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Abstract: We construct and study stationary, asymptotically flat multicenter solutions

describing regular black holes with non-Abelian hair (colored magnetic-monopole and dyon

fields) in two models of N = 2, d = 4 Super-Einstein-Yang-Mills theories: the quadratic

model CP3
and the cubic model ST[2, 6], which can be embedded in 10-dimensional Het-

erotic Supergravity. These solutions are based on the multicenter dyon recently discovered

by one of us, which solves the SU(2) Bogomol’nyi and dyon equations on E3. In contrast

to the well-known Abelian multicenter solutions, the relative positions of the non-Abelian

black-hole centers are unconstrained.

We study necessary conditions on the parameters of the solutions that ensure the

regularity of the metric. In the case of the CP3
model we show that it is enough to require

the positivity of the “masses” of the individual black holes, the finiteness of each of their

entropies and their superadditivity. In the case of the ST [2, 6] model we have not been

able to show that analogous conditions are sufficient, but we give an explicit example of a

regular solution describing thousands of non-Abelian dyonic black holes in equilibrium at

arbitrary relative positions.

We also construct non-Abelian solutions that interpolate smoothly between just two

aDS2×S2 vacua with different radii (dumbbell solutions).
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1 Introduction

One of the most fascinating features of extremal black-hole solutions is that they can be

superposed or combined, following certain rules, into solutions that describe several of these

objects in equilibrium. Nowadays, these solutions are referred to as multicenter solutions,

to encompass more general cases in which some of the objects associated to the “centers”

are not black holes.

These solutions exhibit very interesting properties which we are going to review later

on, but the most striking of them is that they exist at all. The existence of stationary

solutions describing several gravitating objects in equilibrium is commonly (and correctly)

attributed to cancellation between attractive gravitational forces and repulsive electric or

magnetic forces. However, apparently, there are no self-interaction terms for the electro-

magnetic fields in the actions of the theories in which these solutions exist (e.g. in the

Einstein-Maxwell theory, which admits the Majumdar-Papapetrou (MP) solutions [1, 2]

describing extremal Reissner-Nordström black holes in static equilibrium). It is, there-

fore, bewildering that the electromagnetic fields know that two centers with fields that

correspond to charges of the same kind must repel each other.
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It is useful to remember what the situation in absence of gravity is like. In that case,

we are used to place point-like charges of arbitrary values at arbitrary points in space and

then find the corresponding electrostatic field which solves all the Maxwell equations with

those sources. This is possible because the Maxwell field is Abelian and it does not know

what is the interaction between those centers nor whether they can be in static equilibrium

or should be hold by other forces in the chosen positions unless interaction terms such as

the worldline actions for charged particles, embodying the Lorentz force, are added to the

theory.

In contrast, in a non-Abelian theory such as General Relativity, the interaction between

two mass centers and their motion is completely determined by the field equations, as shown

by Einstein, Grommer, Infeld, Hoffmann and others in refs. [3–8]. General Relativity knows

that it is not possible to have two Schwarzschild black holes in static equilibrium because

self-interaction is built-in and regular static multicenter solutions simply do not exist.

Regularity is, evidently, a very important condition in this discussion because there

are indeed solutions describing an arbitrary number of Schwarzschild black holes placed at

arbitrary points in a straight line: the Israel-Khan solutions [9]. However, these solutions

have conical singularities in the lines that join every two contiguous black-hole centers, the

deficit angle being related to the Newtonian force acting between them. These singularities

can be interpreted as struts exerting an additional force to compensate the gravitational

attraction and hold the black holes in their positions.1 Many of the singularities that occur

in multicenter solutions can be interpreted along the same lines: they show that external

forces are needed to hold the configuration in equilibrium. Therefore, we will be interested

in the conditions required to make the singularities disappear and, ultimately, we will only

consider regular solutions.

As we have stressed, the Maxwell equations in curved backgrounds do not contain

any electromagnetic self-interaction terms. The reason why the MP solutions are possi-

ble must, therefore, lie entirely in the gravitational interaction and, more specifically, in

the electromagnetic interaction energy which is implicitly contained in the electromagnetic

energy-momentum tensor. Gravity may not know directly about electromagnetic interac-

tions between charged particles but it does know about all the interaction energies. In the

end, this is equivalent to knowing the interactions themselves well enough as to determine

the equations of motion of the mass centers, as shown by Einstein et alia, and also of charge

centers, as shown by Wallace and Infeld in the interesting but less well known refs. [11–13].2

This mechanism is, obviously, much more general and explains, for instance, the exis-

tence of static multi-D-brane solutions in superstring theory effective field theories (super-

1In an infinite periodic array of Schwarzschild black holes the total gravitation force over each of them

vanishes and the conical singularities disappear [10].
2In ref. [14], Brill and Lindquist studied the time-symmetric initial-date problem for several non-

extremal Reissner-Nordström black holes and considered the contribution to the total energy in the common

asymptotically-flat region of the gravitational and electrostatic interaction energies, but no connection be-

tween their values and the possibility of evolving the initial data into a completely regular static solution (a

MP solution) was made. Similar solutions for the time-symmetric initial-data problem in Einstein-Maxwell-

dilaton gravity and in models of N = 2, d = 4 supergravity are known [15, 16] and could also be studied

from the same point of view.
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gravities) in spite of the fact that, in the underlying fundamental theory, D-branes have very

complex interactions with a very delicate cancellation associated to supersymmetry [17].

The existence of static multicenter solutions, that we have almost grown used to take

for granted, is, therefore, a small wonder and a signal that supergravities and other effec-

tive field theories including gravity encode a large amount of information of the original

(superstring or other) theory.

The equilibrium of forces (or, actually, of interaction energies) required by these solu-

tions can be achieved in more complicated situations, giving rise to stationary multicenter

solutions. The first family of solutions of this kind was found by Perjés, Israel and Wilson

(PIW) [18, 19] in the Einstein-Maxwell theory. They are an extension of the MP family in

which each center can have higher momenta of the gravitational and electromagnetic fields

and the whole spacetime can also global momenta. If one wants the centers to be regular

black holes3 the dipole and higher momenta of each center must vanish, in agreement with

the no-hair theorem.4 Still, these solutions can present other pathologies such as Misner

strings or closed timelike curves (CTCs) and Hartle and Hawking proved in ref. [21] that

the only regular solutions in the PIW family are those of the MP subfamily.5

Generalizations of the PIW family were found in pure N = 4, d = 4 supergravity

(“SWIP” [22–24]) and later in N = 2, d = 4 supergravity coupled to vector multiplets, [25–

27] typically as timelike supersymmetric solutions. However, these families were only used

to construct static (MP-like) multicenter solutions and the full potential of these solutions

remained hidden until Denef and Bates showed in refs. [28, 29] how to construct completely

regular multicenter solutions describing many static black holes with electric and magnetic

charges (dyons) with global angular momentum in N = 2, d = 4 supergravity coupled to

vector multiplets.

The source for the angular momentum of these solutions is the angular momentum

of the electromagnetic fields due to the presence of Dirac monopoles and electric charges

in different places. As a matter of fact, the global angular momentum is proportional to

the symplectic-invariant Dirac-Schwinger-Zwanziger quantization condition for dyons and

it should, therefore, be quantized. Generically, these solutions have Misner strings (the

gravitational analog of Dirac strings) which can only be avoided at the price of introducing

CTCs [30]. The cancellation of the sources of Misner strings imposes constraints on the

charges and location of the centers.6 These constraints are extremely hard to solve for 3

or more centers.

The fact that all the multicenter solutions mentioned so far carry Abelian dyonic

charges only suggests that a possible reason for the typical presence of Misner strings is,

precisely, the Abelian nature of the fields and it also suggests that they could be avoided

by the use of non-Abelian fields. However, no non-Abelian multicenter families of solutions

have been constructed so far and it is the purpose of this paper to do it for the first time.7

3In the Einstein-Maxwell theory this seems to be the only way to avoid having naked singularities.
4This is also the only way to have globally defined unbroken supersymmetry [20].
5We review this result in appendix B from our own point of view.
6We will review these constraints in section 2.
7A 2-center solution that describes two SU(2) gravitating BPS magnetic monopoles in equilibrium (an

’t Hooft-Polyakov and a Wu-Yang monopole) in N = 2, d = 4 Super-Einstein-Yang-Mills (SEYM) theories

was constructed in ref. [31], using the solutions of the Bogomol’nyi equations found in refs. [32, 33]. However,
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Here we are going to focus on the 4-dimensional case and in a forthcoming paper we will

consider the 5-dimensional one [34], although some of the considerations made here will

also apply to that case.

Finding gravitating solutions with genuinely non-Abelian fields is a very complicated

problem due to the non-linearities of the equations and, therefore, so far there have been

no attempts to construct multicenter solutions beyond those mentioned in footnote 7. Ac-

tually, in the context of the Einstein-Yang-Mills (EYM) and Einstein-Yang-Mills-Higgs

(EYMH) theories, even the single-center solutions are only known numerically [35, 36].8

This makes them very difficult to study, interpret and generalize. As argued in ref. [39],

embedding a field theory in a supersymmetric one provides new tools to tackle the problem

and construct new solutions, specially if one assumes that they preserve some supersymme-

try, but it is necessary to use N > 1 supersymmetry9 for the kind of solutions we are after.

In general, the EYM and EYMH theories are not consistent truncations of any N > 1

supergravity, and, therefore, if we want to use the solution-generating techniques provided

by supersymmetry, we must consider the simplest extended supergravities that include

non-Abelian Yang-Mills fields, which we have called Super-Einstein-Yang-Mills (SEYM)

theories. Typically, they come equipped with scalar fields that play the rôle of (usually

adjoint) Higgs fields and, typically, low values of N give more freedom to choose the gauge

group. Thus, N = 2 is the optimal value in 4 and 5 dimensions.10

N = 2, d = 4 SEYM theories are theories of N = 2, d = 4 supergravity coupled to

vector multiplets in which some subgroup of the isometry group of the Special Kähler scalar

manifold has been gauged. These theories are the simplest which include YM fields and have

a positive semidefinite scalar potential. This forces the timelike supersymmetric solutions

to be asymptotically flat because the asymptotically-DS4 ones cannot be supersymmetric.

If the gauge group has an SU(2) factor, it is also possible to use it to gauge simultaneously

the SU(2) factor of the U(2) R-symmetry group. The resulting theory has a potential that

allows for asymptotically-aDS4 solutions, but it is a much more complicated theory and

only a few solutions (none of them describing black holes) are known [40], even though

the most general timelike supersymmetric solutions have been characterized in ref. [41].

Further generalizations are possible in presence of hypermultiplets, but here we are going

to stick to the simplest possibility.11

The solution-generating methods needed to construct non-Abelian solutions of N =

2, d = 4 SEYM theories were found in ref. [45] and they have been successfully applied

to construct, in fully analytical form, several interesting supersymmetric single-center so-

these are just particular solutions which are very hard to generalize to a higher number of centers. It is

also possible to construct solutions with many Wu-Yang magnetic monopoles, but these are equivalent, up

to a singular SU(2) gauge transformation to solutions with as many Dirac monopoles embedded in SU(2)

and should not be considered as genuinely non-Abelian.
8See also refs. [37, 38].
9That is, more than 4 supercharges.

10The 5-dimensional supergravity theories with 8 supercharges will be referred to as N = 1 theories

because it is the minimal value in d = 5.
11A short review of these theories can be found in appendix A. More information is available

in refs. [42–44].
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lutions with genuine non-Abelian hair such as global monopoles and extremal static black

holes [31, 46–48] and the non-Abelian 2-center solutions mentioned in footnote 7.

As we will see, the supersymmetric solution-generating technique employed requires

solving the non-Abelian Bogomol’nyi equations in E3 [49]. The solutions to these equa-

tions are BPS magnetic monopoles such as the SU(2) ’t Hooft-Polyakov monopole in

the Bogomol’nyi-Prasad-Sommerfield limit [50–52], the SU(2) Wu-Yang monopole [53] or

the colored monopoles found by Protogenov as part of its full classification of the pos-

sible spherically-symmetric solutions [54] and which can be extended to other gauged

groups [48]. All of them have been used to construct regular black holes or gravitating

(global) monopoles in N = 2, d = 4 SEYM theories. The multicenter solutions of the

Bogomol’nyi equations are expected to describe several of these magnetic monopoles in

equilibrium but only the very restricted or trivial examples discussed in footnote 7 were

known until very recently.

In ref. [55], based on the results of ref. [56], one of us found a multicenter solution of the

SU(2) Bogomol’nyi equations on E3 describing an arbitrary number of colored monopoles

in equilibrium. Furthermore, this configuration was generalized to describe colored dyons

through the inclusion of electric non-Abelian sources. This multi-colored dyon solution will

provide the basis to construct non-Abelian multicenter solutions in N = 2, d = 4 SEYM

theories.

Colored magnetic monopoles are very interesting solutions that behave as Wu-Yang

monopoles near the origin but have asymptotically vanishing magnetic monopole charge.12

In ref. [59] we showed that they are related via dimensional oxidation à la Kronheimer [60]

to the BPST instanton [61] and the multi-colored monopole solution corresponds to a

multi-instanton solution in a non-trivial hyper-Kähler space [34, 56].

As in the Abelian case, multi-colored dyon solutions are stationary, rather than static.

However, as we are going to see, these never gives rise to Misner strings and the positions

of the dyons can be chosen completely at will. This is one of the main properties of the

non-Abelian multicenter solutions that we are going to construct here. Another important

property is that, due to the rapid fall-off of the non-Abelian fields at spatial infinity, the

non-Abelian field do not give a net contribution to the global angular momentum.

The regularity of multicenter solutions is not guaranteed by the absence of Misner

strings alone. It is necessary to study the complete metric and, in particular, the so-called

“metric function” e−2U defined in eq. (3.3), whose behavior determines the regularity of

the black-hole horizon at each center and which must not vanish anywhere else. We are

going to look for general conditions guaranteeing that this is the case and, at least for some

models, we are going to see that they have very reasonable physical interpretations.

This paper is organized as follows: in section 2 we set up the problem of finding non-

Abelian, timelike supersymmetric, multicenter solutions of N = 2, d = 4, 5 SEYM theories,

introducing the multi-colored dyon solution. In section 3 we focus on the 4-dimensional

case and apply the technique to two models of SU(2) N = 2, d = 4 SEYM (the CP3
model

12This behavior is the source of some interesting puzzles involving non-Abelian hair and the entropy of

the black holes. The solution to this puzzle in the d = 5 case has been found in ref. [57] in the context of

string theory and we are currently working on the d = 4 case [58]. We will not discuss it any further here.
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in section 3.1 and the ST[2, 6] model, which can be embedded in Heterotic Supergravity,

in section 3.2), finding solutions whose regularity conditions we will study in full detail

in terms of masses and entropies. Section 4 contains our conclusions. In appendix A we

briefly review N = 2, d = 4 SEYM theories. In appendix B we revise Hartle and Hawking’s

result on the non-existence of stationary multi-black-hole solutions in the Einstein-Maxwell

theory (which is just the bosonic sector of pure N = 2, d = 4 supergravity).

2 Setting up the problem

The problem of finding timelike supersymmetric solutions of N = 2, d = 4 SEYM theories

and timelike or null supersymmetric solutions with an additional isometry of N = 1, d = 5

SEYM theories13 boils down to the far simpler problem of finding functions ΦΛ,ΦΛ and

vector fields ĂΛ
r,

14 in Euclidean 3-dimensional space E3 solving the following three sets of

equations:

1

2
εrswF̆

Λ
sw − D̆rΦ

Λ = 0 , (2.1)

D̆rD̆rΦΛ − g2fΛΣ
Ωf∆Ω

ΓΦΣΦ∆ΦΓ = 0 , (2.2)

ΦΛD̆rD̆rΦ
Λ − ΦΛD̆rD̆rΦΛ = 0 , (2.3)

where D̆r is the gauge covariant derivative in E3 with respect to the connection ĂΛ
r.

The first set of equations (2.1) are just the Bogomol’nyi equations [49] for a set of

real, adjoint, Higgs fields ΦΛ and gauge vector fields ĂΛ
r on E3. Due to their non-linear

structure (when the gauge group is non-Abelian) one has to solve simultaneously for ΦΛ

and ĂΛ
r. In the Abelian case, the integrability condition for these equations is the Laplace

equation in E3, i.e. ∂r∂rΦ
Λ = 0; the Abelian vector fields are completely determined by

the choice of harmonic functions ΦΛ and usually they are not written down explicitly.

For the SU(2) gauge group, which will be our main interest, all the spherically-

symmetric solutions were found by Protogenov in ref. [54]. The BPS limit of the ’t Hooft-

Polyakov monopole [50–52], the SU(2) Wu-Yang monopole [53] and the so-called colored

monopoles considered in refs. [47, 48] are, perhaps, the most interesting solutions. Only

the ’t Hooft-Polyakov monopole is regular, but, just as in the Abelian case, the singularity

of the solution in E3 needs not imply the existence of a spacetime singularity in the com-

plete supergravity solutions. Actually, the singularities are typically associated to extremal

black hole horizons.

Multicenter solutions of these equations, specially with the right properties necessary

to construct multi-black-hole solutions, are extremely hard to find. In this paper we will

use the multicenter solutions of the Bogomol’nyi equations found by one of us in ref. [55]

to construct multi-center black-hole solutions in 4 and 5 dimensions. This solution, which

will be reviewed in the next section, is based on the multi-instanton solutions of Etesi and

13These theories are briefly reviewed in appendix A. The N = 1, d = 5 SEYM case will be dealt with in

a forthcoming paper [34].
14Λ,Σ, . . . = 0, 1, · · · , nV 4 where nV 4 is the number of vector supermultiplets in d = 4 and r, s, . . . = 1, 2, 3.
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Hausel ref. [56] and on the general relation between instantons in hyperKähler spaces and

BPS monopoles on E3 found by Kronheimer in ref. [60].

The second set of equations (2.2) is a set of linear equations for the scalar fields ΦΛ.

For SU(2) and, more generally, for compact groups, one can always use the trivial solution

ΦΛ ∝ ΦΛ, which also satisfy eqs. (2.3). However, a more interesting set of solutions has

been found in ref. [55] and we will make use of them. In the Abelian case, again, the ΦΛ

are harmonic functions in E3: ∂r∂rΦΛ = 0.

The third equation, (2.3) is the integrability condition of the equations that defines

the 1-form ωr that appears in the 4- and 5-dimensional metrics. If we use the other

two sets of equations, it seems to be automatically satisfied. However, since, typically,

the fields ΦΛ,ΦΛ have singularities, the first two sets of equations may not be identically

satisfied at the locus of the singularities. When this happens, the 1-form ωr still exists,

but it can only be defined locally: it will exhibit Dirac-Misner string singularities [30]

that can only be cured by defining different ωr which are regular in different patches

and identifying these solutions in the overlaps up to “gauge transformations” that can be

identified as coordinate transformations in the time direction. The consistency of these

construction requires a periodic identification of the time coordinate with the consequent

loss of asymptotic flatness. For this reason, eq. (2.3) is required to hold everywhere and, at

the loci of the singularities, this condition leads to non-trivial equations in the Abelian case

which generically (for non-trivial ΦΛ) constrain the relative distances of the pairs of black

holes in terms of their charges and the moduli [28, 29]. We will see that the solutions found

in ref. [55] do not imply any such constraints because they solve identically eqs. (2.1)–(2.3)

at the would-be singularities.

Given a solution ΦΛ,ΦΛ, Ă
Λ
r of the above equations there are three sets of rules that

allow us to construct timelike supersymmetric solution of N = 2, d = 4 SEYM theories

and timelike or null solutions with an additional isometry of N = 1, d = 5 SEYM theories

respectively. The functions and 1-forms ΦΛ,ΦΛ, Ă
Λ
r will be the building blocks of the

physical fields of the solutions. We will review the rules for the 4-dimensional case in

section 3 where we will construct and study explicit solutions of several supergravity models

with a single non-Abelian SU(2) sector. Now we are going to set up the general problem

of solving those equations and we are going to review the solutions found in ref. [55] to

which we will henceforth refer to as the multi-colored dyon.
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2.1 The multi-colored dyon solution

The indices Λ,Σ, . . . that label the vector fields can be split into those corresponding to the

Abelian and non-Abelian (SU(2)) sectors. Labeling the former with λ, σ, . . . and the latter

with A,B, . . ., which will only take three values.15 The equations (2.1)–(2.3) become16

1

2
εrswF̆

λ
sw − ∂rΦλ = 0 , (2.7)

1

2
εrswF̆

A
sw − D̆rΦ

A = 0 , (2.8)

∂r∂rΦλ = 0 , (2.9)

D̆rD̆rΦA − g2
(
ΦBΦBΦA − ΦAΦBΦB

)
= 0 , (2.10)(

Φλ∂r∂rΦ
λ − Φλ∂r∂rΦλ

)
+
(

ΦAD̆rD̆rΦ
A − ΦAD̆rD̆rΦA

)
= 0 . (2.11)

The integrability conditions of eqs. (2.7) are ∂r∂rΦ
λ = 0, which are solved by harmonic

functions in E3, as mentioned above. The explicit form of the corresponding Abelian vector

fields Ăλr will not be required in what follows. It will be sufficient to know that they exist.

Eqs. (2.9), which are also solved by harmonic functions in E3, can be interpreted as the

integrability conditions of Abelian Bogomol’nyi equations for dual vector fields Ăλ r, but

we will not need to know their explicit forms, either.

In order to obtain multi-center black-hole solutions, the harmonic functions Φλ,Φλ

must be of the form

Φλ = Φλ
0 +

∑
α

Φλ
α

rα
, Φλ = Φλ 0 +

∑
α

Φλα

rα
, rα ≡ |~x− ~xα| , (2.12)

for some points ~xα whose positions may be constrained by the integrability equa-

tions (2.11).17

As shown in ref. [55], eqs. (2.8) are solved by18

ΦA = −δAr 1

gP
∂rP , ĂAr = −εArs

1

gP
∂sP , (2.13)

15We can always call these values 1, 2, 3 for convenience. Then, we can use the same labels for the

Cartesian coordinates in E3, which simplifies considerably the notation.
16Our conventions for the SU(2) objects are as follows: the structure constants are fAB

C = +εABC =

+εAB
C (the upper or lower position of the indices, which we will choose for essentially esthetic reasons, is

irrelevant) and the covariant derivative and gauge field strength are

D̆mΦA = ∂mΦA + gεABCĂ
B
mΦC , F̆A mn = 2∂[mĂ

A
n] + gεABCĂ

B
mĂ

C
n . (2.4)

In some cases we use the following vector notation

D̆m
~Φ = ∂m~Φ + g ~̆Am × ~Φ , ~̆Fmn = 2∂[m

~̆An] + g ~̆Am × ~̆An . (2.5)

We will also use the notation

~ni ≡
~x− ~xi
|~x− ~xi|

, JA = −2ΦA . (2.6)

17There are a number of reasons why this is the only possible choice if one wants to construct regular

4-dimensional multi-center black-hole solutions. See e.g. [20].
18We will write, from now on ΦA = − 1

gP
∂AP . See footnote 15.
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for real functions P satisfying
1

P
∂r∂rP = 0 . (2.14)

Harmonic functions P of the form

P = P0 +
∑
α

Pα
rα

, (2.15)

satisfy the above equation everywhere in E3, including at the locus of the singularities

~x = ~xα. For just one singularity (~x1 = 0) and positive coefficients P0, P1, the corresponding

solution of the Bogomol’nyi equations

ΦA =
1

gr(1 + λ2r)

xA

r
, ĂAB = εABC

1

gr(1 + λ2r)

xC

r
, λ2 = P0/P1 , (2.16)

corresponds to a colored monopole [47, 48]. The behavior of the gauge fields at infinity

is such that using the standard definition of magnetic charge one gets zero. The non-

Abelian fields, in fact, do not seem to contribute to any of the conserved charges defined

at spatial infinity (mass or angular momentum, as we are going to see). The behavior of

the gauge fields near the singularity r = 0, though, is the same as in the SU(2) Wu-Yang

monopole case and they seem to contribute to the quantities that can be defined in the

near-horizon limit, such as the Bekenstein-Hawking entropy, in exactly the same way as

the Abelian fields corresponding to electric or magnetic charges. Then, one would naively

conclude that the addition of a colored monopole to an Abelian black hole does not modify

the asymptotic behavior (a clear violation of the no-hair and uniqueness “theorems”) but

it does modify the entropy, diminishing it both in 4 and in 5 dimensions [31, 62, 63].

However we have recently shown that, at least in the simpler 5-dimensional cases studied

in [39, 57], this is just an illusion caused by an inadequate identification of the charges

of the solution in terms of fundamental objects in string theory; actually the non-Abelian

sources modify the asymptotic charges but not the entropy. We expect this to be the

appropriate interpretation in more complex configurations as well [58].

Let us now consider eqs. (2.10). Apart from the trivial possibility Φa = KΦa, the

following solutions were found in ref. [55]:

ΦA = − 1

gP
∂AQ , where ∂A

(
1

P 2
∂B∂BQ

)
= 0 . (2.17)

The simplest way to satisfy this equation is to choose Q as a harmonic function on E3 with

the same poles as P :

Q = Q0 +
∑
α

Qα
rα

. (2.18)

With this choice, eqs. (2.10) are satisfied everywhere in E3, including at the singularities

of Q and P . Since eqs. (2.8), whose integrability conditions are

D̆rD̆rΦ
A = 0 , (2.19)
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are also satisfied everywhere for the chosen P , it is to be expected that eq. (2.11) do not

get any contribution from the non-Abelian sector. As a matter of fact,

ΦAD̆rD̆rΦ
A − ΦAD̆rD̆rΦA = ∂r

(
∂rQ∂s∂sP

P 2
−
∂rP∂s∂sQ

P 2

)
= 0 . (2.20)

The Abelian sector of eq. (2.11) contains terms proportional to δ(3)(~x− ~xα) for all the

poles ~xα and we need them to vanish identically for the reasons explained above. Requiring

the coefficient of each delta function to vanish leads to

Φλ 0Φλ
α − Φλ

0Φλα +
∑
β

ΦλβΦλ
α − Φλ

MΦλα

|~xβ − ~xα|
= 0 . (2.21)

Summing these equations over the index N we get a constraint relating the coefficients

of the poles Φλ
α (which are proportional to each center’s charges) to the constant terms

Φλ
0 which are related to the values of the scalars at infinity (moduli):∑

α

(
Φλ 0Φλ

α − Φλ
0Φλα

)
= 0 . (2.22)

This condition can be interpreted as requiring the vanishing of the global NUT charge

of the spacetime [20] to avoid global Dirac-Misner strings or global periodic time. The

conditions derived above for each center have the same meaning and, if the charges have

been chosen, they constrain the relative positions of the centers. These constraints must

be compatible with the triangle inequalities |~xβ−~xα|+ |~xα−~xγ | ≥ |~xβ−~xγ | for any triplet

of poles β, α, γ and this may not always be possible. Since our main interest lies in the

non-Abelian sector, we will not discuss these equations in more detail, as they have already

been thoroughly studied in the literature. It suffices to stress that the non-Abelian solution

of ref. [55] does not lead to any restrictions on the relative positions of the centers whatever

the choices of coefficients P0, Pα, Q0, Qα.

Since eqs. (2.11) are the integrability conditions of another set of equations, it is worth

taking a look at the solutions of the latter associated to the choices made here. The

equations we are talking about are those determining the components of the 1-form ωr
defined on E3:

∂[rωs] = 2εrsw

(
ΦΛD̆wΦΛ − ΦΛD̆wΦΛ

)
. (2.23)

We can write ω = ωA + ωNA, where ω(N)A stands for the (non)-Abelian contribution:

∂[rω
A
s] = 2εrsw

(
Φλ∂wΦλ − Φλ∂wΦλ

)
, (2.24)

∂[rω
NA
s] = 2εrsw

(
ΦAD̆wΦA − ΦAD̆wΦA

)
. (2.25)

If the integrability equations are satisfied, ωA can be defined in a single patch. The con-

struction of the exact solutions is reviewed, for instance, in ref. [44]. ωNA was found in

ref. [55] to be given by

ωNAr = −4εrsw
∂sP

gP

∂wQ

gP
. (2.26)
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For |~x| � |~xα|, ωNAr ∼ O(r−5); this is too fast to contribute to the asymptotic charges.

Near the center ~x∗

ωNAr ∼ −4εrsw
(x− x∗)s

|~x− ~x∗|
∑
N 6=∗

(P∗Qα −Q∗Pα)(x∗ − xα)w

g2|x∗ − xα|3
. (2.27)

In order to determine if ωNA contributes to the near-horizon limit we consider ωNAr dxr

in spherical coordinates centered at ~x = ~x∗ to find that it ωNAr dxr ∼ rdϕ where r is the

local radial coordinate. Then, if in this limit the tt component of the 4-dimensional metric

e2U ∼ r2, the contributions of ωNA will be subleading and the solutions will have the usual

aDS2×S2 near-horizon limit.

This concludes the general discussion. We are now ready to construct 4-dimensional

solutions from the building blocks we have introduced and studied here.

3 Solutions of N = 2, d = 4 SEYM

Given a solution ΦΛ,ΦΛ, Ă
Λ
r of eqs. (2.1)–(2.3) a timelike supersymmetric solution of

a N = 2, d = 4 SEYM theory with nV 4 vector supermultiplets can be constructed as

follows [45, 46]:

1. The elementary building blocks of the solutions, which are the 2(nV 4 + 1) time-

independent functions (IM ) =
(
IΛ

IΛ

)
are given by

IΛ = −
√

2ΦΛ , IΛ = −
√

2ΦΛ . (3.1)

2. Given the functions IM , we must find the 1-form on E3 ωr by solving eq. (2.23).

3. To reconstruct the physical fields from the functions IM we need to solve the stabi-

lization equations, a.k.a. Freudenthal duality equations, which give the components

of the Freudenthal dual19 ĨM (I) in terms of the functions IM [64]; these relations

completely characterize the model of N = 2, d = 4 supergravity, but they may be

not unique [65, 66].

Equivalently, the ĨM (I) can be derived from a homogeneous function of degree

2 called the Hesse potential, W (I), as [29, 67, 69]

ĨM = −1

2
ΩMN ∂W

∂IN
−→W (I) = ΩMNIM ĨN (I) , (3.2)

where (ΩMN ) =
(
ΩMN

)
≡
(

0 I
−I 0

)
is the symplectic form.

4. The metric takes the form

ds2 = e2U (dt+ ω)2 − e−2Udxrdxr , (3.3)

where ω = ωrdx
r is the above spatial 1-form and the metric function e−2U is given

by the Hesse potential

e−2U = W (I) . (3.4)
19In refs. [27, 45, 46] the components of the Freudenthal dual are denoted by RM .
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5. The scalar fields are given by

Zi =
Ĩi + iIi

Ĩ0 + iI0
, i = 1, · · · , nV 4 . (3.5)

6. The components of the vector fields are given by

AΛ
t = − 1√

2
e2U ĨΛ , (3.6)

AΛ
r = ĂΛ

r + ωr A
Λ
t . (3.7)

3.1 Solutions of the CPCPCP3
model

3.1.1 The model

The CP3
model is characterized by the quadratic prepotential

F = − i
4
ηΛΣXΛXΣ, (ηΛΣ) = diag(+−−−) . (3.8)

The scalars parametrize the symmetric space U(1, 3)/(U(1) × U(3)) and the whole

model is invariant under global U(1, 3) = U(1) × SU(1, 3) transformations. We consider

the theory obtained by gauging the SO(3) ⊂ SU(3) ⊂ SU(1, 3) subgroup. SO(3) acts in

the adjoint representation on the three vector multiplets of the model, that we are going

to label with A,B, . . . so that ηΛΣXΛXΣ = (X 0)2 −XAXA.

All we need to construct supersymmetric solutions is the CP3
Hesse potential

W(I) =
1

2
ηΛΣIΛIΣ + 2ηΛΣIΛIΣ . (3.9)

More details on these models can be found in refs. [31, 44].

3.1.2 The solutions

The Abelian sector of the model is determined by the complex harmonic function H ≡
Φ0+2iΦ0 and the non-Abelian one by the two triplets of real functions ΦA and JA ≡ −2ΦA.

According to the general discussion, if we use the multi-colored dyonic solution we only need

to solve the Abelian part of the integrability equations (2.11). For just one Abelian vector

the only possibility is <eH ∝ =mH or, equivalently, H = eiγH for some real harmonic

function H and a constant phase γ. Then, according to the discussion in section 2, the

solution is given in terms of three harmonic functions H,P,Q with singularities at the same

N isolated points ~x = ~xα

H = h +
N∑
α=1

pα
rα
, P = λ+

N∑
α=1

sα
rα
, Q = −

N∑
α=1

ηαsα/2

rα
, (3.10)

by

Φ0 = −H , ~Φ = − 1

gP
~∇P , ~J =

2

gP
~∇Q . (3.11)
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The metric function, the 1-form ~ω = (ωr), the scalar fields and the scalar potential can be

written as

e−2U = H2 − ~Φ2 − ~J 2 , (3.12)

~ω = 2g2 ~Φ× ~J , (3.13)

~Z = e−iγ
~Φ + i ~J
H

, (3.14)

V = 2g2e4U |~Φ× ~J |2 . (3.15)

The vector fields of the solution can be constructed using the general recipe, eqs. (3.6)

and (3.7), but we will not do it explicitly here as we are more concerned with the regularity

of the metric and scalar fields.

3.1.3 Spherically-symmetric and dumbbell solutions

As a warm-up exercise, it is convenient to start by the construction of a single-center

solution of this model, which is static because with a single center necessarily must have
~Φ ∝ ~J . This was already done in ref. [47] (with less independent parameters), but here

we will show that there is also a Robinson-Bertotti dumbbell solution similar to the one

recently discovered in a 6-dimensional context in ref. [68]. These single-center dumbbells

are obtained by setting to zero the constant term in the harmonic functions of the Abelian

sector. Without the non-Abelian colored monopole, we would simply obtain the standard

Robinson-Bertotti aDS2×S2 solution, which is sometimes called a double extreme black

hole. When the colored dyon is included the geometry gets modified. However, the non-

Abelian field decays very fast with the distance and the original aDS2×S2 asymptotic is

recovered. On the other hand, near the origin, the colored dyon contributes as just another

“Abelian” charge and one also gets an aDS2×S2 spacetime, albeit with different radius

(smaller than the original). Thus, the Robinson-Bertotti dumbbell solution interpolates

between two aDS2×S2 spacetimes of different radii.20

Taking N = 1 (and suppressing the indices that label the centers), we get

e−2U = h2 +
2hp

r
+

[
p2 − (1 + η2)s2

g2P 2r2

]
1

r2
, (3.16)

~Z =
e−iγ(1 + iη)s

gPH

~n

r2
. (3.17)

Let us analyze the asymptotically-flat (h2 = 1) case first. It is convenient to define

M = hp , E = p2 − (1 + η2)/g2 , (3.18)

in terms of which the metric function takes the form

e−2U = 1 +
2M

r
+

[
E +

(1 + η2)

g2
R(r)

]
1

r2
, (3.19)

20The 6-dimensional Robinson-Bertotti dumbbell solution found in ref. [68] interpolates between two

aDS3×S3 spacetimes.
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where we have defined the manifestly positive function

R(r) ≡
(
1 + λ

s r
)2 − 1(

1 + λ
s r
)2 , (3.20)

which varies smoothly from 0 at r = 0 to 1 at r =∞.

In the above form the metric function is, therefore, manifestly positive if M (which is

the mass) and E (which will be seen to be the entropy times π) are both positive. In the

asymptotic and near-horizon limits we find respectively

r →∞: e−2U ∼ 1 +
2M

r
+O(r−2) , ~Z ∼ O(r−2) ,

r → 0: e−2U ∼ E

r2
+O(r−1) , ~Z ∼ e−iγ(1 + iη)

gp
~n+O(r−1) ,

(3.21)

showing that the colored dyon field cannot be seen asymptotically but does contribute to

the near-horizon geometry: i.e. it appears in the entropy E and in the covariant attractor

value of the scalars [46].

Setting h = 0 (with λ 6= 0) we get the dumbbell solution

e−2U =

[
E +

(1 + η2)

g2
R(r)

]
1

r2
, (3.22)

~Z ∼ e−iγ(1 + iη)

gp
(
1 + λ

s r
) ~n . (3.23)

The metric function interpolates smoothly between E/r2 at r ∼ 0 and p2/r2 at r ∼ ∞ while

staying always positive. The scalars interpolate between two covariantly-constant attrac-

tors which have different r-dependence because the gauge connection behaves differently

in both limits.

3.1.4 Multicenter solutions

For more than one center the metric function is given by

e−2U = h +

N∑
α=1

2hpα
rα

(3.24)

+

N∑
α=1

[
p2
α −

(1 + η2
α)s2

α

g2P 2r2
α

]
1

r2
α

(3.25)

+2
N∑
α>β

[
pαpβ −

(1 + ηαηβ)sαsβ
g2P 2rαrβ

~nα · ~nβ
]

1

rαrβ
. (3.26)

Inspired by the single-center case, we now define

Mα ≡ hpα , (3.27)

Eα ≡ p2
α − (1 + η2

α)/g2 , (3.28)

Eαβ ≡ (pα + pβ)2 − 4/g2 − (ηα + ηβ)2/g2 , (3.29)
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as then the term in line (3.25) can be expressed as

N∑
α=1

{
Eα +

(1 + η2
α)

g2

[
1− s2

α

P 2r2
α

]}
, (3.30)

whereas the term in line (3.26) can be written as

N∑
α>β

{
Eαβ − Eα − Eβ +

2(1 + ηαηβ)

g2

[
1 −

sαsβ
P 2rαrβ

~nα · ~nβ
]}

1

rαrβ
. (3.31)

The last terms in eqs. (3.30) and (3.31) are easily seen to be positive. First, we define

the positive functions Kα

rαP

sα
= 1 + λ

rα
sα

+
∑
β 6=α

rα
rβ

sβ
sα
≡ 1 + Kα , (3.32)

and then, we write[
1− s2

α

P 2r2
α

]
=

(1 +Kα)2 − 1

(1 +Kα)2
≡ Rα , (3.33)[

1 −
sαsβ
rαrβP 2

~nα · ~nβ
]

=
(1 +Kα)(1 +Kβ)− ~nα · ~nβ

(1 +Kα)(1 +Kβ)
≡ Rαβ , Rαα = Rα , (3.34)

from which the positivity is paramount because the functions Kγ are positive and ~nα ·~nβ ∈
[−1, 1]. Since there is a term (1 + ηαηβ) multiplying the whole second term we need to

impose the condition that

sign(ηα) = sign(ηβ) . (3.35)

The function Rα is a generalization of the function R defined in eq. (3.20) for the single-

center case and varies from 0 at rα = 0 to 1 at infinity or at any other point rβ 6=α = 0.

The functions Rαβ are also bound by 0 and 1 and are equal to 1 at all the points rγ = 0

and at infinity.

The metric function takes the final form

e−2U = h +
N∑
α=1

2Mα

rα
+

N∑
α=1

[
Eα +

(1 + η2
α)

g2
Rα

]
1

r2
α

+

N∑
α>β

[
Eαβ − Eα − Eβ +

2(1 + ηαηβ)

g2
Rαβ

]
1

rαrβ
, (3.36)

and its positivity can be guaranteed by imposing the conditions for all α, β

Mα > 0 , Eα > 0 , Eαβ ≥ Eα + Eβ , (3.37)

and the sign condition (3.35). The only poles in the metrical factor (the zeroes of gtt = e2U ,

and, hence, the horizons) are the ones at the points rγ = 0.

As can be seen in the asymptotic expansion r →∞, the physical meaning of the first

set of conditions is that the mass that each individual black hole would have if it were
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isolated must be positive. The meaning of the other two sets of conditions comes from the

study of the near-horizon limits rα → 0. In that limit the dominant term is the coefficient

of 1/r2
α the value of α we are dealing with. Since Rα vanishes precisely at rα = 0 only

the constant part of the coefficient, Eα, survives and we get an aDS2 × S2 geometry with

metric

ds2
nh =

r2
α

Eα
dt2 − Eα

r2
α

dr2
α − Eα dΩ2

(2) , (3.38)

so Eα, as the notation suggests, is the entropy of the α’th black hole up to a factor of π.

Thus, we are asking for all the individual extremal black holes to have a regular horizon.

The third set of conditions amounts, then, to the requirement that the entropy of a

black hole whose charges are those of the pair αβ combined should be larger than the sum

of the individual entropies, i.e. we are assuming the superadditivity of the entropy.

In some special cases, though, the third set of conditions is more restrictive than

necessary to ensure the regularity of the metric. Notice that the metric function can be

positive everywhere even if the second line in eq. (3.36) has negative constant coefficient.

For instance, in the two centers case, the constant coefficients of the 1/r2
α and 1/(rαrβ)

terms are
E1

r2
1

+
E2

r2
2

+ [E12 − E1 − E2]
1

r1r2
, (3.39)

and can be rewritten in this form:[√
E1

r1
−
√
E2

r2

]2

+

[
E12 −

(√
E1 −

√
E2

)2
]

1

r1r2
. (3.40)

This combination is non-negative everywhere if

E12 ≥
(√

E1 −
√
E2

)2
, (3.41)

which is a weaker condition for which we have, however, no clear physical interpretation.

The physical scalars are regular everywhere and can be written as

~Z =
N∑
α=1

e−iγ(1 + iηα)sα
gHPr2

α

~nα , (3.42)

and vanish as O(r−2) at infinity; at the αth center they take the covariantly-constant

attractor value e−iγ(1+iηα)
gpα

~nα.

In the previous discussion we have ignored the presence of a non-trivial 1-form ωrdx
r

in the metric given by eqs. (2.26) or (3.13) because, asymptotically, it vanishes faster than

any other function in the metric and, in the near-horizon limits, they are also subleading.

However, we must see if its presence gives rise to pathologies such as closed timelike curves.

For the harmonic functions P and Q in eq. (3.10) it takes the explicit form

~ω = −4
∑
α>β

sαsβ(ηβ − ηα)

g2P 2r2
αr

2
β

~nα × ~nβ = −4
∑
α>β

sαsβ(ηβ − ηα)

g2P 2r3
αr

3
β

[~x× ~xαβ + ~xβ × ~xα] . (3.43)
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Far away from the centers, and for λ 6= 0,

~ω ∼ ~v × ~x
r6

, where ~v ≡ 4
∑
α>β

sαsβ(ηβ − ηα)~xαβ
g2λ2

, (3.44)

and choosing coordinates such that ~v is parallel to the z axis

ω ∼ v(ydx− xdy)

r6
=
v sin2 θdϕ

r4
, (3.45)

and gϕϕ = e2Uω2
ϕ − e−2Ur2 sin2 θ is clearly negative in that limit. When λ = 0, then

ωϕ ∼ r−2 asymptotically, decaying still too fast to contribute to the angular momentum

or to modify the sign of gϕϕ.

In the near-horizon limit ~x → ~x∗, where ~x∗ denotes the coordinates of the center we

are zooming on

~ω ∼ ~u∗ × ~x
r

, where ~u∗ ≡ −
4

g2s∗

∑
α 6=∗

sα(ηα − η∗)~xα
r3
α∗

. (3.46)

We can choose adapted coordinates such that now ~u is parallel to the z axis, so we can

write to leading order

ω ∼ u(ydx− xdy)

r
= u∗r sin2 θdϕ , (3.47)

and

gϕϕ ∼ −E∗ sin2 θ

[
1−

(
u∗
E∗

)2

r4 sin2 θ

]
. (3.48)

In that expression the second term is always smaller than the first term in this limit.

Beyond this analysis, we have explored numerically the value of gϕϕ for several, simple,

multicenter configurations and have found that it can vanish (for instance, in a 2-center

example, all along the axis that contains both centers) but it never changes sign. See

figure 1 for a simple two-center example.

3.2 Solutions of the ST[2, 6] model

3.2.1 The model

The ST[2, 6] model is the cubic model with prepotential

F = − 1

3!

dijkX iX jX k

X 0
, (3.49)

where i = 1, 2 · · · , 6 labels the vector multiplets and where the fully symmetric tensor dijk
has as only non-vanishing components

d1αβ = ηαβ , where (ηαβ) = diag(+− · · ·−) , and α, β = 2, · · · , 6 . (3.50)

The 6 complex scalars parametrize the coset space

SL(2,R)

SO(2)
× SO(2, 5)

SO(2)× SO(5)
, (3.51)
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Figure 1. The two terms of the r.h.s. of eq. (3.48) are represented as two different surfaces for the

case of two centers with ~x1 = (0, 0, 0), ~x2 = (0, 0, 1), h = 1, p1 = 2, p2 = 3, λ = 1, (sα) = (3, 2), g =

1, (ηα) = (1, 2). The blue surface always lays below the yellow surface, whence gϕϕ remains finite

and positive.

and the group SO(3) acts in the adjoint on the coordinates α = 4, 5, 6 that we are going

to denote with A,B, . . . indices. These are the directions to be gauged.

In order to construct solutions we only need the Hesse potential of this theory, which

is given by

W (I) = 2
√

(IαIβηαβ + 2I0I1)(IαIβηαβ − 2I1I0)− (I0I0 − I1I1 + IαIα)2 . (3.52)

We could have gauged any three of the directions 3, 4, 5, 6, and, therefore, the ungauged

one could have been truncated from our model. However, as shown in ref. [68], it is

necessary to have one additional Abelian vector field to be able to uplift the solution to 6

dimensions and then to Heterotic supergravity [57]. Furthermore, with the extra Abelian

vector multiplet, the model can be seen as the STU model coupled to an SU(2) triplet.

This can be made manifest by combining the Abelian directions 2 and 3 as follows

I± ≡ I2 ± I3 , I± ≡ I2 ± I3 , (3.53)

so that

ηαβIαIβ = I+I− − IAIA , IαIα =
1

2
I+I+ +

1

2
I−I− + IAIA . (3.54)

The S, T and U vector fields correspond to the directions 1, + and −, and the pure

STU model is recovered by eliminating all objects with SU(2) indices A,B, . . .

The Kähler potential of this model is given by

e−K = 4=mZ1 ηαβ=mZα=mZβ , (3.55)

whose positivity leads to a constraint on the possible values of the imaginary parts of the

scalar fields, a constraint that we will use later.

More details on this theory and, in particular, on its relation with the toroidal com-

pactification of the Heterotic string can be found in refs. [31, 39, 57, 62].
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3.2.2 The solutions

For the sake of simplicity, we are going to consider solutions with non-vanishing functions

I0, IA, I1, I+, I−, IA only.21 It is convenient to redefine these functions,

I0,1,A = −
√

2Φ0,1,A , I+,−,A =
1√
2
J+,−,A , I1 = − 1√

2
J1 , (3.56)

bringing the metric function e−2U , the 1-form ω and the scalar fields to the form

e−2U = 2

√
Φ0J1J+J− − J+J−~Φ2 − Φ0J1

~J 2 + |~Φ× ~J |2 , (3.57)

~ω = 2 ~Φ× ~J , (3.58)

Z1 ≡ τ =
2(J+J− − ~J 2)

4~Φ · ~J − ie−2U
, (3.59)

Z± =
−2(J∓/Φ0)(J1Φ0 − ~Φ2)

4~Φ · ~J − ie−2U
, (3.60)

~Z =
2( ~J /Φ0)(J1Φ0 − ~Φ2) + 4~Φ/Φ0(~Φ · ~J )− i~Φ/Φ0 e−2U

4~Φ · ~J − ie−2U
, (3.61)

while the vector fields are given by

A0 = −4e4UΦ0(~Φ · ~J )(dt+ ω) , (3.62)

A1 = −2e4UΦ0(J+J− − ~J 2)(dt+ ω) , (3.63)

A± = 2e4UJ∓(J1Φ0 − ~Φ2)(dt+ ω) , (3.64)

~A = 2e4U
{
~J (J1Φ0 − ~Φ2) + 4~Φ(~Φ · ~J )

}
(dt+ ω) +

~̆
A . (3.65)

The explicit magnetic part of the SU(2) vector field,
~̆
A, is determined by ~Φ, ~J , which

we will choose as in the CP3
model eqs. (3.10) and (3.11). We rewrite them here for

convenience:

~Φ = − 1

gP
~∇P , ~J =

2

gP
~∇Q , ⇒ ĂAr = −εArs

1

gP
∂sP , (3.66)

where

P = λ+

N∑
α=1

sα
rα
, Q = −

N∑
α=1

ηαsα/2

rα
. (3.67)

The Abelian functions Φ0,J1,J+,J− will be given by

Φ0 = h0 +
N∑
α=1

p0
α

rα
, J1,± = h1,± +

N∑
α=1

q1,±α
rα

. (3.68)

21These solutions, with I0 6= 0 can be uplifted to timelike supersymmetric solutions of N = 1,

d = 5 SEYM.
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The above form of the metric function (3.57) has the interesting feature that the 1-form

ω appears in it (the last term). If we switch off all the functions but ~Φ and ~J , e−2U = |ω|
and we get a metric which is completely determined by ω, but which is not asymptotically

flat neither free of singularities since |ω| can vanish.

We are going to work with the following alternative form of the metric function

e−2U = 2

√
(J1Φ0 − ~Φ2)(J+J− − ~J 2)− (~Φ · ~J )2 . (3.69)

If we plug into eq. (3.55) the values of the scalars, we find the condition

J+J− − ~J 2 > 0 ⇒ =mτ > 0 , (3.70)

and, using this condition in the above form of the metric function we find a second regularity

condition

J1Φ0 − ~Φ2 > 0 . (3.71)

These conditions are necessary but not sufficient to ensure the regularity of the solution,

which also requires

(J1Φ0 − ~Φ2)(J+J− − ~J 2)− (~Φ · ~J )2 > 0 . (3.72)

3.2.3 Spherically-symmetric and dumbbell solutions

Again, we start by studying solutions with a single center that we conveniently place at

~x = 0, suppressing all indices α, β, . . . Since ~Φ ∝ ~J the 1-form ω vanishes and the solutions

are necessarily static.

Imposing the standard normalization of the metric at spatial infinity and studying the

asymptotic behavior of the scalar fields we identify the integration constants h0, h1, h+, h−
in eq. (3.68) as

h0 =
1√

2=mτ∞=mZ+
∞=mZ−∞

, h1 =
=mZ+

∞=mZ−∞√
2=mτ∞=mZ+

∞=mZ−∞
,

h± = −
√

2=mτ∞=mZ+
∞=mZ−∞

2=mZ∓∞
,

(3.73)

and we will take q1, p
0 > 0 and q+q− > 0 with sign(q±) = sign(h±) = −sign(=mZ∓).

Let us consider the first regularity condition eq. (3.70). Expanding the functions in

the left-hand side we find

J+J− − ~J 2 = h+h− +
2A

r
+

[
Σ +

η2

g2
R(r)

]
1

r2
, (3.74)

where, given the values of the h constants,

h+h− =
1

2
=mτ > 0 ,

2A = h+q− + h−q+ =
√

2=mτ∞=mZ+
∞=mZ−∞

(
|q+|

2|=mZ−∞|
+

|q−|
2|=mZ+

∞|

)
> 0 ,

(3.75)
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R(r) is the non-negative function given in eq. (3.20) so the combination Σ must be positive

Σ ≡ q+q− −
η2

g2
> 0 . (3.76)

Doing the same with the second regularity condition eq. (3.71) we get

J1Φ0 − ~Φ2 = h0h1 +
2B

r
+

[
Ω +

1

g2
R(r)

]
1

r2
, (3.77)

where

h0h1 =
1

2=mτ∞
,

2B = h0q1 + h1p
0 =

1√
2=mτ∞=mZ+

∞=mZ−∞

[
q1 + =mZ+

∞=mZ−∞p0
]
> 0 ,

(3.78)

which will be manifestly positive if the combination

Ω ≡ p0q1 −
1

g2
> 0 . (3.79)

Finally, let us consider the third regularity condition eq. (3.72). All the terms that

originate in the product of the first two terms are manifestly positive if Ω and Σ are positive.

The only negative terms come from the last term and are of O(r−4)

− (~Φ · ~J )2 = −η
2

g2
[1−R(r)]2

1

r4
. (3.80)

We just need to compare them with the positive O(r−4) terms coming from the first

two terms, i.e. we have to consider(
Σ +

η2

g2
R

)(
Ω +

1

g2
R

)
− η2

g2
[1−R(r)]2 = ΩΣ− η2

g4
+ positive O(R) terms. (3.81)

Thus, the third regularity condition is fulfilled if we require that

E2 ≡ ΩΣ− η2

g4
> 0 . (3.82)

Observe that, if this condition is satisfied, the entropy is given by

S = 2πE . (3.83)

The conditions that we have imposed on the charges and the asymptotic values of the

scalars automatically ensure the positivity of the mass, which is given by

M = A+B . (3.84)

Setting all the h constants to zero, we get a dumbbell solution with metric function

e−2U = 2

√[
Σ +

η2

g2
R(r)

] [
Ω +

1

g2
R(r)

]
− η2

g2
[1−R(r)]2

1

r2
, (3.85)

and the square root function interpolates smoothly between E at r = 0 and
√
p0q1q+q− at

r →∞, which is the value one would get in the purely Abelian solution. The scalars also

interpolate between a covariant attractor and an Abelian attractor.

Let us now move to the multicenter case.
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3.2.4 Multicenter solutions

The presence of more centers does not change the asymptotic values of the scalars and,

therefore, the values of the constants h are unchanged and given by eqs. (3.73). We impose

on the charges of each center the same conditions as in the single-center case, that is:

q1α, p
0
α > 0 , q+αq−α > 0 , sign(q±α) = sign(h±) = −sign(=mZ∓) . (3.86)

Moreover, the four harmonic functions cannot change sign anywhere, as if any of them

becomes zero then metric function is imaginary, among other pathologies. Then we can

include the conditions

sign(q1α) = sign(h1) = sign(p0
α) = sign(h0) . (3.87)

The first regularity condition eq. (3.70) can be rewritten in the form

J+J− − ~J 2 = h+h− +
N∑
α=1

2Aα
rα

+
N∑
α=1

[
Σα +

η2
α

g2
Rα

]
1

r2
α

+

N∑
α<β

[
Σαβ − Σα − Σβ + 2

ηαηβ
g2

Rαβ

]
1

rαrβ
> 0 , (3.88)

where Rα and Rαβ are the functions defined in eqs. (3.33) and (3.34), respectively, and

h+h− =
1

2
=mτ > 0 , (3.89)

2Aα ≡ h+q−α + h−q+α > 0 , (3.90)

Σα ≡ q+αq−α −
η2
α

g2
, (3.91)

Σαβ ≡ (q+α + q+β)(q−α + q−β)−
(ηα + ηβ)2

g2
, (3.92)

and its positivity is manifest by requiring

Σα > 0 , ∀α and Σαβ > Σα + Σβ , ∀α 6= β . (3.93)

Only the first of these conditions (Σα > 0 , ∀α) is independent, though. It implies

that q+α >
η2
α

g2q−α
and, substituting in

Σαβ − Σα − Σβ = q+αq−β + q+βq−α − 2
ηαηβ
g2

>
η2
α

g2q−α
q−β +

η2
β

g2q−β
q−α − 2

ηαηβ
g2

=
(ηαq−β − ηβq−α)2

g2q−αq−β

≥ 0 . (3.94)
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In a similar way, we rewrite the second condition eq. (3.70) in the form

J1Φ0 − ~Φ2 = h0h1 +
N∑
α=1

2Bα
rα

+
N∑
α=1

[
Ωα +

1

g2
Rα

]
1

r2
α

+
N∑
α<β

[
Ωαβ − Ωα − Ωβ +

2

g2
Rαβ

]
1

rαrβ
> 0 , (3.95)

where now

h0h1 =
1

2=mτ∞
> 0 , (3.96)

2Bα ≡ h0q1α + h1p
0
α > 0 , (3.97)

Ωα ≡ p0
αq1α −

1

g2
, (3.98)

Ωαβ ≡ (p0
α + p0

β)(q1α + q1β)− (1 + 1)2

g2
. (3.99)

The positivity bound is obviously satisfied by requiring

Ωα > 0 , ∀α and Ωαβ > Ωα + Ωβ , ∀α 6= β , (3.100)

and one can show, as before, that the first condition implies the second.

Finally, let us study the third condition eq. (3.72). Again, all the terms that come

from the first two factors (corresponding to the first two conditions) are positive if the

conditions that we have derived above are met. The negative contributions come from22

− (~Φ · ~J )2 = − 1

g4

N∑
α,β,γ,δ=1

ηαηγ(1−Rαβ)(1−Rγδ)
1

rαrβrγrδ
, (3.101)

and they have to be compared with other (positive) terms of the same order, O(r−4) and

with the same structure. Let us first consider terms of the form r−4
α , which are dominant

in the αth near-horizon region,

N∑
α=1

{[
Σα +

η2
α

g2
Rα

] [
Ωα +

1

g2
Rα

]
− η2

α

g4
(1−Rα)2

}
1

r4
α

. (3.102)

The positivity of these terms is guaranteed by the positivity of Σα and Ωα, which we

have required before, and the reality of the entropy of each black hole:

Sα = 2πEα with E2
α ≡ ΣαΩα −

η2
α

g4
> 0 . (3.103)

This implies that the metric function is well-defined in the neighbourhood of each

black hole, provided the corresponding entropy is real. On the other hand, asymptotic

22Observe that this means that, when ηα = 0 ∀α, or, equivalently, when ~J = 0 the multicenter solution

with non-Abelian magnetic monopoles is completely regular. It is only the dyonic case that needs to be

investigated more carefully.
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flatness and the sign conditions on the parameters described above, which in turn imply

positivity of the “masses”, guarantee that the metric is also regular far away from any

center. However, contrary to our experience with the CP3
model, we have not been able to

find a general analytical proof of the regularity of the metric due to the complexity of the

ST [2, 6] model, as we will shortly see. Nevertheless, we expect most multicenter solutions

asymptotically flat and with well-defined individual entropies to be regular everywhere,

as the non-Abelian terms generally decay faster with distance than the Abelian harmonic

functions.

Because of their simplicity, let us consider the terms of the form r−2
α r−2

β :

N∑
α<β

{
2

[
Σ(α +

η2
α

g2
R(α

] [
Ωβ) +

1

g2
Rβ)

]

+

[
Σαβ − Σα − Σβ + 2

ηαηβ
g2

Rαβ

] [
Ωαβ − Ωα − Ωβ +

2

g2
Rαβ

]
−
[

2ηαηβ
g4

(1−Rα)(1−Rβ) +
(ηα + ηβ)2

g4
(1−Rαβ)2

]}
1

r2
αr

2
β

. (3.104)

The coefficient of r−2
α r−2

β has constant terms and other terms which are linear and

quadratic in Rα and Rαβ . The linear ones are manifestly positive. The quadratic terms

add up to

(ηα − ηβ)2

g4
(RαRβ −Rαβ) =

(ηα − ηβ)2

g4

[
1− (1 +Kα)2 − (1 +Kβ)2 + 2~nα · ~nβ(1 +Kα)(1 +Kβ)− (~nα · ~nβ)2

]
(1 +Kα)2(1 +Kβ)2

,

(3.105)

which is clearly negative when ~nα · ~nβ = 0. However, it is bounded from above as well as

above and its negative contribution can still be cancelled by the other terms.

The constant terms are

∆αβ + (Σαβ − Σα − Σβ)(Ωαβ − Ωα − Ωβ)−
(ηα + ηβ)2

g4
, (3.106)

where we have defined

∆αβ ≡ 2Σ(αΩβ) − 2
ηαηβ
g2

. (3.107)

∆αβ is positive under the assumptions we have made, because, for instance

∆αβ ≥
(ηβΩα − ηαΩβ)2

g2ΩαΩβ
. (3.108)

The second term is also positive, but the third is negative. Based on our previous experience

with the CP3
model, we can try to relate this coefficient to the superadditivity of the

entropy, rewriting it as follows:

E2
αβ − (Eα + Eβ)2 + 2EαEβ

− (Σα + Σβ)(Ωαβ − Ωα − Ωβ)− (Σαβ − Σα − Σβ)(Ωα + Ωβ)−
(ηα + ηβ)2

g4
.

(3.109)
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p0 q1 Ω q+ q− η Σ E2

Center 1 2 1 1 3 1 1 2 1

Center 2 1 2 1 1 1 1/2 3/4 1/2

Table 1. Charges and other quantities of the 2-center dyonic solution of the ST[2, 6] model. We

have set the YM coupling constant g = 1. For this solution Σ12 = Ω12 = 3, E2
12 = 27/4 and

E12 − E1 − E2 ∼ 0.9 > 0.

This expression is not very enlightening as there is no simple way to show that the

would-be positive terms in the first line are actually larger than the negative ones in the

second.23

Summarizing, not all the terms that appear below the square root sign in the metric

function are positive definite and we have not been able to determine a set of conditions

ensuring the positivity of the whole expression and the regularity of the metric function,

which still might possible, in accordance with our experience with the CP3
model.

To conclude this subsection we are going to give an explicit example of a completely

regular two-center dyonic solution of this model. Our choice of charges for the two centers

is given in table 1. In this case, the coefficient of the r−2
1 r−2

2 term is the only one which is

not manifestly positive and is given by

17

2
+

11

4
R1 +

13

4
R2 +

27

2
R12 +

1

4
R1R2 −

1

4
R2

12 . (3.112)

However, since R2
12 ≤ 1, this term is positive everywhere.

Observe that the 1-form ω has exactly the same form as in the CP3
model case and,

as the analysis made in that case showed, it will have no effect on the regularity of the

metric.

3.2.5 Thousands of dyonic black holes

While we have not been able to prove the reality of the metric function for completely

general configurations, we have argued that most solutions (if not all) described by our

construction are well-behaved, provided the “masses” and entropies of the individual black

23The superadditivity condition Eαβ ≥ Eα + Eβ or E2
αβ − (Eα + Eβ)2 ≥ 0 does not seem to lead to

any identity that can be used directly in the terms at hands. From the conditions Σαβ ≥ Σα + Σβ and

Ωαβ ≥ Ωα + Ωβ we find

E2
αβ = ΣαβΩαβ −

(ηα + ηβ)2

g4

≥ (Σα + Σβ)(Ωα + Ωβ)− (ηα + ηβ)2

g4

= E2
α + E2

β + ∆αβ . (3.110)

Adding and substracting 2EαEβ we arrive to

E2
αβ − (Eα + Eβ)2 ≥ ∆αβ − 2EαEβ , (3.111)

which cannot be used for our purposes.
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Figure 2. Representation of the positions of the black holes, which are contained at the plane

~x = (x, y, 0). The first cluster is depicted by purple points, while the second is represented with

orange points.

holes are positive and real. To add further support to this thesis, we now describe a

very general solution composed of 6060 black holes whose regularity we have checked by

numerical analysis.

The system is composed of two well differentiated clusters. The first cluster describes

a set of 1480 pairs of black holes with the same charges as the two-center system pre-

sented at the end of previous section. The second cluster contains 3100 black holes whose

charges have been chosen with a random generator, provided the conditions (3.86), (3.87)

and (3.103) are met. Since the position of each black hole is free, those have been placed

as depicted in figure 2 for esthetic reasons.24

4 Conclusions

In this paper we have constructed and studied the very first multicenter black-hole solutions

with non-trivial non-Abelian fields corresponding to colored monopoles and dyons. These

solutions describe regular black holes in equilibrium when certain conditions (which we

discuss below) are met. In general, they are stationary, although they have vanishing

angular momentum unless the Abelian fields contribute to it. If these Abelian contributions

are absent, the black holes can be have arbitrary positions.

24Further information about this solution, including a .nb document with the numerical computations,

is available upon request by email.
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The main ingredients in the construction of these solutions are

1. Unbroken supersymmetry, which provides us with a very powerful solution-generating

technique [46]. The use of this technique is only possible if one considers (as we

have done here) the simplest N > 1 supersymmetric generalizations of the Einstein-

Yang-Mills system. As a reward for considering this generalization the solutions

are obtained in a completely analytical form. This, in its turn, allows for a deeper

understating of the solutions.

2. The multi-colored dyon solution of ref. [55], which is the main building block of

the physical fields of the 4-dimensional spacetime solution. This solution solves the

integrability equations (2.3) everywhere independently of the positions of the centers.

Profiting from the analytical form of the metrics obtained, we have tried to determine

general conditions on the charges and moduli guaranteeing regularity. In the CP3 model

with any number of dyonic centers at arbitrary positions, we have shown that the positivity

of each of the “masses” and entropies and the superadditivity condition for every pair of

black holes are sufficient to guarantee regularity. Actually, as we have seen for just two cen-

ters, a condition weaker than superadditivity can also be sufficient. In the ST[2, 6] model

with only some Abelian vectors active, we have not been able to prove that similar condi-

tions for an arbitrary number of dyonic centers are sufficient, although we have explicitly

constructed and checked numerically highly non-trivial regular solutions with thousands of

black holes. Also, we have shown that very simple conditions are sufficient when there are

only magnetic monopoles at the centers.

We have also found that, removing the constant part of the harmonic functions in the

spherically symmetric (single-center) solutions one can obtain solutions that interpolate be-

tween two aDS2×S2 vacua with different radii that we have called dumbbell solutions. They

are the 4-dimensional version of similar 6-dimensional solutions found in ref. [68] interpo-

lating between two aDS3×S3 vacua with different radii, also in a non-Abelian context. The

existence of these solutions in the non-Abelian case25 suggests the possible existence of an

Euclidean instanton describing the decay of one vacuum into the other one. The aDS/CFT

interpretation of the corresponding transition (if found) should provide interesting insights

into this correspondence.

As we have discussed in section 2 solutions to the same three sets of equations (2.1)–

(2.3) can be used to construct timelike supersymmetric solutions of N = 1, d = 5 SEYM

theories using different rules to relate the building blocks that occur in those equations

and the physical 5-dimensional fields. Typically, building blocks that lead to regular 4-

dimensional solutions produce singular 5-dimensional solutions and vice versa. This means

that the construction of 5-dimensional solutions will have to be studied independently.

Work in this direction is well under way [34].

We have deliberately set aside for future work (already in progress [58]) the paradoxes

created by the strange properties of the colored dyons which do not seem to contribute

25In the Abelian case, removing the constant part of the harmonic functions leads to solutions describing

one aDS2×S2 vacuum in the spherically-symmetric case or interpolating between three or more aDS2×S2

vacua with different radii, but never between just two.
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to the mass or any other asymptotic charge (so they behave as non-Abelian hair) but,

nevertheless, do seem to contribute to the entropy. In the 5-dimensional case an analogous

paradox was completely solved in ref. [57] by the correct, string theory-inspired, reinterpre-

tation of the Abelian charges and the identification of a globally regular solution supported

by the non-Abelian field (a BPST instanton) [39]. Although we have not yet found glob-

ally regular solutions associated to the 4-dimensional colored dyons, we expect a similar

resolution for this paradox, at least in the case of the ST[2, 6] model, because the string

theory embedding of the CP3
model is unknown (or inexistent).26

As mentioned in the introduction, the non-Abelian asymptotically-aDS case is much

harder to deal with in SEYM theories. We are currently working on the generalization of

the methods and solutions used here and we expect to report on our results soon [70].

To conclude, SEYM theories provide new tools to study the interplay between non-

Abelian Yang-Mills and gravitational fields through the construction of a wealth of new,

fully analytical solutions, some of which can be reinterpreted in the framework of string

theory. As we have discussed, there are many directions to be explored and it is our purpose

to follow some of them in the near future.
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A N = 2, d = 4 SEYM theories

N = 2, d = 4 Super-Einstein-Yang-Mills (SEYM) theories can be seen as the simplest

N = 2 supersymmetrization of the Einstein-Yang-Mills (EYM) theories. They are nothing

but theories of N = 2, d = 4 supergravity coupled to n vector multiplets in which a

(necessarily non-Abelian) subgroup of the isometry group of the (Special Kähler) scalar

manifold has been gauged using some of the vector fields of the theory as gauge fields.27

The necessary and sufficient conditions for the gauging of a non-Abelian subgroup of the

global symmetry group to be possible are:

1. It must act on the vector fields in the adjoint representation.

2. It must be a symmetry of the prepotential; see e.g. ref. [46] for more details.

26It goes without saying that the numerical character of the solutions of the EYM and EYMH models

makes them entirely unsuitable for this kind of analysis.
27here we are giving a minimal review of these theories. More details can be found in refs. [43–45]; our

conventions are those of refs. [44–46].
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We will only be concerned with the bosonic sector of the theory, which consists on

the metric gµν , the vector fields AΛ
µ (Λ = 0, 1, · · · , n) and the complex scalars Zi (i =

1, · · · , n). The action of the bosonic sector reads

S[gµν , A
Λ
µ, Z

i] =

∫
d4x
√
|g|
[
R+ 2Gij∗DµZ

iDµZ∗ j
∗

+ 2=mNΛΣF
ΛµνFΣ

µν

− 2<eNΛΣF
Λµν ? FΣ

µν − V (Z,Z∗)
]
.

(A.1)

In this expression, Gij∗ is the Kähler metric, DµZ
i is the gauge-covariant derivative

DµZ
i = ∂µZ

i + gAΛ
µkΛ

i , (A.2)

FΛ
µν is the vector field strength

FΛ
µν = 2∂[µA

Λ
ν] + gfΣΓ

ΛAΣ
µA

Γ
ν , (A.3)

NΛΣ is the period matrix and, finally, V (Z,Z∗) is the scalar potential

V (Z,Z∗) = −1

4
g2=mNΛΣPΛPΣ . (A.4)

Since the imaginary part of the period matrix is negative definite, the scalar potential

is positive semidefinite, which leads to asymptotically-flat or -De Sitter solutions.

In the above equations, kΛ
i(Z) are the holomorphic Killing vectors of the isometries

that have been gauged28 and PΛ(Z,Z∗) the corresponding momentum maps, which are

related to the Killing vectors and to the Kähler potential K by

iPΛ = kΛ
i∂iK − λΛ , (A.5)

kΛ i∗ = i∂i∗PΛ , (A.6)

for some holomorphic functions λΛ(Z). Furthermore, the holomorphic Killing vectors and

the generators TΛ of the gauge group satisfy the Lie algebras

[kΛ, kΣ] = −fΛΣ
ΓkΓ , [TΛ, TΣ] = +fΛΣ

ΓTΓ . (A.7)

For the gauge group SU(2), which is the only one we are going to consider here, we

use lowercase indices29 x, y, z = 1, 2, 3 and the structure constants are fxy
z = εxyz, so

[kx, ky] = −εxyzkz , [Tx, Ty] = +εxyzTz . (A.8)

28The employed notation associates a Killing vector to each value of the index Λ in order to avoid the

introduction of yet another class of indices and the embedding tensor (see e.g. the reviews [71]); it is

understood that not all the kΛ need to be non-vanishing.
29These will be a certain subset of those represented by Λ,Σ, . . . .
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The equations of motion of the theory can be written in the following form:

Gµν + 2Gij∗
[
D(µZ

iDν)Z
∗ j∗ − 1

2
gµνDρZ

iDρZ∗ j
∗
]

+4MMNFMµ
ρFNνρ +

1

2
gµνV (Z,Z∗) = 0, (A.9)

D2Zi + ∂iGΛµν ? F
Λµν +

1

2
∂iV (Z,Z∗) = 0, (A.10)

Dν ? GΛ
νµ +

1

4
g
(
kΛ i∗DµZ

∗i∗ + k∗Λ iDµZ
i
)

= 0 , (A.11)

where GΛµν is the dual vector field strength

GΛ ≡ <eNΛΣF
Σ + =mNΛΣ ? FΣ , (A.12)

FMµν is the symplectic vector of vector field strengths

(
FM

)
≡

(
FΛ

GΛ

)
, (A.13)

MMN is the symmetric 2(n+ 1)× 2(n+ 1) matrix defined by

(MMN ) ≡

 =mNΛΣ +RΛΓ=mN−1|ΓΩRΩΣ −RΛΓ=mN−1|ΓΣ

−=mN−1|ΛΩRΩΣ =mN−1|ΛΣ

 , (A.14)

and

Dν ? GΛ
νµ = ∂ν ? GΛ

νµ + gfΛΣ
ΓAΣ

ν ? GΛ
νµ . (A.15)

B Supersymmetric multi-BH’s in pure EM theory

Einstein-Maxwell gravity is equivalent to minimal N = 2, d = 4 supergravity (in fact it

could be called the CP0
model). The timelike supersymmetric solutions of this supergrav-

ity theory are nothing but the Perjés-Israel-Wilson family of solutions [18, 19] which we

can, then, study using the language and methods we use in other models of N = 2, d = 4

supergravity in the main text, recovering Hartle and Hawking’s result [21] that the only

regular solutions in this family of solutions are those of the Majumdar-Papapetrou sub-

family [1, 2]. Our starting point will be that one can only use in the construction of

regular solutions harmonic functions with point-like singularities corresponding to electric

or magnetic monopoles, but no higher multiplets of the electromagnetic field [20].

The metric function of pure supergravity is given by

e−2U =
1

2

(
I0
)2

+ 2 (I0)2 = |H|2 , (B.1)

where we have defined

H ≡ 1√
2

(I0 + 2iI0) . (B.2)
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By assumption, the complex function H has the form

H = h+
N∑
α=1

Γα
rα

, where rα ≡ |~x− ~xα| , (B.3)

and the metric function, conveniently normalized at infinity (h = eiγ) can be written in

the form

e−2U = 1 +
∑
α

2Mα

rα
+
∑
α

Eα
r2
α

+
∑
α>β

(Eαβ − Eα − Eβ)
1

rαrβ
, (B.4)

where

Mα ≡ <e(eiγΓ∗α) , (B.5)

is the mass of the αth black hole,

Eα ≡ |Γα|2 , (B.6)

is (up to a factor) the entropy of the αth black hole, and

Eαβ ≡ |Γα + Γβ |2 , (B.7)

is (up to a factor) the entropy of a black hole with the charges of the αth and βth black

holes combined.

It is evident that the metric function will be regular if the masses are non-negative

Mα ≥ 0, the entropies corresponding to centers with non-vanishing mass are strictly posi-

tive Eα > 0 and the entropy of the combination of two black holes is not smaller than the

sum of the entropies of the individual black holes Eαβ ≥ Eα + Eβ . Given the expressions

for the masses and entropies, it is also evident that the condition Eα > 0 for Mα > 0 is,

actually, redundant.

We also have to examine eq. (2.3), which, in terms of the complex function H takes

the form

=m
{
H∂r∂rH∗

}
= 0 , (B.8)

everywhere. This equation is non-trivial at the locations of the singularities of the harmonic

function H and leads to the conditions

=m

eiγΓ∗α +
∑
β 6=α

Γ∗αΓβ
rαβ

 = 0 , ∀α where rαβ = |~xα − ~xβ | . (B.9)

Defining the contribution to the total NUT charge of the αth black hole by

Nα ≡ =m(eiγΓ∗α) , (B.10)

the above equations can be written in the form

Nα

1 +
∑
β 6=α

Mβ

rαβ

 = Mα

∑
β 6=α

Nβ

rαβ
, (B.11)
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and the sum over α gives the condition∑
α

Nα = 0 . (B.12)

Furthermore, the condition Eαβ ≥ Eα + Eβ is equivalent to

MαMβ +NαNβ ≥ 0 . (B.13)

This condition is also trivially valid for α = β, which corresponds to the condition Eα ≥ 0.

For two black holes N2 = −N1 and the α = 1 equation takes the form

N1

{
1 + (M1 +M2)

1

r12

}
= 0 , (B.14)

which, if the masses are positive, as required by the regularity of e−2U , is only be solved

by N1 = N2 = 0 so the phases of Γ1 and Γ2 are both equal to eiγ . Then,

H = eiγ
(

1 +
|Γ1|
r1

+
|Γ2|
r2

)
, (B.15)

and the 1-form ω vanishes identically.

For three black holes, if one of the Nα vanishes, we recover the equations of the two-

black-hole case, and the same conclusion. Let us, then, consider the case in which the three

Nα are different from zero. Eqs. (B.11) imply that the three masses are also different form

zero. Due to eq. (B.12), two of the Nα will have the same sign and the third will have the

opposite sign. With no loss of generality we can consider N1 > 0 and N2,3 < 0 (the other

case differs only in a global sign). This means that

∑
β 6=1

Nβ

r1β
=
N2

r12
+
N3

r13
< 0 , (B.16)

and the first of eqs. (B.11) (α = 1) cannot be satisfied.

The 3 black hole case suggests the way forward for an arbitrary number of black holes:

we can take the sum of all the eqs. (B.11) for which Nα > 0. Taking into account the

cancellations in both sides of the resulting equation, we get the equation

∑
α |Nα>0

Nα

1 +
∑

β|Nα<0

Mβ

rαβ

 =
∑

α|Nα>0

Mα

∑
β|Nβ<0

Nβ

rαβ
, (B.17)

whose l.h.s. and r.h.s. are, respectively, positive and negative definite by assumption.
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