB

xc = VAB
cl + VAB

xc . (5–5)

The term EA
self in (5–2) collects all the energetic components affecting exclusively

to the atom A while EAB
int represents the full interaction energy between atoms

A and B, that is made of the full electrostatic or classical interaction (VAB
cl ) and

the quantum-mechanical part (VAB
xc ). The expression (5–2) is valid, not only for

the IQA methodology, but also for other energetic partitions, such as a recently
proposed one inspired in the IQA method, although using a fuzzy partition of
the space and localized molecular orbitals (MO) [49]. Mayer and Hamza have
also dealt with the exchange component in equation (5–4) in the framework
of a Hilbert space partition instead of the real space QTAIM partition we use
here [122].

5.2.2 The exact xc interaction energy

Over the years, it has become clear that the magnitude of VAB
xc measures the

degree of covalency of the chemical bond between the atoms A and B. The
more negative its value, the bigger the bond order between the two atoms
and vice versa [109, 143, 148]. Their values have been recently proposed as a
novel solution to the problem of assigning a molecular graph to a collection
of nuclei [63](i.e. how to draw a molecular structure). In the IQA approach,
this term is exactly computed as follows. First, we use the fact that for both
single- (1-det) and multi-determinant wavefunctions built in with real MOs φi,
ρxc(r1, r2) can be written as

ρxc(r1, r2) =
M∑
i,j,k,l

λijklφi(r1)φj(r1)φk(r2)φl(r2), (5–6)
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where M is the number of partially or fully occupied MOs, and λijkl is a
symmetric matrix in the (i, j) and (k, l) pairs. Defining a set of coefficients,

εijkl = λijkl + λjikl(1− δij) + λijlk(1− δkl) + λjilk(1− δij)(1− δkl), (5–7)

where δij is the Kronecker symbol (δij = 1 for i = j, δij = 0 for i 6= j) we may
write an (i, j),(k, l) symmetric simpler expression,

ρxc(r1, r2) =
M∑

i>j,k>l

εijklφi(r1)φj(r1)φk(r2)φl(r2). (5–8)

Using the basis of products of MOs, {φi(r)φj(r), i > j}, that contains M(M+

1)/2 members, we diagonalize equation (5–8), and get: [146]

ρxc(r1, r2) =
M∑
i>j

ηijfij(r1)fij(r2), (5–9)

where the fij eigenfunctions are linear combinations of the above products. The
ε matrix may be easily computed from the explicit form of a given calculated
wavefunction. For closed-shell 1-det wavefunctions (and formally also for a
Kohn-Sham determinant) M = N/2, where N is the number of electrons, the
ε matrix is already diagonal in the (i, j) and (k, l) pairs, each eigenvector is the
product of two MOs, fij = φiφj, and the ηij eigenvalues are simply ηii = −2

and ηij = −4 (i 6= j). Using (5–9) in the expression of VAB
xc one gets

VAB
xc =

M∑
i>j

ηijK
AB
ij , where (5–10)

KAB
ij =

∫
ΩA

dr1

∫
ΩB

dr2 r−112 fij(r1)fij(r2). (5–11)

The integrals (5–3) and (5–11) can be computed numerically and (in principle)
exactly, i.e without invoking any approximation such as the multipolar expan-
sion, by means of the bipolar expansion as described in Ref. 142. Notice that
using the Fock-Dirac exchange from Kohn-Sham determinants is an approxi-
mation that has no rigorous justification.

5.2.3 The multipolar approach for VAB
xc

Comparing equation (5–11) with equation (5–3) for the Coulomb repulsion
it is evident that if JAB is approximated making use of physically reasonable
arguments that are also valid for KAB

ij , the steps to approximate the latter will
be the same used for JAB. The long-range or multipolar approximation (MP) to
JAB, given by

JAB
lr =

∞∑
l1m1

∞∑
l2m2

Cl1m1l2m2(R̂)
Q
ΩA
l1m1

Q
ΩB
l2m2

Rl1+l2+1
, (5–12)
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Figure 22: Schematic representation of overlapping and non-overlapping regions.

where m1 (m2) runs from −l1 (−l2) to +l1 (+l2), R = (RB − RA) ≡ (R, R̂),
with R = |RB − RA| and R̂ ≡ (θB − θA,φB −φA) (see figure 56) is the position
vector of the B center with respect to the A center, Cl1m1l2m2(R̂) are known
coefficients, QΩlm are the spherical atomic multipoles, defined as

QΩlm = Nl

∫
Ω
rl Slm(r̂) ρ(r)dr, (5–13)

Nl =
√
4π/(2l+ 1), and Slm(r̂) are real spherical harmonics (see Appendix) is

exact when the basins ΩA and ΩB are non-overlapping (See figure 22 and the
definition of overlapping and non-overlapping regions below). Equation (5–12)
is the same used by Popelier et. al. [92, 155, 156] in their discussion of the mul-
tipolar expansion for the diatomic Coulomb repulsion. Retaining only terms
with l1 6 1 and l2 6 1 in this equation one has

JAB
lr,cd '

QAQB

R
−QA

~µB ·R
R3

+QB
~µA ·R
R3

+
1

R3

(
~µA · ~µB − 3

(~µA ·R) (R · ~µB)
R2

)
,

(5–14)
where QΩ =

∫
Ω ρ(r)dr and ~µΩ =

∫
Ω rρ(r)dr are the total electron charge and

the dipole moment of the Ω region, respectively. The first, second plus third,
and fourth terms of (5–14) correspond to the charge-charge (cc), charge-dipole
(cd), and dipole-dipole (dd) interactions, respectively. We should note that the
second and third terms have opposite signs.
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If the same approximation is used for KAB
ij ,

(
VAB

xc
)

lr becomes

(
VAB

xc

)
lr

=

∞∑
l1m1

∞∑
l2m2

Cl1m1l2m2(R̂)
δAB
l1m1,l2m2
Rl1+l2+1

, where (5–15)

δAB
l1m1,l2m2 =

M∑
i>j

ηijq
ΩA
ij,l1m1

q
ΩB
ij,l2m2

, and (5–16)

qΩij,lm = Nl

∫
Ω
rl Slm(r̂)fij(r)dr. (5–17)

It is important to stress that, similarly to (JAB)lr, the expression (5–15) for
(VAB

xc )lr provides the exact xc interaction when the atomic basins ΩA and ΩB
do not overlap (figure 22). In the present context these two basins are non-
overlapping because the two spheres of radii RA and RB, centered at the origin
of ΩA and ΩB, respectively, do not intersect each other, being RA (RB) the
maximum distance from the origin of the basin to the surface of ΩA (ΩB).
On the contrary, ΩA and ΩC are overlapping despite that none point inside
ΩA belongs also to ΩC and viceversa. When the non-overlapping condition is
not met, the current expressions for (JAB)lr and (VAB

xc )lr are only conditionally
convergent. We will see different examples of this in Section 5.4.

The function NlrlSlm(r̂) is 1 for l = m = 0, (y, z, x) for l = 1 and m =

(−1, 0,+1), and (
√
3xy,

√
3yz, 12 (3z

2 − r2),
√
3xz,

√
3
2 (x2 − y2)) for l = 2 and

m = (−2,−1, 0,+1,+2). If, as in the case of JAB, only terms with l1 6 1 and
l2 6 1 are included, (VAB

xc )lr becomes

(
VAB

xc

)
lr,cd

'
∑
i,j

ηij

[
q
ΩA
ij q

ΩB
ij

R
− qΩAij

~µΩBij ·R
R3

+ qΩBij
~µΩAij ·R
R3

+
1

R3

(
~µΩAij · ~µ

ΩB
ij − 3

(~µΩAij ·R) (R · ~µΩBij )

R2

)]
, (5–18)

where qΩij ≡ qΩij,00 =
∫
Ω fij(r)dr, and

~µΩij ≡ (qΩij,1−1,qΩij,10,qΩij,1+1) =
∫
Ω

rfij(r)dr. (5–19)

If terms with (l1 = 0, l2 = 2) and (l1 = 2, l2 = 0) are also included, the extra
contribution

(VAB
xc )lr,cq =

M∑
i,j

ηij

R3

+2∑
m=−2

q2m(R̂)
[
qAijq

B
ij,2m + qBijq

A
ij,2m

]
(5–20)

must be added to (5–18). The cq subscript in equation (5–20) stands for charge-
quadrupole interactions. The improved expression for (VAB

xc )lr is then

(VAB
xc )lr,cdq = (VAB

xc )lr,cd + (VAB
xc )lr,cq. (5–21)
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Figure 23: Hydrogen bond systems studied in this work. Hydrogen, nitrogen, oxygen,
and fluorine atoms are represented as growing size spheres, respectively.

The physical meaning of qΩij and ~µΩij are easy to grasp. If we consider the
particular case of their diagonal expressions (i = j) for a 1-det wavefunction,
fii(r) = φ2i (r), so that qΩii is the electron charge of the orbital distribution
φ2i (r) within the Ω region, and ~µΩii the dipole moment of Ω due to this dis-
tribution. For this reason, qΩij and ~µΩij may be called orbital overlap charge
and orbital overlap dipole, respectively. At the Hartree-Fock (HF) level, the
qΩij ’s coincide with the Atomic Overlap Matrix (AOM) elements of the QTAIM,
qΩij ≡ 〈φi|φj〉Ω = SΩij . However, given that fij(r) at the correlated level is a
linear combination of φi(r)φj(r) products, qΩij in this case is a linear combina-
tion of AOM elements. Nevertheless, for both types of wavefunctions −2δAB

00,00
coincides with δAB, the so-called delocalization index (DI) between the atoms
A and B

− 2δAB
00,00 = δAB = −

M∑
i>j

2ηijS
ΩA
ij S

ΩB
ij , (5–22)

so that the leading term of (VAB
xc )lr (l1 = l2 = m1 = m2 = 0) can be written as

R−1
∑
i,j

ηijq
ΩA
ij q

ΩB
ij = −δAB/(2R). (5–23)

The above equation is behind the good existing correlation between the values
of VAB

xc and δAB for a large collection of AB couples in many systems. The
present derivation shows that the proportionality between VAB

xc and δAB is mod-
ulated by the inverse of the distance between the nuclei of both atomic basins.
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5.3 systems and computational details
All the calculations of this work have performed with our PROMOLDEN code [107].

This program allows the exact computation [142, 146] (i.e., without suffering the
convergence problems inherent to the multipolar series expansion) of VAB

xc as
well as the full (lr) and truncated (lr,cd) and (lr,cdq) multipolar approximations
described in Section 5.2. For brevity, only the exact, and the (lr) and (lr,cdq)
numbers will be given in the tables. The errors plotted in the figures are de-
fined as [(VAB

xc )method − (VAB
xc,exact)]/|V

AB
xc,exact|× 100, where method =(lr), (lr,cd),

or (lr,cdq). The studied systems include several standard hydrogen bonded
(HB) dimers (figure 23), the staggered BH3NH3, eclipsed BH3NH3, N+

5 , and
Li9H9 molecules (figure 24), eleven molecules derived from saturated hydro-
carbons by substituting C or H atoms by Be, B, N, O, F atoms, plus the benzene
molecule (figure 25), the saturated hydrocarbons ethane, propane, butane, and
pentane (figure 26), and the phenol dimer (figure 27). The labels of the atoms
in the tables are those defined in these figures. For simplicity, the molecular or-
bitals required for evaluating the exchange-correlation density of equation (5–8)
have been obtained through restricted Hartree-Fock (RHF) calculations at the
corresponding equilibrium geometries with basis sets of quality 6-311G(d,p) or
higher. However, since our results in this paper stem from the algebraic prop-
erties of the multipolar expansion, we do not expect significant changes neither
in the numerical results nor in the subsequent discussion when using more ac-
curate wavefunctions or the approximate data coming from Kohn-Sham deter-
minants in the computation of the xc interactions. To prove the validity of this
assertion, we will compare the VAB

x energies obtained for staggered ethane in a
CAS[14,14] calculation (Complete Active Space calculation with all except the
carbon 1s electrons distributed into 14 valence orbitals) with the RHF results.
All other xc interactions except those of the above CAS calculation lack a corre-
lation energy component, being thus pure exchange contributions that should
be more properly labelled VAB

x . However, since all the expressions in Section 5.2
are valid for general wavefunctions the original name will be used hereinafter.
The sums over l1 and l2 in equation (5–15) were truncated at lmax

1 = lmax
2 = 8,

so that terms up to a range L = lmax
1 + lmax

2 + 1 = 17 were included in the mul-
tipolar expansion. Since QTAIM domains are usually finite and quite irregular,
very fine radial and angular grids are needed to carry out the 6D numerical
integrations. Here, we have systematically considered a β−sphere around each
atom, with a radius equal to 60-90% the distance of its nucleus to the closest
bond critical point, and employed high quality Lebedev angular and radial
grids, with (5810, 512) and (194, 400) points outside and inside the spheres, re-
spectively. The errors in the total energy of the studied molecules attributable
to these numerical integrations, necessarily approximate, are of the order of 1.0
kJ/mol. Our accumulated experience in IQA calculations makes us believe that
the accuracy achieved in each interatomic interaction is even higher. Despite
this issue regarding the full numerical accuracy of our integrations, once the
computational conditions of a given calculation have been chosen the conver-
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Figure 24: Staggered BH3NH3, eclipsed BH3NH3, N+
5 , and Li9H9 molecules.

gence of the bipolar expansion (the exact benchmark) is ordinarily well below
the 1 kJ/mol barrier for the xc contributions.

5.4 results and discussion

The more representative results regarding the approximate VAB
xc values, as

well as their errors for the systems listed in Section 5.3 are gathered in tables 8-
11 and figures 28-32. We can see in table 8, where the VAB

xc ’s for the HB sys-
tems of figure 23 are collected, that the full multipolar approximation (VAB

xc )lr
(equation (5–15)) fails miserably for all intramolecular A−H pairs (A=N,O,F).
Surprisingly, the crude (lr,cdq) approximation gives xc interactions with rel-
ative errors of about 10% or smaller for the intramolecular directly bonded
atoms. Regarding the intermolecular interactions, the xc energy between the
two atoms involved in the HB is well represented by (VAB

xc )lr, with differences
with respect to the exact values smaller than 0.3 kJ/mol in all the cases. We
note again that the (lr,cdq) values differ only by 0.3-0.6 kJ/mol from the exact
ones, confirming that the multipolar expansion for these interactions is prac-
tically converged at this level of calculation. Intermolecular A−H and H−H
xc energies other than the above ones are given by the lr approximation with
errors smaller than 0.1 and 0.01 kJ/mol, respectively. For the intermolecular
H−H energies, the same is true in the (lr,cdq) approximation. However, the xc
interaction between the A atom of the proton donor (PD) and the B atom of the
proton acceptor (PA) molecule is predicted with errors as large as 1.4 kJ/mol
(FH· · ·NH3) when the (lr,cdq) approximation is used, which clearly indicates
that multipolar interactions higher than the charge-quadrupole ones included
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Figure 25: Molecules derived from saturated hydrocarbons by substituting C or H
atoms by Be, B, N, O, F atoms, plus the benzene molecule.

cis-CH2CF2 trans-CH2CF2 CH2FOH CH3CF3

CH3BeH CH3BH2 CH3CH2F CH3CH2Li

CH3CLi3 CH3NH2 CH3OH C6H6

Figure 26: CnH2n+2 (n = 2− 5) saturated hydrocarbons.
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Table 8: xc interaction energies > 0.1 kJ/mol for the HB dimers of figure 23.

A−B (VAB
xc )lr,cdq (VAB

xc )lr VAB
xc A−B (VAB

xc )lr,cdq (VAB
xc )lr VAB

xc
H2O−H2O HF−NH3

O1−H2 -478.59 1.29×104 -437.77 F1−H2 -280.40 3.79×103 -259.76

O1−H3 -569.61 -8.45×105 -514.46 F1−N3 -40.44 -41.74 -41.85

O1−O4 -16.40 -16.96 -16.94 F1−H4 -0.42 -0.42 -0.42

O1−H5 -0.11 -0.10 -0.11 F1−H5 -0.42 -0.42 -0.42

H2−H3 -1.94 -1.44 -1.84 F1−H6 -0.42 -0.42 -0.42

H2−O4 -24.73 -25.45 -25.36 H2−N3 -47.99 -48.50 -48.23

H2−H5 -0.17 -0.17 -0.17 H2−H4 -0.34 -0.34 -0.34

H3−O4 -0.19 -0.18 -0.18 H2−H5 -0.34 -0.34 -0.34

O4−H5 -541.14 -7.16×105 -488.52 H2−H6 -0.34 -0.34 -0.34

H5−H6 -2.19 -4.27 -2.03 N3−H4 -758.46 5.38×105 -688.30

H2O−NH3 N3−H5 -758.46 5.38×105 -688.30

O1−H2 -575.13 -1.21×107 -519.23 N3−H6 -758.40 5.58×105 -688.24

O1−H3 -460.75 -5.35×104 -421.84 H4−H5 -5.34 -12.72 -5.12

O1−N4 -20.16 -20.71 -20.70 H4−H6 -5.34 -12.71 -5.12

O1−H5 -0.19 -0.19 -0.19 H5−H6 -5.34 -12.71 -5.12

O1−H6 -0.20 -0.20 -0.20 NH3−H2O
H2−H3 -1.88 -1.00 -1.80 N1−H2 -731.84 4.54×106 -668.43

H2−N4 -0.24 -0.24 -0.24 N1−H3 -779.59 1.37×106 -710.26

H3−N4 -31.54 -32.23 -32.07 N1−O5 -8.33 -8.63 -8.60

H3−H5 -0.27 -0.27 -0.27 H2−H3 -5.26 -6.18 -5.13

H3−H6 -0.28 -0.28 -0.28 H2−O5 -16.83 -17.59 -17.37

N4−H5 -764.79 6.93×105 -694.12 H2−H6 -0.10 -0.10 -0.10

N4−H6 -767.36 5.65×105 -697.06 H3−H4 -6.08 -30.52 -5.85

H5−H6 -5.60 -17.52 -5.37 H3−O5 -0.20 -0.20 -0.20

H6−H7 -5.66 -18.08 -5.43 O5−H6 -550.78 -8.08×105 -496.97

FHF− H6−H7 -2.27 -4.67 -2.11

F1−F2 -92.79 -100.02 -96.55 NH3−NH3
F1−H3 -163.82 6.80×104 -159.19 N1−H2 -781.96 7.75×105 -712.71

HF−H2O N1−H4 -719.70 -1.22×105 -657.38

F1−H2 -298.63 -844.89 -275.72 N1−N5 -9.02 -9.29 -9.26

F1−O3 -28.64 -29.82 -29.79 H2−H3 -6.16 -35.32 -5.93

F1−H4 -0.23 -0.22 -0.22 H2−H4 -5.16 1.88 -5.04

H2−O3 -32.04 -32.78 -32.67 H2−N5 -0.22 -0.22 -0.22

H2−H4 -0.23 -0.23 -0.23 H4−N5 -20.79 -21.40 -21.28

O3−H4 -528.95 -5.93×105 -477.77 H4−H6 -0.24 -0.24 -0.24

H4−H5 -2.11 -4.02 -1.96 H4−H7 -0.20 -0.20 -0.20

HF−HF N5−H6 -771.52 7.64×105 -702.05

F1−H2 -329.20 7048.78 -302.00 N5−H7 -770.75 6.85×105 -700.44

F1−F3 -17.02 -17.83 -17.82 H6−H7 -5.80 -22.66 -5.57

H2−F3 -16.71 -17.34 -17.32 H7−H8 -5.75 -21.54 -5.52

H2−H4 -0.11 -0.11 -0.11

F3−H4 -356.83 -2.05×105 -320.36

HF−N2
F1−H2 -349.90 -5.85×103 -319.67

F1−N3 -9.19 -9.58 -9.57

F1−N4 -0.28 -0.28 -0.28

H2−N3 -11.15 -11.46 -11.46

H2−N4 -0.46 -0.45 -0.45

N3−N4 -2266.80 -8.61×105 -2479.99



132 multipolar expansion of the exchange-correlation interaction energy

Figure 27: Phenol dimer.
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in this approximation are required to represent this type of interaction with
accuracy.

The relative errors of the A−B, A−H (A,B=N,O,F), and H−H xc interaction
energies for all the intra and intermolecular pairs of the HB systems are rep-
resented in figure 28. We observe in figure 28 that cd and cdq intramolecular
H−H energies are, in general, more accurate than the ones for the A−H interac-
tions, which is clearly due to the 1−3 (1−2) character of all the intramolecular
H−H (A−H) pairs. It is also striking that, with a couple of exceptions, cdq
relative errors are negative whereas the contrary happens with the cd approx-
imation. Moreover, as previously commented, only a single lr relative error
appears in the figure, the remaining ones having errors greater than 20%. Re-
garding the intermolecular xc energies we observe in right figure 28 the pro-
gressive decreasing of relative errors in passing from cd to cdq, and from cdq
to lr.

The discussion for the systems in figure 24 runs parallel to that of the HB
dimers. The (VAB

xc )lr value for the B−N pair in eclipsed and staggered BH3−NH3
has no sense. Similarly, the lr xc interaction between the directly bonded (i.e.
1−2) B−H and N−H pairs is quite absurd. Not only that, but also the (VAB

xc )lr’s
for the 1−3 pairs H3−H4 and H6−H7 are several orders of magnitude greater
than the exact values. Contrarily to this, the cdq approximation works rela-
tively well for the B−N pair and the 1−2 B−H and N−H pairs (relative error
< 5%). The H3−H4 interaction is also extremely well reproduced by this ap-
proximation (error < 0.2%), whereas the H6−H7 is slightly worse (error ∼ 4%).
The xc interaction between the B atom and a H atom of the NH3 unit (B1−H6)
is fairly accurate in both the lr and cdq approximations. This is not so with the
symmetric interaction N2−H3, with errors about 4−7% in both cases.

In the N+
5 molecule, the xc energy for the 1−2 pairs is again badly repre-

sented by the lr approximation but is reasonable in the cdq approach, particu-
larly for N1−N2. The cdq and lr values for the 1−3 N1−N4 interaction differs
from the exact value by about 0.9 and 0.3 kJ/mol, respectively. The error in the
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Table 9: Representative xc interaction energies (kJ/mol) for the systems of figure 24. In
Li9H9 the directly bonded Li and H atoms are signalled with (1).

A−B (VAB
xc )lr,cdq (VAB

xc )lr VAB
xc A−B (VAB

xc )lr,cdq (VAB
xc )lr VAB

xc
eclipsed BH3−NH3 Li9H9

B1−N2 -164.57 3524.65 -172.41 Li1-Li2 -0.30 -0.31 -0.31

B1−H3 -355.03 8.40×10
6 -334.69 Li1-Li6 -0.71 -0.72 -0.72

B1−H6 -1.15 -1.14 -1.14 Li1-H10(1) -17.22 -318.57 -17.75

N2−H3 -60.32 -62.95 -65.25 Li1-H11(1) -25.92 42.71 -26.24

N2−H6 -723.06 -8.05×10
7 -659.17 Li1-H15 -0.47 -0.49 -0.49

H3−H4 -67.52 -339.26 -67.39 Li2-Li3 -0.70 -0.93 -0.71

H3−H6 -2.58 -4.71 -2.55 Li2-Li4 -0.14 -0.14 -0.14

H3−H7 -0.69 -0.68 -0.69 Li2-Li6 -0.84 -0.87 -0.85

H6−H7 -4.30 -865.54 -4.12 Li2-H10(1) -26.95 331.98 -27.12

staggered BH3−NH3 Li2-H11(1) -18.34 59.37 -18.74

B1−N2 -172.72 3080.97 -181.51 Li2-H12 -0.47 -0.50 -0.49

B1−H3 -351.06 7.76×10
6 -331.51 Li2-H13 -0.09 -0.10 -0.09

B1−H6 -1.21 -1.99 -1.20 Li2-H15(1) -36.35 1.50×10
4 -36.27

N2−H3 -64.56 -71.22 -69.56 Li2-H17 -0.17 -0.17 -0.17

N2−H6 -721.25 -6.056×10
8 -659.38 Li6-Li7 -0.31 -0.31 -0.31

H3−H4 -66.25 -296.87 -66.17 Li6-H10 -0.84 -0.88 -0.88

H3−H6 -1.06 -1.17 -1.05 Li6-H11(1) -36.95 36.59 -36.67

H3−H7 -1.62 -1.61 -1.61 Li6-H12 -0.19 -0.19 -0.19

H6−H7 -4.28 -472.57 -4.12 Li6-H15(1) -45.11 -1.21×10
3 -44.54

N+
5 Li6-H16 -0.21 -0.21 -0.21

N1−N2 -1019.33 -1.70×10
5 -1056.45 H10-H11 -18.30 -20.78 -19.85

N1−N4 -47.28 -48.48 -48.20 H10-H15 -29.91 -38.97 -30.92

N2−N3 -52.15 -62.35 -55.59 H11-H12 -24.03 -36.36 -24.76

N2−N4 -2066.45 2.90×10
7 -2205.41 H11-H13 -0.70 -0.71 -0.70

N2−N5 -7.78 -7.77 -7.77 H11-H15 -25.73 -49.73 -26.56

N4−N5 -3.26 -3.27 -3.27 H11-H17 -0.28 -0.28 -0.28

H15-H16 -1.48 -1.47 -1.44

H15-H17 -0.19 -0.19 -0.19
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Figure 28: Relative errors, [(VAB
xc )method − (VAB

xc,exact)]/|V
AB
xc,exact|× 100, of the intra- (left)

and intermolecular (right) interactions of the molecules in figure 23.
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other 1−3 interaction (N2−N3) in considerably higher in both approaches. Fi-
nally, the lr and cdq xc energies for the 1−4 N2−N5 and 1−5 N4−N5 pairs are
practically the same and coincident with the exact value. This result highlights
two important facts: i) the atomic basins of N2 and N5 (or N4 and N5) atoms
fullfil almost exactly the non-overlapping criterion displayed in figure 22, and
ii) the multipolar series (5–15) converges very quickly in this particular case.

Finally, the results for Li9−H9 reinforce what was said in the above three
paragraphs. The full lr expansion fails completely in predicting xc interaction
energies for 1−2 Li−H pairs, while the cdq values are pretty accurate. All Li−Li
xc energies are well represented in the lr and cdq approximations, with the
exception of the lr Li2−Li3 interaction. This is probably related with the almost
spherical character of Li atomic basins. According to this, the 1−3 Li−H lr xc
energies and, more importantly, the 1−3 H−H xc energies are less accurately
computed due to the far from the spherical character of H atomic basins. This
is exacerbated in the lr approximation, where higher angular number l values
are involved (see equation (5–17)).

The xc pair interaction energies of the systems in figure 25 are collected in
tables 10 and 11, and the relative errors of the cd, cdq and lr approximate values
displayed in figure 29, for the 1−2 (left-top), 1−3 (right-top), and 1−4 (bottom)
pairs, respectively. Virtually all of the above comments also apply here: the
1−2 xc interactions can not be represented at all by using the full lr expansion.
However, they are given with reasonable accuracy by the cdq approximation.
The 1−n (n > 2) interactions are gradually better reproduced as n increases in
both the lr and cdq approximations. It is very satisfactory to check that the cdq
approach, a severe truncation of the full mp expansion, is perfectly suited to
simulate the xc interaction between pairs of atoms beyond the directly bonded
ones. Even in typically covalent molecules like benzene all the cdq C−C xc
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Table 10: Representative xc interaction energies (kJ/mol) for the systems of figure 25.

A−B (VAB
xc )lr,cdq (VAB

xc )lr VAB
xc A−B (VAB

xc )lr,cdq (VAB
xc )lr VAB

xc
cis−C2H2F2 CH3BeH

C1−C2 -1311.48 -3.82×105 -1351.45 H1−C2 -34.84 -32.52 -32.62

C1−H3 -811.14 -1.20×104 -746.88 H1−H3 -0.75 -0.74 -0.75

C1−H4 -17.00 -15.11 -15.79 H1−Be6 -170.49 2.43×104 -159.81

C1−F5 -600.29 -5.29×103 -608.87 C2−H3 -845.84 6.99×105 -765.34

C1−F6 -53.21 -54.86 -52.56 C2−Be6 -168.87 -824.46 -164.53

H3−H4 -1.40 -1.40 -1.40 H3−H4 -17.84 -30.31 -17.43

H3−F5 -24.53 -24.79 -24.54 H3−Be6 -2.46 -2.45 -2.47

H3−F6 -3.64 -3.70 -3.52 CH3BH2
F5−F6 -4.61 -4.60 -4.60 C1−B2 -361.03 -496.34 -362.60

trans−C2H2F2 C1−H3 -826.73 2.48×105 -745.50

C1−C2 -1304.91 -3.87×105 -1345.33 C1−H4 -834.27 6.39×104 -762.61

C1−H3 -811.92 -540.92 -747.51 C1−H6 -66.37 -68.63 -68.96

C1−H4 -16.93 -15.04 -15.72 B2−H3 -6.72 -6.70 -6.71

C1−F5 -603.33 -5.67×103 -611.80 B2−H4 -4.08 -4.11 -4.11

C1−F6 -54.31 -56.04 -53.69 B2−H6 -376.42 -1.85×104 -349.54

H3−H4 -1.37 -1.38 -1.38 H3−H4 -17.11 -25.73 -16.68

H3−F5 -24.82 -25.10 -24.84 H3−H6 -2.04 -2.04 -2.04

H3−F6 -3.66 -3.72 -3.53 H4−H5 -15.65 -21.75 -15.36

F5−F6 -4.71 -4.69 -4.69 H4−H6 -2.82 -2.81 -2.81

CH2FOH H4−H7 -2.11 -2.10 -1.72

C1−O2 -595.20 1.19×103 -613.00 H6−H7 -66.83 -69.51 -65.42

C1−F3 -515.50 80.74 -529.59 CH3CH2F
C1−H4 -784.72 -1.93×104 -724.78 C1−C2 -776.25 -808.13 -790.31

C1−H6 -3.15 -3.08 -3.12 C1−F3 -34.45 -36.53 -36.63

O2−F3 -84.54 -94.13 -94.16 C1−H4 -818.55 5.40×104 -748.07

O2−H4 -29.48 -29.36 -29.61 C1−H5 -820.78 7.25×104 -749.52

O2−H6 -511.47 -2.86×105 -465.17 C1−H7 -14.33 -14.45 -14.31

F3−H4 -31.06 -31.02 -31.26 C2−F3 -546.94 10.18 -558.24

F3−H6 -5.11 -5.18 -5.19 C2−H4 -17.73 -17.99 -17.87

H4−H5 -11.89 -13.77 -11.64 C2−H5 -15.64 -15.90 -15.82

H4−H6 -0.47 -0.47 -0.47 C2−H7 -804.65 2.30×105 -740.40

CH3CF3 F3−H4 -2.92 -2.90 -2.90

C1−H2 -818.30 8.69×104 -746.71 F3−H5 -3.47 -3.54 -3.54

C1−C5 -735.49 -846.24 -758.72 F3−H7 -31.02 -31.13 -31.29

C1−F6 -31.84 -33.40 -33.56 H4−H5 -15.48 -21.10 -15.16

H2−H3 -13.27 -16.44 -13.01 H4−H7 -1.07 -1.06 -1.06

H2−C5 -16.37 -16.79 -16.80 H5−H6 -15.14 -20.32 -14.82

H2−F6 -2.55 -2.53 -2.53 H5−H7 -1.18 -1.17 -1.17

H2−F7 -3.45 -3.53 -3.21 H5−H8 -2.08 -2.08 -4.90

C5−F6 -469.52 -792.76 -488.98 H7−H8 -13.54 -17.74 -13.22

F6−F7 -83.69 -93.89 -93.53
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Table 11: Representative xc interaction energies (kJ/mol) for the systems of figure 25

(cont).

A−B (VAB
xc )lr,cdq (VAB

xc )lr VAB
xc A−B (VAB

xc )lr,cdq (VAB
xc )lr VAB

xc
CH3CH2Li CH3NH2

C1−C2 -789.95 9.49×103 -798.97 C1−N2 -740.43 1.21×103 -753.96

C1−Li3 -1.66 -1.67 -1.67 C1−H3 -806.63 1.18×104 -740.54

C1−H4 -810.07 1.51×105 -743.11 C1−H4 -809.44 9.59×104 -741.04

C1−H5 -815.31 2.79×105 -746.34 C1−H6 -6.68 -7.10 -6.60

C1−H7 -21.37 -22.48 -21.68 N2−H3 -29.22 -29.36 -28.96

C2−Li3 -100.43 -554.91 -96.79 N2−H4 -27.42 -27.66 -27.76

C2−H4 -19.31 -36.64 -18.43 N2−H6 -770.22 1.45×106 -707.83

C2−H5 -18.60 -13.76 -18.54 H3−H4 -16.11 -21.94 -15.75

C2−H7 -838.53 3.78×106 -767.82 H3−H6 -0.59 -0.58 -0.58

Li3−H4 -0.57 -0.57 -0.57 H4−H5 -15.88 -22.49 -15.48

Li3−H5 -0.16 -0.16 -0.16 H4−H6 -0.62 -0.61 -0.61

Li3−H7 -1.98 -1.98 -1.96 H4−H7 -1.91 -1.90 -1.77

H4−H5 -18.94 -36.17 -18.51 H6−H7 -5.87 -16.69 -5.67

H4−H7 -1.59 -1.57 -1.57 CH3OH
H5−H6 -19.74 -36.04 -19.25 C1−O2 -638.41 -187.46 -650.07

H5−H7 -1.26 -1.25 -1.25 C1−F3 -808.68 -6.14×103 -740.99

H5−H8 -2.65 -2.64 -2.64 C1−H4 -804.40 2.53×104 -738.45

H7−H8 -23.12 -97.48 -22.57 C1−H6 -3.79 -3.81 -3.78

CH3CLi3 O2−F3 -36.31 -36.22 -36.71

C1−H2 -806.90 4.89×105 -739.52 O2−H4 -29.92 -29.73 -30.14

C1−C5 -823.71 2.89×104 -839.98 O2−H6 -553.82 -3.09×105 -503.97

C1−Li6 -2.38 -2.42 -2.41 F3−H4 -15.27 -21.13 -14.92

H2−H3 -20.16 -63.55 -19.70 F3−H6 -1.32 -1.31 -1.32

H2−C5 -25.16 -33.67 -25.04 H4−H5 -14.69 -18.89 -14.35

H2−Li6 -0.65 -0.64 -0.64 H4−H6 -0.50 -0.50 -0.50

H2−Li7 -0.43 -0.43 -0.38 C6H6
C5−Li6 -135.99 -1.03×105 -123.94 C1-C2 -1043.99 -2.45×106 -1065.06

Li6−Li7 -1.34 -3.02 -1.29 C1-C3 -23.85 -26.79 -24.50

C1-C4 -22.49 -23.40 -23.40

C1-H7 -819.10 1.90×107 -756.10

C1-H8 -16.89 -18.55 -17.07

C1-H9 -1.73 -1.73 -1.73

C1-H10 -0.92 -0.93 -0.93

H7-H8 -1.84 -1.86 -1.84

H7-H9 -0.21 -0.21 -0.21

H7-H10 -0.05 -0.05 -0.05
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Figure 29: Relative errors, [(VAB
xc )method − (VAB

xc,exact)]/|V
AB
xc,exact|× 100, for the 1− 2, 1−

3, and 1− 4 interactions of the molecules represented in figure 25. Empty
circles, bold circles, and triangles stand for (lr,cd), (lr,cdq), and lr calculations,
respectively.
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interaction energies reproduce very well the exact values. As we can see in
figure 29 most of the 1−2 interactions have relative cdq errors 6 10%. This
improves for the 1−3 and 1−4 interactions.

A summary of our results for the saturated hydrocarbons CnH2n+2 (n =

2− 5) is presented in graphical form in figure 30. We find the surprising result
that all 1−2 C−C cdq interactions are predicted with errors 6 2% while the
cdq energies between the more distant 1−3 C−C pairs have errors about 5−6%.
Nevertheless, the interactions between even more distant C−C pairs turn again
to be calculated quite accurately (errors < 1%) in the cdq approximation. The lr
approximation fails completely to predict the 1−2 C−C interactions, but yields
negligible errors for the 1−3 xc interaction energies. With regard to the C−H
interactions, the situation is the opposite of that found for the C−C pairs: 1-2
C−H cdq errors are about 9-10% (except in ethane where the error is unusually
large (54%)) whereas all except two of the 1-3 C−H cdq errors are < 1%. For
these two exceptions the error is not too large (∼ 1.3%). We observe in figure 30

that the cdq approximation improves considerably the cd results, giving 1-3
C−H interaction energies almost as accurate as the lr ones. Another surprising
result in these systems concerns the cdq 1−3 H−H interactions: Contrary to
what happens almost systematically, the cdq results are worse than the cd ones,
albeit the relative errors in both approximations are acceptable (∼ 2− 3%).

We have considered staggered ethane as a representative example to analyze
the correlation effects on the VAB

xc energies. Our results for five representative
AB pairs of this molecule are collected in table 12. Correlation decreases (in-
creases) the magnitude of the C-C interaction (H-H interactions), changes very
little VCH

xc when C belongs to a CH3 group and H to the other, and enhances
the intra-group VCH

xc energies. The discussion of the above paragraph for the
RHF results is still approximately valid for the correlated calculation. With
the exception of inter-group H-H interactions, the cdq xc energies are closer to
the exact VAB

xc values than their full multipolar approximations (VAB
xc )lr. As in
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Figure 30: Relative errors, [(VAB
xc )method − (VAB

xc,exact)]/|V
AB
xc,exact|× 100, for the 1− 2 (left)

and 1− 3 (right) interactions of the molecules represented in figure 26.
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Table 12: Comparison of RHF and CAS[14,14] xc energies (kJ/mol) for staggered
C2H6.

RHF CAS[14,14]
(VAB

xc )lr,cdq (VAB
xc )lr VAB

xc (VAB
xc )lr,cdq (VAB

xc )lr VAB
xc

C1−C2 -781.87 -870.42 -790.68 -625.88 -723.66 -639.75

C1−H5 -821.98 8.93×10
4 -533.05 -686.06 8.17×10

4 -618.64

H3−H4 -16.75 -24.11 -16.38 -25.06 -32.82 -24.75

C1−H3 -16.21 -16.55 -16.26 -16.62 -16.75 -16.55

H3−H6 -2.32 -2.32 -2.32 -3.10 -3.10 -3.10

many of the HF 1−2 interactions, the lr approximation fails to predict even a
reasonable value for the C1−H5 xc energy.

The different behavior of the lr and cdq approximations can be further illus-
trated with the case of the phenol dimer (figure 27). For this system, the rel-
ative errors versus the interatomic distance RA−B in these two approximations
are plotted in figure 31, both for intra-molecular and inter-molecular atomic
pairs. Only two points, associated to intra-molecular interactions, have a rel-
ative error (absolute value) > 20% in the cdq calculation, while the error for
all the lr points with RA−B < 2.64 (most of them associated to intra-molecular
pairs) is larger than 20%. However, for RA−B > 5.0 the lr approximation gives
quite accurate xc interaction energies for all the pairs, whereas cdq errors are
still important.

However, there is a general problem of the lr approximation that deserves to
be commented: equation (5–15) does not necessary converges to the exact xc
interaction for large l1m1 and l1m1 values. This fact is illustrated in figure 32,
where the xc energies for some of the atomic pairs of the molecules in figure 25

are represented versus lmax
1 + lmax

2 . The lr approximation suffers a systematic
error in the C1−F6 interaction of cis-CH2CF2 and trans-CH2CF2 molecules,
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Figure 31: Relative error of the cdq (left) and lr (right) calculations for the phenol-dimer
(C6H5OH· · ·C6H5OH). Only two (2) points are out of the ordinate scale in
the cdq calculation, while all the points (26) with RA−B < 2.64 bohr are out
of the ordinate scale in the lr calculation.
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Figure 32: Convergence of the A− B interactions indicated in the figure. The pairs i, j
correspond to the labels of figure 25
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Figure 33: Convergence of 1− 2 interactions in the H2O−H2O, HF-HF and NH3−NH3
dimers.
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regardless the value of lmax
1 + lmax

2 . In the case of trans-CH2CF2 the C1−F6 xc
interaction energy shows an oscillating behavior around an (erroneous) mean
value. This pattern has been also observed in other cases. Contrarily, as we
have repeatedly said in this section, catastrophic lr interactions (see, for instance
figure 32) are still reasonable provided that the sum l1 + l2 is interrupted at a
value approximately in the interval 2 6 l1 + l2 6 6.

This simple analysis shows that conclusions on the convergence of the mp
expansion drawn exclusively from limited L = lmax

1 + lmax
2 + 1 data cannot be

trusted. Figure 33, where the (VAB
xc )lr energies for some 1− 2 interactions of the

H2O−H2O, HF-HF and NH3−NH3 dimers are shown, illustrates this fact in a
crystal clear way. Cutting the mp expansion at L 6 8 the oscillatory behavior of
figure 32 would have been found indeed, but no catastrophe for larger L values
would have been predicted. However, for L > 8 the mp expansion progressively
deteriorates and for high L values the (VAB

xc )lr energies diverge. Again, the
cdq approximation works fairly well, with all the 1− 2 interactions in figure 33

predicted with relative errors smaller than 3% except F1−H2 (3.2%) and F3−H4
(5.2%).

Summarizing, we have shown that the multipole series for the interatomic
xc energies is conditionally convergent, and that the computational burden of
the quasi-exact calculation of Vxc when general QTAIM domains are used may
be ameliorated by retaining up to quadrupole-quadrupole terms. With this
approximation, reasonable errors are obtained in the medium- to long-distance
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Figure 34: Comparison of all the exact VABxc values considered in this work to the
monopole-monopole (small circles) and cdq approximations (large circles)
in a logarithmic scale.
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range, sometimes even for directly bonded interactions. An overall image of
the improvement of the cdq approximation over the cc (monopole-monopole)
one can be grasped from figure 34 that condenses all our calculations that span
a six orders of magnitude range for Vxc.

We have explored numerically the degree of fulfillment of the linear relation
between VAB

xc and δAB/(2R). Assuming VAB
xc ' −a[δAB/(2R)] + b, we have de-

termined a and b for each molecule by fitting the computed values of VAB
xc and

δAB for every AB pair of this molecule to the above expression, verifying that
b is always very small and a takes values relatively close to (but smaller than)
1.0. As representative examples, (a,b) for the H2O-H2O, NH3-NH3, and HF-
HF dimers are (a,b) = (0.8988,−0.0005), (0.8673, 0.0000), and (0.9150,−0.0010),
respectively. This result opens another possible route to the approximate but
much cheaper computation of the xc interaction in those cases where the exact
calculation is prohibitive or very expensive. An extensive analysis of this corre-
lation in anion-π interactions which corroborates the above statement has been
carried out by Foroutan-Nejad et. al. [13, 48, 132]
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5.5 conclusions
We have shown that the interatomic exchange-correlation energies used in

real space theories of chemical bonding, which measure the covalent contribu-
tion to a given interatomic interaction, can be approximated via a conventional
multipole expansion. Rigorously, the series diverges when atoms are directly
bonded, although it may be regarded asymptotically convergent. Truncation of
the series up to l1 + l2 = 2 (including up to charge-quadrupole interactions)
tends to provide results which are accurate to a few percent in 1-n, n > 2 inter-
actions, and even to about 10% in many 1-2 directly bonded cases. In the n > 2
case the series converges in many cases, and including extra terms provides fur-
ther accuracy. On the contrary, the consideration of larger l contributions in 1-2
interactions tends to seriously deteriorate the results. Since the computational
burden needed to calculate the multipole series is considerably smaller than
that of the exact bipolar expansion, our results may be important to estimate
covalent interactions in those cases where exact integrations are not feasible.
They can also be used to ameliorate the computational cost in IQA decompo-
sitions of large systems, where many expensive, but small long-range xc terms
can now be safely approximated without loss of precision.
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146 a chemical view of the localization tensor

While the modern theory of the insulating state shows that the conducting
or insulating properties of a system can be extracted solely from ground state
properties via the so-called localization tensor (LT), no chemical reading of this
important quantity has ever been offered. Here, a remarkable link between the
LT and bond orders as described by the delocalization indices (DIs) of chemical
bonding theory is reported. This is achieved through a real space partition of
the LT into intra- and interatomic contributions. We show that the convergence
or divergence of the LT in the thermodynamic limit, which signals the insu-
lating or conducting nature of an extended system, respectively, can be nailed
down to DIs. This allows for the exploitation of traditional chemical intuition to
identify essential and spectator atomic groups in determining electrical conduc-
tivity. The thermodynamic limit of the LT is controlled by the spatial decay rate
of the interatomic DIs, exponential in insulators and power-law in conductors.
Computational data in a few selected toy systems corroborate our results.

6.1 introduction

As the technological demand of smart, functional, or taylored materials in-
creases, so does the need for understanding the basic physics behind their
sought-after properties. In many cases this search has led to explore the new
dimension that the dependence of physical properties on size introduces at the
nanoscale. For instance, the predicted demise of Moore’s law [189] has stirred
up the development of new quantum-mechanically operated devices like the
single electron transistor [57]. Similarly, new fields such as molecular elec-
tronics have become hot topics producing thousands of specialized papers [40].
Despite much work, the building of new physical or chemical intuition that
may guide future research beyond that coming from brute force case-by-case
simulation has proven much more difficult. In crystal engineering, as an exam-
ple, although the situation is now much better than 20 years ago, we are still
far from mastering the rules to synthesize on-demand crystal structures [43].

Regarding electrical conductivity at the nanoscale, much work has been de-
voted in molecular electronics to quantitatively simulate electron transport in
single-molecule junctions [188], and some rules regarding the factors that gov-
ern their conductivity have emerged. However, despite the efforts, no simple
chemical rules linking molecular structure and molecular conductivity have
been found todate [40]. Since, in the end, all newly developed nanodevices
depend on the chemical synthesis of taylored molecular fragments, we believe
that finding simple chemical indicators of facile electronic transport or conduc-
tivity is an important goal with possibly major outcomes.

A guiding principle in this quest may be taken from the naïve chemical asso-
ciation between conductivity and electron localization and delocalization. Key
concepts in chemistry like conjugation, resonance, aromaticity, etc, are noth-
ing but different incarnations of electron localizability. However, standard
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approaches coming from the theory of chemical bonding (TCB) are almost
inevitably linked to the one-particle molecular orbital (MO) theory [69], and
molecular conductivity tends to be interpreted in terms of excitation gaps, i.e.
HOMO-LUMO energetic differences, instead of as a ground state property that
could be transformed into the sought conductivity indicators. Fortunately, a
new paradigm in TCB has emerged in the last few decades [10] that defines
(and explores) chemical objects in real space from orbital invariant densities (or
density matrices). These techniques, collectively known as quantum chemical
topology (QCT) [154], analyze the wave function of a system, and use mean-
ingful fields to partition the physical space into regions or domains associated
to: atoms, through the one particle density in the quantum theory of atoms in
molecules [10] (QTAIM); cores, lone, and bonding pairs, through the electron lo-
calization function[174] (ELF) or the electron localizability indicator [90] (ELI),
etc. Once the real space objects are defined, indicators are obtained at well-
defined points, usually the critical points of the defining field, and the global
expectation values of operators are divided into domain contributions. This al-
lows, for instance, for a rigorous real space partitioning of the energy into intra-
and interatomic components (the interacting quantum atoms approach [21],
(IQA) much in the spirit of the atomistic ansatz. QCT, well-known in quantum
chemistry, is slowly entering condensed matter physics.

Early attempts that tried to link the conductivity features of a molecular
system with its electron density failed [31]. This comes as no surprise, since
conductivity leaves no simple scars on the density. Fortunately, QCT domain
expectation values are based on physical observables, so QCT provides an open
door to connect the physicist’s and the chemist’s intuitions, which tend to live
in separated worlds. This is not easy to do in other TCB approaches. In this
regard, a rigorous formalism coupling the insulating or conducting nature of
an extended system with ground state properties exists [88]. Although not well
known in the chemical literature, Kohn’s theory of the insulating state does the
job. It is electron (de)localization that explains conductivity, quantified by an
object called the localization tensor (LT).

Thanks to QCT and its rigorous partitioning of quantum mechanical expecta-
tion values into atomic or functional group contributions, we find and explore
here a remarkable bridge between the LT and the standard bond orders of
chemistry, as defined in their real space manifestation known as delocalization
indices (DIs). It is the rate at which bond orders decrease with distance that
determines whether a system will or will not be conducting in the static ther-
modynamic limit. Since we can examine straightforwardly the behavior of DIs
among atoms or functional groups in several dimensions, we expect our results
to be useful in building new conductivity chemical rules.
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6.2 the modern theory of the insulating state
and the assessment of conductivity via
the localization tensor

A seminal work by W. Kohn in 1964 [88] showed for the first time how the
insulating nature of a system could be understood as a consequence of electron
localization in the ground state, and not only from the properties of its exci-
tation spectrum. However important, this line of reasoning remained largely
unexplored until the end of the 1990’s, when Resta revisited and generalized
it [160, 161, 163]. As emphasized by this author [162], it is the organization of
electrons in the ground state that renders a system insulating or conducting. A
central object that quantifies Kohn’s localization in an N electron system is the
localization tensor, λ or LT. It is defined as the second cumulant moment, per
electron, of the total electronic position operator R̂ =

∑N
i r̂i.

λ =
1

N

{
〈Ψ|R̂⊗ R̂|Ψ〉− 〈Ψ|R̂|Ψ〉 ⊗ 〈Ψ|R̂|Ψ〉

}
. (6–1)

We will use in this work bold fonts to indicate vectors or tensors, depending on
the context, and the ⊗ symbol for tensor or cartesian products. As an example,
the cartesian components of the r⊗ r tensor are (r⊗ r)αβ = xαxβ.

One of the most important results of Resta’s reformulation lies in the link be-
tween the behavior of λ in the thermodynamic limit and electrical conductivity:
the λ tensor, that measures the quadratic fluctuation of the polarization of the
system, and that was initially used by Kudinov [95], has a well-defined thermo-
dynamic limit, diverging for conductors while remaining finite for insulators.

We will just provide, for consistency, a few ideas that may guide the informed
reader about the origin of such a unique property. It stems from the fluctuation-
dissipation theorem [176], that allows to prove [162] first that

λ =
 h

πe2N

∫∞
0
dω Imα(ω), (6–2)

where α(ω) is the frequency dependent linear polarizability tensor. From this,
if periodic boundary conditions are imposed, it can also be proven that

λβγ = δβγ
 hV

πe2N

∫∞
0
dω

Reσ(ω)

ω
, (6–3)

σ being the frequency dependent electric conductivity. For conducting sys-
tems, with non-vanishing Reσ at zero frequency, the diagonal components
of λ diverge. These diagonal values can also be understood as localization
lengths [176], and they are related to the optical gap Eg by λαα 6  h2/(2meEg).

Simple manipulations, already put forward by Resta [162], allow to recast the
LT in terms of the first order, ρ(r1), and the second order, ρ2(r1, r2), spinless
densities introduced in section 1.3.1.
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Using the exchange-correlation density, the part of the pair density contain-
ing the quantum mechanical effects due to the antisymmetry of the wavefunc-
tion, ρxc(r1, r2) = ρ(r1)ρ(r2) − ρ2(r1, r2), and defining the interparticle posi-
tion vector r12 = r1 − r2, λ may be written in an explicitly origin independent,
symmetrical form. As we show in the ESI, after some algebraic manipulations,

λ =
1

2N

∫
dr1dr2 (r12 ⊗ r12) ρxc(r1, r2). (6–4)

6.3 a bridge between conductivity and the
theory of chemical bonding

Being Chemistry the science of the interactions among electrons (or atoms,
made from them and nuclei), it is not surprising that ρxc, that collects all non-
classical behaviour in the pair-density, is emerging, slowly but steadily, as one
of the pillars in the modern TCB. Similarly, having shown that electrical conduc-
tivity is related to how electrons localize or delocalize, it is also expectable that
the former be related to chemical bonding measures of electron delocalization.
Undoubtedly, the latter have a rather long history in TCB.

In the present context, Bader and Stephens [9] already proposed in 1974 that
the interatomic integration of ρxc measures the number of pairs of electrons
shared between two atomic regions, and named this quantity the delocalization
index (DI),

δAB = 2

∫
A
dr1

∫
B
dr2 ρxc(r1, r2). (6–5)

Here A,B are the spatial regions associated to the two atoms (or fragments)
under scrutiny. A similar A,A integral, the localization index, determines the
number of localized electrons in a region. The DI provides the fluctuation of the
electron population in the A,B regions, being also a real space generalization
of the standard MO Wiberg-Mayer bond order [119, 190], which physicists still
use, in their majority, in its even cruder Mulliken flavor. In energetic terms, the
interatomic exchange-correlation energy,

EABxc =

∫
A
dr1

∫
B
dr2

ρxc(r1, r2)
r12

(6–6)

has been shown to correspond to the covalent part of the interaction between
the regions [109]. Besides these two direct links, a growing body of evidence
is showing the relevance of ρxc-based indices in TCB [65], explaining facts
as the nature of chemical interactions from DI profiles [65], or rationalizing
stereolectronic effects [144]. As we are going to show, it is the innocent concept of
bond order, a must in every freshman chemistry course, that stores information about
electrical conductivity.

A couple of recent studies [61, 62], had already started to show that DIs
encode information about the insulating or conducting nature of a system
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through their spatial decay rate: in metals we find an algebraic oscillatory
decline with interatomic A − B distance, while in insulators their fall off is
exponential. Consideration of strongly correlated cases [62], evidences that DIs
are also suitable generalizations of the double occupation order parameter D

used in Hubbard models to signal metal-insulator transitions, and that they re-
veal how mesomeric effects in alternant hydrocarbons are deeply linked to the
oscillatory pattern that leads to conductivity in the thermodynamic limit. An
increase in the electron correlation strength (by increasing the Hubbard U/t pa-
rameter or equivalently by substituting carbon by heavier elements) eventually
destroys the oscillations, pointing toward an active effect of electron correlation
in chemistry, e.g. to smaller mesomeric effects in the heavier analogues of al-
ternant hydrocarbons. Even more importantly, the decay of these indices may
be followed along specific bond chains, directions, or along a combination of
both. One needs only choose appropriately the domains in the A,B pairs. This
provides a quantitative tool in the discovery of low dimensional conductors.

6.3.1 The localization tensor in finite molecules

In the last few years, several works by Leininger, Evangelisti and cowork-
ers [29, 44] have examined the role of λ in molecular instead of extended sys-
tems. To that end, these authors have preferred to use the total second cumu-
lant, which they have called total position-spread tensor, Λ or TPS, and not the
per electron quantity. Even a spin resolved version has also been studied [45].

It has been shown that the TPS is very sensitive to bond stretching, becom-
ing large in the case of increased electron mobility. In simple diatomics, for
instance, its parallel component is small at equilibrium, it increases as the in-
teratomic distance is enlarged before achieving a maximum value close to the
bond breaking region, and it decreases again towards the free atomic value at
dissociation.

Although the TPS has been wellcome, adding to the battery of new chemical
bonding indicators at hand, its global character partially limits its applicabil-
ity. Its evolution in a possibly complex process will just average out the total
response of the system, even though some very restricted atomic or bond res-
olution might be achieved by following a particular component or projection
that isolates an important direction in space. In order to become a useful TCB
descriptor, this barrier needs be overcome to understand the origin of conver-
gence/divergence and the onset of conductivity as we approach the thermody-
namic limit.

6.3.2 An atomic partition of the TPS

Being the expectation value of a two-electron operator, QCT offers an imme-
diate solution to the problem: provided that a chemically meaningful division
of the space exists, we can space partition λ or Λ, just as it is done in the IQA
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approach. Without loss of generality, we present an atomic partition of the TPS
using the QTAIM. This can be made coarser (scaling it up to the functional
group or molecular level) or finer (to the level of atomic core, bond and lone
pair domains) at will. Another important point regards origin dependency,
which may bring trouble in the partitioning if direct use of Eq. 6–1 is made.
This difficulty is eluded by using the manifestly origin independent Eq. 6–4.

Let us start with an exhaustive partition of the physical space R3 =
⋃
A

into atomic regions. A rigorous, physically sound possibility is provided by
the QTAIM. Each of these regions or domains harbors a nucleus, at position
RA. Given the one-to-one correspondence between domains and nuclei, we
will label them interchangeably. Then,

Λ =
∑
A>B

ΛAB, (6–7)

ΛAA =
1

2

∫
A
dr1

∫
A
dr2 (r12 ⊗ r12)ρxc(r1, r2),

ΛAB =

∫
A
dr1

∫
B
dr2 (r12 ⊗ r12)ρxc(r1, r2).

Notice that the above expressions provide a chemical partition of the TPS (or
the LT if we divide by N).

The intra-atomic ΛAA terms must tend to their free atomic values ΛAA0 as
the molecular system is pulled apart into atoms. Recalling that∫

dr1dr2ρxc(r1, r2) = N,

it is well known that the localization index of region A,

NAA =

∫
A
dr1

∫
A
dr2ρxc(r1, r2),

defines the number of localized electrons in region A, so that ΛAA measures
the interelectron spread of these localized electrons in the atomic region, be-
having grossly as ΛAA ∼ (NAA/2)〈r212〉A. The intra-atomic contributions to
the TPS are thus additive and size extensive, and their sum is clearly seen
through this partition to provide a term that scales linearly with the size of the
system (or the number of electrons) as we approach the thermodynamic limit.
An important corollary is that the root of any divergence in the LT will not
be found in these intra-atomic components (see below). As it happens with
other intra-domain expectation values in QCT, ∆ΛAA = ΛAA −ΛAA0 reflects
the local change in interelectron spread due to chemical bonding and, except in
very specific cases, like those in which a large charge transfer occurs, we expect
these ∆ΛAA’s to be small.

The interatomic ΛAB contributions are much more interesting, for they di-
rectly measure the change in the interelectron spread due to the delocalization
associated to the formation (or breaking) of a particular bond. From chemical
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intuition, two spatially separated non-bonded atoms will display a vanishing
ΛAB value. Most, if not all, of the interesting behavior of Λ is then to be found
in these terms. Notice that when two separated entities interact the ΛAA com-
ponents are non-vanishing at full-separation, changing upon interaction, but
that the ΛAB value is zero at infinite separation, sensing directly the interac-
tion process.

6.3.3 How does ΛAB decay with distance?

Taking into account that A and B are two non-overlapping regions of space,
the behavior of ΛAB as the two centers move away from each other is deter-
mined by the decay rate of ρxc with interelectron distance and the RAB =

RA − RB distance itself. Provided that the two electron coordinates satisfy
r1 ∈ A and r2 ∈ B, we may refer them to their local nuclear reference frames,
respectively: r1 = RA + u1, r2 = RB + u2. With the above, the dependency
of ΛAB on the internuclear distance is explicitly separated. Let us define
u12 = u1 −u2, and the local integrals

I =

∫
A
du1

∫
B
du2 (u12 ⊗u12)ρxc(r1, r2),

J =

∫
A
du1

∫
B
du2 u12 ρxc(r1, r2), (6–8)

that may also be written in terms of spatial moments of the domain averaged
Fermi holes introduced by R. Ponec [152], which have been successfully used in
the last years to reveal many interesting effects in chemical bonding [53]. With
these, we may write

ΛAB = I+RAB ⊗ J+ J⊗RAB +
1

2
(RAB ⊗RAB)δAB. (6–9)

The first term contains only local distances, roughly decaying as δAB itself,
and out of the three remaining terms, the one leading the long-range behavior
is the third. Thus, at large interatomic distances ΛAB ∼ (RAB ⊗ RAB)δAB/2,
and the parallel component of Λ along the bond direction will scale as

ΛAB‖ ∼
1

2
R2ABδ

AB. (6–10)

This last important relation provides a new bridge between TCB descriptors in
the ground state and the Kohn-Resta theory of the insulating state.
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6.3.4 The chemical bonding origin of the convergence/divergence of λ

We can now turn to the convergence/divergence of λ in the thermodynamic
limit. An explicit effective one-center expansion of Λ may be immediately writ-
ten from our previous partition as

Λ =
∑
A

ΛA, ΛA = ΛAA +
1

2

∑
B 6=A

ΛAB. (6–11)

Notice that the atomic additivity of ΛA allows us to write

λ =
1

N

Nat∑
A

ΛA =
Nat

N
〈ΛA〉 = 〈Λ

A〉
n

, (6–12)

where 〈ΛA〉 is the average of ΛA over all the atoms comprising our system,
and n is the average number of electrons per atom, The divergence of λ in the
thermodynamic limit is equivalent to that of the average atomic-additive 〈ΛA〉.
Remarkably, the divergence of the LT can thus be nailed down to an atomic
property.

Further analysis opens new avenues in understanding the onset of conduc-
tivity from a chemical perspective. Several paths may lead to a divergent 〈ΛA〉.
For instance, all of the ΛA terms may diverge themselves, or only one or a few.
This analysis will identify essential and spectator atoms or functional groups in
complex conducting systems. Essential groups for conductivity will be those
for which ΛA diverges, while spectator groups will be characterized by conver-
gent ΛA. We think that this classification scheme can help identify replaceable
groups that will not change the basic conductivity properties of a system while
tuning their fine conductive properties.

For each divergent ΛA, our previous comments show that it will be the
interatomic sum,

∑
B 6=AΛ

AB, not the intra-atomic ΛAA, that will add to an
infinite result. It is the interplay between the dimensionality of the system and
the decay rate of δAB, that determines convergence. This binds the behavior of
λ to the decay rate of DIs, already explored [61, 62].

To keep our discussion as simple as possible, we will now continue our rea-
soning in one-dimensional systems, where these ideas are most easily apre-
hended. In 1D, whenever δAB decreases faster than δAB ' R−dAB, with d = 2,
then the

∑
B 6=AΛ

AB term will converge, and the contrary will make it diverge.
Similarly, the limiting d exponent is 3, 4 for 2- and 3-dimensional conductiv-
ity to occur, respectively. These results perfectly match the findings relating
the decay rate of the non-diagonal elements of the first order density in tight
binding models of metals, as shown by Taraskin [183, 184]. On the contrary,
exponentially decaying interatomic delocalization indices δAB will always lead
to insulating behavior, i.e. to convergent λ values. We would like to stress that
the transition from exponential to power-law δAB decay rates has already been
found to occur in computational studies of model systems [62].
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The following expressions summarize the core of our findings in the thermo-
dynamic limit:

• If δAB decays exponentially with RAB, λ converges.

• In a d-dimensional system, λ converges/diverges if δAB decays faster/s-
lower than R−(d+1)

AB .

We propose that low-dimensional, as well as bulk conductivity can be spotted
by examining the behavior of ΛAB along the appropriate directions, planes, or
3D regions, respectively.

6.4 exemplifying the usefulness of the Λ par-
tition

We are now in a position to show the new insights at work in a few toy
systems. We will first discuss two simple dissociation processes, H2 → H + H
and H2O → OH + H, where we will see how, and why, the final localization
of electrons in the products leads to a convergent λ, i.e. to insulating-like be-
havior. This will also make the essential role of electron correlation in correctly
capturing the physics of the system. Finally, the early stages in the birth of a
divergence, thus the switch towards metallic-like behavior, will be succintcly
analyzed in a linear chain of equally spaced hydrogen atoms. The electronic
structure calculations have been performed with the GAMESS package [166],
and the TPSs have been obtained for QTAIM atomic partitions through our
PROMOLDEN [107], code, which is able to handle quite a number of correlated
and non-correlated wave functions and several QCT partitions, not only the one
provided by the QTAIM. Details of the implementation of the TPS in PROMOLDEN

can be found in the ESI.

6.4.1 The dissociation of H2

First we discuss the H2 molecule (A = H, B = H ′), a paradigm of covalent
interactions. We have computed Λ at the Hartree-Fock (HF) and the configu-
ration active space (CASSCF) levels with the aug-cc-pVTZ basis set along its
dissociation coordinate. The results are contained in Fig. 35. Notice that the Λ
tensor is diagonal in any reference frame in which the internuclear distance co-
incides with one of the coordinate axes, and that rotational invariance equalizes
the other two orthogonal eigenvalues ofΛ. We will call these two different com-
ponents of Λ Λ‖ and Λ⊥, respectively. As already put forward by Resta [162]
and Leininger et. al. [29], mean-field and correlated descriptions of the dissocia-
tion process differ essentially. Interestingly, this qualitative differences are also
observed when the delocalization index is examined by itself [108].
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Figure 35: Total, intra-atomic, and interatomic components of Λ in the H2 molecule
at the HF (top) and CASSCF//aug-cc-pVTZ (bottom) levels along the inter-
nuclear dissociation coordinate. The parallel and perpendicular labels corre-
spond to the internuclear and orthogonal directions, respectively. All data in
au.
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Failure to consider electron correlation leads to a parabolic divergence of Λ‖
as the internuclear distance increases. Its origin cannot be grasped by solely
examining the full tensor, but its partitioning shows that, as expected, it is the
interatomic component, ΛAB‖ , that diverges. Through the eyes of our findings,

the parabolic behavior is due to an artificial non-vanishing δAB at infinite sep-
aration (the HF dissociation error). It may be instructive to recall that at the
Hartree-Fock level we may write for closed-shell systems

δAB = 4
∑
ij

SAijS
B
ij, (6–13)

where the sum runs over all pairs ij of occupied orbitals and SAij is an atomic
overlap integral,

SAij =

∫
A
dr φi(r)φj(r). (6–14)

As in H2 we have only one occupied HF orbital fulfilling SA11 = SB11 = 1/2 by
symmetry considerations, the bond order δAB = 1 at any RHH in this model.
This can be also interpreted as the result of the two opposite spin electrons
being statistically independent if no Coulomb correlation is added. The wrong
constant δAB leads to infinite-range delocalization, with an overall probability
of finding the two electrons in any one of the H atoms (the so-called ionic
weight in quantum chemical approaches) equal to 1/2 [52]. Eq. 6–10 does the
rest.

Proper inclusion of Coulomb correlation makes δAB decrease exponentially
at large distances [111], so that the bond breaks appropriately. Thus, in the
correct correlated description, the intra-atomic ΛAA components start at low
values close to equilibrium, increasing to the free atom limit. From Eq. 6–1,
it is clear that in this limit ΛAA is also diagonal and that each of its three
components is equal to 〈φ|r2|φ〉, where φ is the hydrogenic atomic orbital in
the state of interest. For the 1s ground state, 〈r2〉 = 3 au. so that 〈z2〉 = 1,
which is also the appropriate ΛAA limit at dissociation.

Many other features of the behavior of the intra-atomic components are easy
to rationalize. For instance, the lower value of ΛAA at small interatomic dis-
tances is understood straightforwardly, for the number of localized electrons
in each atom is in these conditions about 0.5, vide supra. It is also interesting
to notice that the intra-atomic ΛAA‖ value is smaller than its ΛAA⊥ counterpart,
this reflecting the compression of the atomic density along the internuclear axis
as we approach the two atoms from infinity. As also expected, it is the inter-
atomic ΛAB component that accounts for the sharp maximum in the total Λ
tensor. This maximum has been interpreted [29] as a signature of bond break-
ing. Under our present formalism, it is a simple consequence of the shift from a
power-law to an exponential decay in ρxc or δAB, i.e. from a quasi-independent
electron pair being stretched (as in the HF case) to the strongly correlated, lo-
calized dissociation limit. This transition, scaled by R2AB/2, gives rise to the
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maximum, that is found very close to the internuclear distance at which the
inflection point of δAB has been repeatedly described [62, 65].

6.4.2 The power of partitioning Λ: H2O → OH + H

We can now show how the global behavior of Λ, that contains the total
response of the system to a chemical process, may be split up into chemi-
cally meaningful terms. To that end we have chosen the H2O → OH + H
dissociation, with the OH1 distance taken as an intrinsic reaction coordinate.
Fig. 36 shows the evolution of ΛAB‖ along R(OH1) at the complete active space
CASSCF[8,8]//aug-cc-pVTZ level. This exemplifies the power of partitioning
Λ. As the OH1 distance is stretched, we see how there is a simple jump in
ΛOH2

‖ , while it is ΛOH1

‖ that behaves much as in the H2 case. The step from

lower to higher ΛOH2

‖ can be understood by taking into account that in the fi-
nal OH radical the number of delocalized electrons between the O and the H2

atoms has increased. In other words, since the OH2 bond order increases as the
H1 atom dissociates, ∆δOH2 > 0, so does ΛOH2

‖ . Only a partitioning of the TPS,
like the one devised here, will be able to isolate the main actors in complex
scenarios. With our tools, this seems to be at hand, and the strong link between
the essential interatomic ΛAB terms and the DIs is unveiled.

6.4.3 Recognizing the onset of conductivity: The H10 chain

Our next example will be a linear chain of 10 equally spaced H atoms com-
puted at the HF and full valence CASSCF levels with the 6-311G* basis set. At
the inter-hydrogen distance selected, R = 3.5 bohr, the HF model is starting to
fail, but it still provides a reasonable description of the electron system. We
examine how the interlectron spread propagates along a quasi-1D system, and
our goal is put on Eq. 6–11. Fig 37 shows how ΛAB‖ changes for all pairs in
which one of the atoms is fixed to be an end H. The first interesting point
is that in the mean-field HF approximation, ΛAB‖ decays with distance in a
well-developed slow oscillatory pattern. We have found a similar behavior ex-
amining DIs [61, 62].

Notice that, from the chemical point of view, these oscillations signal a clear
bond order alternation or mesomerism, precursor of a Peierls distortion (or
H2 dimerization). This has also been repeatedly described in previous liter-
ature: [65] delocalization indices in geometrically constrained systems inform
about the expected distortions when the constraints are released. As we find
here, the localization tensor yields similar sensible chemical information.

A power law fit of δAB to R−dAB gives d ≈ 2.5, close to the tight binding value
(d = 2.0). The sum in Eq. 6–11 achieves a very large value. The oscillatory
pattern in ΛAB‖ , as in the case of the DI, is a clear indicator of conducting-

like behavior. A second point regards the very quick saturation of ΛAB to the
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Figure 36: Interatomic components of Λ‖ in the H2O molecule at the
CASSCF[8,8]//aug-cc-pVTZ level along the internuclear O-H1 dissoci-
ation coordinate. All data in au.

R2ABδ
AB/2 leading term in the long range. Fig. 37 shows that our previous

theoretical insights are fully realized from actual computations. It is the decay
rate of DIs (i.e. the inter-center electron delocalization) that determines conduc-
tivity in the thermodynamic limit. Inclusion of electron correlation does not
make the oscillations disappear at this interatomic distance, but reveals how
the electrons are now much more localized, with a considerably smaller spread.
A similar fit now gives d ≈ 4.1, well above the metallic limit. Previously it was
shown that the oscillations disappear when we enter the dissociating, localized
regime, and that the DI decays exponentially in that case [62].

6.4.4 Insulator-like and conducting-like chains

We will finish our discussion by considering two real life one-dimensional
linear chains of equidistant atoms: (LiH)15 and Li10, with nearest neighbor
distances set to 3.0 and 5.818 bohr, respectively. We have used a HF/6-311G*
level that provides a simple, yet reasonable description of both systems. Fig. 38

shows relevant values for ΛAB‖ , that provide clear grounds for comparison: the

small values and the very quick decay of the interatomic ΛAB‖ values in an
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insulator like lithium hydride, and their much larger magnitude, slow decay,
and oscillatory behavior in the metallic-like chain.

6.5 conclusions
Summarizing, we have shown in this chapter that a remarkable bridge exists

between the Kohn-Resta theory of the insulating state, through the localiza-
tion tensor (or its total position spread tensor version in molecular systems),
and well known indicators used in the modern theory of chemical bonding as
bond orders. This has been achieved by partitioning the localization tensor in
intra- and interatomic components. An orbital invariant way to do so starts by
writing the LT in terms of reduced densities and then partitioning the space
into atomic regions according to quantum chemical topology. Convergence or
divergence of the LT in the thermodynamic limit , associated to insulating or
conducting electrical properties, depends exclusively on the decay rate of its in-
teratomic components. The latter are dominated by the chemical delocalization
index, a modern form of bond order. The chemistry of ground states and the
physics of conductivity become intertwined in this way. We expect this new
link to be useful in the search and design of low dimension conductors or insu-
lators, for the total LT can be written as a sum of atomic (or functional group)
components. Each atom or functional group in a system may thus be classified
as essential, if its contribution to the LT diverges, or an spectator, if it converges,
as electrical conductivity is regarded. We expect that this categorization can be
used advantageously in the rational design of new materials.
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7.1 introduction
The use of the molecular electrostatic potential (MEP) as a medium for pre-

dicting attractive and repulsive interactions between molecules has become part
of mainstream chemistry, being very common to find MEP maps depicted in
organic chemistry textbooks [? ]. The rationale behind those characteristic im-
ages that project the MEP on low density isosurfaces is that one can identify
nucleophilic and electrophilic regions — useful when predicting regioselectiv-
ity. Owing to the unique property of the potential to emphasize the effect of
nuclear charges in non-covalent interactions. Aside, this has its limitations, it
is possible only in those cases where polarization and charge transfer can be
neglected.

During the last decades plenty of works highlighted applications in molecu-
lar reactivity and host-guess recognition [? ? ]. However, very extensive use of
the MEP has been made on a more qualitative level. On this regard the topolog-
ical analysis [? ] provides a description of the electrostatic characteristics from
a reduced set of points in space without relying on the choice of an arbitrary
surface. The electrostatic potential is a one-particle observable, with physical
meaning, that is compliant with topological approaches. The characterization
of the MEP in molecular systems [59, 60, 97], headed by Gadre and coworkers,
gave rise to the first quantitative indices. Electronegativity and covalent radii,
two deeply rooted concepts in chemistry, can be recovered [151] by a formu-
lation in terms of the properties at critical points. Also, the domain of nucle-
ophilic and electrophilic influence zones was established with the partition of
space from the electrostatic potential [114]. Nevertheless, a full characterization
of the topology of the electrostatic potential is still far from being complete.

Besides, extended systems have been left apart in the development of the
electrostatic potential analysis. The inner crystal electrostatic potential (ESP)
could be particularly useful for designing new materials. It would be conve-
nient to connect the properties of the electrostatic potential with an elucida-
tion of structural stability. Electron diffraction experiments provide the ESP
of strongly bonded solids such as ionic [72] or covalent solids but molecular
systems, where the long range interactions stabilize the structure, cannot be
examined with this technique. For that purpose X-ray diffraction experiments
provide the density and from it we can obtain the ESP for a moiety that resem-
bles the properties of the solid. Up to now, few molecular crystals underwent
a topological analysis of its experimental electrostatic potential [28, 114].

High quality single crystals are needed to characterize electronic properties
in those systems. Crystal defects and undesired variations in the quality of
the structure factor amplitudes introduced by other experimental effects can be
overcome with the support of ab initio data. Of course, before such theoret-
ical predictions can be trusted, their accuracy in reproducing experimentally
determined data must be ascertained. The electrostatic potential of BTDMTTF-
TCNQ has been characterized experimentally, and is a good starting point in
this case. We considered appropriate the use of the electrostatic potential to
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Figure 39: btdmttf and tcnq chemical schemes. The charge transfer magnitude is unknown. It has been
previously approximated from multipolar parameters.

study an organic conductor in crystal phase with the aim of extending the
previous work by Mata et al. BTDMTTF-TCNQ follows the lead of other mile-
stone organic conductors like TTF-TCNQ and (TMTSF)2PF6 for being the first
organic metal and superconductor respectively. BTDMTTF-TCNQ has the re-
markable characteristic of being an almost pure 1D metal down to 26 K. Organic
conductors offer a series of advantages over the more traditional pure metals
that can be summarized into: easier manufacturing process; lower production
cost; more environmental friendly; and their mechanical flexibility can have
useful applications.

Our objective is to further investigate the topology of the ESP in the solid
state system BTDMTTF-TCNQ to understand its physical properties. BTDMTTF-
TCNQ belongs to a class of organic charge-transfer systems (that can be realized
as high conducting materials) for which most properties are determined solely
by the degree of charge transferred between the donor and acceptor molecules.
Controlling this variable would be a desirable capacity. The idea is to recognize
the interactions responsible of the resulting charge transfer to design new mate-
rials with desired properties. Above all, non-covalent interactions provide the
most important contribution to the binding energy in molecular solids. The ad-
ditional Coulomb and dipole contribution to the binding energy in this type of
compounds is better examined with the topology of the electrostatic potential.

First of all we will present what is known about its structure. The most stable
crystal phase at 130K has been characterized with single crystal X-ray diffrac-
tion. The structure belongs to a monoclinic space group type: C2/m with
molecules arranged as columns along the c axis. Each column has molecules
of only one type and is surrounded by other four of the opposite molecule (fig-
ure 40). They are not stacked at the same c elevation, they are displaced one
with respect to another, and there is a small angle (≈ 15o) between them. The
conductivity would take place after btdmttf–tcnq has undergone an excita-
tion to a state where BTDMTTF and TCNQ molecules have, formally, a positive
and a negative charge, respectively. (see figure 39). Holes move along columns
of donor molecules and electrons along acceptor columns (see figure ??). bis(thiodimethylene)–

tetrathiafulvalene
(btdmttf)
7,7,8,8–tetracyano-
quinodimethane
(tcnq)
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Figure 40: Schematic structure of btdmttf–tcnq.

A previous work on the system obtained net atomic charges from kappa and
multipolar model parameters. The results thereof [46] reported an estimate of
the charge transferred upon excitation (qCT ) around 0.7 e. However, that value
should be taken with care since those are models more tied to fit the experimen-
tal density than to define an atom in a molecule. Instead an integration over
topological basins would provide atomic charges with a quantum mechanical
grounding.

To design new materials with enhanced conductivity we need also to know
why there is charge transference. There are several questions that should be an-
swered: what electrostatic interactions are present? If there is any interaction
that plays a greater role than the others, how are they involved in the charge
transfer process? How one may hope to modify them to improve material’s
performance? Or how they stabilize the whole crystal structure? Again, a
topological analysis can shed light on this matter. Aside from the well studied
density, the electrostatic potential is the best suited to examine the increased
Coulomb and dipolar interactions. There is no evidence in the literature to
determine what interactions are present, how are they involved in the charge
transfer process or how they stabilize the whole crystal structure. In a prelim-
inary article that inspected the electron density map it remarked that most of
the charge transfered is concentrated in nitrogen atoms. And that the external
sulfur (S5) to C≡N triple bond interactions as the main charge transference
pathways. Again, a topological analysis can shed light on this matter.

We will take advantage of electron density, electron density Laplacian, and
electrostatic potential topology.

7.2 theory

As a novelty we will contrast the basins of the density and the electrostatic
potential to gain more insight about the charge transfer. In this respect, ESP
basins reflect the deformation, and expansion/compression, inflicted by elec-
trostatic interactions with the environment to the charge distribution of the
reference, neutral, spherically symmetric, isolated atoms that originally fulfill
the whole space. They do not display charge transfer effects, only the defor-
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mation. Although this perspective introduces an arbitrary reference state (it is
not known if it should be the ground state or not) it might be a useful point of
view to get qualitative information of the behavior of the atoms. As opposed
to the electron density basins, ESP basins contain the same charge as the iso-
lated atom. When we switch from the ESP basin to the density basin we travel
between two images of an atom include the effect of charge transfer.

Assuming that the electron density and electrostatic potential zero-flux sur-
faces are related by a scaling function, that is, basins of same shape but of
differing size, the space enclosed by both surfaces allows us to localize atom
averaged partial charges. If ΛA ⊂ ΩA (anion) is satisfied then:∫

ΩA\ΛA

ρ(r) = δ−A (7–1)

Otherwise if ΩA ⊂ ΛA (cation) then:∫
ΛA\ΩA

ρ(r) = −δ+A (7–2)

The potential due to a charge ρ outside of the charge distribution is much
simpler to evaluate if we consider the contribution of those basins. The conver-
gence issue is ameliorated.

7.3 methodology
DFT calculations were performed with a plane-wave basis set using pseu-

dopotentials that adopt the all-electron projector augmented wave (PAW) method [22].
We used the hybrid HSE06 functional [94] as implemented in the Vienna ab ini-
tio package (vasp) [93] to account for corrections of the van der Waals forces.
The plane wave cutoff was set to 520 eV and the reciprocal space mesh was
4×4×6 to achieve a good compromise between available resources and high
accuracy. Experimental cell parameters and atomic coordinates from previous
experimental charge density refinements [47] were used as input for the vasp

calculation and were later optimized (a =).
The experimental charge density was acquired applying a multipolar pseudo-

atom model [77] with the mopro suite [74, 86? ]. The labeling of non equivalent
atoms is presented in figure ??. Starting from the density, one can proceed
to evaluate the electrostatic potential. The accuracy of the resulting potential
depends on the level of approximation used for the charge density.
MoProViewer and critic2 [135, 138] allowed us to analyze critical points and

integrate electron density basins. For the experimental densities, since the mul-
tipolar parameters are fitted against the density our approach consists in se-
lecting a moiety, contributions from other atoms to the density are neglected.
We are analyzing atoms isolated but the multipolar parameters are those of
the crystal. Appendix ?? explains the steps followed for the construction of
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the pseudo-isolated molecules. However, some density and electrostatic poten-
tial basins of isolated molecules are open. The choice of a cluster of an ion
embedded inside its nearest neighbors solves the problem.

We identified more (3,-1) critical points in the optimized geometry than in the
experimental geometry that are equivalent to those resulting from the Hansen-
Coppens density. So we choose the former geometry from now on to realize
comparative studies.

Basin integrations were performed using both Yu-Trinckle [191] and Henkel-
man [78, 182? ] algorithms, releasing quite the same values, being the Yu-
Trinckle integration a little more accurate. The integration of electron density
basins was quite reasonable, in close agreement with experimental charges.

Taking into account that the shape of the electrostatic potential of a molecule
should equal roughly that of a solid in the internuclear region it was found
that the electrostatic potential that vasp exports does not satisfy this condition
for unknown reasons. On the other hand quantum espresso [68] outputs a
potential that obeys the stated condition. There is no HSE06 functional avail-
able in quantum espresso but the electrostatic potential is obtained from the
density and this one is not very much affected by the functional of choice.
If we consider HSE06 as a perturbation of PBE, according to Wigner’s rule,
only second order corrections to the energy affect to first order to the wave-
function and thus the density. We studied the electrostatic potential calcu-
lated with quantum espresso that contains corrections to van der Waals forces
(PBE [149]+XDM [19]).

The quality of φ(r) basin integrations has been tested by checking the value
of the integrated density within the φ-basins, which must be 0. For each atom
the basin charge was smaller than 8×10−2 e, indicating that only modest errors
are present in the integrated properties.

We choose atomic units except when otherwise stated.

The way to obtain the electrostatic potential is either from X-ray diffraction
experiments or from ab initio calculations. We cannot obtain directly the elec-
trostatic potential as a Fourier transform of the structure factors because the
ESP has a singularity when the reciprocal vectors are 0. We can’t obtain the
zero potential. So, we no longer talk about the electrostatic potential of the
whole solid, instead we take a moiety of the crystal and from the density of
that moiety we obtain the electrostatic potential. We analyze so-called pseudo-
isolated molecules. Nevertheless the parameters are those of the crystal. It is
shifted by a constant but it is not important because we are interested in CPs,
in relative values.

We will analyze several pseudo-isolated molecules: a) each molecule pseudo-
isolated b) several dimers to find out what interactions stabilize the structure c)
and finally a cluster of each molecule embedded inside its nearest neighbors to
achieve closed basins.
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7.4 results and discussion

7.4.1 Intramolecular interactions

When electrons are promoted from donor molecules to acceptor molecules,
the cations are stabilized by two resonant structures, one of them is proposed
to be more stable due to 4n+ 2π electrons located in its cycle. That structure
has internal sulfurs (S2) with sp2 hybridization. Does it happen the same in
this structure? The ratio of electron density field curvatures at bcps, ellipticity,
is used as an indicator of the π character of those interactions.

Property values at (3,-1) critical points of btdmttf are collected in table 13.
The low values of the density at the bcps (S2–C1, S2–C3, S5–C4) emphasize the
identity of sulfurs as elements isolated from the rest of the molecule. External
sulfurs are more isolated than internal sulfurs. The Laplacian is negative indi-
cating that it is a covalent interaction, but the small values indicate that they
are close to a non covalent interaction. The electrostatic interaction component
is also smaller than other interactions present in the molecule.

The only one interaction with a significant π character is C3-C3’. We see that
the original double bond C1-C1 of the neutral btdmttf has disappeared.

Nor the internal neither the external sulfur present any π bonding character.
It suggests that both have sp3 hybridization.

The analogy of bcps and ebcps is broken by an interaction between internal
sulfurs of relative long range.

esp (3,+3) critical points located in front of nitrogens denote lone pairs loca-
tion. In the presence of neighbor molecules they disappear.

7.4.2 Intermolecular interactions

What chemical interactions are present and which one are playing the mayor
role? Which is their nature and how one may hope to modify them to improve
material’s performance? Are these interactions localized or not?

There are two types of intermolecular interactions between columns: frontal
and lateral. Frontal interactions involve the external sulfurs (S5) and lateral
interactions involve the internal sulfurs (S2), figure 43. The longitudinal
pseudo-isolated dimer is a btdmttf cation and its nearest frontal tcnq anion.
The latitudinal pseudo-isolated dimer is a btdmttf cation and its nearest
lateral tcnq anion. External sulfurs are displaced out of the cation plane and
they are nearly coplanar with the anion. Such displacement is originated by
its interactions with tcnq. It is reasonable to guess that frontal interactions
are stronger based upon this observation. Otherwise, we need a more rigorous
criteria to assert if any interaction is predominant.

External sulfurs interact with the carbonyl triple bond of the nearest anion,
figure 44 (a) interactions, and internal sulfurs interact with the nearest nitrogen
(c) and with hydrogens of anions that are above and below (d and e). The sigma
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Figure 41: btdmttf: Electronic Density (ed) gradient lines (left) follow to the infinite
indicating that the molecule is positively charged while some basins of the
esp (right) have a finite surface limit enclosing zero net charge. S5 atoms are
not in the plane.
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Table 13: btdmttf and tcnq: Properties of the ed (top block), ρ, and esp (bottom block), φ, scalar
fields at (3,−1) critical points between nuclei A and B. dA and dB are the distances from the
critical point to the positions A and B taken as the length of the straight lines connecting A or
B to the cp. Thus dAB = dA + dB. λi(e/Å5) and γi(e/Å3) are the curvatures of the density
and the electrostatic potential, respectively. As already mentioned in chapter 3 the ordering of
curvatures is λ1 6 λ2 6 λ3; γ1 6 γ2 6 γ3.

ρ: A—B dA(Å) dB(Å) dAB(Å) ρ(e/Å3) ∇2ρ λ1 λ2 λ3 ε

S2—C1 0.968 0.845 1.813 1.275 −0.813 −6.484 −5.483 11.154 0.183
S2—C3 0.849 0.888 1.733 1.341 −2.705 −7.200 −6.240 10.735 0.154
C3—C4 0.728 0.746 1.473 1.765 −10.622 −11.779 −10.427 11.584 0.130
S5—C4 0.960 0.834 1.793 1.131 −0.320 −5.601 −5.205 10.486 0.076
C4—H41 0.794 0.228 1.022 1.667 −18.366 −18.458 −15.763 15.855 0.171
C4—H42 0.795 0.224 1.019 1.675 −16.427 −17.158 −15.669 16.400 0.095
C1—C1’ 0.688 0.688 1.376 1.985 −11.046 −12.396 −10.27 11.62 0.207
C3—C3’ 0.674 0.674 1.348 2.457 −21.660 −19.705 −13.424 11.469 0.468
N10—C9 0.735 0.424 1.159 3.682 −19.684 −30.801 −27.887 39.004 0.104
C8—C9 0.669 0.748 1.418 1.871 −9.597 −13.042 −10.725 14.170 0.216
C7—C8 0.682 0.718 1.400 1.814 −8.165 −11.442 −10.069 13.346 0.136
C7—C6 0.686 0.750 1.436 1.919 −11.944 −14.027 −10.976 13.059 0.278
C6—H6 1.076 0.037 1.100 1.783 −18.246 −18.757 −14.841 15.352 0.264
φ: A—B dA(Å) dB(Å) dAB(Å) φ(e/Å) ∇2φ γ1 γ2 γ3
S2—C1 1.030 0.784 1.814 1.163 17.665 −5.192 −5.077 27.934
S2—C3 0.841 0.797 1.733 1.229 17.498 −6.803 −4.233 28.534
C3—C4 0.693 0.781 1.473 1.334 23.101 −7.888 −7.104 38.093
S5—C4 1.000 0.770 1.770 1.044 13.713 −5.216 −3.684 22.613
C4—H41 0.710 0.443 1.153 1.833 13.452 −19.462 −18.947 51.861
C4—H42 0.691 0.329 1.019 1.849 16.262 −19.357 −16.635 52.254
C1—C1’ 0.688 0.688 1.375 1.740 27.680 −12.136 −12.009 51.825
C3—C3’ 0.674 0.674 1.348 1.725 33.685 −11.259 −10.632 55.576
S2—S2’ 1.661 1.671 3.330 0.196 1.563 −0.185 −0.073 1.821
N10—C9 0.582 0.577 1.159 2.404 49.763 −27.129 −20.796 97.688
C8—C9 0.712 0.706 1.418 1.498 23.766 −10.644 −9.795 44.205
C7—C8 0.702 0.698 1.400 1.632 25.151 −11.865 −11.017 48.033
C7—C6 0.720 0.717 1.436 1.382 25.967 −8.758 −8.243 42.968
C6—H6 0.680 0.397 1.100 1.625 23.063 −19.176 −16.082 58.321
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Figure 42: tcnq: Density (left) and esp (right) gradient lines. All the atoms are in the
plane. Electrostatic Potential field lines are enclosed delimiting a zero charge
region.

hole description resembles correctly the sulfur interactions. The statement that
sulfurs have sp3 hybridization is reinforced. If we apply symmetry and rotate
the molecule around the Cl-Cl’ bond until we permute internal sulfurs the S2-
H interaction points now upside. There is a zigzag interaction between cation
and anion stacks connecting S2 lone pairs and hydrogens.

Density values of frontal interactions are greater than those of lateral interac-
tions, table 14. The opposite happens for Laplacian values. Frontal interactions
are exceptional, nearly degenerated as its nearly vanishing curvature indicates.
The overall of lateral interactions stabilize more the structure.

As well as before, an only electrostatic interaction happens between distant
atoms. The esp is conditionally convergent with the term 1

r (monopoles) con-
verging more smoothly than the ed, ≈ e−r.

There is a substantial difference between nitrogen electron density and elec-
trostatic potential basins, figure 47. The integration of charge inside of the ed
but outside of the esp is a partial negative charge. Therefore, most of the anion
net charge is concentrated in nitrogens. They are the main charge acceptors.
Where does that charge come from?

There is no big difference between sulfur basins. Besides we cannot assume
that external sulfurs donate most of the charge. The sulfur ρ-basin total charge
is close to zero. Hydrogens and internal sulfurs might play a more important
role in charge transfer than expected.

In addition to interactions involving molecules of different stacks there are
also π–π interactions along the chain of molecules in the columns, figure 48,47.
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Figure 43: The environment of a btdmttf cation: (a) frontal anion and (b) lateral anion
constitute the longitudinal and latitudinal dimers respectively.
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Figure 44: Frontal (a) and lateral (b-g) interactions. There is an only electrostatic inter-
action (g).
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Figure 46: latitudinal: Density and esp gradient lines. Top images represent the plane N10-H6-S2.
Bottom images represent the plane N10-H41-S2.
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Table 14: Properties of (3,−1) critical points in the longitudinal and the latitudinal dimer. The mean-
ing of variables is the same as set for table 13. The value of the Laplacian, ∇2ρ(e/Å5) and
∇2φ(e/Å3), for intermolecular interactions can be included due to a lower density variability
with small position modifications.

ρ: A · · ·B dA(Å) dB(Å) dAB(Å) ρ(e/Å3) ∇2ρ λ1 λ2 λ3
C9≡N10 · · · S5 1.739 1.761 3.439 0.402 0.534 −0.090 −0.055 0.679
H41 · · · N10 1.056 1.466 2.522 0.062 0.949 −0.206 −0.163 1.318
S2 · · · N10 1.686 1.528 3.214 0.049 0.645 −0.125 −0.113 0.884
S2 · · · H6 2.057 1.285 3.342 0.013 0.232 −0.030 −0.020 0.283
S2’ · · · H6’ 1.965 1.350 3.315 0.020 0.262 −0.055 −0.042 0.359
H42 · · · N10 1.022 1.571 2.593 0.030 0.609 −0.105 −0.098 0.812
φ: A · · ·B dA(Å) dB(Å) dAB(Å) φ(e/Å) ∇2φ γ1 γ2 γ3
C9≡N10 · · · S5 1.574 1.860 3.390 0.031 0.460 7 −0.191 −0.107 0.758
C3 · · · N10 2.537 0.988 3.525 1.639 3.625 −0.887 −0.755 5.267
S2 · · · H6 2.330 1.021 3.351 1.248 0.231 −0.491 −0.417 1.139

Sulfurs are given to establish many weak connections with other sulfurs (see
table 15). Most of them are between equivalent atoms, therefore they are not
relevant to charge transfer. They are not traditional vscd to vscc.

7.4.3 Theoretical-experimental correspondence

We start considering (3,-1) intramolecular critical points (see table 16). The
theoretical and experimental values are in good correspondence, however there
are some nuances that require our attention. The electrostatic potential can be
determined by integration of the Poisson equation up to a constant. Therefore,
the experimental and theoretical fields should match if we shift one of them
taking as a reference one point (e.g. the (3,-1) point between two C1 atoms).
Nevertheless we found that the difference is not zero. Surprisingly we obtain a
linear dependence between the value of the field (theoretical) at critical points
and the difference between both fields (see figure 49).

The linear relationship suggests us that everything is fine but the parameters
of the equation need explanation. There is a key difference between both fields:
the theoretical potential has been obtained using pseudopotentials. The shape
of the theoretical field near nuclei positions would not need to resemble that
of the experimental. Instead the values inside the pseudo-core radius should
approach the interstitial field near the pseudopotential radius. We could guess
that they bring closer following a linear dependence. Thus the parameters that
we obtained are those that relate the total and pseudo electrostatic potential.
The reason for this explanation is that the intramolecular critical points are
located at points close to the pseudopotential radii. The potential is highly
influenced by nuclei contributions to the total charge distribution. The value of
the field at those points falls in a range of positive values.
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Figure 47: btdmttf stack: Density and esp gradient lines. Planes defined by 4 S2

atoms.

Table 15: btdmttf and tcnq stacks: Density and esp (3,−1) critical points. The meaning of variables is
the same as set for table 13.

ρ: A · · ·B dA(Å) dB(Å) dAB(Å) ρ(e/Å3) ∇2ρ λ1 λ2 λ3
S2 · · · S2’ 1.944 1.944 3.888 0.035 0.297 −0.074 −0.019 0.391
S2 · · · S2

′′
1.948 1.931 3.879 0.035 0.324 −0.056 −0.034 0.414

S2 · · · C4 1.925 1.867 3.792 0.037 0.329 −0.081 −0.025 0.435
C1 · · · C1 1.757 1.757 3.514 0.036 0.352 −0.033 −0.023 0.407
S5 · · · C3-C3 1.803 1.671 3.474 0.045 0.413 −0.091 −0.032 0.536
C7 · · · C7 1.649 1.649 3.298 0.047 0.478 −0.062 −0.016 0.555
C8 · · · C7 1.640 1.639 3.279 0.048 0.501 −0.071 −0.022 0.595
φ: A · · ·B dA(Å) dB(Å) dAB(Å) φ(e/Å) ∇2φ γ1 γ2 γ3
H41 · · · H42 1.190 1.268 2.458 0.424 0.230 −0.345 −0.302 0.877
S2 · · · H42 1.800 1.466 3.266 0.342 0.186 −0.219 −0.140 0.545
S2 · · · S2’ 1.997 1.998 3.995 0.193 0.159 −0.107 −0.046 0.311
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Figure 48: tcnq stack: Density and esp gradient lines. Planes defined by C7 and C8

atoms.
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Table 16: The following is a comprehensive list of ab initio and experimental values
of the electrostatic potential φ [e/bohr] and laplacian L(r) [e/bohr3] at the
critical points of the potential. Along are attached the their differences. The
locations electrostatic potential critical points are analogous to bond critical
points for intramolecular interactions.

φopt φexp ∆φ Lopt(r) Lexp(r) ∆L(r)

S5 C4 0.6170 0.1381 -0.4789 1.05 0.5080 0.539

C1 S2 0.8820 0.1538 -0.7282 6.79 0.6544 6.133

C3 S2 0.8839 0.1625 -0.7213 5.17 0.6482 4.522

C3 C4 0.9842 0.1764 -0.8077 5.78 0.8558 4.926

0.9842 5.79

C4 H41 1.1608 0.2424 -0.9183 2.70 0.4983 2.196

1.1608 3.39

C6 C7 1.1620 0.1828 -0.9791 7.10 0.9619 6.134

1.1620 7.32

C4 H42 1.1692 0.2446 -0.9246 2.99 0.6024 2.389

1.1693 3.80

C6 H6 1.2144 0.2149 -0.9994 2.28 0.8543 1.427

1.2144 2.28

C7 C8 1.2714 0.2159 -1.0555 7.87 0.9317 6.934

C8 C9 1.3246 0.1981 -1.1264 6.83 0.8804 5.950

1.3247 6.53

C1 C1 1.4468 0.2301 -1.2166 4.99 1.0254 3.968

C3 C3 1.5320 0.2282 -1.3038 7.90 1.2479 6.652

C9 N10 2.5112 0.3180 -2.1932 1.93 1.8435 0.085

2.5113 -0.51

S2 S2 0.0259 0.0259 0.0579 -0.0579

C6 C6

Another reason for the discrepancies may be rooted in the different struc-
tures, pointed out in the methodology, used for experimental and theoretical
analyses.

Both theoretical and experimental electrostatic potentials are qualitatively
equivalent as shown by figure 50. The critical points that appear for the ex-
perimental potential also appear for the theoretical field. The mismatching
corresponds to a scaling factor.

7.4.4 Estimation of charge transfered

We want to emphasize that both experimental and ab initio calculations agree
on the degree of charge transfer: 0.6 e. The plane wave calculations fall in
between the neutral and ionic state for most atoms. All theoretical values lie
very close together whereas the values of experimental atomic charges are far
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Figure 50: The electrostatic potential map in the plane that contains TCNQ of experi-
mental (top) and theoretical origin (bottom). Even if it is not clearly seen from
the figure, there are hollows in front of nitrogen atoms (that correspond to
(3,+3) points) in both fields.
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apart. That is an error inherent to the multipolar model, that has been designed
to fit the overall/whole charge of the system but not to atomic contributions.

A previous work on the system obtained net atomic charges from kappa and
multipolar model parameters. The results thereof [47] reported an estimate
of the charge transferred upon excitation (qCT ) around 0.7 e. Here we report
atomic charges integrated for the first time using QTAIM partitioning, a inter-
molecular charge transfer of 0.62 electron charges per molecule, taking as a
reference the neutral state. This value is very similar to bulk TCNQ-TTF, were
it is 0.59 e [3]. Ionicity has slightly increased as a result of the inclusion of the
additional BTDM cycle.

Figure 51: The density (green) and electrostatic potential (red) basins of S5. Hydrogen
atoms are grey, carbon atoms are black, nigrogen atoms are blue, and sulphur
atoms are orange-red.

All previous pseudo-isolated molecules share a common fact: some basins
are open. We have to handle this fact if we are interested in integrating atomic
partial and total charges without neglecting the integration far from the nu-
clei. Taking a cluster, the basins of the inner molecule are finite because it is
completely surrounded.

Anions and cations are stacked as columns along the c axis. Each anion or
cation is surrounded by 8 counterpart ions in the ab crystallographic planes
and two equals along the c direction.

The left side of the table 17 are properties of the cation and the right side
are properties of the anion. The integrated charges of molecules are in close
agreement with multipolar (Q ′) and kappa (Q ′′) populations. The agreement
vanishes when we compare atomic charges. For example, C9 and N10 of car-
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bonyl groups. However, refined charges are good for chemical groups (e.g.
CN), or molecules.

Nitrogens have a partial charge close to 1 e, but most of the charge is trans-
fered from the contiguous carbon (C9). Sulfurs and hydrogens of btdmttf
contribute equally to charge donation.

The negative charge of N10 is located inside a large volume whereas the
positive charge of internal sulfurs is located in a very small volume. As an
average the density is high inside that region of space.

The integration of the density in the esp basins is good. We loss 2 e in the
integration. It is about 0.008 e/basin.

The charge transfer from the integration is 0.63 whereas the values from two
multipolar refinements published beforehand are close and suggest us that for
chemical groups those parameters estimate right values. If we take a look at
both the partial atomic charges and the volume difference between the density
and esp basins we can estimate the localization partial charges. Thus for the
S2 atom we can see that the charge is highly concentrated in a small region of
space.

S5 basins volume are scarcely different as we expected from plane sections
outlined before.

The charge inside esp basins is 0 (minor numerical errors) as it should be.
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Table 17: ed integration inside density basins (Ω) (top block) and esp basins (Λ) (bottom block) of the
inner molecule of the btdmttf cluster (left) and tcnq cluster (right). Q ′ and Q ′′ taken from
[46]. ∗ Total refers to the whole molecule (btdmttf or tcnq).

A ΩA(Å3) QΩA (e) Q ′(e) Q ′′(e) A ΩA(Å3) QΩA (e) Q ′(e) Q ′′(e)
S2 23.263 0.375 0.365 0.356 N10 25.285 −0.973 −0.139 −0.135
C3 9.608 −0.245 −0.171 −0.178 C6 11.537 −0.179 −0.045 −0.039
C4 12.841 −0.516 −0.500 −0.512 C7 8.821 0.026 0.088 0.092
H41 5.060 0.288 0.251 0.259 C8 9.598 −0.020 −0.074 −0.066
H42 5.272 0.358 0.300 0.301 C9 4.613 0.767 −0.075 −0.071
S5 21.961 0.241 0.328 0.336 H6 6.105 0.230 0.045 −0.039
C1 10.616 −0.442 −0.444 −0.454
Total∗ 289.33 0.63 0.75 0.67 Total∗ 227.00 −0.62 −0.75 −0.67
A ΛA(Å3) QΛA (e) A ΛA(Å3) QΛA (e)
S2 23.691 0.002 N10 8.749 0.006
C3 7.803 0.003 C6 10.551 −0.006
C4 8.750 −0.004 C7 7.926 0.010
H41 10.888 0.009 C8 8.412 −0.009
H42 12.890 −0.005 C9 13.416 −0.005
S5 25.073 0.005 H6 11.074 0.014
C1 6.803 0.006
Total∗ 319.84 0.042 Total∗ 207.84 0.038

There is a huge polarization of the C9–N10 bond. Curiously, there is no
Laplacian zero isosurface between them. The charge depletion along the bond
path at the bcp is very high but the charge concentration along the other two
directions is also big. The charge concentration between the two atoms is hight
but inside the N basin.

The charge is polarized but the ias is very close to the C9. The value of the
curvatures is very high.

Integration of the density — I used the valence — inside the electrostatic
potential basins is 0 within a maximum error of 0.07 e.

7.5 conclusions

We have unveiled all the interactions that stabilize the BTDMTTF-TCNQ crys-
tal using the topology of the density and electrostatic potential fields. Also we
have tried to infer what is the role of those interactions in the charge transfer
process. We have found that the shape of the basins of the electrostatic potential
and the density are very similar, that allows us to locate where are the partial
charges of the atom. Therefore we attempted to unravel how charge transfer-
ence occurs between the two molecules building upon the intersection of both
basins so we concluded that the atoms labeled as S5 are not the only ones of
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Figure 53: Interactions of S5 with anion atoms. Top planes defined by S5 and two N10 atoms. Bottom
planes defined by S5 and two C9 atoms.
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Figure 54: Interactions of S2 with anion atoms. Planes coplanar to S2 and N10 atoms;
planes coplanar to S2 and H6 atoms.
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the BTDMTTF molecule participating, but that also the hydrogens (with labels
H41 and H42) have a non negligible contribution. However, the total charge
transferred that is obtained from integration in QTAIM basins is not distant
from previous estimations. That says us that even if less than one electron is
transfered per molecule the system is a good conductor. On the other hand,
our attempts to bring together the topology of the experimental and theoretical
electrostatic potential have not been as productive as we expected in part due
to the sensibility of the electrostatic potential to changes in the density. Given
that the type of functions used to approximate the density in both models are
different we have not been capable of going further.
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8 C O N C L U S I O N E S

A continuación se procede a presentar un compendio de las conclusiones
extraídas en esta tesis.

En el capítulo 4 hemos visto que las energías de enlace de moléculas poli-
atómicas no se pueden obtener a menos que se realicen aproximaciones y que
incluso en el caso de moléculas diatómicas necesitamos fijar un estado de ref-
erencia. Fijando esa referencia se puede obtener una medida de la fuerza del
enlace, pero de nuevo no tenemos a nuestro alcance un método para llevar a
cabo dicha medida. Es aquí donde la partición energética IQA juega un pa-
pel clave para sentar sobre una base firme el concepto de energía intrínseca
de enlace. Junto con el resto de herramientas de QCT podemos caracterizar
la referencia, i.e. identificar con que estado electrónico se corresponde más
fidedignamente el estado de valencia. Se deduce de los resultados que las
configuraciones electrónicas de alto espín de los fragmentos estudiados tienen
un peso menor del que comúnmente se les atribuye. Esto nos indica que de-
beríamos ser especialmente cautos a la hora de asignar estados de valencia sin
una justificación previa razonable. Una vez que esto se ha tenido en cuenta no
hay grandes cambios. Asimismo, las energías de relajación de los hidrógenos
en el metano son importantes. También se ha observado claramente como los
componentes sigma y pi de del enlace triple N ≡ N se forman en dos pasos.

En multipolar expansion of the exchange-correlation interaction
energy hemos puesto de relieve que las energías de intercambio y correlación
interatómicas que se utilizan en las teorías de enlace químico en el epacio real,
las cuales contabilizan la contribución covalente a una interacción interatómica
dada, pueden ser aproximadas por una expansión multipolar convencional.
Rigurosamente, la serie diverge cuando los átomos están directamente enlaza-
dos, aunque puede entenderse como convergente asintóticamente. El truncado
de las series hasta l1+ l2 = 2 (incluyendo hasta interacciones carga-cuadrupolo)
tiende a dar resultados que son precisos hasta un pequeño porcentaje en inter-
acciones 1-n, con n > 2, e incluso hasta un 10% en muchos casos directamente
enlazados o 1-2. En el caso de n > 2 la serie converge en muchos casos, e
incluyendo términos extra provee de precisión extra. Al contrario, la consid-
eración de contribuciones l mayores en interacciones 1-2 tiende a deteriorar
seriamente los resultados. Dado que la carga necesaria para calcular la serie
multipolar es considerablemente menor que la de la expansión bipolar exacta,
nuestros resultados podrían ser importantes para estimar interacciones cova-
lentes en esos casos en los que la integración exacta no es viable. También
podría ser usado para reducir el coste computacional en descomposiciones en-
ergéticas con el método IQA de sistemas grandes, donde muchos términos con
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valores pequeños, asociados a interacciones de largo alcance y tremendamente
costosos computacionalmente, pueden ser aproximados ahora sin el riesgo de
tener una disminución de precisión.

Resumiendo el capítulo 6, hemos demostrado que existe una conexión no-
table entre la teoría de Kohn-Resta para estados aislantes a través del tensor de
localización (o en el caso de sistemas moleculares su tensor de extensión total)
y los bien conocidos indicadores que se utilizan en la teoría de enlace químico
como ordenes de enlace. Esto se ha alcanzado con un particionado del tensor
de localización en componentes intra- e interatómicos. Una forma de hacerlo
respetando la invarianza frente al cambio de orbitales se empieza escribiendo
el tensor de localización (TL) en términos de las matrices de densidad reduci-
das y luego particionando el espacio en regiones atómicas de acuerdo con la
topología química mecanocuántica. La convergencia o divergencia del TL en
el límite termodinámico, asociado a las propiedades conductoras o aislantes,
depende exclusivamente en el ritmo de decaimiento de sus componentes inter-
atómicos. Este último es denominado el indice de delocalización químico, una
forma moderna de entender el orden de enlace. De esta forma la química de
los estados fundamentales y la física de la conductividad se encuentran entre-
lazados. Esperamos que esta conexión sea útil en la búsqueda y diseño de con-
ductores, o aislantes, de dimensión reducida ya que el tensor total TL puede ser
escrito como una suma de componentes atómicos (o grupos funcionales). Cada
átomo o grupo funcional en el sistema podría ser clasificado como esencial si
su contribución al tensor diverge, o secundario si converge, si consideramos la
conductividad eléctrica. Finalmente, esperamos que esta categorización pueda
ser usada ventajosamente en el diseño racional de nuevos materiales.

En el capítulo topology of the electrostatic potential in solids se han
desvelado todas las interacciones que estabilizan el crystal BTDMTTF-TCNQ
usando la topología de la densidad y el potencial electrostático. También se
ha intentado inferir que papel juegan en la transferencia de carga. Nos hemos
fijado en que no existe mucha diferencia entre las cuencas del potencial y la
densidad, lo que nos permite asignar a su intersección el significado de carga
parcial. Intentamos desentrañar como es el proceso de reorganización de carga
entre ambas moléculas usando esas intersecciones y llegamos a la conclusión
de que los átomos etiquetados como S5 no son los únicos que contribuyen a
la transferencia de energía, sino que los hidrógenos (con etiquetas H41 y H42)
también forman parte del proceso de transferencia de carga. Contabilizando
la transferencia total entre una molécula y otra a partir de la partición QTAIM
hemos obtenido un valor muy similar a las aproximaciones anteriores. Lo cual
nos dice que a pesar de ser una tasa menor que un electrón por molécula el
sistema es un buen conductor. Los intentos de acercar la descripción teórica
y experimental del potencial no ha sido tan fructífera como esperábamos en
parte por la sensibilidad del potencial ante cambios de la densidad. Como el
tipo de funciones con las que se aproxima la densidad en ambos modelos son
diferentes no hemos podido o sabido ir más allá en nuestro estudio.
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a.1 the position spread tensor (pst) from re-
duced density matrices (rdm)

We will examine the mathematical derivations leading to the TPS in real
space and details on its implementation in the PROMOLDEN code. Let ri the
vector position of the ith electron of a N-electron molecule, Ψ the multielectron
wavefunction, and

R =

N∑
i

ri. (A–1)

The total position spread (TPS) tensor is defined as [88, 163]

Λ = 〈Ψ|R̂⊗ R̂|Ψ〉− 〈Ψ|R̂|Ψ〉 ⊗ 〈Ψ|R̂|Ψ〉 ≡ 〈R̂⊗ R̂〉− 〈R̂〉 ⊗ 〈R̂〉. (A–2)

Here, bold fonts are used to indicate vectors or tensors, depending on the con-
text, and the ⊗ symbol stands for a tensor or cartesian product. For example,
the cartesian components of the r⊗ r tensor are (r⊗ r)ab = xaxb, and the six
independent components of the symmetric Λ are

Λab = Λba = 〈XaXb〉− 〈Xa〉〈Xb〉, a,b = x,y, z. (A–3)

Λ is a cumulant and size extensive.
Using equation (A–1) and R̂⊗ R̂ =

∑N
i 6=j r̂i ⊗ r̂j +

∑N
i r̂i ⊗ r̂i in (A–2), and

taking into account electron indistinguishability, Λ becomes

Λ = N(N− 1)〈Ψ|r̂1 ⊗ r̂2|Ψ〉+N〈Ψ|r̂1 ⊗ r̂1|Ψ〉−N〈Ψ|r̂1|Ψ〉 ⊗N〈Ψ|r̂2|Ψ〉. (A–4)

Now, we use the definition of the first order, ρ(r1), and the second order,
ρ2(r1, r2), spinless densities, which are nothing but the electron density and
the pair density, respectively:

ρ(r1) = N

∫
dσ1dx2 · · ·dxNΨ∗Ψ,

ρ2(r1, r2) = N(N− 1)

∫
dσ1dσ2dx3 · · ·dxNΨ∗Ψ, (A–5)

where xi = riσi is the space-spin coordinate of electron i. Then,

Λ =

∫
dr1dr2(r̂1 ⊗ r̂2) ρ2(r1, r2) +

∫
dr1(r̂1 ⊗ r̂1)ρ(r1)

−

∫
dr1r̂1 ρ(r1)⊗

∫
dr2 r̂2ρ(r2). (A–6)

The above equation may be notably simplified by using ρ2(r1, r2) = ρ(r1)ρ(r2)−
ρxc(r1, r2), where ρxc is the exchange-correlation density, the part of the pair
density containing all pure quantum mechanical effects. Using this expression
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for ρ2 in (A–6), the part of ρ(r1)ρ(r2) compensates the third term, and Λ
results

Λ = −

∫
dr1dr2(r̂1 ⊗ r̂2) ρxc(r1, r2) +

∫
dr1(r̂1 ⊗ r̂1) ρ(r1). (A–7)

If we now use the key identity ρ(r1) =
∫
dr2ρxc(r1, r2) in the second integral

of (A–7), we obtain

Λ =

∫
dr1dr2 [r1 ⊗ (r1 − r2)] ρxc(r1, r2), (A–8)

=

∫
dr1dr2 [r2 ⊗ (r2 − r1)] ρxc(r1, r2), (A–9)

where the last equation arises as a consequence of the invariance of Λ with
respect to the r1 ↔ r2 exchange and the equality ρxc(r2, r1) = ρxc(r1, r2).
Taking the average of (A–8) and (A–9), and defining the interparticle position
vector r12 = r1 − r2, Λ may be finally written in the following explicitly origin
independent form

Λ =
1

2

∫
dr1dr2 ρxc(r1, r2) (r12 ⊗ r12) . (A–10)

The origin independence of Λ may also be explicitly proven by writing any
of its six independent components, Λab, in a shifted frame, r ′i = ri +u. Using
(A–8) one has

Λ′ab =

∫
dr1

∫
dr2 ρxc (x1a + ua) [x1b − x2b] (A–11)

=

∫
dr1

∫
dr2 ρxc x1a [x1b − x2b] + ua

∫
dr1

∫
dr2 ρxc [x1b − x2b] ,

(A–12)

where we have denoted with a prime (′) the position spread tensor in the dis-
placed reference system and obviated the dependence of ρxc on r1 and r2. If
the double integrals are written as

∫ ∫
· · · =∑A∑B ∫A ∫B . . . , the AA term of

the second contribution of (A–12) becomes∫
A

∫
A
ρxc [x1b − x2b] =

∫
A
dr1x1b

∫
dr2ρxc −

∫
A
dr2x2b

∫
dr1ρxc (A–13)

=

∫
A
dr1 x1b G

A(r1) −

∫
A
dr2 x2b G

A(r2) = 0, (A–14)

where
GΩ(r1) =

∫
Ω
dr2 ρxc(r1, r2) (A–15)

is the domain averaged Fermi Hole (DAFH) of the Ω domain [152, 153]. On the
other hand the AB and BA terms of the second contribution of (A–12) become∫

A

∫
B
ρxc [x1b − x2b] =

∫
A
GBxb −

∫
B
GAxb, , (A–16)∫

B

∫
A
ρxc [x1b − x2b] =

∫
B
GAxb −

∫
A
GBxb, (A–17)



198 additional mathematical relations

R
B

R
A

1

~
r

R

A

R
B

Ω

2

B

Ω
A

r
~

r

r
2

r

1

12

Figure 55: Coordinate System

i.e the AA contribution is zero, and the AB and BA contributions are equal
and of opposite sign. Consequently

∫ ∫
ρxc [x1b − x2b] = 0. This proves that

Λab = Λ′ab, i.e. that Λab is invariant with respect of a translation of the
reference system.

a.2 partitioning the total position spread ten-
sor into local contributions

We partition each component Λab into local contributions using

Λab =
∑
A>B

ΛAB
ab (A–18)

ΛAA
ab = λAA

ab (A–19)

ΛAB
ab = λAB

ab + λ
BA
ab (A–20)

λAB
ab =

∫
A
dr1

∫
B
dr2 ρxc(r1, r2) x1a [x1b − x2b] . (A–21)
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To compute ΛAB
ab it is convenient to transform the coordinates r1 and r2, which

are referred to a common reference system, to their own local reference frames.
Using r1 = r̃1 +R

A and r2 = r̃2 +R
B (See figure 56) or x1a = x̃1a + RAa and

x2b = x̃2b + R
B
b , we have

ΛAB
ab =

∫
A
dr1

∫
B
dr2ρxc(r1, r2)(x̃1a + RAa )(x̃1b + R

A
b ) − (x̃1a + RAa )(x̃2b + R

B
b)

+

∫
B
dr1

∫
A
dr2ρxc(r1, r2)(x̃1a + RBa)(x̃1b + R

B
b) − (x̃1a + RBa)(x̃2b + R

A
b )

= 〈x̃1ax̃1b〉AB + 〈x̃1aRAb 〉AB + 〈RAa x̃1b〉AB + 〈RAa RAb 〉AB

− 〈x̃1ax̃2b〉AB − 〈x̃1aRBb〉AB − 〈RAa x̃2b〉AB − 〈RAa RBb〉AB

+ 〈x̃1ax̃1b〉BA + 〈x̃1aRBb〉BA + 〈RBa x̃1b〉BA + 〈RBaRBb〉BA

− 〈x̃1ax̃2b〉BA − 〈x̃1aRAb 〉BA − 〈RBa x̃2b〉BA − 〈RBaRAb 〉BA, (A–22)

where the notation 〈ô〉ΩΩ′ ≡
∫
A dr1

∫
B dr2 ô ρxc(r1, r2) has been used. Sim-

plifying (A–22)

ΛAB
ab = 〈x̃1ax̃1b〉AB − 〈x̃1ax̃2b〉AB + 〈x̃1ax̃1b〉BA − 〈x̃1ax̃2b〉BA

+
[
RAb − RBb

]
[〈x̃1a〉AB − 〈x̃1a〉BA] + R

A
a [〈x̃1b〉AB − 〈x̃2b〉AB]

− RBa [〈x̃2b〉BA − 〈x̃1b〉BA] +
[
RAa − RBa

] [
RAb − RBb

]
NAB, (A–23)

whereNAB ≡ 〈〉AB ≡ 〈〉BA ≡ NBA =
∫
A dr1

∫
B dr2ρxc(r1, r2) andNAB +NBA =

δAB is the delocalization index. Taking into account that 〈x̃2b〉BA = 〈x̃1b〉AB,
〈x̃1b〉BA = 〈x̃2b〉AB, and 〈x̃1a〉BA = 〈x̃2a〉AB (A–23) may also be written in the
more symmetrical form 1

ΛAB
ab = 〈x1ax1b〉AB − 〈x1ax2b〉AB + 〈x1ax1b〉BA − 〈x1ax2b〉BA

− RAB
b [〈x1a〉AB − 〈x2a〉AB] − R

AB
a [〈x1b〉AB − 〈x2b〉AB]

+ RAB
a R

AB
b NAB (A–24)

where we have defined RAB = RB −RA.
Performing the same steps with the diagonal element, ΛAA

ab , we have

ΛAA
ab =

∫
A
dr1

∫
A
dr2ρxc(r1, r2)(x1a + RAa )(x1b + R

A
b ) − (x1a + RAa )(x2b + R

A
b )

= 〈x1ax1b〉AA + 〈x1aRAb 〉AA + 〈RAa x1b〉AA + 〈RAa RAb 〉AA

− 〈x1ax2b〉AA − 〈x1aRAb 〉AA − 〈RAa x2b〉AA − 〈RAa RAb 〉AA (A–25)

= 〈x1ax1b〉AA − 〈x1ax2b〉AA + RAa 〈x1b〉AA − RAa 〈x2b〉AA (A–26)

The last two contributions are equal and of opposite sign, so that

ΛAA
ab = 〈x1ax1b〉AA − 〈x1ax2b〉AA (A–27)

1 In what follows the tildes (˜) will be suppressed for simplicity with the coordinates being always
local, see figure 56
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a.3 basic integrals in terms of monadic func-
tions. implementation in promolden

In this section we will evaluate the general integral

〈xn1axn
′
1a ′x

m
2bx

m ′
2b ′〉AB =

∫
A
dr1x

n
1ax

n ′
1a ′

∫
B
dr2x

m
2bx

m ′
2b ′ρxc(r1, r2), (A–28)

with all possible combinations of the exponents n, n ′, m, and m ′. For this
purpose, we express ρxc(r1, r2) in terms of the monadic functions [146]

ρxc(r1, r2) =
M∑
i,j

ηijfij(r1)fij(r2), (A–29)

where M is the number of partially of fully occupied MOs, ηij = ηji are known
coefficients, and fij = fji is a known linear combination of producs of MOs ϕi.
For closed-shell 1-det molecules, ηij = −2, fij = ϕiϕj, and M = N/2, where N
is the number of electrons. Then

〈xn1axn
′
1a ′x

m
2bx

m ′
2b ′〉AB =

∑
i,j

ηij

∫
A
dr1fij(r1)x

n
1ax

n ′
1a ′

∫
B
dr2fij(r2)x

m
2bx

m ′
2b ′

(A–30)

≡
∑
i,j

ηij

∫
A
drfij(r)x

n
ax
n ′
a ′

∫
B
drfij(r)x

m
2 x

m ′
b ′ (A–31)

≡
∑
i,j

ηij〈xnaxn
′
a ′ 〉ij,A〈xmb xm

′
b ′ 〉ij,B (A–32)
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According to the expressions in Section A.2 the following basic integrals over
every domain Ω are necessary:

〈〉ij,Ω =

∫
Ω
drfij(r) =

∫
r2dr

∫
r̂
fΩij (r, θ,φ)dr̂ (A–33)

〈x〉ij,Ω =

∫
Ω
drfij(r)x =

∫
r2dr

∫
r̂
xfΩij (r, θ,φ)dr̂ (A–34)

〈y〉ij,Ω =

∫
Ω
drfij(r)y =

∫
r2dr

∫
r̂
yfΩij (r, θ,φ)dr̂ (A–35)

〈z〉ij,Ω =

∫
Ω
drfij(r)z =

∫
r2dr

∫
r̂
zfΩij (r, θ,φ)dr̂ (A–36)

〈x2〉ij,Ω =

∫
Ω
drfij(r)x

2 =

∫
r2dr

∫
r̂
x2fΩij (r, θ,φ)dr̂ (A–37)

〈y2〉ij,Ω =

∫
Ω
drfij(r)y

2 =

∫
r2dr

∫
r̂
y2fΩij (r, θ,φ)dr̂ (A–38)

〈z2〉ij,Ω =

∫
Ω
drfij(r)z

2 =

∫
r2dr

∫
r̂
z2fΩij (r, θ,φ)dr̂ (A–39)

〈xy〉ij,Ω =

∫
Ω
drfij(r)xy =

∫
r2dr

∫
r̂
xyfΩij (r, θ,φ)dr̂ (A–40)

〈xz〉ij,Ω =

∫
Ω
drfij(r)xz =

∫
r2dr

∫
r̂
xzfΩij (r, θ,φ)dr̂ (A–41)

〈yz〉ij,Ω =

∫
Ω
drfij(r)yz =

∫
r2dr

∫
r̂
yzfΩij (r, θ,φ)dr̂, (A–42)

(A–43)

where dr̂ = sin θdθdφ. In case of a 1-det wavefunction, the first integral 〈〉ij,Ω
is equal to the atomic overlap matrix (AOM) element SΩij = 〈i|j〉Ω.

We will see now how the above integrals can be obtained from the currently
stored integrals in the promolden code. There, the following angular averaged
are stored:

RΩlm(r) =

(
4π

2l+ 1

) 1
2
∫
r̂
Slm(r̂)fΩ(r)dr̂, (A–44)

where

fΩ(r) =

{
f(r) for r ∈ Ω
0 for r /∈ Ω.

(A–45)
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and Slm are the real spherical harmonics, defined according to reference [20].
The explicit RΩlm(r)’s for l 6 2 and −l 6 m 6 +l are

RΩ00(r) =

∫
r̂
fΩ(r)dr̂ =

∫
r̂

x2 + y2 + z2

r2
fΩ(r)dr̂, (A–46)

RΩ1−1(r) =

∫
r̂

y

r
fΩ(r)dr̂, (A–47)

RΩ10(r) =

∫
r̂

z

r
fΩ(r)dr̂, (A–48)

RΩ11(r) =

∫
r̂

x

r
fΩ(r)dr̂, (A–49)

RΩ2−2(r) =

∫
r̂

√
3xy

r2
fΩ(r)dr̂, (A–50)

RΩ2−1(r) =

∫
r̂

√
3yz

r2
fΩ(r)dr̂, (A–51)

RΩ20(r) =

∫
r̂

1

2

[
3z2

r2
− 1

]
fΩ(r)dr̂ =

∫
r̂

1

2

[
2z2 − x2 − y2

r2

]
fΩ(r)dr̂, (A–52)

RΩ21(r) =

∫
r̂

√
3xz

r2
fΩ(r)dr̂, (A–53)

RΩ22(r) =

∫
r̂

√
3

2

[
x2 − y2

r2

]
fΩ(r)dr̂. (A–54)

From (A–46)-(A–49) and (A–50), (A–53), (A–51) we have, respectively

〈〉Ω =

∫
r2dr× RΩ00(r) (A–55)

〈x〉Ω =

∫
r2dr× rRΩ11(r) (A–56)

〈y〉Ω =

∫
r2dr× rRΩ1−1(r) (A–57)

〈z〉Ω =

∫
r2dr× rRΩ10(r), (A–58)

and

〈xy〉Ω =

∫
r2dr× r2√

3
RΩ2−2(r) (A–59)

〈xz〉Ω =

∫
r2dr× r2√

3
RΩ21(r) (A–60)

〈yz〉Ω =

∫
r2dr× r2√

3
RΩ2−1(r). (A–61)

(A–62)

From the sum RΩ00(r) + 2R
Ω
20(r), we obtain∫

r̂
z2fΩ(r)dr̂ =

r2

3

[
RΩ00(r) + 2R

Ω
20(r)

]
. (A–63)
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On the other hand, we have

RΩ00(r) +
2√
3
RΩ22(r) =

∫
r̂

2x2 + z2

r2
fΩ(r)dr̂ = 2

∫
r̂

x2

r2
fΩ(r)dr̂+

∫
r̂

z2

r2
fΩ(r)dr̂.

(A–64)
From the above equation and (A–63) we have∫

r̂
x2fΩ(r)dr̂ =

r2

3

[
RΩ00(r) +

√
3RΩ22(r) − R

Ω
20(r)

]
. (A–65)

Finally, from (A–54)∫
r̂

y2

r2
fΩ(r)dr̂ =

∫
r̂

x2

r2
fΩ(r)dr̂−

2√
3
RΩ22(r), (A–66)

and using (A–65) we obtain∫
r̂
y2fΩ(r)dr̂ =

r2

3

[
RΩ00(r) −

√
3RΩ22(r) − R

Ω
20(r)

]
. (A–67)

In terms of the above radial integrals the ij contribution of all the ab compo-
nents of ΛAB

ab and ΛAA
ab are given by

ΛAB
xx = 〈x2〉A〈〉B + 〈x2〉B〈〉A − 2〈x〉A〈x〉B − 2RAB

x [〈x〉A〈〉B − 〈〉A〈x〉B] − RAB
x R

AB
x NAB

ΛAB
yy= 〈y2〉A〈〉B + 〈y2〉B〈〉A − 2〈y〉A〈y〉B − 2RAB

y [〈y〉A〈〉B − 〈〉A〈y〉B] − RAB
y R

AB
y NAB

ΛAB
zz = 〈z2〉A〈〉B + 〈z2〉B〈〉A − 2〈z〉A〈z〉B − 2RAB

z [〈z〉A〈〉B − 〈〉A〈z〉B] − RAB
z R

AB
z NAB

ΛAB
xy= 〈xy〉A〈〉B + 〈xy〉B〈〉A − 〈x〉A〈y〉B − 〈x〉B〈y〉A − RAB

y [〈x〉A〈〉B − 〈〉A〈x〉B]

−RAB
x [〈y〉A〈〉B − 〈〉A〈y〉B] + RAB

x R
AB
y NAB = ΛAB

yx

ΛAB
xz = 〈xz〉A〈〉B + 〈xz〉B〈〉A − 〈x〉A〈z〉B − 〈x〉B〈z〉A − RAB

z [〈x〉A〈〉B − 〈〉A〈x〉B]

−RAB
x [〈z〉A〈〉B − 〈〉A〈z〉B] + RAB

x R
AB
z NAB = ΛAB

zx

ΛAB
yz = 〈yz〉A〈〉B + 〈yz〉B〈〉A − 〈y〉A〈z〉B − 〈y〉B〈z〉A − RAB

z [〈y〉A〈〉B − 〈〉A〈y〉B]

−RAB
y [〈z〉A〈〉B − 〈〉A〈z〉B] + RAB

y R
AB
z NAB = ΛAB

zy (A–68)

ΛAA
xx = 〈x2〉A〈〉A − 〈x〉2A

ΛAA
yy = 〈y2〉A〈〉A − 〈y〉2A

ΛAA
zz = 〈z2〉A〈〉A − 〈z〉2A

ΛAA
xy = 〈xy〉A〈〉A − 〈x〉A〈y〉A = ΛAA

yx

ΛAA
xz = 〈xz〉A〈〉A − 〈x〉A〈z〉A = ΛAA

zx

ΛAA
yz = 〈yz〉A〈〉A − 〈y〉A〈z〉A = ΛAA

zy . (A–69)
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a.4 multipolar expansion of exchange inter-
actions

We derive in this appendix equation (5–15), the multipolar approximation to
the exact exchange-correlation interaction, equations (5–10) and (5–11). Further
details are given in I. We start by using the bipolar expansion for r−112 ,

r−112 =

∞∑
l1m1

∞∑
l2m2

Sl1m1(r̂1)Sl2m2(r̂2) D
l2m2
l1m1

(r1, r2, R), (A–70)

where r1 ≡ (r1, r̂1) and r2 ≡ (r2, r̂2) are referred to centers A and B, respec-
tively, R = (RB − RA) ≡ (R, R̂) is the position vector of center B with respect to
center A (see figure 56), Slm(r̂) are real spherical harmonics defined as[34]

Slm(θ,φ) = Θl|m|(θ)Φm(φ), (A–71)

Θlm(θ) =

√
2l+ 1

4π

(l− |m|)!
(l+ |m|)!

Pml (cos θ), (A–72)

Φm(φ) =


√
2 cosmφ m > 0,

1 m = 0,√
2 sin |m|φ m < 0,

(A–73)

and Pml (cos θ) are the associated Legendre functions, defined for m > 0 by

Pml (x) =
1

2ll!
(1− x2)m/2

d l+m

dx l+m
(x2 − 1)l. (A–74)

Finally, Dl2m2l1m1
(r1, r2, R) in equation A–70 is defined as

D
l2m2
l1m1

(r1, r2, R) = 4π(−1)l1
l1+l2∑

l3=|l1−l2|

Vl1l2l3(r1, r2,R) T l3l1m1l2m2(R̂), (A–75)

where the sum over l3 runs in steps of 2, Vl1l2l3(r1, r2,R) is a discriminant
that takes different expressions in the four regions defined in figure 57, and
T
l3
l1m1l2m2

(R̂) is the angular factor

T
l3
l1m1l2m2

(R̂) =

+l3∑
m3=−l3

d
l3m3
l1m1l2m2

Sl3m3(R̂), (A–76)

where d l3m3l1m1l2m2
is the Gaunt coefficient between the Slm(θ,φ)’s defined by

d
l3m3
l1m1l2m2

=
〈
Sl3m3

∣∣Sl1m1
∣∣Sl2m2

〉
. (A–77)
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Given that Slm is real, d l3m3l1m1l2m2
is invariant against any permutation of the

pair of indices (li,mi). These coefficients may be determined as described
elsewhere. Using (A–70) in (5–11) one has

KAB
ij =

∑
l1m1

∑
l2m2

∫
ΩA

Sl1m1(r̂1) fij(r1) dr1

∫
ΩB

Sl2m2(r̂2) fij(r2) dr2 D
l2m2
l1m1

(r1, r2, R)).

(A–78)
A further simplification of KAB

ij requires the explicit form of Dl2m2l1m1
(r1, r2, R).

From the expression of Vl1l2l3(r1, r2,R) (equations (B1)-(B9) of I) it follows
that, as long as r1 + r2 6 R, this discriminant only takes a nonzero value in
region III of the (r1, r2) space (see figure 57). This condition will be exactly
satisfied if R > rmax

1 + rmax
2 , where rmax

1 is the maximum value of the radial
coordinate within ΩA, with an equivalent definition for rmax

2 . In the present
context, atoms A and B are said to be non-overlapping if this condition is ful-
filled, and overlapping otherwise. Although it may occur that the condition
R > rmax

1 + rmax
2 is not exactly satisfied, provided that the atomic basins ΩA

and ΩB are well-separated in the space, we can expect that it is fulfilled in
practical terms. The multipolar approach, intensively used to approximate the
Coulomb repulsion in the modellization of biomolecules, is equivalent to the
assumption that r1 + r2 6 R for any r1 and r2. Thus, region III is identified
with the complete first quadrant. In this region, Dl2m2l1m1

(r1, r2, R) is given by

D
l2m2
l1m1

(r1, r2, R) = (−1)l116π2 ∆l1l2
r
l1
1 r
l2
2

Rl1+l2+1
T
l1+l2
l1m1l2m2

(R̂), (A–79)

where

∆l1l2 = (−1)l1+l2
(2l1 + 2l2)! l1! l2!

(l1 + l2)! (2l1 + 1)! (2l2 + 1)!
. (A–80)

Using (A–79) in (A–78) we get

(
KAB
ij

)
lr
=
∑
l1m1

∑
l2m2

Cl1m1l2m2(R̂)
q
ΩA
ij,l1m1

q
ΩB
ij,l2m2

Rl1+l2+1
, (A–81)

where

Cl1m1,l2m2(R̂) = (−1)l14π [(2l1 + 1)(2l2 + 1)]
1
2 ∆l1l2 T

l1+l2
l1m1l2m2

(R̂), (A–82)

and the qΩij,lm have been defined in (5–17). Finally, substituting (A–81)
in (5–10) we obtain (5–15), the multipolar approximation for the exchange-
correlation interaction,

(
VAB

xc
)

lr.
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A Multipolar Approach to the Interatomic Covalent
Interaction Energy

Evelio Francisco, Daniel Men�endez Crespo, Aurora Costales, and �Angel Mart�ın Pend�as

Interatomic exchange-correlation energies correspond to the

covalent energetic contributions to an interatomic interaction in

real space theories of the chemical bond, but their widespread

use is severely limited due to their computationally intensive

character. In the same way as the multipolar (mp) expansion is

customary used in biomolecular modeling to approximate the

classical Coulomb interaction between two charge densities qAðrÞ
and qBðrÞ, we examine in this work the mp approach to approxi-

mate the interatomic exchange-correlation (xc) energies of the

Interacting Quantum Atoms method. We show that the full xc mp

series is quickly divergent for directly bonded atoms (1–2 pairs)

albeit it works reasonably well most times for 1– n (n> 2) interac-

tions. As with conventional perturbation theory, we show

numerically that the xc series is asymptotically convergent and

that, a truncated xc mp approximation retaining terms up to l11

l252 usually gives relatively accurate results, sometimes even for

directly bonded atoms. Our findings are supported by extensive

numerical analyses on a variety of systems that range from sever-

al standard hydrogen bonded dimers to typically covalent or aro-

matic molecules. The exact algebraic relationship between the

monopole-monopole xc mp term and the inter-atomic bond

order, as measured by the delocalization index of the quantum

theory of atoms in molecules, is also established. VC 2017 Wiley

Periodicals, Inc.

DOI: 10.1002/jcc.24758

Introduction

The role of the quantum mechanical exchange-correlation (xc)

energy as the basic glue binding together atoms and mole-

cules has been clearly stressed in the past.[1] In the chemical

literature, however, this insight is less well-known. Although

exchange-correlation functionals, for instance, are the essential

ingredients in modern implementations of Density Functional

Theory (DFT),[2] not much work has been devoted to examine

the importance of the exchange-correlation energy itself in the

theory of chemical bonding from the DFT viewpoint.[3]

Actually, almost all that is known about the chemical relevance

of the xc energy has been derived in the last decade through

the study of bonding in real or position space.[4,5] With this term,

we gather together a number of techniques that are being

actively explored[6–8] which use orbital invariant reduced densities

(or density matrices) to develop a new paradigm that may one

day replace the standard molecular orbital (MO) approach.[9] Usu-

ally, these techniques use a partition of real space into regions

endowed with chemical meaning, be them atoms, bonds, cores,

lone pairs, and so forth. In many cases, the space is divided using

the topology induced by the gradient field of an orbital invariant

scalar, like the electron density (which gives rise to the atomic

partioning of the quantum theory of atoms in molecules (QTAIM)

developed by Bader,[10] or the electron localization function (that

isolates core, bond and lone pair regions).[11,12] When this topo-

logical tools are used, we say that we are under the Quantum

Chemical Topology umbrella.[13]

In the context of the QTAIM/QCT, we proposed a number of

years ago an exact, general decomposition of the total molec-

ular energy E into atomic and inter-atomic terms that we

called the interacting quantum atoms (IQA) approach.[4,5] All

the expectation values of the standard Coulomb Hamiltonian

that make up E are written in IQA as a sum of domain contri-

butions, and E is obtained by adding atomic self-energies,

which tend to the free atomic energies when the atoms that

interact are sufficiently far apart, and pairwise additive interac-

tion energies. The latter are composed of a classical term that

depends only on classical electrostatic contributions, and an

exchange-correlation energy, Vxc which accounts for the quan-

tum mechanical effects. As we and others have shown over

the years,[14,15] the classical part of the interaction measures its

ionic component, while the Vxc energy is to be associated with

its covalent counterpart.

In these years, the interatomic xc energy has become an

important ingredient of any quantitative account of chemical

bonding in position space.[16,17] For instance, it has been

shown to be intimately related to the appearance of the bond

critical points of the QTAIM, leading to the concept of privi-

ledged exchange-correlation channels.[18] It has also been used

to reconstruct molecular graphs from purely energetic quanti-

ties,[19] to shed light on new concepts like halogen bond-

ing,[20,21] to recover stereolectronic effects,[22] or to find new

long-range electronic anomalies.[23]

Interatomic Vxc energies are intimately linked to the delocali-

zation or shared electron delocalization indices (DIs) used in
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the QTAIM, defined almost 40 years ago by Bader and Ste-

phens.[24] These are obtained by directly integrating the xc

density of very two different atomic domains and measure the

number of shared pairs of electrons between them. They have

been successfully used as real space generalization of the

bond order concept, reducing to the Wiberg-Mayer[25,26] bond

orders if atomic domains are imagined to collapse onto their

nuclei. In a sense, Vxc’s are the energetic counterparts of DIs,

and both have been empirically found to correlate very well

when a given couple of atoms is examined in different molec-

ular environments.

The computational complexity of obtaining DIs is consider-

ably smaller than that of calculating Vxc’s, as the former may

be factorized into sums of products of atomic overlap matrices

(AOM; 3D numerical integrals), while the latter need, in princi-

ple, very costly 6D quadratures. Thus, if we are not interested

in very accurate results, but only in semi-quantitative estima-

tions of covalent energies, any procedure that might approxi-

mate the Vxc values in terms of cheaper to compute quantities

like the DIs should be welcome. That procedure was initially

examined by Rafat and Popelier,[27] that wrote each interatom-

ic Hartree–Fock (HF) Vxc interaction as a multipolar series,

exploring the convergence of this series in different closed-

shell molecules computed at this level of theory. In this work,

we generalize their algebraic formalism to multi-determinant

wavefunctions. This generalization is possible thanks to the

use of the monadic diagonalization of the exchange-

correlation density,[28] customary used within the IQA method-

ology.[4,5] Our expressions converge to those of Ref. [27] when

HF exchange-correlation densities are used in the calculation.

We will show that, regardless the type of calculation, the

monopole-monopole term of the multipolar xc interaction

between two atoms A and B of the molecule coincides with

that of Rafat and Popelier, being equal to 2dAB=ð2RÞ (R is the

AB internuclear distance), and that the series is usually divergent

although many times asymptotically convergent. Moreover, our

results clearly establish in what conditions Vxc can be safely

approximated by a truncated series, and how in some situations

retaining up to the charge-quadrupole terms may give reason-

able results even for directly bonded atoms. In the latter cases,

the use of the crudest approach VAB
xc � 2dAB=ð2RÞ is even prefer-

able to using the multipolar expansion up to very high order.

We will first consider the multipolar expansion of Vxc, includ-

ing a short account of the IQA methodology. Then, we will

turn to examine how the series converges or diverges for a

number of selected systems.

Multipolar Expansion of VAB
xc

In this section, we briefly describe the IQA method and the

role played by the exchange–correlation (xc) interaction in this

energy partition method (Subsection), the exact computation

of this interaction (Subsection), and its multipolar approxima-

tion (MP) with or without truncating the expansion of the

angular momentum series (Subsection). It is worth noting that

the experience gained to date with the IQA method, both by

us and by other groups, clearly indicates that the magnitude

of VAB
xc correlates very well with the degree of covalency

between the pair of atoms A and B as measured by means of

the DI defined by Bader and Stephens, and weighted through

the inverse of the distance between both atoms. As we will

see, this correlation would be perfect as long as the crudest

MP to VAB
xc (consisting in truncating the multipolar series in the

term l15m15l25m250) were exact.

The IQA method

The IQA method[4,5] is a real space energetic partition inspired

in the QTAIM that focuses on domain-averaged integrated

quantities. The total energy in this approach is given by

E5
X

A

TA1VAA
en 1VAA

ee 1
X
A>B

VAB
nn 1VAB

en 1VBA
en 1VAB

ee (1)

5
X

A

EA
self1

X
A>B

EAB
int : (2)

where A runs over all the atoms in the molecule, VAB
nn 5ZAZB=RAB

is the repulsion between the nuclei A and B, VAB
en 52ZB

Ð
XA

d

r1 qðr1Þr21
1B is the nuclear attraction of the electrons within

the basin of A (XA) to the nucleus B, and VAB
ee is the total

electron repulsion between XA and XB. The latter is given

by VAB
ee 5JAB1VAB

xc where

JAB5

ð
XA

dr1

ð
XB

dr2 r21
12 qðr1Þ qðr2Þ; (3)

is the classical or Coulomb electron-electrons repulsion, and

VAB
xc 5

ð
XA

dr1

ð
XB

dr2 r21
12 qxcðr1; r2Þ; (4)

where qxcðr1; r2Þ is the exchange-correlation (xc) density, is the

purely quantum-mechanical electron-electron xc interaction,

which is the main subject of this work. In this way,

EAB
int 5 VAB

nn 1VAB
en 1VBA

en 1JAB
� �

1VAB
xc 5VAB

cl 1VAB
xc : (5)

The term EA
self in eq. (2) collects all the energetic components

affecting exclusively to the atom A while EAB
int represents the

full interaction energy between atoms A and B, that is made

of the full electrostatic or classical interaction (VAB
cl ) and the

quantum-mechanical part (VAB
xc ). The expression 2 is valid, not

only for the IQA methodology but also for other energetic par-

titions, such as a recently proposed one inspired in the IQA

method, although using a fuzzy partition of the space and

localized MO.[29] Mayer and Hamza have also dealt with the

exchange component in eq. (4) in the framework of a Hilbert

space partition instead of the real space QTAIM partition we

use here.[30]

The exact xc interaction energy

Over the years, it has become clear that the magnitude of VAB
xc

measures the degree of covalency of the chemical bond

between the atoms A and B. The more negative its value, the
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bigger the bond order between the two atoms and vice

versa.[6,14,18] Their values have been recently proposed as a

novel solution to the problem of assigning a molecular graph

to a collection of nuclei[23] (i.e., how to draw a molecular struc-

ture). In the IQA approach, this term is exactly computed as

follows. First, we use the fact that for both single- (1-det) and

multi-determinant wavefunctions built in with real MOs /i, qxc

ðr1; r2Þ can be written as

qxcðr1; r2Þ5
XM

i;j;k;l

kijkl /iðr1Þ/jðr1Þ/kðr2Þ/lðr2Þ; (6)

where M is the number of partially or fully occupied MOs, and

kijkl is a symmetric matrix in the (i, j) and (k, l) pairs. Defining a

set of coefficients,

Eijkl5kijkl1kjiklð12dijÞ1kijlkð12dklÞ1kjilkð12dijÞð12dklÞ; (7)

where dij is the Kronecker symbol (dij51 for i 5 j, dij50 for

i 6¼ j) we may write an (i, j),(k, l) symmetric simpler expression,

qxcðr1; r2Þ5
XM

i�j;k�l

Eijkl/iðr1Þ/jðr1Þ/kðr2Þ/lðr2Þ: (8)

Using the basis of products of MOs, f/iðrÞ/jðrÞ; i � jg, that

contains MðM11Þ=2 members, we diagonalize eq. (8), and

get[28]:

qxcðr1; r2Þ5
XM

i�j

gij fijðr1Þfijðr2Þ; (9)

where the fij eigenfunctions are linear combinations of the

above products. The E matrix may be easily computed from

the explicit form of a given calculated wavefunction. For

closed-shell 1-det wavefunctions (and formally also for a Kohn-

Sham determinant) M5N=2, where N is the number of elec-

trons, the E matrix is already diagonal in the (i, j) and (k, l)

pairs, each eigenvector is the product of two MOs, fij5/i/j ,

and the gij eigenvalues are simply gii522 and gij524 (i 6¼ j).

Using eq. (9) in the expression of VAB
xc one gets

VAB
xc 5

XM

i�j

gijK
AB
ij ;where (10)

K AB
ij 5

ð
XA

dr1

ð
XB

dr2 r21
12 fijðr1Þfijðr2Þ: (11)

The integrals 3 and 11 can be computed numerically and (in

principle) exactly, that is, without invoking any approximation

such as the multipolar expansion, by means of the bipolar

expansion as described in Ref. [31]. Notice that using the Fock-

Dirac exchange from Kohn-Sham determinants is an approxi-

mation that has no rigorous justification.

The multipolar approach for VAB
xc

Comparing eq. (11) with eq. (3) for the Coulomb repulsion it is

evident that if JAB is approximated making use of physically

reasonable arguments that are also valid for K AB
ij , the steps to

approximate the latter will be the same used for JAB. The long-

range or MP to JAB, given by

JAB
lr 5

X1
l1m1

X1
l2m2

Cl1m1 l2m2
ðR̂Þ

QXA

l1m1
QXB

l2 m2

Rl11l211
; (12)

where m1 (m2) runs from 2l1 (2l2) to 1l1 (1l2),

R5ðRB2RAÞ � ðR; R̂Þ, with R5jRB2RAj and R̂ � ðhB2hA;/B2/AÞ
(see Fig. 14) is the position vector of the B center with respect to

the A center, Cl1m1 l2m2
ðR̂Þ are known coefficients, QX

lm are the

spherical atomic multipoles, defined as

QX
lm5Nl

ð
X

rl Slmðr̂ÞqðrÞ dr; (13)

Nl5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p=ð2l11Þ

p
, and Slmðr̂Þ are real spherical harmonics (see

Appendix) is exact when the basins XA and XB are non-

overlapping (see Fig. 1 and the definition of overlapping and

non-overlapping regions below). Equation (12) is the same

Figure 1. Schematic representation of overlapping and non-overlapping

regions.

Figure 2. Hydrogen bond systems studied in this work. Hydrogen, nitro-

gen, oxygen, and fluorine atoms are represented as growing size spheres,

respectively. [Color figure can be viewed at wileyonlinelibrary.com]
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used by Popelier et al.[33–35] in their discussion of the multipo-

lar expansion for the diatomic Coulomb repulsion. Retaining

only terms with l1 � 1 and l2 � 1 in this equation one has

JAB
lr;cd ’

QAQB

R
2QA~l

B � R
R3

1QB~l
A � R
R3

1
1

R3
~lA �~lB23

ð~lA � RÞ ðR �~lBÞ
R2

� �
;

(14)

where QX5
Ð
XqðrÞdr and ~lX5

Ð
XrqðrÞdr are the total electron

charge and the dipole moment of the X region, respectively.

The first, second plus third, and fourth terms of 14 correspond

to the charge-charge (cc), charge-dipole (cd), and dipole-dipole

(dd) interactions, respectively. We should note that the second

and third terms have opposite signs.

If the same approximation is used for K AB
ij , VAB

xc

� �
lr

becomes

VAB
xc

� �
lr
5
X1
l1 m1

X1
l2 m2

Cl1 m1 l2m2
ðR̂Þ

dAB
l1m1 ;l2m2

Rl11l211
; where (15)

dAB
l1 m1;l2m2

5
XM

i�j

gijq
XA

ij;l1m1
qXB

ij;l2m2
; and (16)

qX
ij;lm5Nl

ð
X

rl Slmðr̂ÞfijðrÞdr: (17)

It is important to stress that, similarly to ðJABÞlr, the expression

15 for ðVAB
xc Þlr provides the exact xc interaction when the atom-

ic basins XA and XB do not overlap (Fig. 1). In the present con-

text, these two basins are non-overlapping because the two

spheres of radii RA and RB, centered at the origin of XA and

XB, respectively, do not intersect each other, being RA (RB) the

maximum distance from the origin of the basin to the

surface of XA (XB). On the contrary, XA and XC are overlapping

despite that none point inside XA belongs also to XC and

vice versa. When the non-overlapping condition is not met,

the current expressions for ðJABÞlr and ðVAB
xc Þlr are only

conditionally convergent. We will see different examples of

this in section.

The function Nlr
lSlmðr̂Þ is 1 for l5m50, (y, z, x) for l 5 1 and

m5ð21; 0;11Þ, and ð
ffiffiffi
3
p

xy;
ffiffiffi
3
p

yz; 1
2
ð3z22r2Þ;

ffiffiffi
3
p

xz;
ffiffi
3
p

2
ðx22y2ÞÞ

for l 5 2 and m5ð22;21; 0;11;12Þ. If, as in the case of JAB,

only terms with l1 � 1 and l2 � 1 are included, ðVAB
xc Þlr

becomes

VAB
xc

� �
lr;cd
’
X

i;j

gij

"
qXA

ij qXB

ij

R
2qXA

ij

~lXB

ij � R
R3

1qXB

ij

~lXA

ij � R

R3

1
1

R3
~lXA

ij �~l
XB

ij 23
ð~lXA

ij � RÞ ðR �~l
XB

ij Þ
R2

 !#
; (18)

where qX
ij � qX

ij;005

ð
X

fijðrÞdr, and

~lX
ij � ðqX

ij;121; qX
ij;10; qX

ij;111Þ5
ð

X
rfijðrÞdr: (19)

If terms with ðl150; l252Þ and ðl152; l250Þ are also included,

the extra contribution

ðVAB
xc Þlr;cq5

XM

i;j

gij

R3

X12

m522

q2mðR̂Þ qA
ij qB

ij;2m1qB
ij qA

ij;2m

h i
(20)

must be added to 18. The cq subscript in eq. (20) stands for

charge-quadrupole interactions. The improved expression for

ðVAB
xc Þlr is then

ðVAB
xc Þlr;cdq5ðVAB

xc Þlr;cd1ðVAB
xc Þlr;cq: (21)

The physical meaning of qX
ij and ~lX

ij are easy to grasp. If we

consider the particular case of their diagonal expressions (i 5 j)

for a 1-det wavefunction, fiiðrÞ5/2
i ðrÞ, so that qX

ii is the elec-

tron charge of the orbital distribution /2
i ðrÞ within the X

region, and ~lX
ii the dipole moment of X due to this distribu-

tion. For this reason, qX
ij and ~lX

ij may be called orbital overlap

charge and orbital overlap dipole, respectively. At the HF level,

Figure 3. Staggered BH3NH3, eclipsed BH3NH3, N1
5 , and Li9H9 molecules.

[Color figure can be viewed at wileyonlinelibrary.com]

Figure 4. Molecules derived from saturated hydrocarbons by substituting C

or H atoms by Be, B, N, O, F atoms, plus the benzene molecule. [Color fig-

ure can be viewed at wileyonlinelibrary.com]
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the qX
ij ’s coincide with the AOM elements of the QTAIM,

qX
ij � h/ij/jiX5SX

ij . However, given that fijðrÞ at the correlated

level is a linear combination of /iðrÞ/jðrÞ products, qX
ij in this

case is a linear combination of AOM elements. Nevertheless,

for both types of wavefunctions 22dAB
00;00 coincides with dAB,

the so-called DI between the atoms A and B

22dAB
00;005dAB52

XM

i�j

2gijS
XA

ij SXB

ij ; (22)

so that the leading term of ðVAB
xc Þlr ðl15l25m15m250Þ can be

written as

R21
X

i;j

gijq
XA

ij qXB

ij 52dAB=ð2RÞ: (23)

The above equation is behind the good existing correlation

between the values of VAB
xc and dAB for a large collection of AB

couples in many systems. The present derivation shows that

the proportionality between VAB
xc and dAB is modulated by the

inverse of the distance between the nuclei of both atomic

basins.

Systems and Computational Details

All the calculations of this work have performed with our PRO-

MOLDEN code.[36] This program allows the exact computa-

tion[28,31] (i.e., without suffering the convergence problems

inherent to the multipolar series expansion) of VAB
xc as well as

the full (lr) and truncated (lr,cd) and (lr,cdq) MP described in

section. For brevity, only the exact, and the (lr) and (lr,cdq)

numbers will be given in the tables. The errors plotted in the

figures are defined as ½ðVAB
xc Þmethod2ðVAB

xc;exactÞ�=jVAB
xc;exactj3100,

where method5(lr), (lr,cd), or (lr,cdq). The studied systems

include several standard hydrogen bonded (HB) dimers (Fig. 2),

the staggered BH3NH3, eclipsed BH3NH3, N1
5 , and Li9H9 mole-

cules (Fig. 3), 11 molecules derived from saturated hydrocar-

bons by substituting C or H atoms by Be, B, N, O, F atoms,

plus the benzene molecule (Fig. 4), the saturated hydrocarbons

ethane, propane, butane, and pentane (Fig. 5), and the phenol

dimer (Fig. 6). The labels of the atoms in the tables are those

defined in these figures. For simplicity, the MO required for

evaluating the exchange-correlation density of eq. (8) have

been obtained through restricted Hartree–Fock (RHF) calcula-

tions at the corresponding equilibrium geometries with basis

sets of quality 6-311G(d,p) or higher. However, as our results in

this article stem from the algebraic properties of the multipo-

lar expansion, we do not expect significant changes neither in

the numerical results nor in the subsequent discussion when

using more accurate wavefunctions or the approximate data

coming from Kohn-Sham determinants in the computation of

the xc interactions. To prove the validity of this assertion, we

will compare the VAB
x energies obtained for staggered ethane

in a CAS[14,14] calculation (Complete Active Space calculation

with all except the carbon 1s electrons distributed into 14

Figure 5. CnH2n12 (n5225) saturated hydrocarbons.

Figure 6. Phenol dimer. [Color figure can be viewed at wileyonlinelibrary.com]

FULL PAPERWWW.C-CHEM.ORG

Journal of Computational Chemistry 2017, DOI: 10.1002/jcc.24758 5



valence orbitals) with the RHF results. All other xc interactions

except those of the above CAS calculation lack a correlation

energy component, being thus pure exchange contributions

that should be more properly labelled VAB
x . However, as all the

expressions in section are valid for general wavefunctions the

original name will be used hereinafter. The sums over l1 and l2
in eq. (15) were truncated at lmax

1 5lmax
2 58, so that terms up to

a range L5lmax
1 1lmax

2 11517 were included in the multipolar

expansion. As QTAIM domains are usually finite and quite

irregular, very fine radial and angular grids are needed to

carry out the 6D numerical integrations. Here, we have

systematically considered a b2sphere around each atom, with

a radius equal to 60–90% the distance of its nucleus to the

closest bond critical point, and used high quality Lebedev

angular and radial grids, with (5810, 512) and (194, 400) points

outside and inside the spheres, respectively. The errors in the

total energy of the studied molecules attributable to these

numerical integrations, necessarily approximate, are of the

order of 1.0 kJ/mol. Our accumulated experience in IQA calcu-

lations makes us believe that the accuracy achieved in each

interatomic interaction is even higher. Despite this issue

regarding the full numerical accuracy of our integrations, once

Table 1. xc interaction energies � 0:1 kJ/mol for the HB dimers of Figure 2.

A – B (VAB
xc )lr;cdq (VAB

xc )lr VAB
xc A – B (VAB

xc )lr;cdq (VAB
xc )lr VAB

xc

H2O–H2O HF–NH3

O12H2 2478.59 1.293104 2437.77 F12H2 2280.40 3.793103 2259.76

O12H3 2569.61 28.453105 2514.46 F12N3 240.44 241.74 241.85

O12O4 216.40 216.96 216.94 F12H4 20.42 20.42 20.42

O12H5 20.11 20.10 20.11 F12H5 20.42 20.42 20.42

H22H3 21.94 21.44 21.84 F12H6 20.42 20.42 20.42

H22O4 224.73 225.45 225.36 H22N3 247.99 248.50 248.23

H22H5 20.17 20.17 20.17 H22H4 20.34 20.34 20.34

H32O4 20.19 20.18 20.18 H22H5 20.34 20.34 20.34

O42H5 2541.14 27.163105 2488.52 H22H6 20.34 20.34 20.34

H52H6 22.19 24.27 22.03 N32H4 2758.46 5.383105 2688.30

H2O–NH3 N32H5 2758.46 5.383105 2688.30

O12H2 2575.13 21.213107 2519.23 N32H6 2758.40 5.583105 2688.24

O12H3 2460.75 25.353104 2421.84 H42H5 25.34 212.72 25.12

O12N4 220.16 220.71 220.70 H42H6 25.34 212.71 25.12

O12H5 20.19 20.19 20.19 H52H6 25.34 212.71 25.12

O12H6 20.20 20.20 20.20 NH32H2O

H22H3 21.88 21.00 21.80 N12H2 2731.84 4.543106 2668.43

H22N4 20.24 20.24 20.24 N12H3 2779.59 1.373106 2710.26

H32N4 231.54 232.23 232.07 N12O5 28.33 28.63 28.60

H32H5 20.27 20.27 20.27 H22H3 25.26 26.18 25.13

H32H6 20.28 20.28 20.28 H22O5 216.83 217.59 217.37

N42H5 2764.79 6.933105 2694.12 H22H6 20.10 20.10 20.10

N42H6 2767.36 5.653105 2697.06 H32H4 26.08 230.52 25.85

H52H6 25.60 217.52 25.37 H32O5 20.20 20.20 20.20

H62H7 25.66 218.08 25.43 O52H6 2550.78 28.083105 2496.97

FHF2 H62H7 22.27 24.67 22.11

F12F2 292.79 2100.02 296.55 NH32NH3

F12H3 2163.82 6.803104 2159.19 N12H2 2781.96 7.753105 2712.71

HF–H2O N12H4 2719.70 21.223105 2657.38

F12H2 2298.63 2844.89 2275.72 N12N5 29.02 29.29 29.26

F12O3 228.64 229.82 229.79 H22H3 26.16 235.32 25.93

F12H4 20.23 20.22 20.22 H22H4 25.16 1.88 25.04

H22O3 232.04 232.78 232.67 H22N5 20.22 20.22 20.22

H22H4 20.23 20.23 20.23 H42N5 220.79 221.40 221.28

O32H4 2528.95 25.933105 2477.77 H42H6 20.24 20.24 20.24

H42H5 22.11 24.02 21.96 H42H7 20.20 20.20 20.20

HF–HF N52H6 2771.52 7.643105 2702.05

F12H2 2329.20 7048.78 2302.00 N52H7 2770.75 6.853105 2700.44

F12F3 217.02 217.83 217.82 H62H7 25.80 222.66 25.57

H22F3 216.71 217.34 217.32 H72H8 25.75 221.54 25.52

H22H4 20.11 20.11 20.11

F32H4 2356.83 22.053105 2320.36

HF–N2

F12H2 2349.90 25.853103 2319.67

F12N3 29.19 29.58 29.57

F12N4 20.28 20.28 20.28

H22N3 211.15 211.46 211.46

H22N4 20.46 20.45 20.45

N32N4 22266.80 28.613105 22479.99
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the computational conditions of a given calculation have been

chosen the convergence of the bipolar expansion (the exact

benchmark) is ordinarily well below the 1 kJ/mol barrier for

the xc contributions.

Results and Discussion

The more representative results regarding the approximate

VAB
xc values, as well as their errors for the systems listed in Sec-

tion are gathered in Tables 1–3 and Figures 7–11. We can see

in Table 1, where the VAB
xc ’s for the HB systems of Figure 2 are

collected, that the full MP (VAB
xc )lr [eq. (15)] fails miserably for

all intramolecular A–H pairs (A5N,O,F). Surprisingly, the crude

(lr,cdq) approximation gives xc interactions with relative errors

of about 10% or smaller for the intramolecular directly bonded

atoms. Regarding the intermolecular interactions, the xc ener-

gy between the two atoms involved in the HB is well repre-

sented by (VAB
xc )lr, with differences with respect to the exact

values smaller than 0.3 kJ/mol in all the cases. We note again

that the (lr,cdq) values differ only by 0.3–0.6 kJ/mol from the

exact ones, confirming that the multipolar expansion for these

interactions is practically converged at this level of calculation.

Intermolecular A–H and H–H xc energies other than the above

ones are given by the lr approximation with errors smaller

than 0.1 and 0.01 kJ/mol, respectively. For the intermolecular

H–H energies, the same is true in the (lr,cdq) approximation.

However, the xc interaction between the A atom of the proton

donor (PD) and the B atom of the proton acceptor (PA) mole-

cule is predicted with errors as large as 1.4 kJ/mol (FH� � �NH3)

when the (lr,cdq) approximation is used, which clearly indi-

cates that multipolar interactions higher than the charge-

quadrupole ones included in this approximation are required

to represent this type of interaction with accuracy.

The relative errors of the A–B, A–H (A,B5N,O,F), and H–H xc

interaction energies for all the intramolecular and intermolecu-

lar pairs of the HB systems are represented in Figure 7. We

observe in Figure 7 that cd and cdq intramolecular H–H ener-

gies are, in general, more accurate than the ones for the A–H

interactions, which is clearly due to the 1–3 (1–2) character of

all the intramolecular H–H (A–H) pairs. It is also striking that,

with a couple of exceptions, cdq relative errors are negative

whereas the contrary happens with the cd approximation.

Moreover, as previously commented, only a single lr relative

error appears in the figure, the remaining ones having errors

greater than 20%. Regarding the intermolecular xc energies,

we observe in right Figure 7 the progressive decreasing of rel-

ative errors in passing from cd to cdq, and from cdq to lr.

The discussion for the systems in Figure 3 runs parallel to

that of the HB dimers. The (VAB
xc )lr value for the B–N pair in

eclipsed and staggered BH32NH3 has no sense. Similarly, the

lr xc interaction between the directly bonded (i.e., 1–2) B–H

and N–H pairs is quite absurd. Not only that, but also the

(VAB
xc )lr’s for the 1–3 pairs H32H4 and H62H7 are several orders

of magnitude greater than the exact values. Contrarily to this,

Table 2. Representative xc interaction energies (kJ/mol) for the systems of Figure 3.

A – B (VAB
xc )lr;cdq (VAB

xc )lr VAB
xc A – B (VAB

xc )lr;cdq (VAB
xc )lr VAB

xc

Eclipsed BH32NH3 Li9H9

B12N2 2164.57 3524.65 2172.41 Li1-Li2 20.30 20.31 20.31

B12H3 2355.03 8.40 3 106 2334.69 Li1-Li6 20.71 20.72 20.72

B12H6 21.15 21.14 21.14 Li1-H10(1) 217.22 2318.57 217.75

N22H3 260.32 262.95 265.25 Li1-H11(1) 225.92 42.71 226.24

N22H6 2723.06 28.05 3 107 2659.17 Li1-H15 20.47 20.49 20.49

H32H4 267.52 2339.26 267.39 Li2-Li3 20.70 20.93 20.71

H32H6 22.58 24.71 22.55 Li2-Li4 20.14 20.14 20.14

H32H7 20.69 20.68 20.69 Li2-Li6 20.84 20.87 20.85

H62H7 24.30 2865.54 24.12 Li2-H10(1) 226.95 331.98 227.12

Staggered BH32NH3 Li2-H11(1) 218.34 59.37 218.74

B12N2 2172.72 3080.97 2181.51 Li2-H12 20.47 20.50 20.49

B12H3 2351.06 7.76 3 106 2331.51 Li2-H13 20.09 20.10 20.09

B12H6 21.21 21.99 21.20 Li2-H15(1) 236.35 1.50 3 104 236.27

N22H3 264.56 271.22 269.56 Li2-H17 20.17 20.17 20.17

N22H6 2721.25 26.056 3 108 2659.38 Li6-Li7 20.31 20.31 20.31

H32H4 266.25 2296.87 266.17 Li6-H10 20.84 20.88 20.88

H32H6 21.06 21.17 21.05 Li6-H11(1) 236.95 36.59 236.67

H32H7 21.62 21.61 21.61 Li6-H12 20.19 20.19 20.19

H62H7 24.28 2472.57 24.12 Li6-H15(1) 245.11 21.21 3 103 244.54

N1
5 Li6-H16 20.21 20.21 20.21

N12N2 21019.33 21.70 3 105 21056.45 H10-H11 218.30 220.78 219.85

N12N4 247.28 248.48 248.20 H10-H15 229.91 238.97 230.92

N22N3 252.15 262.35 255.59 H11-H12 224.03 236.36 224.76

N22N4 22066.45 2.90 3 107 22205.41 H11-H13 20.70 20.71 20.70

N22N5 27.78 27.77 27.77 H11-H15 225.73 249.73 226.56

N42N5 23.26 23.27 23.27 H11-H17 20.28 20.28 20.28

H15-H16 21.48 21.47 21.44

H15-H17 20.19 20.19 20.19

In Li9H9, the directly bonded Li and H atoms are signalled with (1).
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Table 3. Representative xc interaction energies (kJ/mol) for the systems of Figure 4.

A – B (VAB
xc )lr;cdq (VAB

xc )lr VAB
xc A – B (VAB

xc )lr;cdq (VAB
xc )lr VAB

xc

cis-C2H2F2 CH3BeH

C12C2 21311.48 23.823105 21351.45 H12C2 234.84 232.52 232.62

C12H3 2811.14 21.203104 2746.88 H12H3 20.75 20.74 20.75

C12H4 217.00 215.11 215.79 H12Be6 2170.49 2.433104 2159.81

C12F5 2600.29 25.293103 2608.87 C22H3 2845.84 6.993105 2765.34

C12F6 253.21 254.86 252.56 C22Be6 2168.87 2824.46 2164.53

H32H4 21.40 21.40 21.40 H32H4 217.84 230.31 217.43

H32F5 224.53 224.79 224.54 H32Be6 22.46 22.45 22.47

H32F6 23.64 23.70 23.52 CH3BH2

F52F6 24.61 24.60 24.60 C12B2 2361.03 2496.34 2362.60

trans-C2H2F2 C12H3 2826.73 2.483105 2745.50

C12C2 21304.91 23.873105 21345.33 C12H4 2834.27 6.393104 2762.61

C12H3 2811.92 2540.92 2747.51 C12H6 266.37 268.63 268.96

C12H4 216.93 215.04 215.72 B22H3 26.72 26.70 26.71

C12F5 2603.33 25.673103 2611.80 B22H4 24.08 24.11 24.11

C12F6 254.31 256.04 253.69 B22H6 2376.42 21.853104 2349.54

H32H4 21.37 21.38 21.38 H32H4 217.11 225.73 216.68

H32F5 224.82 225.10 224.84 H32H6 22.04 22.04 22.04

H32F6 23.66 23.72 23.53 H42H5 215.65 221.75 215.36

F52F6 24.71 24.69 24.69 H42H6 22.82 22.81 22.81

CH2FOH H42H7 22.11 22.10 21.72

C12O2 2595.20 1.193103 2613.00 H62H7 266.83 269.51 265.42

C12F3 2515.50 80.74 2529.59 CH3CH2F

C12H4 2784.72 21.933104 2724.78 C12C2 2776.25 2808.13 2790.31

C12H6 23.15 23.08 23.12 C12F3 234.45 236.53 236.63

O22F3 284.54 294.13 294.16 C12H4 2818.55 5.403104 2748.07

O22H4 229.48 229.36 229.61 C12H5 2820.78 7.253104 2749.52

O22H6 2511.47 22.863105 2465.17 C12H7 214.33 214.45 214.31

F32H4 231.06 231.02 231.26 C22F3 2546.94 10.18 2558.24

F32H6 25.11 25.18 25.19 C22H4 217.73 217.99 217.87

H42H5 211.89 213.77 211.64 C22H5 215.64 215.90 215.82

H42H6 20.47 20.47 20.47 C22H7 2804.65 2.303105 2740.40

CH3CF3 F32H4 22.92 22.90 22.90

C12H2 2818.30 8.693104 2746.71 F32H5 23.47 23.54 23.54

C12C5 2735.49 2846.24 2758.72 F32H7 231.02 231.13 231.29

C12F6 231.84 233.40 233.56 H42H5 215.48 221.10 215.16

H22H3 213.27 216.44 213.01 H42H7 21.07 21.06 21.06

H22C5 216.37 216.79 216.80 H52H6 215.14 220.32 214.82

H22F6 22.55 22.53 22.53 H52H7 21.18 21.17 21.17

H22F7 23.45 23.53 23.21 H52H8 22.08 22.08 24.90

C52F6 2469.52 2792.76 2488.98 H72H8 213.54 217.74 213.22

F62F7 283.69 293.89 293.53

C12C2 2789.95 9.493103 2798.97 C12N2 2740.43 1.213103 2753.96

C12Li3 21.66 21.67 21.67 C12H3 2806.63 1.183104 2740.54

C12H4 2810.07 1.513105 2743.11 C12H4 2809.44 9.593104 2741.04

C12H5 2815.31 2.793105 2746.34 C12H6 26.68 27.10 26.60

C12H7 221.37 222.48 221.68 N22H3 229.22 229.36 228.96

C22Li3 2100.43 2554.91 296.79 N22H4 227.42 227.66 227.76

C22H4 219.31 236.64 218.43 N22H6 2770.22 1.453106 2707.83

C22H5 218.60 213.76 218.54 H32H4 216.11 221.94 215.75

C22H7 2838.53 3.783106 2767.82 H32H6 20.59 20.58 20.58

Li32H4 20.57 20.57 20.57 H42H5 215.88 222.49 215.48

Li32H5 20.16 20.16 20.16 H42H6 20.62 20.61 20.61

Li32H7 21.98 21.98 21.96 H42H7 21.91 21.90 21.77

H42H5 218.94 236.17 218.51 H62H7 25.87 216.69 25.67

H42H7 21.59 21.57 21.57 CH3OH

H52H6 219.74 236.04 219.25 C12O2 2638.41 2187.46 2650.07

H52H7 21.26 21.25 21.25 C12F3 2808.68 26.143103 2740.99

H52H8 22.65 22.64 22.64 C12H4 2804.40 2.533104 2738.45

H72H8 223.12 297.48 222.57 C12H6 23.79 23.81 23.78

CH3CLi3 O22F3 236.31 236.22 236.71

C12H2 2806.90 4.893105 2739.52 O22H4 229.92 229.73 230.14

C12C5 2823.71 2.893104 2839.98 O22H6 2553.82 23.093105 2503.97

C12Li6 22.38 22.42 22.41 F32H4 215.27 221.13 214.92

H22H3 220.16 263.55 219.70 F32H6 21.32 21.31 21.32

H22C5 225.16 233.67 225.04 H42H5 214.69 218.89 214.35

(Continued)
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the cdq approximation works relatively well for the B–N pair

and the 1–2 B–H and N–H pairs (relative error <5%). The

H32H4 interaction is also extremely well reproduced by this

approximation (error <0:2%), whereas the H62H7 is slightly

worse (error �4%). The xc interaction between the B atom

and a H atom of the NH3 unit (B12H6) is fairly accurate in

both the lr and cdq approximations. This is not so with the

symmetric interaction N22H3, with errors about 4–7% in both

cases.

In the N1
5 molecule, the xc energy for the 1–2 pairs is again

badly represented by the lr approximation but is reasonable in

the cdq approach, particularly for N12N2. The cdq and lr val-

ues for the 1–3 N12N4 interaction differs from the exact value

by about 0.9 and 0.3 kJ/mol, respectively. The error in the oth-

er 1–3 interaction (N22N3) in considerably higher in both

approaches. Finally, the lr and cdq xc energies for the 1–4

N22N5 and 1–5 N42N5 pairs are practically the same and

coincident with the exact value. This result highlights two

important facts: (i) the atomic basins of N2 and N5 (or N4 and

N5) atoms fullfil almost exactly the non-overlapping criterion

displayed in Figure 1, and (ii) the multipolar series 15 con-

verges very quickly in this particular case.

Finally, the results for Li92H9 reinforce what was said in the

above three paragraphs. The full lr expansion fails completely

in predicting xc interaction energies for 1–2 Li–H pairs, while

the cdq values are pretty accurate. All Li–Li xc energies are

well represented in the lr and cdq approximations, with the

exception of the lr Li22Li3 interaction. This is probably related

with the almost spherical character of Li atomic basins.

According to this, the 1–3 Li–H lr xc energies and, more impor-

tantly, the 1–3 H–H xc energies are less accurately computed

due to the far from the spherical character of H atomic basins.

This is exacerbated in the lr approximation, where higher

angular number l values are involved [see eq. (17)].

The xc pair interaction energies of the systems in Figure 4

are collected in Table 3, and the relative errors of the cd, cdq

and lr approximate values displayed in Figure 8, for the 1–2

(left-top), 1–3 (right-top), and 1–4 (bottom) pairs, respectively.

Virtually all of the above comments also apply here: the 1–2

xc interactions cannot be represented at all using the full lr

Figure 7. Relative errors, ½ðVAB
xc Þmethod2ðVAB

xc;exactÞ�=jVAB
xc;exactj3100, of the intramolecular (left) and intermolecular (right) interactions of the molecules in Figure

2. [Color figure can be viewed at wileyonlinelibrary.com]

Table 3. (Continued)

A – B (VAB
xc )lr;cdq (VAB

xc )lr VAB
xc A – B (VAB

xc )lr;cdq (VAB
xc )lr VAB

xc

H22Li6 20.65 20.64 20.64 H42H6 20.50 20.50 20.50

H22Li7 20.43 20.43 20.38 C6H6

C52Li6 2135.99 21.033105 2123.94 C1-C2 21043.99 22.453106 21065.06

Li62Li7 21.34 23.02 21.29 C1-C3 223.85 226.79 224.50

C1-C4 222.49 223.40 223.40

C1-H7 2819.10 1.903107 2756.10

C1-H8 216.89 218.55 217.07

C1-H9 21.73 21.73 21.73

C1-H10 20.92 20.93 20.93

H7-H8 21.84 21.86 21.84

H7-H9 20.21 20.21 20.21

H7-H10 20.05 20.05 20.05
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expansion. However, they are given with reasonable accuracy

by the cdq approximation. The 1 – n (n> 2) interactions are

gradually better reproduced as n increases in both the lr and

cdq approximations. It is very satisfactory to check that the

cdq approach, a severe truncation of the full mp expansion, is

perfectly suited to simulate the xc interaction between pairs of

atoms beyond the directly bonded ones. Even in typically

covalent molecules like benzene all the cdq C–C xc interaction

energies reproduce very well the exact values. As we can see

in Figure 8 most of the 1–2 interactions have relative cdq

errors � 10%. This improves for the 1–3 and 1–4 interactions.

A summary of our results for the saturated hydrocarbons

CnH2n12 (n5225) is presented in graphical form in Figure 9.

We find the surprising result that all 1–2 C–C cdq interactions

are predicted with errors � 2% while the cdq energies

between the more distant 1–3 C–C pairs have errors about 5–

6%. Nevertheless, the interactions between even more distant

C–C pairs turn again to be calculated quite accurately (errors

<1%) in the cdq approximation. The lr approximation fails

completely to predict the 1–2 C–C interactions, but yields neg-

ligible errors for the 1–3 xc interaction energies. With regard

to the C–H interactions, the situation is the opposite of that

found for the C–C pairs: 1–2 C–H cdq errors are about 9–10%

(except in ethane where the error is unusually large (54%))

whereas all except two of the 1–3 C–H cdq errors are <1%.

For these two exceptions the error is not too large (�1:3%).

We observe in Figure 9 that the cdq approximation improves

considerably the cd results, giving 1–3 C–H interaction ener-

gies almost as accurate as the lr ones. Another surprising

result in these systems concerns the cdq 1–3 H–H interactions:

Contrary to what happens almost systematically, the cdq

results are worse than the cd ones, albeit the relative errors in

both approximations are acceptable (�223%).

We have considered staggered ethane as a representative

example to analyze the correlation effects on the VAB
xc energies.

Our results for five representative AB pairs of this molecule are

collected in Table 4. Correlation decreases (increases) the mag-

nitude of the C–C interaction (H–H interactions), changes very

Figure 8. Relative errors, ½ðVAB
xc Þmethod2ðVAB

xc;exactÞ�=jVAB
xc;exactj3100, for the 122; 123, and 124 interactions of the molecules represented in Figure 4. Empty

circles, bold circles, and triangles stand for (lr,cd), (lr,cdq), and lr calculations, respectively. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 9. Relative errors, ½ðVAB
xc Þmethod2ðVAB

xc;exactÞ�=jVAB
xc;exactj3100, for the 122 (left) and 123 (right) interactions of the molecules represented in Figure 5.

[Color figure can be viewed at wileyonlinelibrary.com]
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little VCH
xc when C belongs to a CH3 group and H to the other,

and enhances the intra-group VCH
xc energies. The discussion of

the above paragraph for the RHF results is still approximately

valid for the correlated calculation. With the exception of

inter-group H–H interactions, the cdq xc energies are closer to

the exact VAB
xc values than their full MP (VAB

xc )lr. As in many of

the HF 1–2 interactions, the lr approximation fails to predict

even a reasonable value for the C12H5 xc energy.

The different behavior of the lr and cdq approximations can

be further illustrated with the case of the phenol dimer (Fig.

6). For this system, the relative errors versus the interatomic

distance RA2B in these two approximations are plotted in Fig-

ure 10, both for intramolecular and intermolecular atomic

pairs. Only two points, associated to intramolecular interac-

tions, have a relative error (absolute value) � 20% in the cdq

calculation, while the error for all the lr points with RA2B

< 2:64 (most of them associated to intramolecular pairs) is

larger than 20%. However, for RA2B > 5:0 the lr approximation

gives quite accurate xc interaction energies for all the pairs,

whereas cdq errors are still important.

However, there is a general problem of the lr approximation

that deserves to be commented: eq. (15) does not necessary

converges to the exact xc interaction for large l1m1 and l1m1

values. This fact is illustrated in Figure 11, where the xc ener-

gies for some of the atomic pairs of the molecules in Figure 4

are represented versus lmax
1 1lmax

2 . The lr approximation suffers

a systematic error in the C12F6 interaction of cis-CH2CF2 and

trans-CH2CF2 molecules, regardless the value of lmax
1 1lmax

2 . In

the case of trans-CH2CF2, the C12F6 xc interaction energy

shows an oscillating behavior around an (erroneous) mean

Figure 11. Convergence of the A – B interactions indicated in the figure. The pairs i, j correspond to the labels of Figure 4. [Color figure can be viewed at

wileyonlinelibrary.com]

Figure 10. Relative error of the cdq (left) and lr (right) calculations for the phenol-dimer (C6H5OH� � �C6H5OH). Only two (2) points are out of the ordinate

scale in the cdq calculation, while all the points (26) with RA2B < 2:64 bohr are out of the ordinate scale in the lr calculation. [Color figure can be viewed

at wileyonlinelibrary.com]
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value. This pattern has been also observed in other cases. Con-

trarily, as we have repeatedly said in this section, catastrophic

lr interactions (see, for instance Fig. 11) are still reasonable

provided that the sum l11l2 is interrupted at a value approxi-

mately in the interval 2 � l11l2 � 6.

This simple analysis shows that conclusions on the conver-

gence of the mp expansion drawn exclusively from limited L5

lmax
1 1lmax

2 11 data cannot be trusted. Figure 12, where the

ðVAB
xc Þlr energies for some 122 interactions of the H2O–H2O,

HF-HF, and NH32NH3 dimers are shown, illustrates this fact in

a crystal clear way. Cutting the mp expansion at L � 8 the

oscillatory behavior of Figure 11 would have been found

indeed, but no catastrophe for larger L values would have

been predicted. However, for L> 8 the mp expansion progres-

sively deteriorates and for high L values the ðVAB
xc Þlr energies

diverge. Again, the cdq approximation works fairly well, with

all the 1–2 interactions in Figure 12 predicted with relative

errors smaller than 3% except F12H2 (3.2%) and F32H4 (5.2%).

Summarizing, we have shown that the multipole series for

the interatomic xc energies is conditionally convergent, and

that the computational burden of the quasi-exact calculation

of Vxc when general QTAIM domains are used may be amelio-

rated by retaining up to quadrupole-quadrupole terms. With

this approximation, reasonable errors are obtained in the

medium- to long-distance range, sometimes even for directly

bonded interactions. An overall image of the improvement of

the cdq approximation over the cc (monopole-monopole) one

can be grasped from Figure 13 that condenses all our calcula-

tions that span a six orders of magnitude range for Vxc.

We have explored numerically the degree of fulfillment of

the linear relation between VAB
xc and dAB=ð2RÞ. Assuming

VAB
xc ’ 2a½dAB=ð2RÞ�1b, we have determined a and b for each

molecule by fitting the computed values of VAB
xc and dAB for

every AB pair of this molecule to the above expression, verify-

ing that b is always very small and a takes values relatively

close to (but smaller than) 1.0. As representative examples, (a,

b) for the H2O-H2O, NH3-NH3, and HF-HF dimers are

ða; bÞ5ð0:8988;20:0005Þ; ð0:8673; 0:0000Þ, and ð0:9150;2

0:0010Þ, respectively. This result opens another possible route

to the approximate but much cheaper computation of the xc

interaction in those cases where the exact calculation is pro-

hibitive or very expensive. An extensive analysis of this correla-

tion in anion-p interactions which corroborates the above

statement has been carried out by Foroutan-Nejad et al.[37–39]

Table 4. Comparison of RHF and CAS[14,14] xc energies (kJ/mol) for staggered C2H6.

RHF CAS[14,14]

(VAB
xc )lr;cdq (VAB

xc )lr VAB
xc (VAB

xc )lr;cdq (VAB
xc )lr VAB

xc

C12C2 2781.87 2870.42 2790.68 2625.88 2723.66 2639.75

C12H5 2821.98 8.93 3 104 2533.05 2686.06 8.17 3 104 2618.64

H32H4 216.75 224.11 216.38 225.06 232.82 224.75

C12H3 216.21 216.55 216.26 216.62 216.75 216.55

H32H6 22.32 22.32 22.32 23.10 23.10 23.10

Figure 12. Convergence of 122 interactions in the H2O–H2O, HF-HF, and

NH32NH3 dimers. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 13. Comparison of all the exact V AB
xc values considered in this work

to the monopole-monopole (small circles) and cdq approximations (large

circles) in a logarithmic scale. [Color figure can be viewed at wileyonlineli-

brary.com]
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Conclusions

We have shown that the interatomic exchange-correlation

energies used in real space theories of chemical bonding,

which measure the covalent contribution to a given interatom-

ic interaction, can be approximated via a conventional multi-

pole expansion. Rigorously, the series diverges when atoms

are directly bonded, although it may be regarded asymptoti-

cally convergent. Truncation of the series up to l11l252

(including up to charge–quadrupole interactions) tends to pro-

vide results which are accurate to a few percent in 1 2 n, n> 2

interactions, and even to about 10% in many 1–2 directly

bonded cases. In the n> 2 case the series converges in many

cases, and including extra terms provides further accuracy. On

the contrary, the consideration of larger l contributions in 1–2

interactions tends to seriously deteriorate the results. As the

computational burden needed to calculate the multipole series

is considerably smaller than that of the exact bipolar expan-

sion, our results may be important to estimate covalent inter-

actions in those cases where exact integrations are not

feasible. They can also be used to ameliorate the computation-

al cost in IQA decompositions of large systems, where many

expensive, but small long-range xc terms can now be safely

approximated without loss of precision.

Appendix

We derive in this appendix eq. (15), the MP to the exact

exchange–correlation interaction, eqs. (10) and (11). Further

details are given in I. We start using the bipolar expansion for r21
12 ,

r21
12 5

X1
l1 m1

X1
l2 m2

Sl1m1
ðr̂ 1Þ Sl2m2

ðr̂ 2ÞDl2m2

l1m1
ðr1; r2;RÞ; (24)

where r1 � ðr1; r̂ 1Þ and r2 � ðr2; r̂ 2Þ are referred to centers A

and B, respectively, R5ðRB2RAÞ � ðR; R̂Þ is the position vector

of center B with respect to center A (see Fig. 14), Slmðr̂Þ are

real spherical harmonics defined as[32]

Slmðh;/Þ5HljmjðhÞUmð/Þ;
(25)

HlmðhÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l11

4p
ðl2jmjÞ!
ðl1jmjÞ!

s
Pm

l ðcos hÞ; (26)

Umð/Þ5

ffiffiffi
2
p

cos m/ m > 0;

1 m50;ffiffiffi
2
p

sin jmj/ m < 0;

8>><
>>: (27)

and Pm
l ðcos hÞ are the associated Legendre functions, defined

for m � 0 by

Pm
l ðxÞ5

1

2l l!
ð12x2Þm=2 dl1m

dxl1m
ðx221Þl: (28)

Finally, Dl2m2

l1m1
ðr1; r2;RÞ in eq. (24) is defined as

Dl2m2

l1m1
ðr1; r2;RÞ54pð21Þl1

Xl11l2

l35jl12l2j
V l1 l2 l3ðr1; r2; RÞ T l3

l1m1 l2m2
ðR̂Þ; (29)

where the sum over l3 runs in steps of 2, V l1 l2 l3ðr1; r2; RÞ is a

discriminant that takes different expressions in the four

regions defined in Figure 15, and T l3

l1 m1 l2m2
ðR̂Þ is the angular

factor

T l3
l1m1 l2 m2

ðR̂Þ5
X1l3

m352l3

dl3 m3

l1 m1 l2m2
Sl3 m3
ðR̂Þ; (30)

where dl3m3

l1 m1 l2 m2
is the Gaunt coefficient between the Slmðh;/Þ’s

defined by

dl3 m3

l1 m1 l2m2
5 hSl3m3

jSl1m1
jSl2m2

i: (31)

Given that Slm is real, dl3m3

l1 m1 l2 m2
is invariant against any permuta-

tion of the pair of indices (li, mi). These coefficients may be

determined as described elsewhere. Using eq. (24) in eq. (11)

one hasFigure 14. Coordinate system.

Figure 15. Regions of definition of the V l1 l2 l3 ðr1; r2; RÞ function.
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KAB
ij 5

X
l1m1

X
l2m2

ð
XA

Sl1m1
ðr̂ 1Þ fijðr1Þ dr1

ð
XB

Sl2m2
ðr̂ 2Þ fijðr2Þ dr2 Dl2 m2

l1 m1
ðr1; r2;RÞÞ:

(32)

A further simplification of K AB
ij requires the explicit form of

Dl2m2

l1m1
ðr1; r2;RÞ. From the expression of V l1 l2 l3ðr1; r2; RÞ [eqs.

(B1)–(B9) of I] it follows that, as long as r11r2 � R, this discrim-

inant only takes a nonzero value in region III of the (r1, r2)

space (see Fig. 15). This condition will be exactly satisfied if

R � rmax
1 1rmax

2 , where rmax
1 is the maximum value of the radial

coordinate within XA, with an equivalent definition for rmax
2 . In

the present context, atoms A and B are said to be non-

overlapping if this condition is fulfilled, and overlapping other-

wise. Although it may occur that the condition R � rmax
1 1rmax

2

is not exactly satisfied, provided that the atomic basins XA

and XB are well-separated in the space, we can expect that it

is fulfilled in practical terms. The multipolar approach, inten-

sively used to approximate the Coulomb repulsion in the

modelization of biomolecules, is equivalent to the assumption

that r11r2 � R for any r1 and r2. Thus, region III is identified

with the complete first quadrant. In this region, Dl2m2

l1m1
ðr1; r2;RÞ

is given by

Dl2 m2

l1 m1
ðr1; r2;RÞ5ð21Þl1 16p2 Dl1 l2

rl1
1 rl2

2

Rl11l211
T l11l2

l1m1 l2m2
ðR̂Þ;where (33)

Dl1 l2
5ð21Þl11l2 ð2l112l2Þ! l1! l2!

ðl11l2Þ! ð2l111Þ! ð2l211Þ! : (34)

Using eq. (33) in eq. (32), we get

K AB
ij

� �
lr
5
X
l1 m1

X
l2m2

Cl1m1 l2m2
ðR̂Þ

qXA

ij;l1m1
qXB

ij;l2 m2

Rl11l211
;where (35)

Cl1 m1;l2m2
ðR̂Þ5ð21Þl1 4p ð2l111Þð2l211Þ½ �

1
2 Dl1 l2 T l11l2

l1m1 l2m2
ðR̂Þ; (36)

and the qX
ij;lm have been defined in eq. (17). Finally, substitut-

ing eq. (35) in eq. (10) we obtain eq. (15), the MP for the

exchange–correlation interaction, VAB
xc

� �
lr

.
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An unexpected bridge between chemical bonding in-
dicators and electrical conductivity through the local-
ization tensor†

Ángel Martín Pendás∗, José Manuel Guevara-Vela, Daniel Menéndez Crespo, Aurora
Costales and Evelio Francisco

While the modern theory of the insulating state shows that the conducting or insulating proper-
ties of a system can be extracted solely from ground state properties via the so-called localization
tensor (LT), no chemical reading of this important quantity has ever been offered. Here, a re-
markable link between the LT and bond orders as described by the delocalization indices (DIs) of
chemical bonding theory is reported. This is achieved through a real space partition of the LT into
intra- and interatomic contributions. We show that the convergence or divergence of the LT in the
thermodynamic limit, which signals the insulating or conducting nature of an extended system,
respectively, can be nailed down to DIs. This allows for the exploitation of traditional chemical
intuition to identify essential and spectator atomic groups in determining electrical conductivity.
The thermodynamic limit of the LT is controlled by the spatial decay rate of the interatomic DIs,
exponential in insulators and power-law in conductors. Computational data in a few selected toy
systems corroborate our results.

1 Introduction
As the technological demand of smart, functional, or taylored
materials increases, so does the need for understanding the ba-
sic physics behind their sought-after properties. In many cases
this search has led to explore the new dimension that the depen-
dence of physical properties on size introduces at the nanoscale.
For instance, the predicted demise of Moore’s law1 has stirred
up the development of new quantum-mechanically operated de-
vices like the single electron transistor.2 Similarly, new fields such
as molecular electronics have become hot topics producing thou-
sands of specialized papers.3 Despite much work, the building of
new physical or chemical intuition that may guide future research
beyond that coming from brute force case-by-case simulation has
proven much more difficult. In crystal engineering, as an exam-
ple, although the situation is now much better than 20 years ago,
we are still far from mastering the rules to synthesize on-demand
crystal structures.4

Regarding electrical conductivity at the nanoscale, much work
has been devoted in molecular electronics to quantitatively sim-

Departamento de Química Física y Analítica, Universidad de Oviedo, Oviedo. Spain.
E-mail: ampendas@uniovi.es
† Electronic Supplementary Information (ESI) available: Mathematical derivations
leading to the TPS in real space and details on its computational implementation in
the PROMOLDEN code. See DOI: 10.1039/b000000x/

ulate electron transport in single-molecule junctions,5 and some
rules regarding the factors that govern their conductivity have
emerged. However, despite the efforts, no simple chemical rules
linking molecular structure and molecular conductivity have been
found todate.3 Since, in the end, all newly developed nanode-
vices depend on the chemical synthesis of taylored molecular
fragments, we believe that finding simple chemical indicators of
facile electronic transport or conductivity is an important goal
with possibly major outcomes.

A guiding principle in this quest may be taken from the naïve
chemical association between conductivity and electron localiza-
tion and delocalization. Key concepts in chemistry like conjuga-
tion, resonance, aromaticity, etc, are nothing but different incar-
nations of electron localizability. However, standard approaches
coming from the theory of chemical bonding (TCB) are almost
inevitably linked to the one-particle molecular orbital (MO) the-
ory,6 and molecular conductivity tends to be interpreted in terms
of excitation gaps, i.e. HOMO-LUMO energetic differences, in-
stead of as a ground state property that could be transformed into
the sought conductivity indicators. Fortunately, a new paradigm
in TCB has emerged in the last few decades7 that defines (and
explores) chemical objects in real space from orbital invariant
densities (or density matrices). These techniques, collectively
known as quantum chemical topology (QCT),8 analyze the wave
function of a system, and use meaningful fields to partition the
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physical space into regions or domains associated to: atoms,
through the one particle density in the quantum theory of atoms
in molecules7 (QTAIM); cores, lone, and bonding pairs, through
the electron localization function9 (ELF) or the electron local-
izability indicator10 (ELI), etc. Once the real space objects are
defined, indicators are obtained at well-defined points, usually
the critical points of the defining field, and the global expecta-
tion values of operators are divided into domain contributions.
This allows, for instance, for a rigorous real space partitioning
of the energy into intra- and interatomic components (the inter-
acting quantum atoms approach,11 (IQA) much in the spirit of
the atomistic ansatz. QCT, well-known in quantum chemistry, is
slowly entering condensed matter physics.

Early attempts that tried to link the conductivity features of a
molecular system with its electron density failed.12 This comes
as no surprise, since conductivity leaves no simple scars on the
density. Fortunately, QCT domain expectation values are based
on physical observables, so QCT provides an open door to con-
nect the physicist’s and the chemist’s intuitions, which tend to
live in separated worlds. This is not easy to do in other TCB
approaches. In this regard, a rigorous formalism coupling the in-
sulating or conducting nature of an extended system with ground
state properties exists.13 Although not well known in the chemi-
cal literature, Kohn’s theory of the insulating state does the job. It
is electron (de)localization that explains conductivity, quantified
by an object called the localization tensor (LT).

Thanks to QCT and its rigorous partitioning of quantum me-
chanical expectation values into atomic or functional group con-
tributions, we find and explore here a remarkable bridge between
the LT and the standard bond orders of chemistry, as defined
in their real space manifestation known as delocalization indices
(DIs). It is the rate at which bond orders decrease with distance
that determines whether a system will or will not be conducting
in the static thermodynamic limit. Since we can examine straight-
forwardly the behavior of DIs among atoms or functional groups
in several dimensions, we expect our results to be useful in build-
ing new conductivity chemical rules.

2 The modern theory of the insulating state
and the assessment of conductivity via
the localization tensor

A seminal work by W. Kohn in 196413 showed for the first time
how the insulating nature of a system could be understood as a
consequence of electron localization in the ground state, and not
only from the properties of its excitation spectrum. However im-
portant, this line of reasoning remained largely unexplored un-
til the end of the 1990’s, when Resta revisited and generalized
it.14–16 As emphasized by this author,17 it is the organization of
electrons in the ground state that renders a system insulating or
conducting. A central object that quantifies Kohn’s localization in
an N electron system is the localization tensor, λλλ or LT. It is de-
fined as the second cumulant moment, per electron, of the total
electronic position operator R̂RR = ∑N

i r̂rri.

λλλ =
1
N

{
〈Ψ|R̂RR⊗ R̂RR|Ψ〉−〈Ψ|R̂RR|Ψ〉⊗〈Ψ|R̂RR|Ψ〉

}
. (1)

We will use in this work bold fonts to indicate vectors or tensors,
depending on the context, and the ⊗ symbol for tensor or carte-
sian products. As an example, the cartesian components of the
rrr⊗ rrr tensor are (rrr⊗ rrr)αβ = xα xβ .

One of the most important results of Resta’s reformulation lies
in the link between the behavior of λλλ in the thermodynamic
limit and electrical conductivity: the λλλ tensor, that measures the
quadratic fluctuation of the polarization of the system, and that
was initially used by Kudinov,18 has a well-defined thermody-
namic limit, diverging for conductors while remaining finite for
insulators.

We will just provide, for consistency, a few ideas that may guide
the informed reader about the origin of such a unique property. It
stems from the fluctuation-dissipation theorem,19 that allows to
prove17 first that

λλλ =
h̄

πe2N

∫ ∞

0
dω Imααα(ω), (2)

where ααα(ω) is the frequency dependent linear polarizability ten-
sor. From this, if periodic boundary conditions are imposed, it can
also be proven that

λβγ = δβγ
h̄V

πe2N

∫ ∞

0
dω

Reσ(ω)

ω
, (3)

σ being the frequency dependent electric conductivity. For con-
ducting systems, with non-vanishing Reσ at zero frequency, the
diagonal components of λλλ diverge. These diagonal values can
also be understood as localization lengths,19 and they are related
to the optical gap Eg by λαα ≤ h̄2/(2meEg).

Simple manipulations, already put forward by Resta,17 allow
to recast the LT in terms of the first order, ρ(rrr1), and the second
order, ρ2(rrr1,rrr2), spinless densities, which are also known as the
electron density and the pair density, respectively:

ρ(rrr1) = N ∑
σi

∫
dxxx2 · · ·dxxxNΨ∗Ψ,

ρ2(rrr1,rrr2) = N(N −1)∑
σi

∫
dxxx3 · · ·dxxxNΨ∗Ψ. (4)

In the above expressions Ψ = Ψ(xxx1, . . . ,xxxN) and we sum over all
the σi spin components of the xxxi space-spin electron coordinates.

Using the exchange-correlation density, the part of the pair
density containing the quantum mechanical effects due to the
antisymmetry of the wavefunction, ρxc(rrr1,rrr2) = ρ(rrr1)ρ(rrr2) −
ρ2(rrr1,rrr2), and defining the interparticle position vector rrr12 =

rrr1 − rrr2, λλλ may be written in an explicitly origin independent,
symmetrical form. As we show in the ESI, after some algebraic
manipulations,

λλλ =
1

2N

∫
drrr1drrr2 (rrr12 ⊗ rrr12)ρxc(rrr1,rrr2). (5)

3 A bridge between conductivity and the
theory of chemical bonding

Being Chemistry the science of the interactions among electrons
(or atoms, made from them and nuclei), it is not surprising that
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ρxc, that collects all non-classical behaviour in the pair-density, is
emerging, slowly but steadily, as one of the pillars in the modern
TCB. Similarly, having shown that electrical conductivity is re-
lated to how electrons localize or delocalize, it is also expectable
that the former be related to chemical bonding measures of elec-
tron delocalization. Undoubtedly, the latter have a rather long
history in TCB.

In the present context, Bader and Stephens20 already proposed
in 1974 that the interatomic integration of ρxc measures the num-
ber of pairs of electrons shared between two atomic regions, and
named this quantity the delocalization index (DI),

δ AB = 2
∫

A
drrr1

∫

B
drrr2 ρxc(rrr1,rrr2). (6)

Here A,B are the spatial regions associated to the two atoms (or
fragments) under scrutiny. A similar A,A integral, the localization
index, determines the number of localized electrons in a region.
The DI provides the fluctuation of the electron population in the
A,B regions, being also a real space generalization of the standard
MO Wiberg-Mayer bond order,21,21,22 which physicists still use,
in their majority, in its even cruder Mulliken flavor. In energetic
terms, the interatomic exchange-correlation energy,

EAB
xc =

∫

A
drrr1

∫

B
drrr2

ρxc(rrr1,rrr2)

r12
(7)

has been shown to correspond to the covalent part of the inter-
action between the regions.23 Besides these two direct links, a
growing body of evidence is showing the relevance of ρxc-based
indices in TCB,24 explaining facts as the nature of chemical in-
teractions from DI profiles,24 or rationalizing stereolectronic ef-
fects.25 As we are going to show, it is the innocent concept of bond
order, a must in every freshman chemistry course, that stores infor-
mation about electrical conductivity.

A couple of recent studies,26,27 had already started to show
that DIs encode information about the insulating or conducting
nature of a system through their spatial decay rate: in metals we
find an algebraic oscillatory decline with interatomic A−B dis-
tance, while in insulators their fall off is exponential. Considera-
tion of strongly correlated cases27 evidences that DIs are also suit-
able generalizations of the double occupation order parameter D

used in Hubbard models to signal metal-insulator transitions, and
that they reveal how mesomeric effects in alternant hydrocarbons
are deeply linked to the oscillatory pattern that leads to conduc-
tivity in the thermodynamic limit. An increase in the electron
correlation strength (by increasing the Hubbard U/t parameter
or equivalently by substituting carbon by heavier elements) even-
tually destroys the oscillations, pointing toward an active effect
of electron correlation in chemistry, e.g. to smaller mesomeric ef-
fects in the heavier analogues of alternant hydrocarbons. Even
more importantly, the decay of these indices may be followed
along specific bond chains, directions, or along a combination of
both. One needs only choose appropriately the domains in the
A,B pairs. This provides a quantitative tool in the discovery of
low dimensional conductors.

3.1 The localization tensor in finite molecules

In the last few years, several works by Leininger, Evangelisti and
coworkers28,29 have examined the role of λλλ in molecular instead
of extended systems. To that end, these authors have preferred
to use the total second cumulant, which they have called total
position-spread tensor, ΛΛΛ or TPS, and not the per electron quan-
tity. Even a spin resolved version has also been studied.30

It has been shown that the TPS is very sensitive to bond stretch-
ing, becoming large in the case of increased electron mobility. In
simple diatomics, for instance, its parallel component is small at
equilibrium, it increases as the interatomic distance is enlarged
before achieving a maximum value close to the bond breaking
region, and it decreases again towards the free atomic value at
dissociation.

Although the TPS has been wellcome, adding to the battery
of new chemical bonding indicators at hand, its global character
partially limits its applicability. Its evolution in a possibly complex
process will just average out the total response of the system, even
though some very restricted atomic or bond resolution might be
achieved by following a particular component or projection that
isolates an important direction in space. In order to become a use-
ful TCB descriptor, this barrier needs be overcome to understand
the origin of convergence/divergence and the onset of conductiv-
ity as we approach the thermodynamic limit.

3.2 An atomic partition of the TPS

Being the expectation value of a two-electron operator, QCT offers
an immediate solution to the problem: provided that a chemically
meaningful division of the space exists, we can space partition λλλ
or ΛΛΛ, just as it is done in the IQA approach. Without loss of gener-
ality, we present an atomic partition of the TPS using the QTAIM.
This can be made coarser (scaling it up to the functional group
or molecular level) or finer (to the level of atomic core, bond and
lone pair domains) at will. Another important point regards ori-
gin dependency, which may bring trouble in the partitioning if
direct use of Eq. 1 is made. This difficulty is eluded by using the
manifestly origin independent Eq. 5.

Let us start with an exhaustive partition of the physical space
R3 =

⋃
A into atomic regions. A rigorous, physically sound pos-

sibility is provided by the QTAIM. Each of these regions or do-
mains harbors a nucleus, at position RRRA. Given the one-to-one
correspondence between domains and nuclei, we will label them
interchangeably. Then,

ΛΛΛ = ∑
A≥B

ΛΛΛAB, (8)

ΛΛΛAA =
1
2

∫

A
drrr1

∫

A
drrr2 (rrr12 ⊗ rrr12)ρxc(rrr1,rrr2),

ΛΛΛAB =
∫

A
drrr1

∫

B
drrr2 (rrr12 ⊗ rrr12)ρxc(rrr1,rrr2).

Notice that the above expressions provide a chemical partition of
the TPS (or the LT if we divide by N).

The intra-atomic ΛΛΛAA terms must tend to their free atomic
values ΛΛΛAA

0 as the molecular system is pulled apart into atoms.
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Recalling that
∫

drrr1drrr2ρxc(rrr1,rrr2) = N, it is well known that the
localization index of region A, NAA =

∫
A drrr1

∫
A drrr2ρxc(rrr1,rrr2), de-

fines the number of localized electrons in region A, so that ΛΛΛAA

measures the interelectron spread of these localized electrons in
the atomic region, behaving grossly as ΛΛΛAA ∼ (NAA/2)〈r2

12〉A. The
intra-atomic contributions to the TPS are thus additive and size
extensive, and their sum is clearly seen through this partition to
provide a term that scales linearly with the size of the system
(or the number of electrons) as we approach the thermodynamic
limit. An important corollary is that the root of any divergence
in the LT will not be found in these intra-atomic components (see
below). As it happens with other intra-domain expectation values
in QCT, ∆ΛΛΛAA = ΛΛΛAA −ΛΛΛAA

0 reflects the local change in interelec-
tron spread due to chemical bonding and, except in very specific
cases, like those in which a large charge transfer occurs, we ex-
pect these ∆ΛΛΛAA’s to be small.

The interatomic ΛΛΛAB contributions are much more interesting,
for they directly measure the change in the interelectron spread
due to the delocalization associated to the formation (or break-
ing) of a particular bond. From chemical intuition, two spatially
separated non-bonded atoms will display a vanishing ΛΛΛAB value.
Most, if not all, of the interesting behavior of ΛΛΛ is then to be found
in these terms. Notice that when two separated entities interact
the ΛAA components are non-vanishing at full-separation, chang-
ing upon interaction, but that the ΛAB value is zero at infinite
separation, sensing directly the interaction process.

3.3 How does ΛΛΛAB decay with distance?

Taking into account that A and B are two non-overlapping regions
of space, the behavior of ΛΛΛAB as the two centers move away from
each other is determined by the decay rate of ρxc with interelec-
tron distance and the RRRAB = RRRA −RRRB distance itself. Provided that
the two electron coordinates satisfy rrr1 ∈ A and rrr2 ∈ B, we may
refer them to their local nuclear reference frames, respectively:
rrr1 = RRRA + uuu1, rrr2 = RRRB + uuu2. With the above, the dependency of
ΛΛΛAB on the internuclear distance is explicitly separated. Let us
define uuu12 = uuu1 −uuu2, and the local integrals

III =
∫

A
duuu1

∫

B
duuu2 (uuu12 ⊗uuu12)ρxc(rrr1,rrr2),

JJJ =
∫

A
duuu1

∫

B
duuu2 uuu12 ρxc(rrr1,rrr2), (9)

that may also be written in terms of spatial moments of the do-
main averaged Fermi holes introduced by R. Ponec,31 which have
been successfully used in the last years to reveal many interesting
effects in chemical bonding.32 With these, we may write

ΛΛΛAB = III +RRRAB ⊗ JJJ+ JJJ⊗RRRAB +
1
2
(RRRAB ⊗RRRAB)δ AB. (10)

The first term contains only local distances, roughly decaying as
δ AB itself, and out of the three remaining terms, the one leading
the long-range behavior is the third. Thus, at large interatomic
distances ΛΛΛAB ∼ (RRRAB ⊗RRRAB)δ AB/2, and the parallel component

of ΛΛΛ along the bond direction will scale as

ΛAB
‖ ∼ 1

2
R2

ABδ AB. (11)

This last important relation provides a new bridge between TCB
descriptors in the ground state and the Kohn-Resta theory of the
insulating state.

3.4 The chemical bonding origin of the conver-
gence/divergence of λλλ

We can now turn to the convergence/divergence of λλλ in the ther-
modynamic limit. An explicit effective one-center expansion of Λ
may be immediately written from our previous partition as

ΛΛΛ = ∑
A

ΛΛΛA, ΛΛΛA = ΛΛΛAA +
1
2 ∑

B6=A
ΛΛΛAB. (12)

Notice that the atomic additivity of ΛΛΛA allows us to write

λλλ =
1
N

Nat

∑
A

ΛΛΛA =
Nat

N
〈ΛΛΛA〉= 〈ΛΛΛA〉

n
, (13)

where 〈ΛΛΛA〉 is the average of ΛΛΛA over all the atoms comprising our
system, and n is the average number of electrons per atom, The
divergence of λλλ in the thermodynamic limit is equivalent to that
of the average atomic-additive 〈ΛΛΛA〉. Remarkably, the divergence
of the LT can thus be nailed down to an atomic property.

Further analysis opens new avenues in understanding the on-
set of conductivity from a chemical perspective. Several paths
may lead to a divergent 〈ΛΛΛA〉. For instance, all of the ΛΛΛA terms
may diverge themselves, or only one or a few. This analysis will
identify essential and spectator atoms or functional groups in com-
plex conducting systems. Essential groups for conductivity will
be those for which ΛΛΛA diverges, while spectator groups will be
characterized by convergent ΛΛΛA. We think that this classification
scheme can help identify replaceable groups that will not change
the basic conductivity properties of a system while tuning their
fine conductive properties.

For each divergent ΛΛΛA, our previous comments show that it
will be the interatomic sum, ∑B6=A ΛΛΛAB, not the intra-atomic ΛΛΛAA,
that will add to an infinite result. It is the interplay between the
dimensionality of the system and the decay rate of δ AB, that de-
termines convergence. This binds the behavior of λλλ to the decay
rate of DIs, already explored.26,27

To keep our discussion as simple as possible, we will now
continue our reasoning in one-dimensional systems, where these
ideas are most easily aprehended. In 1D, whenever δ AB decreases
faster than δ AB ≃ R−d

AB , with d = 2, then the ∑B6=A ΛΛΛAB term will
converge, and the contrary will make it diverge. Similarly, the
limiting d exponent is 3,4 for 2- and 3-dimensional conductiv-
ity to occur, respectively. These results perfectly match the find-
ings relating the decay rate of the non-diagonal elements of the
first order density in tight binding models of metals, as shown
by Taraskin.33,34 On the contrary, exponentially decaying inter-
atomic delocalization indices δ AB will always lead to insulating
behavior, i.e. to convergent λλλ values. We would like to stress that
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the transition from exponential to power-law δ AB decay rates has
already been found to occur in computational studies of model
systems.27

The following expressions summarize the core of our findings
in the thermodynamic limit:

• If δ AB decays exponentially with RAB, λλλ converges.

• In a d-dimensional system, λλλ converges/diverges if δ AB de-
cays faster/slower than R−(d+1)

AB .

We propose that low-dimensional, as well as bulk conductivity
can be spotted by examining the behavior of ΛΛΛAB along the ap-
propriate directions, planes, or 3D regions, respectively.
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Fig. 1 Total, intra-atomic, and interatomic components of ΛΛΛ in the
H2 molecule at the HF (top) and CASSCF//aug-cc-pVTZ (bottom) levels
along the internuclear dissociation coordinate. The parallel and perpen-
dicular labels correspond to the internuclear and orthogonal directions,
respectively. All data in au.

4 Exemplifying the usefulness of the ΛΛΛ par-
tition

We are now in a position to show the new insights at work in
a few toy systems. We will first discuss two simple dissocia-
tion processes, H2 −−→ H+H and H2O −−→ OH+H, where we
will see how, and why, the final localization of electrons in the

products leads to a convergent λλλ , i.e. to insulating-like behav-
ior. This will also make the essential role of electron correla-
tion in correctly capturing the physics of the system. Finally, the
early stages in the birth of a divergence, thus the switch towards
metallic-like behavior, will be succintcly analyzed in a linear chain
of equally spaced hydrogen atoms. The electronic structure cal-
culations have been performed with the GAMESS package,35 and
the TPSs have been obtained for QTAIM atomic partitions through
our PROMOLDEN,36 code, which is able to handle quite a number
of correlated and non-correlated wave functions and several QCT
partitions, not only the one provided by the QTAIM. Details of the
implementation of the TPS in PROMOLDEN can be found in the
ESI.

4.1 The dissociation of H2

First we discuss the H2 molecule (A = H, B = H′), a paradigm of
covalent interactions. We have computed ΛΛΛ at the Hartree-Fock
(HF) and the configuration active space (CASSCF) levels with the
aug-cc-pVTZ basis set along its dissociation coordinate. The re-
sults are contained in Fig. 1. Notice that the ΛΛΛ tensor is diagonal
in any reference frame in which the internuclear distance coin-
cides with one of the coordinate axes, and that rotational invari-
ance equalizes the other two orthogonal eigenvalues of ΛΛΛ. We
will call these two different components of ΛΛΛ Λ‖ and Λ⊥, respec-
tively. As already put forward by Resta17 and Leininger et. al.,28

mean-field and correlated descriptions of the dissociation process
differ essentially. Interestingly, this qualitative differences are also
observed when the delocalization index is examined by itself.37.

Failure to consider electron correlation leads to a parabolic di-
vergence of Λ‖ as the internuclear distance increases. Its origin
cannot be grasped by solely examining the full tensor, but its par-
titioning shows that, as expected, it is the interatomic compo-
nent, ΛAB

‖ , that diverges. Through the eyes of our findings, the

parabolic behavior is due to an artificial non-vanishing δ AB at in-
finite separation (the HF dissociation error). It may be instructive
to recall that at the Hartree-Fock level we may write for closed-
shell systems

δ AB = 4∑
i j

SA
i jS

B
i j, (14)

where the sum runs over all pairs i j of occupied orbitals and SA
i j

is an atomic overlap integral,

SA
i j =

∫

A
drrr φi(rrr)φ j(rrr). (15)

As in H2 we have only one occupied HF orbital fulfilling SA
11 =

SB
11 = 1/2 by symmetry considerations, the bond order δ AB = 1

at any RHH in this model. This can be also interpreted as the
result of the two opposite spin electrons being statistically inde-
pendent if no Coulomb correlation is added. The wrong constant
δ AB leads to infinite-range delocalization, with an overall proba-
bility of finding the two electrons in any one of the H atoms (the
so-called ionic weight in quantum chemical approaches) equal to
1/2.38 Eq. 11 does the rest.

Proper inclusion of Coulomb correlation makes δ AB decrease
exponentially at large distances,39 so that the bond breaks ap-
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propriately. Thus, in the correct correlated description, the intra-
atomic ΛΛΛAA components start at low values close to equilibrium,
increasing to the free atom limit. From Eq. 1, it is clear that in this
limit ΛΛΛAA is also diagonal and that each of its three components
is equal to 〈φ |r2|φ〉, where φ is the hydrogenic atomic orbital in
the state of interest. For the 1s ground state, 〈r2〉 = 3 au. so that
〈z2〉= 1, which is also the appropriate ΛΛΛAA limit at dissociation.

Many other features of the behavior of the intra-atomic compo-
nents are easy to rationalize. For instance, the lower value of ΛΛΛAA

at small interatomic distances is understood straightforwardly, for
the number of localized electrons in each atom is in these condi-
tions about 0.5, vide supra. It is also interesting to notice that
the intra-atomic ΛAA

‖ value is smaller than its ΛAA
⊥ counterpart,

this reflecting the compression of the atomic density along the in-
ternuclear axis as we approach the two atoms from infinity. As
also expected, it is the interatomic ΛΛΛAB component that accounts
for the sharp maximum in the total ΛΛΛ tensor. This maximum has
been interpreted28 as a signature of bond breaking. Under our
present formalism, it is a simple consequence of the shift from
a power-law to an exponential decay in ρxc or δ AB, i.e. from
a quasi-independent electron pair being stretched (as in the HF
case) to the strongly correlated, localized dissociation limit. This
transition, scaled by R2

AB/2, gives rise to the maximum, that is
found very close to the internuclear distance at which the inflec-
tion point of δ AB has been repeatedly described.24,27

4.2 The power of partitioning ΛΛΛ: H2O −−→ OH+H

We can now show how the global behavior of ΛΛΛ, that contains the
total response of the system to a chemical process, may be split
up into chemically meaningful terms. To that end we have chosen
the H2O−−→OH+H dissociation, with the OH1 distance taken as
an intrinsic reaction coordinate. Fig. 2 shows the evolution of ΛAB

‖
along R(OH1) at the complete active space CASSCF[8,8]//aug-
cc-pVTZ level. This exemplifies the power of partitioning Λ. As
the OH1 distance is stretched, we see how there is a simple jump
in ΛOH2

‖ , while it is ΛOH1
‖ that behaves much as in the H2 case.

The step from lower to higher ΛOH2
‖ can be understood by taking

into account that in the final OH radical the number of delocal-
ized electrons between the O and the H2 atoms has increased. In
other words, since the OH2 bond order increases as the H1 atom
dissociates, ∆δ OH2 > 0, so does ΛOH2

‖ . Only a partitioning of the
TPS, like the one devised here, will be able to isolate the main
actors in complex scenarios. With our tools, this seems to be at
hand, and the strong link between the essential interatomic ΛΛΛAB

terms and the DIs is unveiled.

4.3 Recognizing the onset of conductivity: The H10 chain

Our next example will be a linear chain of 10 equally spaced H
atoms computed at the HF and full valence CASSCF levels with
the 6-311G* basis set. At the inter-hydrogen distance selected,
R = 3.5 bohr, the HF model is starting to fail, but it still provides
a reasonable description of the electron system. We examine how
the interlectron spread propagates along a quasi-1D system, and
our goal is put on Eq. 12. Fig 3 shows how ΛAB

‖ changes for all
pairs in which one of the atoms is fixed to be an end H. The first

0.0
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0.5

0.6

0.7

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Λ
||
A

B

R(O-H1) (bohr)

O-H1

O-H2

Fig. 2 Interatomic components of Λ‖ in the H2O molecule at the
CASSCF[8,8]//aug-cc-pVTZ level along the internuclear O-H1 dissocia-
tion coordinate. All data in au.

interesting point is that in the mean-field HF approximation, ΛAB
‖

decays with distance in a well-developed slow oscillatory pattern.
We have found a similar behavior examining DIs.26,27

Notice that, from the chemical point of view, these oscillations
signal a clear bond order alternation or mesomerism, precursor
of a Peierls distortion (or H2 dimerization). This has also been re-
peatedly described in previous literature:24 delocalization indices
in geometrically constrained systems inform about the expected
distortions when the constraints are released. As we find here, the
localization tensor yields similar sensible chemical information.

A power law fit of δ AB to R−d
AB gives d ≈ 2.5, close to the tight

binding value (d = 2.0). The sum in Eq. 12 achieves a very large
value. The oscillatory pattern in ΛAB

‖ , as in the case of the DI,
is a clear indicator of conducting-like behavior. A second point
regards the very quick saturation of ΛΛΛAB to the R2

ABδ AB/2 leading
term in the long range. Fig. 3 shows that our previous theoretical
insights are fully realized from actual computations. It is the de-
cay rate of DIs (i.e. the inter-center electron delocalization) that
determines conductivity in the thermodynamic limit. Inclusion of
electron correlation does not make the oscillations disappear at
this interatomic distance, but reveals how the electrons are now
much more localized, with a considerably smaller spread. A sim-
ilar fit now gives d ≈ 4.1, well above the metallic limit. We have
shown that the oscillations disappear when we enter the dissoci-
ating, localized regime, and that the DI decays exponentially in
that case.27

4.4 Insulator-like and conducting-like chains
We will finish our discussion by considering two real life one-
dimensional linear chains of equidistant atoms: (LiH)15 and Li10,
with nearest neighbor distances set to 3.0 and 5.818 bohr, respec-
tively. We have used a HF/6-311G* level that provides a simple,
yet reasonable description of both systems. Fig. 4 shows relevant
values for ΛAB

‖ , that provide clear grounds for comparison: the

small values and the very quick decay of the interatomic ΛAB
‖ val-

ues in an insulator like lithium hydride, and their much larger
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Fig. 3 ΛAB
‖ along the internuclear direction in a H10 linear chain of equally

space atoms at the HF//6-311G* (top) and CASSCF//6-311G* (bottom)
levels. A labels one of the end H atoms, and B runs over all the others.
Nearest neighbohrs are 3.5 bohr apart. In each plot, the dashed curve
corresponds to R2

ABδ AB/2. All data in au.

magnitude, slow decay, and oscillatory behavior in the metallic-
like chain.

5 Conclusions
Summarizing, we have shown in this article that a remarkable
bridge exists between the Kohn-Resta theory of the insulating
state, through the localization tensor (or its total position spread
tensor version in molecular systems), and well known indicators
used in the modern theory of chemical bonding as bond orders.
This has been achieved by partitioning the localization tensor in
intra- and interatomic components. An orbital invariant way to
do so starts by writing the LT in terms of reduced densities and
then partitioning the space into atomic regions according to quan-
tum chemical topology. Convergence or divergence of the LT in
the thermodynamic limit , associated to insulating or conduct-
ing electrical properties, depends exclusively on the decay rate
of its interatomic components. The latter are dominated by the
chemical delocalization index, a modern form of bond order. The
chemistry of ground states and the physics of conductivity become
intertwined in this way. We expect this new link to be useful in

0.0
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Fig. 4 HF//6-311G* ΛAB
‖ (bold squares) and R2

ABδ AB/2 (circles) along
the internuclear direction. Top: linear (LiH)15 chain of equally spaced
nearest-neighbors atoms. Values starting at RAB = 3.0/6.0 bohr corre-
spond to the AB=LiH/HH pairs, respectively. Bottom: linear Li10 chain of
equidistant Li atoms separated by 5.818 bohr. The AB pairs are those
formed by one end Li atom and all of its neighbors.

the search and design of low dimension conductors or insulators,
for the total LT can be written as a sum of atomic (or functional
group) components. Each atom or functional group in a system
may thus be classified as essential, if its contribution to the LT
diverges, or an spectator, if it converges, as electrical conductiv-
ity is regarded. We expect that this categorization can be used
advantageously in the rational design of new materials.
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