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RESUMEN (en español) 
 

 
      Una importante y activa línea de investigación en Algebra  No-Conmutativa es la 

denominada como "Teoremas de Conmutatividad" cuyo objetivo final es encontrar 

condiciones que garanticen la conmutatividad de un anillo. 

 

       La presente tesis doctoral se enmarca en este campo de trabajo y, concretamente, en 

el estudio de condiciones de conmutatividad que involucran varias tipos de genera-

lizaciones de derivaciones. Se obtienen resultados para anillos primos y semiprimos. 

 

      Se han estudiado varios tipos de generalizaciones de derivaciones y las 

consecuencias que tiene su existencia en relación con la conmutatividad del anillo en el 

que están definidas o bien en el hecho de que existan ideales centrales, cuando las 

condiciones impuestas sobre las derivaciones son más débiles. 

 

      Así, por ejemplo, se han introducido las nociones de derivación generalizada reversa 

a izquierda y a derecha y se ha  probado que la existencia de una  aplicación de este tipo 

en un anillo semiprimo implica la existencia de un ideal central no trivial. Además, si el 

anillo es libre de 2-torsion, entonces las nociones de derivación generalizada reversa  a 

izquierda, a derecha, derivación generalizada a izquierda y a derecha coinciden. 

 

     Se han estudiado también aplicaciones sobre un anillo semiprimo que son 

derivaciones generalizadas a derecha sobre un ideal de Lie U. En este caso se ha 

probado, por ejemplo, que si (F, d) es una derivación generalizada a izquierda (resp. a 

derecha) y F2(U) = (0), entonces d(U)=F(U)=(0) y d(R), F(R)  CR(U). Por otro lado, 

si  (F, d)  y  (G, g) son derivaciones generalizadas a derecha e izquierda, respectiva-

mente, y F(u)v = uG(v) por todo  u, v en U, entonces d(U), g(U)  CR(U). 

 

     Por otra parte se han estudiado distintos elementos de "tipo central" y se han definido 

varios "centros generalizados",  probándose que todos ellos coinciden en el caso de un 

anillo primo. 

 

    También  se ha considerado la noción de ortogonalidad, ligada a una derivación 

generalizada a izquierda y una derivación generalizada a derecha y se han encontrado 

varias  condiciones equivalentes  a la ortogonalidad. Se han estudiado las consecuencias 

de la existencia de derivaciones generalizadas ortogonales en la composición de las 
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aplicaciones. 

 

     Hemos prestado atención a los anillos con una bi-derivación generalizada, viendo 

que si ésta satisface algunas condiciones algebraicas sobre elementos de un ideal de 

Jordan J se obtienen consecuencias en la estructura del anillo. En particular, si el anillo 

R es primo y la bi-derivación no es cero, concluimos que J  Z(R). 

 

     Finalmente se han considerado derivaciones multiplicativas generalizadas de anillos 

semiprimas, estudiando de nuevo condiciones algebraicas que se traducen en 

propiedades de la multiplicación en el anillo. 

 

 
RESUMEN (en Inglés) 

 

 
     An important and active research line in Non-Commutative Algebra is the line 

known as "Commutative Theorems". The final aim in it is to find conditions that 

guarantee the commutativity of a ring. 

 

    This thesis can be placed in this area of work and, in a concrete way,  conditions 

studied are related to several types of generalizations of derivations. In this thesis, 

conditions have been applied to prime or semiprime rings. 

 

     Several types of generalizations of derivations have been studied, as well as the 

consequences that their existence have in relation to the commutativity of the ring or in 

the existence of central ideals, depending of how strong conditions are considered.  

 

     So the notions of l-generalized and r-generalized reverse derivations have been 

introduced. These notions extend the one of reverse derivation. In particular we have 

proved that the existence of such a map left generalized or right generalized reverse 

derivation) in a semiprime ring implies the existence of a non-zero central ideal. 

Furthermore, if the ring R is 2-torsion free, then the notions of left generalized, right 

generalized reverse derivations, left generalized and right generalized derivations 

coincide. 

  

      We have considered also maps on a semiprime ring that are left or right generalized 

derivations on a Lie ideal U. In particular we proved that if (F, d) is a left and right 

generalized derivation and F2(U) = (0) then d(U)=F(U)=(0) and d(R), F(R)  CR(U). 

On the other side, if (F, d) and  (G, g) are right and left generalized derivations, 

respectively, and F(u)v=uG(v) for all u, v in U, then d(U), g(U)  CR(U). 

 

      On the other side we have studied different types of center-like elements. The 

corresponding generalized centers have been defined and they have been proved to be 

all equal when the ring R is prime. 

 

      The notion of orthogonality has been considered, linked to  a left generalized and a 

right generalized derivation, finding necessary and sufficient conditions for their 

existence and  some consequences of the existence of orthogonal generalized derivation 

on the composition of the maps have been obtained. 





"The human mind has never invented a labor-saving machine equal to algebra"
Author Unknown

"Pure mathematics is, in its way, the poetry of logical ideas"
Albert Einstein

"Pure mathematics is the magician's real wand"
Novalis
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Introducción

En teoría de anillos es natural estudiar condiciones que, en último término, impli-
can la conmutatividad del anillo. Se puede considerar el bien conocido Teorema de
Wedderburn (un anillo de división �nito es un cuerpo) como el primer precedente.

Jacobson extendió este teorema y probó que si el anillo R satisface que para
todo a ∈ R, existe un n(a) > 1 tal que an(a) = a, entonces el anillo R es conmuta-
tivo.

Estos anillos (usualmente llamados anillos periódicos) han sido objeto de un
extenso estudio y este tipo de problemas son conocidos usualmente bajo el nombre
de "Teoremas de Conmutatividad".

Una línea de investigación conectada a la anterior, pero diferente, trata de en-
contrar las condiciones bajo las cuales una aplicación, usualmente una derivación,
de�nida sobre el anillo fuerza su conmutatividad. La presente tesis puede enmar-
carse en este contexto.

No se pueden esperar resultados impactantes y revolucionarios en el tema de
"Anillos con Derivaciones", sin embargo han sido objeto de estudio de muchos
autores en los últimos 60 años, especialmente en lo que respecta a las relaciones
entre derivaciones y la estructura de los anillos en los que están de�nidas.

Una de las cuestiones que aparecen a menudo en álgebra y análisis es deter-
minar cuándo una aplicación puede estar de�nida por su propiedades locales. Por
ejemplo, la cuestión de saber si una aplicación que actúa como una derivación
sobre el producto de Lie de alguna subálgebra importante de un anillo primo viene
inducida por una derivación ordinaria es un problema bien conocido planteado por
Herstein en [74]. El primer resultado obtenido en esta dirección aparece en un
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Introducción

trabajo sin publicar de Kaplansky (ver [74], pg 529) quién consideró álgebras de
matrices sobre un cuerpo. En presencia de idempotentes, esta cuestión ha sido
examinada por Martindale [82] para anillos primitivos. El problema de Herstein
fue resuelto, de modo general gracias a las potentes técnicas de las identidades
funcionales (ver, por ejemplo, [19], [20], [21], [41]).

La noción "anillos con derivación" juega un papel signi�cativo en la interacción
de análisis, geometría algebraica y álgebra. En los 40 se encontró que la teoría
de Galois de ecuaciones algebraicas se puede transferir a la teoría de ecuaciones
diferenciales lineales ordinarias (la teoría de Picard-Vessiot, incluyendo la teoría
para ecuaciones diferenciales y para ecuaciones en diferencias). Usualmente, la
teoría de Picar Vessiot signi�ca una teoría de Galois para ecuaciones diferenciales
lineales ordinarias (ver Van der Put y Singer [55] para los detalles).

Una aplicación d : R −→ R es una derivación de un anillo R si d es aditiva
y satisface la regla de Leibnitz: d(ab) = d(a)b + ad(b) para todo a, b ∈ R. Un
ejemplo simple es la derivación usual en anillos de polinomios. Un ejemplo básico
en anillos no conmutativos viene dado por d : R −→ R, d(x) = [x, a] para todo
x ∈ R y siendo a un elemento �jo de R. La función d así de�nida es una derivación.

El estudio de derivaciones en anillos, aunque iniciado hace tiempo, consiguió
su ímpetu sólo después de que Posner [114] en 1957 estableciera dos resultados
sorprendentes sobre derivaciones en anillos primos.

Las a�rmaciones especí�cas de los teoremas de Posner, a los cuales haremos
referencia frecuente en lo sucesivo, son:

Primer Teorema de Posner. Si R es un anillo primo de característica dis-
tinta de 2 y d1, d2 son derivaciones de R tales que la composición d1d2 es una
derivación, entonces al menos una de ellas es cero.

El primer teorema de Posner nos dice que la composición de dos derivaciones
no nulas de un anillo primo, de característica distinta de 2, no puede nunca ser
una derivación. Este teorema ha sido generalizado de muchos modos por diversos
autores (ver por ejemplo Bergen [32], Chebotar [47], Chuang [49], [50], Hirano et
al. [75], Hvala [79], Jensen [84], Krempa [95], Lanski [99], Martindale [83] y [129])).

La invariancia de ciertos ideales bajo derivaciones es otro tema investigado por
numerosos autores. Se sabe que derivaciones acotadas sobre álgebras de Banach
dejan invariantes los ideales primitivos [122]. Creedon demostró que si P es un
ideal primo de un anillo R, siendo car R/P 6= 2, y el producto de dos derivaciones

4



Introducción

deja invariante P , entonces una de las derivaciones debe dejar P invariante. Tam-
bién probó que si d es una derivación sobre un anillo R, P es un ideal semiprimo
de R, y para un entero positivo �jo k se tiene dk(P ) ⊆ P , entonces d(P ) ⊆ P .
Para mas resultados relacionados ver, por ejemplo, Bell [29], Bell y Argac [30],
Hirano et al. [73], Jensen [84], Krempa [96], Lanski [99] y Wang [127].

Segundo Teorema de Posner: SeaR un anillo primo. Si existe una derivación
centralizadora de R entonces R es conmutativo.

Este teorema asegura la conmutatividad de un anillo primo que posee una
derivación centralizadora. No es clara la motivación de Posner para probar este
teorema, ni las razones que le llevaron a conjeturar el resultado luego probado. En
todo caso, es un hecho que el teorema ha ejercido una notable in�uencia y que, al
menos indirectamente, ha iniciado el estudio de las derivaciones conmutadoras.

Recordemos que d es una aplicación centralizadora si [d(x), x)] ∈ Z(R) para
todo x ∈ R. Bajo hipótesis suaves, una aplicación centralizadora es necesaria-
mente conmutadora, es decir, [d(x), x] = 0 para todo x ∈ R (ver, por ejemplo
[36, Prop.3.1]). El segundo teorema de Posner no se puede extender a anillos
arbitrarios.

Durante las últimas décadas ha surgido gran cantidad de trabajo en relación con
las derivadas generalizadas, especialmente en un contexto de álgebras normadas (el
lector puede consultar [79]). Por ejemplo, una aplicación de la forma x→ ax+xb,
siendo a, b elementos �jos en el álgebra A es una derivación generalizada. Tales
aplicaciones se llaman, usualmente, derivaciones internas generalizadas. Dentro de
la teoría de álgebras de operadores se consideran como una clase importante de
los llamados operadores elementales, x→

∑n
i=1 aixbi.

Si F es una derivación interna generalizada sobre un anillo R dada por F (x) =
ax + xb, notemos que F (xy) = F (x)y + xIb(y), dónde Ib(y) = yb − by es la
derivación interna de�nida por el elemento b de R. Motivado por esta observación,
en 1991 Bresar introdujo el concepto de derivación generalizada en [37] como sigue:
Sea S un subconjunto no vacio de R. Una aplicación aditiva F : R → R se
dice derivación generalizada sobre S si existe una derivación d : R → R tal que
F (xy) = F (x)y + xd(y) para todo x, y ∈ S.

Recientemente, Hvala [79] inició el estudio algebraico de las derivaciones gene-
ralizadas, extendiendo a ellas algunos resultados de derivaciones. De hecho, el
concepto de derivación generalizada incluye el de derivación y el de derivación
interna generalizada. Además, si d = 0, la derivación generalizada es un multipli-
cador a izquierda, es decir, una aplicación aditiva f satisfaciendo f(xy) = f(x)y
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∀x, y ∈ R. Han sido muy estudiados en análisis funcional y se han obtenido varios
resultados interesantes sobre ellos ( ver, por ejemplo Are y Mathiew [9], Sinclair
[122] y Wendel [127]).

En [79], Havla encontró condiciones necesarias y su�cientes para que el pro-
ducto de dos derivaciones generalizadas sea una derivación generalizada. Consideró
derivaciones generalizadas f1, f2 de R satisfaciendo la relación [f1(x), f2(x)] = 0
∀x ∈ R.

En 1999 Nakajima [111] dió algunas propiedades elementales de las derivaciones
generalizadas y determinó relaciones functoriales entre gDerk(S,M) y Derk(S,M)
dónde gDerk(S,M) denota el conjunto de derivaciones generalizadas yDerk(S,M)
el conjunto de derivaciones de S aM . Otros resultados relacionados se pueden ver
en Komatsu y Nakajima [94], Nakajima [112] o Nakajima y Sapanci [113]).

En 1999 Lee in [102] extendió la de�nición de derivación generalizada como
sigue: una derivación generalizada es una aplicación aditiva F : % → U tal que
F (xy) = F (x)y + xd(y) ∀x, y ∈ % dónde % es un ideal denso de R y d es una
derivación de % in U, el anillo cociente de Utumi. Lee probó que toda derivación
generalizada se puede extender de modo único a una derivación generalizada
de U . De hecho, existe un elemento a ∈ U y una derivación d de U tal que
F (x) = ax + d(x) para todo x ∈ U ([102, teorema 3]). Luego podemos suponer,
sin pérdida de generalidad, que una derivación generalizada de R, en este contexto,
es una aplicación de U → U .

En [93], Kharchenko describió identidades con derivaciones y sus resultados son
una potente herramienta para reducir una identidad diferencial a una identidad
polinomial generalizada. Así, para estudiar identidades con derivaciones gene-
ralizadas parece razonable encontrar un teorema correspondiente para identidades
con derivaciones generalizadas.

Durante la última década se ha experimentado un creciente interés por las rela-
ciones entre la conmutatividad de un anillo y la existencia de ciertos tipos de deriva-
ciones de R. Recientemente, varios autores [30, 27, 36] y [76] han obtenido la con-
mutatividad de anillos primos y semiprimos teniendo derivaciones que satisfacen
ciertas restricciones polinomiales. En 2001, Ashraf y Nadeem [15] establecieron
que un anillo primo R con un ideal I que admite una derivación d satisfaciendo
d(xy) + xy ∈ Z(R) o d(xy)− xy ∈ Z(R) ∀x, y ∈ I es conmutativo. Motivado por
estas observaciones, Ali [7] explora la conmutatividad de un anillo R satisfaciendo
una de las siguientes propiedades (i) F (xy)− xy ∈ Z(R), (ii) F (xy) + xy ∈ Z(R),
(iii) F (xy) − yx ∈ Z(R), (iv) F (xy) + yx ∈ Z(R), (v) F (x)F (y) − xy ∈ Z(R) y
(vi) F (x)F (y) + xy ∈ Z(R), ∀x, y ∈ I. Para mas resultados relacionados ver, por
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Introducción

ejemplo, [13, 14, 37, 79, 86, 103, 112, 115, 121].

Por otra parte, derivaciones y derivaciones generalizadas son también temas
importantes en álgebras y superálgebras de Lie. En el estudio de factores de Levi
en álgebras derivación de álgebras de Lie nilpotentes derivaciones generalizadas,
cuasiderivaciones, centroides y cuasicentroides juegan papeles esenciales (ver [31]),
Melville se ocupa en particular, de los centroides de álgebras de Lie nilpotentes
(ver [110]). La investigación mas importante y sistemática sobre derivaciones gene-
ralizadas de un álgebra de Lie y sus subálgebras de Lie se debe a Leger y Luks
[104]. En [31] se obtienen algunas propiedades acerca de derivaciones generali-
zadas, cuasiderivaciones y cohomología de álgebras de Lie. En particular, inves-
tigan las estructura del álgebra derivación generalizada y caracterizan álgebras
de Lie que satisfacen ciertas condiciones. Apuntan también algunas conexiones
entre cuasiderivaciones y cohomología de álgebras de Lie. Para mas resultados
relacionados ver, por ejemplo, [58, 78, 85, 87, 88, 110, 124, 133] y [97].

En esta tesis se estudia si la existencia de ciertas aplicaciones en el anillo garan-
tizan su conmutatividad. El objetivo esencial es la búsqueda de dichas condiciones.
En algunos casos se consideran condiciones mas débiles, que no permiten obtener
la conmutatividad, sino alguna información sobre el centro.

El estudio de derivaciones y extensiones naturales de este concepto es, en úl-
tima instancia, el motivo guía de la tesis. La investigación realizada se centra en
encontrar relaciones entre la conmutatividad del anillo R y la existencia de apli-
caciones (distintos tipos de generalizaciones de derivaciones) de�nidas sobre R.

La tesis está estructurada en 7 capítulos más la bibliografía.

El capítulo 1 recuerda algunas de�niciones básicas, conceptos y comentarios
que serán usados en los capítulos sucesivos. El material se distribuye en una
introducción y otras dos secciones, en las que se �ja terminología y se dan las
de�niciones de distintos tipos de aplicaciones y algunos ejemplos.

Nuevos resultados empiezan a aparecer en el capítulo 2 "Derivaciones genera-
lizadas reversas sobre anillos semiprimos", en el que se introduce la noción de
derivación generalizada reversa, que generaliza la de derivación reversa, es decir,
una aplicación aditiva satisfaciendo d(xy) = d(y)x+ yd(x) para todo x, y ∈ R.

De�nimos derivaciones reversas generalizadas a izquierda y a derecha como
aplicaciones aditivas F : R → R que satisfacen F (xy) = F (y)x + yd(x) (F (xy) =
d(y)x + yF (x)) para todo x, y ∈ R, dónde d es una derivación reversa de R.
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Estudiaremos relaciones entre derivaciones reversas generalizadas de�nidas sobre
un ideal de un anillo semiprimo y las consecuencias que se deducen para dicho
anillo de la existencia de una derivación reversa generalizada a izquierda (resp. a
derecha).

El material de este capítulo ha aparecido en el artículo:
A. Aboubakr and S. González: Generalized reverse derivations on semiprime rings,
Siberian Mathematical Journal, 56, no. 2, 199-205, 2015.

El capítulo 3 se ocupa del estudio de derivaciones generalizadas sobre ideales
de Lie en anillos semiprimos. Herstein [69] probó que dado un anillo semiprimo
libre de 2-torsión R, si una derivación interna dt satisface d2t (U) = 0 para un ideal
de Lie U de R, entonces dt(U) = 0. Carini [45] extendió este resultado para una
derivación arbitraria d probando que d2(U) = 0 implica que d(U) ⊆ Z(R). El
objetivo de este capítulo es extender los resultados mencionados para derivaciones
generalizadas a derecha y a izquierda.

Los resultados de este capítulo se recogen en el artículo:
Ahmed Aboubakr and Santos González: Generalized Derivations on Lie Ideals

in Semiprime Rings, Beiträge zur Algebra und Geometrie / Contributions to Alge-
bra and Geometry, volume 57, number 4, pages 841-850, 2016.

En el capítulo 4 prestamos atención al estudio de subconjuntos de tipo central
en anillos primos con una derivación generalizada. Bell y Daif en [25] de�nen
subconjuntos de tipo centralZ∗(R, f), Z∗∗(R, f) y Z1(R, f), dónde R es un anillo
y f una aplicación de R en R. Prueban que si f es una derivación y R es primo,
entonces estos conjuntos coinciden con el centro de R. El objetivo de este capítulo
será extender estos resultados a derivaciones generalizadas. Además, se buscarán
contraejemplos para demostrar que las restricciones impuestas en las hipótesis de
nuestros resultados no son super�uas.

Los resultados de este capítulo han sido sometidos a publicación en el artículo:
Ahmed Aboubakr and Santos González, Center-like Subsets in Prime Rings

with Generalized Derivations, Sometido.

En el capítulo 5 se presentarán algunos resultados relativos a la ortogonali-
dad de una derivación generalizada a izquierda y una a derecha sobre ideales de
anillos semiprimos. Estudiaremos tanto las consecuencias de la existencia de tales
derivaciones generalizadas ortogonales como condiciones necesarias y su�cientes
para que existan en un anillo semiprimo R. También estudiaremos las conexiones
entre la ortogonalidad de derivaciones generalizadas y propiedades de su composi-
ción. Los resultados de esta sección están relacionados con algunos resultados de
M. Bre�sar y J. Vukman en [43] que extienden el mencionado teorema 1 de Posner
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[114]. También se mostrarán ejemplos que justi�quen las restricciones impuestas.
Los resultados de este capítulo han sido sometidos a publicación en el artículo:
Ahmed Aboubakr and Santos González, Orthogonality of Two Left and Right

Generalized Derivations on Ideals in Semiprime Rings, Sometido.

El capítulo 6 se dedica al estudio de la conmutatividad de un anillo que tiene
una biderivación generalizada, que satisface ciertas condiciones algebraicas. La
noción de biderivación generalizada fue introducida por Bre�sar en [40]. Una apli-
cación biaditiva G : R × R → R es una biderivación generalizada ligada a una
biderivación B : R × R → R si para todo x ∈ R las aplicaciones y → G(x, y) e
y → G(y, x) son derivaciones generalizadas de R ligadas a las derivaciones B(x, .)
y B(., x) respectivamente.

La aplicación g : R → R (resp. f : R → R) de�nida por g(x) = G(x, x) (resp.
f(x) = B(x, x)) es la traza de G (res. de B). En este capítulo estudiaremos la
conmutatividad de un anillo primo que admite una biderivación generalizada G
ligada a una biderivación B que satisface distintas condiciones algebraicas, por
ejemplo:

i. B(g(u), u) = 0, G(f(u), u) = 0 y G(g(u), u) = 0 para todo u ∈ J .

ii. B(g(u), g(v)) = 0, (g(u))2 = 0 y g2(u) − f 2(u) = fg(u) − gf(u) para todo
u, v ∈ J .

Aquí J es un ideal de Jordan no cero de R.

Finalmente, en el Capítulo 7 discutimos la conmutatividad de anillos primos y
semiprimos que involucran derivaciones generalizadas multiplicativas.

Una aplicación F : R → R (no necesariamente aditiva) se dice que es una
derivación multiplicativa generalizada si F (xy) = F (x)y + xg(y) para todo x, y ∈
R, dónde g es una aplicación (no necesariamente derivación). En este capítulo se
impondrán condiciones algebraicas del tipo:

i. [F (x), F (y)] = ±[x, y], [F (x), y] = ±[x,G(y)] y [g(x), F (y)] = ±[x, y] para
todo x, y ∈ L.

ii. F (x)y = ±xG(y), F (x)y ± xG(y) ∈ Z(R) y F (xy) = ±F (yx) para todo
x, y ∈ L.

iii. F ([x, y]) = ±[x, y] y F (x ◦ y) = ±(x ◦ y) para todo x, y ∈ L.

Aquí G denota otra derivación generalizada multiplicativa y L es un ideal bilátero
de R. También se incluirán algunos ejemplos.
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Introduction

In Ring Theory it is natural to study conditions that �nally imply commuta-
tivity of the ring. The well known Wedderburn Theorem (a �nite division ring is
a �eld) can be considered the �rst precedent.

This result was extended by Jacobson who proved that if the ring R satis�es
that ∀a ∈ R, ∃n(a) > 1 such that a = an(a), then the ring R is commutative.

These rings (usually called periodic) have been widely studied and this frame
of problems is usually referred to as "Commutative Theorems".

A connected, but di�erent, line of research tries to �nd conditions on a map,
usually a derivation, de�ned on the ring that forces the commutativity of the ring.
The present thesis can be set up in this context.

Rings with derivations are not the kind of subject that undergoes tremendous
revolutions. However, this has been studied by many authors in the last 60 years,
specially the relationships between derivations and the structure of rings.

One of the questions which often appeared in algebra and analysis is whether
a map can be de�ned by its local properties. For example, the question whether
a map, which acts like a derivation on the Lie product of some important Lie
subalgebra of prime rings, is induced by an ordinary derivation was a well-known
problem posed by Herstein [74]. The �rst result in this direction was obtained
in an unpublished work of Kaplansky (cf. Herstein [74], p. 529), who considered
matrix algebras over a �eld. In the presence of idempotents, this question has been
examined by Martindale [82] for primitive rings. Herstein's problem was solved
in full generality only after the powerful techniques of functional identities was
developed (see for example; [19], [20], [21], [41]).
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The notion "ring with derivation" is quite old and plays a signi�cant role in
the integration of analysis, algebraic geometry and algebra. In the 1940's it was
found that the Galois theory of algebraic equations can be transferred to the
theory of ordinary linear di�erential equations (Picard-Vessiot theory, including
Picard-Vessiot theories for di�erential equations and for di�erence equations). In
the usual sense, "Picard-Vessiot theory" means a Galois theory for linear ordinary
di�erential equations (cf. Van der Put and Singer [55] for details).

A map d : R −→ R is a derivation of a ring R if d is additive and satis�es
the Leibnitz's rule; d(ab) = d(a)b + ad(b), for all a, b ∈ R. A simple example
is of course the usual derivative in polynomial rings. Basic examples in non-
commutative rings are quite di�erent. For a �xed a ∈ R, de�ne d : R −→ R by
d(x) = [x, a] for all x ∈ R. The function d so de�ned can be easily checked to be
additive and d(xy) = [xy, a] = x[y, a] + [x, a]y = xd(y) + d(x)y, for all x, y ∈ R.

The study of derivations in rings though initiated long ago, got impetus only
after Posner [114] who in 1957 established two very striking results on derivations
in prime rings.

The speci�c statements of Posner's theorems, to which we shall referer fre-
quently, are the following:

Posner's First Theorem. If R is a prime ring of characteristic not 2 and
d1, d2 are derivations on R such that the composition d1d2 is also a derivation, then
at least one of d1, d2 is zero.

Posner's First Theorem tells us that the composition of two nonzero derivations
of a prime ring R can not be a derivation if the characteristic of R is di�erent from
2. Thereafter, a number of authors have generalized this theorem in several ways
(see for example Bergen [32], Chebotar [47], Chuang [49], [50], Hirano et al. [75],
Hvala [79], Jensen [84], Krempa [95], Lanski [99], Martindale [83] and Ye et al.
[129]).

Many authors have investigated the invariance of certain ideals under deriva-
tions. It is known that bounded derivations on Banach algebras leave primitive
ideals invariant [122]. Creedon showed that if P is a prime ideal of a ring R, where
the characteristic of R/P is not two, and the product of two derivations leaves P
invariant, then one of the derivations must leave P invariant. He also proved that,
if d is a derivation on a ring R and P is a semiprime ideal of R, for a �xed positive
integer k and dk(P ) ⊆ P , then d(P ) ⊆ P . For more related results see e.g.; Bell
[29], Bell and Argac [30], Hirano et al. [73], Jensen [84], Krempa [96], Lanski [99]
and Wang [127].
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Posner's Second Theorem. Let R be a prime ring. If there is a nonzero
centralizing derivation of R, then R is commutative.

This theorem says that the existence of a nonzero centralizing derivation on a
prime ring R implies that R is commutative.

Considering this theorem from some distance it is not entirely clear what was
Posner's motivation for proving it and which reasons were underling to conjecture
that the theorem is true. In any case, it is a fact that the theorem has been ex-
tremely in�uential and, at least indirectly, it has initiated the study of commuting
derivations.

Let's remember that d is a centralizing map of R if [d(x), x] ∈ Z(R) ∀x ∈ R.
It has been proved that under rather wild assumptions a centralizing map is neces-
sarily commuting, that is, [d(x), x] = 0 ∀x ∈ R. (see, for instance [36, Prop.3.1]).
Posner's Second Theorem can not be extended to arbitrary rings.

During the last few decades there has been a great deal of work concerning gen-
eralized derivation, specially in a context of normed algebras (reader may see [79]).
For instance a map of the form x→ ax+ xb, where a and b are �xed elements in
the algebra A is generalized derivation. Such maps are usually called generalized
inner derivations since they can be seen as a generalization of the concept of inner
derivations (i.e., the map of the form x → xa − ax). In the theory of operator
algebras, they are considered as an important class of the so called elementary
operators, that is, operators where x→

∑n
i=1 aixbi.

Now let's consider a ring R. If F is a generalized inner derivation on R given
by F (x) = ax+xb, let us notice that F (xy) = F (x)y+xIb(y) where Ib(y) = yb−by
is the inner derivation de�ned by b ∈ R. In 1991, motivated by this observation,
Bre�sar [37] introduced the concept of generalized derivation in rings as follows:
Let S be a non-empty subset of R. An additive map F : R → R is said to be
a generalized derivation on S if there exists a derivation d : R → R such that
F (xy) = F (x)y + xd(y) holds for all x, y ∈ S.

Recently, Hvala [79] initiated the algebraic study of generalized derivations,
extending to them some results concerning to derivations. In fact, the concept of
generalized derivation covers both, the concept of derivation and the concept of
generalized inner derivation. Moreover, generalized derivations with d = 0 cover
the concept of left multipliers, that is, additive maps f satisfying f(xy) = f(x)y,
for all x, y ∈ R. This has widely been studied in functional analysis and several
interesting results have been obtained (see, for example; Ara and Mathieu [9],
Sinclair [122] and Wendel [127]).

In [79], Hvala found necessary and su�cient conditions for the product of two
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generalized derivations to be a generalized derivation. He also considered general-
ized derivations f1, f2 of R satisfying the relation [f1(x), f2(x)] = 0 for all x ∈ R.

In 1999, Nakajima [111] gave some elementary properties of generalized deriva-
tions, and determined functorial relations between gDerk(S,M) and Derk(S,M)
where gDerk(S,M) denotes the set of generalized derivations and Derk(S,M) the
set of derivations from S to M . Other related results can be found in Komatsu
and Nakajima [94], Nakajima [112] or Nakajima and Sapanci [113]).

In 1999, Lee in [102] extended the de�nition of generalized derivation as fol-
lows: by a generalized derivation we mean an additive map F : % → U such that
F (xy) = F (x)y + xd(y) for all x, y ∈ %, where % is a dense right ideal of R and d
is a derivation from % into U , the right Utumi quotient ring. He proved that every
generalized derivation can be uniquely extended to a generalized derivation of U .
In fact, there exists a ∈ U and a derivation d of U such that F (x) = ax+ d(x) for
all x ∈ U ([102, Theorem 3]). Therefore we may assume, without loss of generality,
that a generalized derivation of R, in this setting, is a map U → U .

In [93], Kharchenko described identities with derivations and his results are a
powerful tool for reducing a di�erential identity to a generalized polynomial iden-
tity. Thus, to study identities with generalized derivations, it seems reasonable to
�nd a corresponding theorem for identities with generalized derivations.

During the last decade, an ongoing interest concerning the relationship between
the commutativity of a ring and the existence of certain types of derivations of R
has emerged. Recently, many authors [30, 27, 36] and [76] have obtained commu-
tativity of prime and semiprime rings having derivations that satisfy certain poly-
nomial constraints. In 2001, Ashraf and Nadeem [15] established that a prime ring
R with a nonzero ideal I that admits a derivation d satisfying d(xy) + xy ∈ Z(R)
or d(xy) − xy ∈ Z(R) for all x, y ∈ I, is commutative. Motivated by these ob-
servations, Ali in [7] explores the commutativity of a ring R satisfying one of
the following properties: (i) F (xy) − xy ∈ Z(R), (ii) F (xy) + xy ∈ Z(R), (iii)
F (xy)− yx ∈ Z(R), (iv) F (xy) + yx ∈ Z(R), (v) F (x)F (y)− xy ∈ Z(R) and (vi)
F (x)F (y) + xy ∈ Z(R), for all x, y ∈ I. For more related results see for example
([13, 14, 37, 79, 86, 103, 112, 115, 121]).

On the other hand, derivation and generalized derivation algebras are also an
important subject in Lie algebras and superalgebras. In the study of Levi factors in
derivation algebras of nilpotent Lie algebras, generalized derivations, quasideriva-
tions, centroids, and quasicentroids play key roles. Melville dealt particularly with
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centroids of nilpotent Lie algebras (see [110]). The most important and system-
atic research on generalized derivations of a Lie algebra and their Lie subalgebras
was due to Leger and Luks [104]. In [31], some nice properties about generalized
derivations, quasiderivations and centroids have been obtained. In particular, they
investigated the structure of the generalized derivation algebra and characterized
Lie algebras satisfying certain conditions. They also pointed some connections
between quasiderivations and cohomology of Lie algebras. For details about the
generalized derivation algebra of a general non-associative algebra, readers are re-
ferred to [58, 78, 85, 87, 88, 110, 124, 133] and [97].

The subject of this thesis moves around the existence of maps satisfying some
properties guaranties the commutativity of the ring. The essential aim is the
search of conditions that give the commutativity of the ring, or the existence of
maps that satisfy some speci�c conditions. In some other cases, weaker conditions
are considered and then, instead of commutativity, some information about the
center is obtained.

Outline

The overall theme of this thesis is the study of derivations and its various gen-
eralizations in the setting of rings. We investigate the relationship between the
commutativity of the ring R and the existence of maps on R of some particular
types.

The structure of the thesis is at the follows.

Chapter 1 reminds some basic de�nitions, concepts and remarks that will be
used in the sequel. The material in this chapter is organized into two main sections.
In the second section we will �x some required terminology on rings. The third
section contains de�nitions of some types of maps together with some examples.

Now results appear �rst in Chapter 2, "Generalized Reverse Derivations on
Semiprime Rings", in which we introduce the notion of generalized reverse deriva-
tions that generalizes the one of reverse derivation that is, a map satisfying d(xy) =
d(y)x + yd(x) ∀x, y ∈ R. We de�ne reverse l-generalized derivation (reverse
r-generalized derivation) as an additive map F : R → R, satisfying F (xy) =
F (y)x + yd(x) (F (xy) = d(y)x + yF (x)) for all x, y ∈ R, where d is a reverse
derivation of R. We study the relationship between generalized reverse derivations
and generalized derivations on an ideal in a semiprime ring and the implications
for a prime ring R of the existence of a l-generalized (or r-generalized) reverse
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derivation.
The material of this chapter has appeared in the following publication:

A. Aboubakr and S. González: Generalized reverse derivations on semiprime rings,
Siberian Mathematical Journal, volume 56, number 2, pages 199-205, 2015.

Chapter 3 deals with the study of generalized derivations on Lie ideals in
semiprime rings. Herstein [69] proved that given a semiprime 2-torsion free ring
R and an inner derivation dt, if d2t (U) = 0 for a Lie ideal U of R then dt(U) = 0.
Carini [45] extended this result for an arbitrary derivation d, proving that d2(U) =
0 implies d(U) ⊆ Z(R). The aim of this chapter is to extend the results mentioned
above for right (resp. left) generalized derivations.

The results of this chapter have been published in:
Ahmed Aboubakr and Santos González: Generalized Derivations on Lie Ideals in
Semiprime Rings, Beiträge zur Algebra und Geometrie / Contributions to Algebra
and Geometry, volume 57, number 4, pages 841-850, 2016.

In Chapter 4 we turn out our attention to the study of center-like subsets in
prime ring with a generalized derivation. Bell and Daif in [25] de�ned the center-
like subsets Z∗(R, f), Z∗∗(R, f) and Z1(R, f), where R is a ring and f is a map
from R to R. They proved that if f is a derivation and R is prime then these
sets coincide with the center of R. In this chapter we extend these results to
generalized derivations. Further, some counter examples have also been given to
demonstrate that the restrictions imposed on the hypotheses of the various results
are not super�uous.

The results of this chapter are collected in the article:
Ahmed Aboubakr and Santos González, Center-like Subsets in Prime Rings with
Generalized Derivations, Submitted.

In Chapter 5, we present some results concerning orthogonality of l-generalized
derivations and r-generalized derivations on ideals in semiprime rings. In Section
5.2, we consider the situation in which we have one l-generalized derivation and a
r-generalized derivation and �nd necessary and su�cient conditions for them to be
orthogonal on a nonzero ideal of a semiprime ring R. In Section 5.3, we also study
the connections between orthogonality and some properties of the composition of
a l-generalized derivation and a r-generalized derivation. These results are related
to some results of M. Bre�sar and J. Vukman in [43], that extend above mentioned
Theorem 1 by E. Posner [114] about products of derivations on prime rings. Finally
we provide several examples to justify that the di�erent restrictions imposed in
the hypotheses of our theorems are not super�uous.

The results of this chapter are collected in the article:
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Ahmed Aboubakr and Santos González, Orthogonality of Two Left and Right Gen-
eralized Derivations on Ideals in Semiprime Rings, Submitted.

Chapter 6 is based on the study of commutativity of a ring having a generalized
biderivation that satisfy certain algebraic conditions. The notion of generalized
biderivation was introduced by Bre�sar in [40]. A biadditive map G : R × R → R
is a generalized biderivation linked to a biderivation B : R × R → R if for every
x ∈ R, the maps y → G(x, y) and y → G(y, x) are generalized derivations of R
linked to the derivations B(x, .) and B(., x), respectively. The map g : R → R
(resp. f : R → R) de�ned by g(x) = G(x, x) (resp. f(x) = B(x, x)) is the
trace of G (resp. B). In this chapter we study the commutativity of a prime ring
which admits a generalized biderivation G linked to a biderivation B satisfying the
following algebraic conditions for instance:

i. B(g(u), u) = 0, G(f(u), u) = 0 and G(g(u), u) = 0 for all u ∈ J .

ii. B(g(u), g(v)) = 0, (g(u))2 = 0 and g2(u) − f 2(u) = fg(u) − gf(u) for all
u, v ∈ J .

Here J is a nonzero Jordan ideal of R.

Finally, in Chapter 7, we discuss the commutativity of prime and semiprime
rings involving multiplicative (generalized)-derivations. A map F : R → R (not
necessarily additive) is called a multiplicative (generalized)-derivation if F (xy) =
F (x)y+xg(y) is ful�lled for all x, y ∈ R, where g : R→ R is a map (not necessarily
a derivation). Algebraic conditions imposed in this chapter are of the type:

i. [F (x), F (y)] = ±[x, y], [F (x), y] = ±[x,G(y)] and [g(x), F (y)] = ±[x, y] for
all x, y ∈ L.

ii. F (x)y = ±xG(y), F (x)y ± xG(y) ∈ Z(R) and F (xy) = ±F (yx) for all
x, y ∈ L.

iii. F ([x, y]) = ±[x, y] and F (x ◦ y) = ±(x ◦ y) for all x, y ∈ L.

Here G is another multiplicative (generalized)-derivation and L is a left-sided ideal
of R. Some examples are also given.
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Chapter 1

Ring Terminology and Some Types of Maps

1.1 Introduction

In the present chapter, we give a �rst overview on the subject stating more fre-
quently used de�nitions, preliminary notions, more exciting examples and some
elementary results required for the development of the subject in subsequent chap-
ters of the present thesis. Of course, knowledge of some algebraic concepts such as
groups, rings, ideals, �elds, homomorphisms, etc. have been pre-assumed and no
attempt will be made to discuss them. Some key results and well-known theorems
related to our subject have been also incorporated for reader's convenience. With
the same aim, the exposition has been made self-contained so as possible. Most of
the material included in this chapter appears in standard literature namely, Beidar
et. al. [18], Burton [44], Herstein [68, 71], Kharchenko [92], Lambek [98], McCoy
[109] and Rowen [116].

1.2 Some elementary concepts

In the present section, we will give a brief exposition of some important terminology
in ring theory. Throughout the thesis, unless otherwise mentioned, R will denote
an associative ring (with or without unit) having at least two elements. For any
pair of elements x, y ∈ R, the symbols [x, y] and (x ◦ y) stand for the commutator
xy− yx and symmetrized product xy+ yx. The symbols Z(R) and CR(R) denote
the center and centralizer of R respectively. We start our discussion with the
following de�nitions:

De�nition 1.2.1. (Prime ideal). An ideal P in a ring R is said to be a prime
ideal if P 6= R and for any two ideals A and B of R, AB ⊆ P implies A ⊆ P or
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B ⊆ P .

Remark 1.2.1. If P is an ideal in a ring R with identity, then the following condi-
tions are equivalent:

i. P is a prime ideal of R.

ii. If a, b ∈ P such that aRb ⊆ P , then a ∈ P or b ∈ P .

iii. If (a) and (b) are principal ideals in R such that (a)(b) ⊆ P , then a ∈ P or
b ∈ P .

iv. If U and V are right (or left) ideal in R such that UV ⊆ P , then U ⊆ P or
V ⊆ P .

De�nition 1.2.2. (Prime ring). A ring R is said to be a prime if zero ideal of
R is a prime ideal in R.

Remark 1.2.2. In a ring R, the following conditions are equivalent:

i. R is prime.

ii. If A and B are ideals in R such that AB = 0, then A = 0 or B = 0.

iii. If a, b ∈ R, aRb = 0, then a = 0 or b = 0.

iv. If (a) and (b) are principal ideals in R such that (a)(b) = (0), then a = 0 or
b = 0.

De�nition 1.2.3. (Semiprime ideal). An ideal S in a ring R is said to be a
semiprime ideal in R if for every ideal A of R, A2 ⊆ S implies A ⊆ S.

Remark 1.2.3. If S is an ideal in a ring R, then the following conditions are
equivalent:

i. S is a semiprime ideal of R.

ii. If a ∈ R such that aRa ⊆ S, then a ∈ S.

iii. If (a) is principal ideal in R such that (a)2 ⊆ S, then a ∈ S.

iv. If U is right (or left) ideal in R such that U2 ⊆ S, then U ⊆ S.

Remark 1.2.4. i. The intersection of any set of semiprime ideals is semiprime.

ii. Any prime ideal is a semiprime ideal.
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iii. The converse of (ii) is not true in general. Indeed, considering the ring Z of
integers, the ideal (6) = (2) ∩ (3) is semiprime by (i), but it is not prime.

De�nition 1.2.4. (Idempotent element). An element e in a ring R is called
idempotent if e2 = e. It is obvious that zero is an idempotent element of every
ring. Moreover, if R contains unity 1, then 1 is also idempotent.

Remark 1.2.5. For any idempotent e in a ring R, e + ex − exe and e + xe − exe
for all x ∈ R are also idempotents.

De�nition 1.2.5. (Nilpotent element). An element x in a ring R is said to
be a nilpotent element if there exists a positive integer n such that xn = 0. If
such a positive integer exists, then the smallest of all integers n ≥ 1 satisfying the
condition is called the nilpotency index of x.

Remark 1.2.6. For an idempotent e ∈ R and any x ∈ R, the elements ex − exe
and xe− exe are nilpotent in R.
Remark 1.2.7. If R is a prime ring without non-zero nilpotent elements then R
does not zero divisor. In fact, if ab = 0, then (ba)2 = (ba)(ba) = b(ab)a = 0. By
hypothesis ba = 0. Furthermore, if ab = 0, then (ab)x = 0. As we have mentioned
above, this implies that a(bx) = 0 for all x ∈ R, i.e., (bx)a = 0 for all x ∈ R and
hence bRa = 0. Since R is prime, either a = 0 or b = 0 i.e., R does not have zero
divisors.

Remark 1.2.8. It is trivial that the zero element of a ring is nilpotent, that is, the
nilpotency index of an element x ∈ R is 1 if and only if x = 0. Moreover, every
nilpotent element is a zero divisor. Indeed, if a 6= 0, and n is the smallest positive
integer such that an = 0, then n > 1 and a(an−1) = 0 with an−1 6= 0.

De�nition 1.2.6. (Nilpotent ideal). An ideal A of R is called a nilpotent ideal
if An = 0 for some positive integer n. If every element of A is nilpotent, then A is
said to be a nil ideal.

Example 1.2.1. Let M be the ring of all 2 × 2 upper triangular matrices over

integers. Then the ideal generated by

(
0 1
0 0

)
is nilpotent.

Remark 1.2.9. Every nilpotent ideal is necessarily a nil ideal, but the converse is
not true in general.

De�nition 1.2.7. (Semiprime ring). A ring R is said to be semiprime if it has
no nonzero nilpotent ideal.

Remark 1.2.10. In a ring R, the following conditions are equivalent:
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i. R is semiprime.

ii. 0 is a semiprime ideal.

iii. If A is an ideal of R such that A2 = 0, then A = 0.

iv. If a ∈ R, aRa = 0, then a = 0.

Remark 1.2.11. A prime ring is necessarily a semiprime ring but the converse need
not be true in general.

Example 1.2.2. i. The ring Z6 of residue classes modulo 6 is a semiprime ring
but not a prime ring.

ii. Let R1, R2 are prime rings, then R1 ⊕R2 is semiprime ring but not prime.

De�nition 1.2.8. (Characteristic of a ring). Let R be a ring. If there exists
a positive integer n such that nx = 0 for all x ∈ R, then the smallest positive
integer with this property is called the characteristic of the ring R and is denoted as
char(R) = n. If no such positive integer exists, then R is said to be of characteristic
zero.

Example 1.2.3. Consider the ring of integers modulo n i.e., Zn = {0̄, 1̄, 2̄, ..., ¯n− 1},
then characteristic of Zn will be n.

Example 1.2.4. The ring of integers, rational numbers and real numbers are
standard examples of rings having characteristic zero. On the other hand let P (X)
be the set of all subsets of a given non-empty set X. If A,B ∈ P (X), we de�ne AB
to be A ∩B and A+B is de�ned to be the symmetric di�erence of A and B i.e.,
A∆B = (A\B) ∪ (B\A), then with respect to these addition and multiplication
P (X) is a commutative ring with identity. Moreover, since 2A = A∆A = ∅ for
every subset A ⊆ X,P (X) is a ring of characteristic 2.

Remark 1.2.12. The characteristic of an integral domain is either zero or a prime.

De�nition 1.2.9. (Torsion element). An element x ∈ R is called torsion ele-
ment if there is n a positive integer such that nx = 0 ( it has �nite order in the
additive subgroup of R).

Remark 1.2.13. Let R be a prime ring. If there exist a nonzero torsion element in
R, then R has �nite characteristic and it is prime.

Proof. Assume that 0 6= a ∈ R is torsion, then pa = 0 for some integer p > 1,
therefore for all r ∈ R, we have paRr = 0 = aRpr. Primeness of R gives pr = 0
for all r ∈ R. Then R has positive characteristic. �

Notice that 1.2.13 does not hold if R is semiprime as shown by the following
example.
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Example 1.2.5. De�ne R = Z ⊕ Z/2Z. It is easy to check that R is semiprime
ring, we have 2.(0̄, 1̄) = (0̄, 0̄), then (0̄, 1̄) is 2-torsion element in R. However
characteristic of R is zero.

De�nition 1.2.10. (Torsion free ring). A ring R is torsion free if 0 is its only
torsion element.

De�nition 1.2.11. (Simple ring ). A ring R 6= 0 is said to be simple if the only
ideals of R are 0 and R.

De�nition 1.2.12. (Center of a ring). The center of a ring R is the set of
elements of R which commute with every element of R. It is denoted by Z(R) i.e.,
Z(R) = {x ∈ R | xr = rx for all r ∈ R}.

Remark 1.2.14. i. The center of a prime ring does not contain zero divisors.

ii. A ring R is commutative if and only if Z(R) = R.

Remark 1.2.15. The center of a semiprime ring does not contain nonzero nilpotent
element.

Proof. Let x be a non-zero nilpotent element of R such that x ∈ Z(R). Suppose
that index of nilpotency is n. If n = 2, then x2r = 0 for all r ∈ R i.e., x(xr) = 0
gives xrx = 0. This implies that x = 0. If n > 2 then 2n − 2 > n and we have
(xn−1)2 = 0 i.e. (xn−1)2r = 0 for all r ∈ R. This implies xn−1rxn−1 = 0. Since R
is semiprime xn−1 = 0 a contradiction. �

De�nition 1.2.13. (Centralizer of a set). Let S be a nonempty subset of R.
Then the centralizer of S in R is de�ned by CR(S) = {x ∈ R | sx = xs for all s ∈
S}.

Lemma 1.2.6. ([48, Lemma 1.1.5]). Let R be a semiprime ring and let I be a
right ideal of R, then Z(I) ⊆ Z(R).

Proof. If a ∈ Z(I) and x ∈ R then, since ax ∈ I, a(ax) = (ax)a, that is
a(ax− xa) = 0. If r ∈ R, then a(a(xr)− (xr)a) = 0. Moreover, a(xr)− (xr)a =
(ax − xa)r + x(ar − ra) consequently ax(ar − ra) = 0 for all x, r ∈ R. But this
gives (ar− ra)R(ar− ra) = 0. Since R is semiprime, we conclude that ar− ra = 0
for all r ∈ R, hence a ∈ Z(R). �

De�nition 1.2.14. (Annihilator). If M is a subset of a ring R, then the right
annihilator of M denoted as Ar(M) is the totality of all r ∈ R, such that

Ar(M) = {r ∈ R | mr = 0 for all m ∈M}.
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Similarly, the left annihilator of M denoted as Al(M) is the set of all r ∈ R such
that

Al(M) = {r ∈ R | rm = 0 for all m ∈M}.

The intersection AnnR(M) = Ar(M) ∩Al(M) is called an annihilator of M in R.

Remark 1.2.16. The right annihilator of a nonzero right ideal of a prime ring is
zero.

Remark 1.2.17. If I is an ideal of a semiprime ring R. Then

i. AnnR(I) = rR(I) = lR(I).

ii. I ∩ Ar(I) = 0.

De�nition 1.2.15. (Martindale ring of quotients). Let R be a prime ring
and = be the set of all pairs (U, f) where U 6= 0 is an ideal of R and f : U → R
is a homomorphism of right R-modules from U to R. De�ne a relation ∼ on =
by (U, f) ∼ (V, g) if f = g on some ideal W 6= 0 of R where W ⊂ U ∩ V . The
primeness of R trivially implies that ∼ is an equivalence relation on =. Let Q
be the set of equivalence classes of =. Denote the equivalence class determined
by (U, f) as f̃ . For f̃ = cl(U, f), g̃ = cl(V, g) ∈ Q, we can de�ne an addition
f̃ + g̃ = cl(U ∩ V, f + g) and a product f̃ .g̃ = cl(UV, fg) it is easy to verify
that two operations are will de�ned. Thus, Q forms an associative ring with unit
element 1̃ = cl(R, id) will respect to above de�ned operations known asMartindale
(or simply) ring of quotients.

Remark 1.2.18. Q satis�es the following properties:

• R can be isomorphically embedded in Q.

• If 0 6= q ∈ Q then there exists an ideal U 6= {0} of R such that {0} 6= qU ⊂ R.

• Primeness of R gives Q is also prime.

De�nition 1.2.16. (Extended centroid). The center C of Q is known as the
extended centroid of R.

Remark 1.2.19. The extended centroid is a �eld.

De�nition 1.2.17. (Central closure). Let R be a prime ring and C be its
extended centroid, then subring generated by R and C is called central closure of
R in Q and denoted by RC or RC .

De�nition 1.2.18. (Lie and Jordan products). Given any associative ring R,
one can consider two new operations in R as follows:
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• for all x, y ∈ R, the Lie product [x, y] = xy − yx.

• for all x, y ∈ R, the Jordan product x ◦ y = xy + yx.

De�nition 1.2.19. (Lie and Jordan subrings). An additive subgroup A of R
is said to be a Lie (resp. a Jordan ) subring of R if [a, b] ∈ A (resp. a ◦ b ∈ A) for
all a, b ∈ A.

De�nition 1.2.20. (Lie and Jordan ideals). An additive subgroup U of R is
said to be a Lie (resp. a Jordan) ideal of R if [U,R] ⊆ U (resp. U ◦R ⊆ U).

Example 1.2.7. Let R = {
(
a b
c d

)
| a, b, c, d ∈ Z2}. Then it can be easily seen

that U = {
(
a b
c a

)
| a, b, c ∈ Z2} is a Lie ideal of R and J = {

(
a b
b a

)
| a, b ∈

Z2} is a Jordan ideal of R.

De�nition 1.2.21. (Square closed Lie ideal). A Lie ideal U of R is said to be
a square closed Lie ideal of R if u2 ∈ U for all u ∈ U .

Throughout this thesis, we will make extensive use of the basic commutator
identities:

Remark 1.2.20. For any x, y, z ∈ R, the following identities are obvious:

[x, yz] = [x, y]z + y[x, z]; [xy, z] = x[y, z] + [x, z]y. (1.1)

x ◦ (yz) = (x ◦ y)z − y[x, z] = y(x ◦ z) + [x, y]z. (1.2)

(xy) ◦ z = x(y ◦ z)− [x, z]y = (x ◦ z)y + x[y, z]. (1.3)

[[x, y], z]] + [[y, z], x]] + [[z, x], y]] = 0 (Jacobi′s identity) (1.4)

1.3 Derivations and generalizations

De�nition 1.3.1. (Derivation). An additive map d : R → R is said to be a
derivation of the ring R if it satis�es d(xy) = d(x)y + xd(y) for all x, y ∈ R.

Example 1.3.1. The most natural example of a non-trivial derivation is the usual
derivation of polynomials in the ring F [x] over a �eld F .

De�nition 1.3.2. (Inner derivation). Let a be a �xed element of R. If we de�ne
the map Ia : R → R by Ia(x) = [x, a], for all x ∈ R, then it can be easily proved
that Ia is a derivation of R. This map is called Inner derivation of R determined
by a.
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Remark 1.3.1. It is obvious that every inner derivation on a ring R is a derivation.
But the converse is not true in general.

Example 1.3.2. Let R = {
(
a b
c d

)
| a, b, c, d ∈ Z} be the ring of 2× 2 matrices

over Z the ring of integers. De�ne a map d : R→ R as follows:

d

(
a b
c d

)
=

(
0 −b
c 0

)
Then it can be veri�ed that d is a derivation but not an inner derivation on R.

Remark 1.3.2. The set of all derivations of the ring R is denoted by DerR. This
set is closed with respect to the commutator operation i.e., if d1, d2 are derivations
of R, then [d1, d2] is also a derivation. Therefore, DerR is a Lie subring of End(R).

Remark 1.3.3. If d is a derivation on R and r ∈ Z(R), then d(r) ∈ Z(R).

De�nition 1.3.3. (Jordan derivation). An additive map d : R → R is said to
be a Jordan derivation of the ring R if it satis�es d(x2) = d(x)x + xd(x) for all
x ∈ R.

Remark 1.3.4. Every derivation on a ring R is a Jordan derivation but the converse
is not true in general as the following example shows.

Example 1.3.3. Let R be a ring and a ∈ R such that xax = 0 for all x ∈ R and
xay 6= 0 for some y ∈ R, (y 6= x). De�ne a map d : R→ R by d(x) = ax. Then it
can be veri�ed that d is a Jordan derivation but not a derivation.

De�nition 1.3.4. ((σ, τ)-derivation). Let σ, τ : R → R be two maps. Then
an additive map d : R → R is said to be a (σ, τ)-derivation on R if it satis�es
d(xy) = d(x)σ(y) + τ(x)d(y) for all x, y ∈ R.

Example 1.3.4. Let R = {
(
a b
0 c

)
| a, b, c ∈ Z}. If we de�ne the maps d, σ, τ :

R → R by d

(
a b
0 c

)
=

(
a 0
0 0

)
, σ

(
a b
0 c

)
=

(
a 0
0 0

)
, τ

(
a b
0 c

)
=(

0 b
0 0

)
. Then d is a (σ, τ)-derivation of R.

De�nition 1.3.5. (Generalized inner derivation). An additive map F : R→
R is called a generalized inner derivation if F (x) = ax+xb for some a, b ∈ R. It is
straight forward to noting that if F is a generalized inner derivation, then for any
x, y ∈ R, F (xy) = F (x)y+x[y, b] = F (x)y+xIb(y) where Ib is an inner derivation.
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De�nition 1.3.6. (Generalized derivation). An additive map F : R → R is
said to be a generalized derivation or left generalized derivation of R if there exists
a derivation d : R→ R such that F (xy) = F (x)y + xd(y) for all x, y ∈ R.

Remark 1.3.5. Since the sum of two generalized derivations is a generalized deriva-
tion, every map of the form F (x) = cx + d(x) for all x ∈ R is a generalized
derivation, where c is a �xed element of R and d is a derivation of R.

De�nition 1.3.7. (Right generalized derivation). An additive map F : R→
R is said to be a right generalized derivation of R if there exists a derivation
d : R→ R such that F (xy) = xF (y) + d(x)y for all x, y ∈ R.

Example 1.3.5. Let S be any ring and R = {
(
a b
0 0

)
| a, b ∈ S}. De�ne

F : R→ R such that F (x) = 2e11x− xe11. Then it can be easily seen that F is a
generalized derivation with associated derivation d(x) = e11x− xe11.

Remark 1.3.6. It easy to see that every derivation is a generalized derivation but
the converse is not true in general. The following example shows a generalized
derivation that is not a derivation.

Example 1.3.6. Let R = {
(
a b
0 c

)
| a, b, c ∈ Z2}. If we de�ne the maps

F, d : R → R such that F

(
a b
0 c

)
=

(
a 0
0 0

)
, d

(
a b
0 c

)
=

(
0 b
0 0

)
. Then

F is a generalized derivation of R with associated derivation d but not a derivation
of R.

De�nition 1.3.8. (Jordan generalized derivation). An additive map F : R→
R is said to be a Jordan generalized derivation if there exists a Jordan derivation
d such that F (x2) = F (x)x+ xd(x) for all x ∈ R.

Remark 1.3.7. Clearly, every generalized derivation is a Jordan generalized deriva-
tion but converse need not be true in general.

Example 1.3.7. Let S be a ring such that the square of each element in S is zero,

but the product of some elements in S is nonzero. Next, let R = {
(
x y
0 0

)
|

x, y ∈ S}. De�ne a map F : R → R such that F

(
x y
0 0

)
=

(
0 x
0 0

)
. Then

with derivation d = 0, it can be easy see that F (r2) = F (r)r for all r ∈ R, i.e.

F is Jordan generalized derivation. Take r1 =

(
x1 0
0 0

)
and r1 =

(
x2 0
0 0

)
such that x1 6= x2 , then F (r1r2) 6= F (r1)r2 i.e, F is not generalized derivation
associated to d = 0.
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De�nition 1.3.9. (Centralizer map). An additive map f : R → R is said to
be a left centralizer (right centralizer) if f(xy) = f(x)y (f(xy) = xf(y)) for all
x, y ∈ R. It is called a centralizer if f is both left and right centralizer.

De�nition 1.3.10. (Centralizing and Commuting maps). Let S be an ad-
ditive subgroup of R. An additive map f : S → S is said to be centralizing on S
if [f(x), x] ∈ Z(R) for all x ∈ S. Furthermore, f is said to be commuting on S if
[f(x), x] = 0 for all x ∈ S.

Example 1.3.8. Let us consider R = {
(

0 a
0 b

)
| a, b ∈ Z}. Now, de�ne T :

R→ R such that T

(
0 a
0 b

)
=

(
0 0
0 b

)
, then T is a centralizer map.

De�nition 1.3.11. (Commutativity preserving map). Let R and S be rings.
A map f : R → S is said to be commutativity preserving map if for all x, y ∈ R,
whenever [x, y] = 0 implies [f(x), f(y)] = 0.

De�nition 1.3.12. (Strong commutativity preserving (SCP) map). Let
S be a nonempty subset of a ring R. A map f : R → R is said to be strong
commutativity preserving (SCP) on S if [f(x), f(y)] = [x, y] for all x, y ∈ S.

De�nition 1.3.13. (Symmetric and trace maps). A map B : R × R → R is
said to be symmetric if B(x, y) = B(y, x) for all x, y ∈ R. The map f : R → R
de�ned by f(x) = B(x, x) is called the trace of B.

Remark 1.3.8. If B is a symmetric map which is also biadditive (i.e., additive in
both arguments), the trace f of B satis�es that f(x+y) = f(x) +f(y) + 2B(x, y),
for all x, y ∈ R, hence f is not an additive map.

De�nition 1.3.14. (Symmetric biderivation). A symmetric biadditive map
B : R × R → R is said to be a symmetric biderivation if B(xy, z) = B(x, z)y +
xB(y, z) is ful�lled for all x, y, z ∈ R.

Example 1.3.9. Typical examples are maps of the form (x, y) → λ[x, y] where
λ ∈ C where C is extended centroid, which called inner biderivations.

De�nition 1.3.15. (Symmetric generalized biderivation). A symmetric bi-
additive map G : R × R → R is said to be a symmetric generalized biderivation
if there exists a symmetric biderivation B : R × R → R such that G(xy, z) =
G(x, z)y + xB(y, z) for all x, y, z ∈ R.

Example 1.3.10. Let R be a ring. If B is any symmetric biderivation of R and
τ : R×R→ R is a symmetric biadditive map such that τ(x, yz) = τ(x, y)z for all
x, y, z ∈ R, then B + τ is a symmetric generalized biderivation of R associated to
B.
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Chapter 2

Generalized Reverse Derivations on

Semiprime Rings

2.1 Introduction

The notion of reverse derivation arises in one early paper of Herstein in [67],
when he studied Jordan derivations on prime associative rings. This notion is
related to some generalizations of derivations. A reverse derivation is an additive
map d from a ring R into itself satisfying d(xy) = d(y)x + yd(x), for all x, y ∈ R.
So, every reverse derivation is a Jordan derivation (but the converse is not true in
general). In the anticommutative case, every reverse derivation is an antideriva-
tion and every antiderivation is a reverse derivation. Reverse derivations in prime
Lie and prime Malcev algebras were studied by N. Hopkins and V. Filippov. In
those papers, some examples of non-zero reverse derivations for the 3-dimensional
simple Lie algebra sl2 were found, (see [78]), and prime Lie algebras admitting a
non-zero reverse derivation were characterized by Filippov (see [59, 60]). In par-
ticular, Filippov proved that every prime Lie algebra, admitting a non-zero reverse
derivation is a polynomial algebra. Filippov also described all reverse derivations
of prime Malcev algebras( see [61]). The super case of reverse derivations (anti-
superderivations) of simple Lie superalgebras was studied by I. Kaygorodov in [89]
and [90]. He proved, that every reverse superderivation of simple �nite-dimensional
Lie superalgebra over an algebraically closed �eld of characteristic zero is a zero
map. After that, he proved that every reverse r-generalized (or l-generalized)
derivation of simple (non-Lie) Malcev algebra is a zero map (see [91]).
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In his paper [67], Herstein showed that if R is a prime ring, and d a nonzero
reverse derivation of R, then R is a commutative integral domain and d is a deriva-
tion. Later, in [118] Samman and Alyamani extended the result by Herstein to
semiprime rings proving that, if R is a semiprime ring, then a reverse derivation
is just a derivation from R to its center.

Generalized derivations were de�ned by Bre�sar [37] in 1991. An additive map
f : R→ R is called a generalized derivation if there exists a derivation d : R→ R
such that f(xy) = f(x)y + xd(y) for all x, y ∈ R. One may observe that the
concept of generalized derivation includes both the concept of derivation, and the
one of left multiplier (when d = 0). Gölba³i and Kaya [64] distinguish between l-
generalized derivation associated to a derivation d (Bre�sar generalized derivations)
and r-generalized derivations associated to a derivation d, additive map F : R→ R
satisfying: F (xy) = d(x)y + xF (y) for all x, y ∈ R.

In this chapter we generalize the notion of reverse derivation introducing gen-
eralized reverse derivations:

De�nition 2.1.1. Let R be a ring and d a reverse derivation of R and F : R→ R
an additive map is said to be a l-generalized reverse derivation of R associated to
d if

F (xy) = F (y)x+ yd(x), for allx, y ∈ R.

F is said to be a r-generalized reverse derivation associated to d if

F (xy) = d(y)x+ yF (x), for allx, y ∈ R.

The main purpose of this chapter is to extend the above mentioned results
to generalized reverse derivations. If R is a semiprime ring, I is an ideal of R and
F : I → R is a l-generalized reverse derivation (r-generalized reverse derivation),
we will show that F is r-generalized derivation (l-generalized derivation) and ap-
plies I into CR(I). In particular, R contains a non zero central ideal.

Generalized Jordan derivations are considered by Wei and Xiao in [128]. A
generalized Jordan derivation of a ring R is a map f : R → R that satis�es
f(x2) = f(x)x + xd(x) for all x ∈ R, for some Jordan derivation d of R. In
Theorem 2.7 of [128] authors proved that any generalized Jordan derivation of a
2-torsion free semiprime ring R is a generalized derivation. Clearly, the notion
of r-generalized Jordan derivation can also be considered. A r-generalized Jor-
dan derivation is a map g : R → R that satis�es g(x2) = d(x)x + xg(x) for d a
Jordan derivation of R. The proof of the above mentioned Theorem 2.7 in [128]
can be adapted to prove the same result for a r-generalized Jordan derivation,
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that is, any r-generalized Jordan derivation of a 2-torsion free semiprime ring R
is a r-generalized derivation. Using this extended version of Theorem 2.7 we will
prove in this chapter that, in case of 2-torsion free semiprime rings, the notions of
r-generalized reverse, l-generalized reverse , r-generalized and l-generalized deriva-
tions coincide.

Results in this chapter have been published in [1].

2.2 Preliminaries and examples

The following lemmas will be widely used in our results.

Lemma 2.2.1. [26, Theorem 3]. Let R be a semiprime ring and I a nonzero
left ideal. If R admits a nonzero derivation d which is centralizing on I, then R
contains a nonzero central ideal.

Lemma 2.2.2. [128, Theorem 2.7]. Let R be a 2-torsion free semiprime ring.
Then any generalized Jordan derivation on R is a generalized derivation(left or
right).

Proposition 2.2.3. [26, Fact IV]. In a prime ring, the centralizer of any nonzero
one-sided ideal is equal to the center of R. In particular, if R has a nonzero central
ideal, then R is commutative.

The following examples explore possible relationships between l-generalized
reverse derivations, r-generalized reverse derivations, l-generalized derivations and
r-generalized derivations.

Example 2.2.4. Let S be a ring and consider the ring R = {
(

0 a b
0 0 c
0 0 0

)
|a, b, c ∈

S}. Let us de�ne maps F : R→ R and d : R→ R as follows:

F (
(

0 a b
0 0 c
0 0 0

)
) =

(
0 0 a
0 0 0
0 0 0

)
and d(

(
0 a b
0 0 c
0 0 0

)
) =

(
0 0 a − c
0 0 0
0 0 0

)
.

It is easy to check that d is both a reverse derivation and a derivation, F is l-
generalized reverse derivation and r-generalized reverse derivation associated to d.
F is also l-generalized derivation and r-generalized derivation associated to d. As
a matter of fact, F is also a reverse derivation.

Remark 2.2.1. A map F can be (reverse) l-generalized (r-generalized) derivation
with respect to two di�erent reverse derivations. Indeed, in Example 2.2.4 above
F is a (reverse) l-generalized (r-generalized) derivation with respect to F and d.
But if the ring R is semiprime, then the reverse derivation associated to a (reverse)
l-generalized (r-generalized) derivation is unique.
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Example 2.2.5. Consider the ring R as in Example 2.2.4. De�ne maps F : R→ R
and d : R→ R as follows:

F (
(

0 a b
0 0 c
0 0 0

)
) =

(
0 0 −b
0 0 0
0 0 0

)
and d(

(
0 a b
0 0 c
0 0 0

)
) =

(
0 a c − a
0 0 −c
0 0 0

)
.

It is easy to check that d is a derivation and a reverse derivation and F is l-
generalized derivation with respect to d. However F is not r-generalized derivation
with respect to d. Furthermore, F is neither l-generalized reverse derivation not
r-generalized reverse derivation with respect to d.

The next two examples will show that a l-generalized reverse derivation (r-
generalized reverse derivation) with respect to a reverse derivation d that is also
a derivation is not necessarily a r-generalized derivation (l-generalized derivation)
with respect to d.

Example 2.2.6. Consider the ring R = {
(

0 a b c
0 0 0 d
0 0 0 e
0 0 0 0

)
|a, b, c, d, e ∈ R}, where

R is the set of all real numbers. De�ne maps, F : R → R and d : R → R as
follows:

F (

(
0 a b c
0 0 0 d
0 0 0 e
0 0 0 0

)
) =

(
0 0 0 b + e
0 0 0 0
0 0 0 e
0 0 0 0

)
and d(

(
0 a b c
0 0 0 d
0 0 0 e
0 0 0 0

)
) =

(
0 0 0 b − d
0 0 0 0
0 0 0 0
0 0 0 0

)
.

Then, d is a derivation and a reverse derivation, and F is a l-generalized reverse
derivation associated to d, but not r-generalized derivation associated to d.

Example 2.2.7. Consider the ring R as in Example 2.2.6. De�ne maps F : R→ R
and d : R→ R as follows:

F (

(
0 a b c
0 0 0 d
0 0 0 e
0 0 0 0

)
) =

(
0 0 b 0
0 0 0 0
0 0 0 0
0 0 0 0

)
and d(

(
0 a b c
0 0 0 d
0 0 0 e
0 0 0 0

)
) =

(
0 0 0 b − d
0 0 0 0
0 0 0 0
0 0 0 0

)
.

It is easy to verify that F is r-generalized reverse derivation associated to d, but
not l-generalized derivation associated to d.

2.3 Characterization of generalized reverse deriva-

tions on ideals

Theorem 2.3.1. Let R be a semiprime ring and I a nonzero ideal of R. If there
exists F : I → R a l-generalized reverse derivation associated to a nonzero reverse
derivation d on I, then d(I), F (I) ⊆ CR(I), d is a derivation on I and F is
r-generalized derivation with respect to d on I. And conversely.
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Proof. Assume that F is a l-generalized reverse derivation on I. Then

F (u2v) = F (v)u2 + vd(u2) = F (v)u2 + v(d(u)u+ ud(u)) for allu, v ∈ I.

That is
F (u2v) = F (v)u2 + vd(u)u+ vud(u) for allu, v ∈ I. (2.1)

Also,

F (u(uv)) = F (uv)u+ uvd(u) = (F (v)u+ vd(u))u+ uvd(u) for allu, v ∈ I.

Hence,
F (u(uv)) = F (v)u2 + vd(u)u+ uvd(u) for allu, v ∈ I. (2.2)

From (2.1) and (2.2), we get

[u, v]d(u) = 0 for allu, v ∈ I. (2.3)

Replacing v by rv in (2.3) and using (2.3) we have

[u, r]vd(u) = 0 for allu, v ∈ I, r ∈ R. (2.4)

Replacing v by d(u)s[u, r] in (2.4) yields

[u, r]d(u)s[u, r]d(u) = 0 for allu ∈ I, r, s ∈ R. (2.5)

Since R is semiprime, by (2.5) we get

[u, r]d(u) = 0 for allu ∈ I, r ∈ R. (2.6)

A linearization of (2.6) leads to

[w, r]d(u) + [u, r]d(w) = 0 for allu,w ∈ I, r ∈ R.

Thus,
[w, r]d(u) = −[u, r]d(w) for allu,w ∈ I, r ∈ R. (2.7)

Replacing v by d(w)s[w, r] in (2.4) and using (2.7) we get

0 = [u, r]d(w)s[w, r]d(u) = −[u, r]d(w)s[u, r]d(w) for allu,w ∈ I, r, s ∈ R.

That is,
[u, r]d(w)R[u, r]d(w) = (0) for allu,w ∈ I, r ∈ R. (2.8)

Since R is semiprime, then

[u, r]d(w) = 0 for allu,w ∈ I, r ∈ R. (2.9)
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Replacing r by rt in (2.9) we have

[u, r]td(w) = 0 for allu,w ∈ I, r, t ∈ R. (2.10)

Put r = d(w) and replace t by tu in (2.10) we get [u, d(w)]tud(w) = 0 for all
w, u ∈ I, t ∈ R. Multiply from right (2.10) by u, we obtain [u, d(w)]td(w)u = 0.
Subtracting the last two relations, we get [u, d(w)]R[u, d(w)] = (0) for all w, u ∈ I.
From the semiprimeness of R its follows that [u, d(w)] = 0 for all w, u ∈ I, that is
d(I) ⊆ CR(I). Thus d(xy) = d(y)x+ yd(x) = d(x)y + xd(y) for all x, y ∈ I, what
proves that d is a derivation on I. On the other hand, since F is l-generalized
reverse derivation, we have

F (uv2) = F (v2)u+ v2d(u) = (F (v)v + vd(v))u+ v2d(u) for allu, v ∈ I.

That is
F (uv2) = F (v)vu+ vd(v)u+ v2d(u) for allu, v ∈ I. (2.11)

Also,

F ((uv)v) = F (v)uv + vd(uv) = F (v)uv + v(d(v)u+ vd(u)) for allu, v ∈ I.

F ((uv)v) = F (v)uv + vd(v)u+ v2d(u) for allu, v ∈ I. (2.12)

Combining (2.11) and (2.12), we get

F (v)[u, v] = 0 for allu, v ∈ I. (2.13)

Using the same techniques that we have used above we get that F (I) ⊆ CR(I).
Hence F (xy) = F (y)x + yd(x) = xF (y) + d(x)y for all x, y ∈ I, and F is r-
generalized derivation with respect to the derivation d. The converse is trivial.
�

Theorem 2.3.2. Let R be a semiprime ring and I a nonzero ideal of R. If there
exists F : I → R a r-generalized reverse derivation associated to a nonzero reverse
derivation d on I, then d(I), F (I) ⊆ CR(I), d is a derivation on I and F is
l-generalized derivation with respect to d on I. And conversely.

Proof. The proof follows the same lines than the one of Theorem 2.3.1. �

Corollary 2.3.3. Let R be a semiprime ring. If there is F : R→ R a l-generalized
reverse (or r-generalized) derivation associated to a nonzero reverse derivation d
on R, then R contains a non-zero central ideal.
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Proof. By Theorem 2.3.1 (or Theorem 2.3.2), we have d(R) ⊆ Z(R), that is
[d(x), y] = 0 for all x, y ∈ R. Then d is centralizing on R. By Lemma 2.2.1(with
I = R), R contains a non-zero central ideal. �

The following corollary gives the relationship between l-generalized reverse
derivations and l-generalized derivations.

Corollary 2.3.4. Let R be 2-torsion free semiprime ring. If there exists F : R→
R a l-generalized reverse (r-generalized) derivation associated to a nonzero reverse
derivation d of R, then F is r-generalized reverse (l-generalized) derivation with
respect to d. Furthermore, d is a derivation and F is l-generalized (r-generalized)
derivation related to d.

Proof. Let F be a l-generalized reverse derivation. Then by Theorem 2.3.1 d
is a derivation, F (I), d(I) ⊆ CR(I). By hypotheses, F (xy) = F (y)x + yd(x) for
all x, y ∈ R. Doing y = x, we have F (x2) = F (x)x + xd(x) for all x ∈ R, then F
is generalized Jordan derivation on R. By using Lemma 2.2.2, F is l-generalized
derivation on R. Using the converse of theorem 2.3.2, we know that F is a reverse
r-generalized derivation on R. The case of r-generalized reverse derivation follows
the same lines. �

Corollary 2.3.5. A map d : I → R, where I is a two-sided ideal of a semiprime
ring R, is a reverse derivation if and only if it is a derivation and it is centralizing
on I, i.e. d(I) ⊆ CR(I).

De�nition 2.3.1. A map F is a generalized reverse derivation, if it is a l-
and r-generalized reverse derivation.

From Theorems 2.3.1 and 2.3.2, it follows.

Corollary 2.3.6. A map F on a semiprime ring R is a generalized reverse deriva-
tion if and only if it is a central generalized derivation.

Corollary 2.3.7. Let R be a prime ring and I a nonzero ideal of R. If there exists
F : I → I a l-generalized reverse (r-generalized) derivation on I associated to a
nonzero reverse derivation d : I → I, then R is commutative.

Proof. Using Corollary 2.3.3, we know that I (that clearly is also prime)
contains a nonzero central ideal. By Proposition 2.2.3, I is a commutative ring.
But Proposition 2.2.3 implies that I ⊆ CR(I) = Z(R), so I is a nonzero central
ideal of R and R is commutative. �

The following example shows that the semiprimeness condition for the ring R
is not super�uous.
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Example 2.3.8. Consider the ring R in Example 2.2.6, and let

I = {
(

0 a b c
0 0 0 −b
0 0 0 −a
0 0 0 0

)
| a, b, c ∈ R} be an ideal of R.

De�ne F : R→ R and d : R→ R as follows:

F (

(
0 a b c
0 0 0 −b
0 0 0 −a
0 0 0 0

)
) =

(
0 0 0 −c
0 0 0 b
0 0 0 a
0 0 0 0

)
, d(

(
0 a b c
0 0 0 −b
0 0 0 −a
0 0 0 0

)
) =

(
0 0 0 c
0 0 0 −b
0 0 0 −a
0 0 0 0

)
.

Then it is easy to see that d is a nonzero reverse derivation and a derivation on
I, F is r-generalized reverse derivation on I, but not l-generalized derivation, and
d(I), F (I) * CR(I).
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Chapter 3

Generalized Derivations on Lie Ideals in

Semiprime Rings

3.1 Introduction and preliminaries

In [114], Posner proved that if R is a prime ring with characteristic di�erent from
2 and d1d2, the composition of two derivations d1 and d2, is a derivation, then at
least one of them must be zero. Furthermore, he proved that if a prime ring R
admits a nonzero derivation d such that ad(a)− d(a)a ∈ Z(R) for all a ∈ R, then
R is commutative. This result is no longer true for semiprime rings. That's why
Bre�sar and Vukman introduced the notion of orthogonal derivations, and proved
that in a semiprime 2-torsion free ring R two derivations d1 and d2 are orthogonal
if and only if d1d2 is a derivation. In particular, d2 = 0 implies d = 0. The result of
Bre�sar and Vukman is still true assuming only orthogonality over a nonzero ideal
I of R. Herstein [69] proved that given a semiprime 2-torsion free ring R and an
inner derivation dt, if d2t (U) = 0 for a Lie ideal U of R then dt(U) = 0. Carini [45]
extended this result for an arbitrary derivation d, proving that d2(U) = 0 implies
d(U) ⊆ Z(R).

Coming back to prime rings R, charR 6= 2, it was proved in [101] that if
0 6= d ∈ Der(R) satis�es d(R) ⊆ Z(R), then R is commutative. If d2(U) ⊆ Z(R),
then U ⊆ Z(R), where U is a nonzero Lie ideal of R. The same result is still true
if we consider a generalized derivation instead of a derivation, as it was proved by
Dalgin in [54]. And Gölba³i and Koç [65] proved that if (F, d), (G, g) are, respec-
tively, left and right generalized derivations of R satisfying F (u)v = uG(v) for all
u, v ∈ U , where U is a Lie ideal of R, then U ⊆ Z(R).

In Section 3.2 we extend the above mentioned results to semiprime rings and
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generalized derivations. We will prove for a semiprime 2-torsion free ring R, a non-
central Lie ideal U of R and (F, d) a left generalized derivation that F 2(U) = (0)
implies d3(U) = (0), and (d2(U))2 = 0. Furthermore, if F (uv) = uF (v) + d(u)v
for all u, v ∈ U , then d(U) = F (U) = (0) and d(R), F (R) ⊆ CR(U).

In Section 3.3, we extend the results of Gölba³i and Koç [65] to semiprime
rings, and consequently it is shown that if (F, d), (G, g) are, respectively, left and
right generalized derivations that satisfying G(u)v = uF (v) for all u, v ∈ U , then
d(U), g(U) ⊆ CR(U).

These results extends and unify some previous results by Herstein [69],
Carini [45], Lee and Lee [100], Gölba³i and Koç [65], and Dalgin [54].

The results of this chapter have been published in [2].

Next, we will use the following lemmas in our results.

Lemma 3.1.1. [77, Corollary 2.1] Let R be a semiprime 2-torsion free ring, U a
Lie ideal of R, U * Z(R), and a, b ∈ U . Then
(1) If aUa = (0), then a = 0.
(2) If aU = (0) (or Ua = (0) ), then a = 0.
(3) If U is square-closed and aUb = 0, then ab = 0 and ba = 0.

Lemma 3.1.2. [45, Lemma 1] Let R be a semiprime 2-torsion free ring with a
derivation d and U a Lie ideal of R. If d2(U) = 0, then d(U) ⊆ Z(R).

Lemma 3.1.3. [34], Lemma 2] Let R be a prime ring and U a Lie ideal of R. If
U * Z(R), then CR(U) = Z(R).

Lemma 3.1.4. [5, Lemma 3] Let R be a semiprime 2-torsion free ring and I a
nonzero ideal of R. If d is a nonzero derivation of R such that Id2(I) = (0), then
I ⊆ Z(R).

Lemma 3.1.5. [34, Lemmas 6 and 11] Let R be a prime ring with charR 6= 2, d
a nonzero derivation of R and U a Lie ideal of R.
(i) If d(U) ⊆ Z(R), then U ⊆ Z(R).
(ii) If d3(U) = (0), then d3 = (0).

Lemma 3.1.6. [18, Theorem 2.3.2] Let R be a semiprime ring, Q = Qmr(R),

RUR ⊆ RQR a subbimodule of Q and f : RUR → RQR a homomorphism of bimod-
ules. Then there exists an element λ ∈ C such that f(u) = λu for all u ∈ U .
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3.2 The case F 2(U) = (0)

In what follows R denotes a ring (associative but not necessarily commutative)
and Q its Martindale quotient ring. The center C of Q is called the extended
centroid of R (see [71] and [80] for details).

We will use the following lemma in our results.

Lemma 3.2.1. Let R be a semiprime ring, U a Lie ideal of R, U * Z(R). If
a ∈ R satis�es a[x, r] = 0 (resp. [x, r]a = 0) for every element x ∈ U , r ∈ R, then
a ∈ CR(U).

Proof. By assumption, for all x ∈ U, r ∈ R, we have

a[x, r] = 0. (3.1)

If we substitute r by ra in (3.1) we get

0 = a[x, ra] = ar[x, a] + a[x, r]a = ar[x, a]. (3.2)

If we substitute r by xr in (3.2) we get axr[x, a] = 0. Multiplying (3.2) by x to
the left we get xar[x, a] = 0. Then [x, a]R[x, a] = (0) for all x ∈ U . It follows from
semiprimeness of R that [x, a] = 0, that is, a ∈ CR(U). �

Now we can prove the main results of this section.

Theorem 3.2.2. Let R be a semiprime 2-torsion free ring, U a noncentral square-
closed Lie ideal of R and F a right generalized derivation associated to a derivation
d. If F 2(U) = (0) and F (U), d(U) ⊆ U , then d3(U) = (0) and (d2(U))2 = (0).
Moreover, if F (uv) = uF (v) + d(u)v for all u, v ∈ U (that is, F is also a left
generalized derivation on U), then d(U) = 0, F (U) = 0 and d(R), F (R) ⊆ CR(U).

Proof. By assumption we have

F 2(u) = (0) for allu ∈ U. (3.3)

If we replace u by 2uv in (3.3), we get

2F (F (u)v+ud(v)) = 2(F 2(u)v+F (u)d(v)+F (u)d(v)+ud2(v)) = 0 for allu, v ∈ U.
(3.4)

By (3.3), and using that R is 2-torsion free it follows that

2F (u)d(v) + ud2(v) = 0 for allu, v ∈ U. (3.5)
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We can replace u by F (u) in (3.5) and obtain

2F 2(u)d(v) + F (u)d2(v) = 0 for allu, v ∈ U. (3.6)

Now, using (3.3) we have

F (u)d2(v) = 0 for allu, v ∈ U. (3.7)

Replacing v by d(v) in (3.5) we have

2F (u)d2(v) + ud3(v) = 0 for allu, v ∈ U. (3.8)

From (3.7) and (3.8), it follows that ud3(v) = 0, for all u, v ∈ U , that is Ud3(v) =
(0). Since d3(v) ∈ U , Lemma 3.1.1, gives that d3(U) = (0).
On the other hand, if we replace u by 2ud2(w) in (3.5) we obtain

2(2F (u)d2(w)d(v) + 2ud3(w)d(v) + ud2(w)d2(v)) = 0 for allu, v, w ∈ U. (3.9)

Using (3.7), and the fact that d3(U) = (0) in (3.9), we get ud2(w)d2(v) = 0 for all
u, v, w ∈ U , that is U(2d2(w)d2(v)) = (0), and again Lemma 3.1.1, says that

d2(w)d2(v) = 0 for all v, w ∈ U. (3.10)

In particular (d2(v))2 = 0 for all v ∈ U , that is (d2(U))2 = (0).
Now, let's assume that F (uv) = uF (v) + d(u)v for all u, v ∈ U . We replace u by
2wu in (3.5) to get

2wF (u)d(v) + 2d(w)ud(v) + wud2(v) = 0 for allu, v, w ∈ U. (3.11)

By the other side, multiplying (3.5) to the left by w we have

2wF (u)d(v) + wud2(v) = 0 for allu, v, w ∈ U. (3.12)

Thus,
d(w)ud(v) = 0 for allu, v, w ∈ U. (3.13)

In particular d(v)Ud(v) = (0) for all v ∈ U . Again Lemma 3.1.1, gives d(U) = (0).
Thus d([u, r]) = 0 for all u ∈ U, r ∈ R, that is [d(u), r] + [u, d(r)] = 0. Thus
[u, d(r)] = 0 for all u ∈ U, r ∈ R. Hence d(R) ⊆ CR(U). On the other hand,
d(U) = (0), implies F (uv) = F (u)v = uF (v) for all u, v ∈ U . Thus,

0 = F (F (uv − vu)) = F (F (u)v − vF (u)) = F 2(u)v − F (v)F (u) for allu, v ∈ U.
(3.14)

Since we are assuming that F 2(U) = (0), then F (u)F (v) = 0 for all u, v ∈ U . It
su�ces to replace u by 2vw, to get F (v)UF (v) = (0). Hence F (U) = (0) again by
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Lemma 3.1.1 . In particular 0 = F (ur− ru) = −F (r)u+ud(r) = (−F (r) + d(r))u
for all u ∈ U, r ∈ R since d(r) ∈ CR(U) as was proved above. Let us de�ne
G(r) = F (r)− d(r). Thus

G(r)u = 0 for allu ∈ U, r ∈ R. (3.15)

If we multiply (3.15) to the left by v and substitute u by 2vu, we get vG(r)u = 0,
G(r)vu = 0. Hence [G(r), v]u = 0 for all u, v ∈ U, r ∈ R, and again by Lemma
3.1.1, we conclude that [G(r), v] = 0, that is 0 = [F (r)− d(r), v] = [F (r), v] for all
v ∈ U, r ∈ R. Thus F (R) ⊆ CR(U). �

The following four results follow immediately from Theorem 3.2.2.

Corollary 3.2.3. Let R be a semiprime 2-torsion free ring, U a noncentral square-
closed reduced Lie ideal of R and F a right generalized derivation associated to a
derivation d. If F 2(U) = (0) and F (U), d(U) ⊆ U , then d(U) ⊆ Z(R).

Proof. By Theorem 3.2.2, we have (d2(U))2 = (0). Since U is reduced (that is,
u2 = 0 implies u = 0), then d2(U) = (0). Lemma 3.1.2 gives that d(U) ⊆ Z(R). �

Corollary 3.2.4. Let R be a semiprime 2-torsion free ring, I a nonzero reduced
ideal of R and F a right generalized derivation associated to a derivation d. If
F 2(I) = (0) and F (I), d(I) ⊆ I, then d(I) = 0 and I ⊆ Z(R).

Proof. By Theorem 3.2.2, we have (d2(I))2 = (0). Since R is reduced, then
d2(I) = (0). Lemma 3.1.4 gives that I ⊆ Z(R). On the other hand, 0 = d2(y2) =
d(d(y)y + yd(y)) = 2(d(y))2 for all y ∈ I. So we get d(I) = 0. �

Corollary 3.2.5. Let R be a prime ring with charR 6= 2, U a noncentral square-
closed Lie ideal of R and F a right generalized derivation associated to a nonzero
derivation d. If F 2(U) = (0), then d3 = 0.

Proof. It immediately follows from Theorem 3.2.2 and Lemma 3.1.5(ii). �

Corollary 3.2.6. Let R be a prime ring with charR 6= 2, U a square-closed re-
duced Lie ideal of R and F a right generalized derivation associated to a non-zero
derivation d. If F 2(U) = (0) and F (U), d(U) ⊆ U , then U ⊆ Z(R).

Proof. Let's assume that U * Z(R). Then we can apply Corollary 3.2.3
to conclude that d(U) ⊆ Z(R). But Lemma 3.1.5 (i) now gives U ⊆ Z(R), a
contradiction. �
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The following proposition describes the structure of a left and right generalized
derivation associated to a derivation d on a semiprime ring.

Proposition 3.2.7. Let R be a semiprime ring with an extended centroid C. If R
admits a left and right generalized derivation F associated to a derivation d, then
there exists an element λ ∈ C such that F (x) = d(x) + λx for all x ∈ R.

Proof. Take T := F −d. Since F is a left and right generalized derivation, then

T (xy) = T (x)y = xT (y) for all x, y ∈ R. (3.16)

In particular we can used Lemma 3.1.6, we get T (x) = λx for all x ∈ R. That is
F (x) = d(x) + λx for all x ∈ R. �

The following example shows a map F on a semiprime ring R, that is not
a derivation, but (F, d) is a right generalized derivation. Furthermore, it is also a
left generalized derivation over a Lie ideal U of R.

Example 3.2.8. Let Z be the set of integers, and R =

{(
a b
c d

)
|a, b, c, d ∈ Z

}
.

Then R is a semiprime ring. Now, take U =

{(
a 0
0 a

)
, a ∈ Z

}
. It can be easily

checked that U is a Lie ideal of R. Since, u2 =

(
a2 0
0 a2

)
∈ U , U is an square-

closed Lie ideal. We de�ne the maps F : R→ R and d : R→ R as follows:

F

((
a b
c d

))
=

(
a 0
0 −d

)
, d

((
a b
c d

))
=

(
0 −b
c 0

)
.

Then it is easy to check that d is the inner derivation given by d(x) = [x, 2e11+e22],
F is a right generalized derivation associated to d, and F (uv) = uF (v) + d(u)v for
all u, v ∈ U , that is, F is left generalized derivation on U . However, F is not a
derivation on R.

Now we remove the assumptions F (U), d(U) ⊆ U in Theorem 3.2.2.

Theorem 3.2.9. Let R be a semiprime 2-torsion free ring, U a noncentral square-
closed Lie ideal of R and F a right generalized derivation associated to a derivation
d. If F 2(U) = (0) and F (uv) = uF (v)+d(u)v for all u, v ∈ U , then d(U) ⊆ CR(U).

Proof. Following the same lines that were used in the proof of Theorem 3.2.2,
we can reach the equation (3.13), that is d(w)ud(v) = 0 for all u, v, w ∈ U .
Multiplying to the left by w1 we have w1d(w)ud(v) = 0. If we replace in (3.13)
u by 2w1u we obtain d(w)w1ud(v) = 0, and subtracting these two relations we
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have [d(w), w1]ud(v) = 0. In the same way, we get [d(w), w1]u[d(v), v1] = 0 for
all u, v, v1, w, w1 ∈ U . Doing w = v, w1 = v1, we obtain [d(v), v1]U [d(v), v1] = (0)
for all u, v1 ∈ U . Lemma 3.1.1, gives [d(v), v1] = 0 for all u, v1 ∈ U , that is,
d(U) ⊆ CR(U). �

The following example shows that the semiprimeness condition in Theorem
3.2.2 is not super�uous.

Example 3.2.10. Let Z be the set of integers, and R =

{(
a b
0 c

)
|a, b, c ∈ Z

}
.

For any 0 6= b ∈ Z,
(

0 b
0 0

)
R

(
0 b
0 0

)
= (0), then R is not a semiprime ring.

Now, take U =

{(
a b
0 a

)
, a, b ∈ Z

}
. It can be easily checked that U is a Lie

ideal of R. Since, u2 =

(
a2 ab
0 a2

)
∈ U , U is an square-closed Lie ideal. We

de�ne maps F : R→ R and d : R→ R as follows:

F

((
a b
0 c

))
=

(
0 a
0 0

)
, d

((
a b
0 c

))
=

(
0 a− c
0 0

)
.

Then it is easy to check that d is the inner derivation given by d(x) = [x, e12],
F is a right generalized derivation associated to d, d(U), F (U) ⊂ U , F (uv) =
uF (v) + d(u)v for all u, v ∈ U and F 2(U) = (0). However, F (U) 6= (0).

3.3 The case F (u)v = uG(v)

Now, we will extend Theorem 3.4 in [65] to semiprime rings.

Theorem 3.3.1. Let R be a semiprime ring, U a noncentral Lie ideal of R,and
F,G maps satisfying G(u)v = uF (v) for all u, v ∈ U . If F is a right general-
ized derivation associated to a derivation d and G is a left generalized derivation
associated to a derivation g, then d(U), g(U) ⊆ CR(U).

Proof. Let's start by considering that

G(u)v = uF (v) for allu, v ∈ U. (3.17)

If we replace in (3.17) the element v by [v, r]v, r ∈ R, (and by [v, r]), we get

G(u)[v, r]v = uF ([v, r])v + u[v, r]d(v) for allu, v ∈ U, r ∈ R. (3.18)
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And
G(u)[v, r] = uF ([v, r]) for allu, v ∈ U, r ∈ R. (3.19)

Consequently,
u[v, r]d(v) = 0 for allu, v ∈ U, r ∈ R. (3.20)

Now we can replace u by [u, s], s ∈ R, in (3.20), and get 0 = [u, s][v, r]d(v) =
us[v, r]d(v)− su[v, r]d(v) = us[v, r]d(v) for all u, v ∈ U, r, s ∈ R. Again we replace
u by [v, r] and s by d(v)s, to have [v, r]d(v)s[v, r]d(v) = 0 for all u, v ∈ U, r, s ∈ R.
Thus [v, r]d(v)R[v, r]d(v) = (0). Since R is semiprime, we conclude that

[v, r]d(v) = 0 for all v ∈ U, r ∈ R. (3.21)

Linearizing (3.21), we get

[v, r]d(u) = −[u, r]d(v) for allu, v ∈ U, r ∈ R. (3.22)

Now, if we replace r by rs in (3.21), and use again (3.21), we get

[v, r]sd(v) = 0 for allu, v ∈ U, r, s ∈ R. (3.23)

In particular, 0 = [v, r]d(u)s[u, r]d(v) = −[v, r]d(u)s[v, r]d(u), that is
[v, r]d(u)R[v, r]d(u) = (0). Since R is semiprime we have [v, r]d(u) = 0, for all
u, v ∈ U, r ∈ R. From Lemma 3.2.1 it follows that d(U) ⊆ CR(U).
On the other hand, we replace in (3.17) u by u[u, r] (and by [u, r]), we get

uG([u, r])v + g(u)[u, r]v = u[u, r]F (v) for allu, v ∈ U, r ∈ R. (3.24)

And,
G([u, r])v = [u, r]F (v) for allu, v ∈ U, r ∈ R. (3.25)

Consequently, g(u)[u, r]v = 0. So, we can follow the same lines as above and
conclude that g(U) ⊆ CR(U). �

An immediate consequence of Theorem 3.3.1 is the following corollary.

Corollary 3.3.2. Let R be a prime ring with charR 6= 2, U a Lie ideal of R
and F,G maps satisfying G(u)v = uF (v) for all u, v ∈ U . If F is a right gener-
alized derivation associated to a nonzero derivation d and G is a left generalized
derivation associated to a nonzero derivation g, then U ⊆ Z(R).

Proof. Suppose that U * Z(R). Theorem 3.3.1, gives d(U) ⊆ CR(U) and
CR(U) = Z(R) by Lemma 3.1.3, hence d(U) ⊆ Z(R). Lemma 3.1.5 (i) gives
U ⊆ Z(R), the contradiction. �

The following example shows that the semiprimeness condition in Theorem
3.3.1 is not super�uous.

44



3.3. The case F (u)v = uG(v) Chapter 3

Example 3.3.3. Consider the ring R as in Example 3.2.10.

Take U =

{(
a b
0 −a

)
, a, b ∈ Z

}
.

It can be easily checked that U is a Lie ideal of R. De�ne maps G, g, F, d : R→ R
as follows:

G

((
a b
0 c

))
=

(
0 b+ c
0 c

)
, g

((
a b
0 c

))
=

(
0 b
0 0

)
,

F

((
a b
0 c

))
=

(
0 a
0 c

)
, d

((
a b
0 c

))
=

(
0 a− c
0 0

)
.

Then it is easy to check that g and d are the inner derivations given by g(x) =
[x, e11 + 2e22] and d(x) = [x, e12], F is a right generalized derivation associated
to d, G is a left generalized derivation associated to g and G(u)v = uF (v) for all
u, v ∈ U . However, d(U) * CR(U).
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Chapter 4

Center-like Subsets in Prime Rings with

Generalized Derivations

4.1 Introduction

Several results in the literature assert that certain subsets of a ring R, de-
�ned by some sort of commutativity conditions, coincide with Z(R). We call such
subsets center-like subsets. A classical result of Herstein [70] states that the hy-
percenter S(R), de�ned as {a ∈ R | ∀x ∈ R ∃n = n(x, a) s.t. axn = xna},
coincides with Z(R) if R has no nonzero nil ideals. Following Herstein, Chacron
[46] introduced the cohypercenter G(R) as follows: a ∈ G(R) if and only if for each
x ∈ R there exists a polynomial p(X) ∈ Z[X], depending on a and x, such that
[a, x − x2p(x)] = 0; and he established equality of Z(R) and G(R) for semiprime
R. Similar results can be found in [22], [28], [33], [48], [62] and [63].

Our purpose is to study center-like subsets, whose de�nition involves a map
f : R→ R. Apparently the �rst example of such center-like subset was H(R, d) =
{a ∈ R | ad(x) = d(x)a ∀x ∈ R}, where d is a derivation. Herstein intro-
duced this set, in [72], and proved that if R is prime with char(R) 6= 2 and d is
a nonzero derivation, then H(R, d) = Z(R). We will extend this result consider-
ing H(R,F ) = {a ∈ R | aF (x) = F (x)a ∀x ∈ R} where F is a left and a
right generalized derivation and proving that if R is prime with char(R) 6= 2, then
H(R,F ) = Z(R).

In [23] it is proved that a semiprime ring with a derivation d on R such that
[x, y] = [d(x), d(y)] for all x, y ∈ R is necessarily commutative; and in [24] it
is shown that a prime ring is commutative if for some nonzero derivation d,
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[d(x), d(y)] = [d(x), y] + [x, d(y)] for all x, y ∈ R.

Motivated by these results, Bell and Daif considered in [25] a ringR equipped
with a map f : R→ R and de�ned the following subsets:

• Z∗(R, f) = {y ∈ R | [x, y] = [f(y), f(x)] for allx ∈ R};

• Z∗∗(R, f) = {y ∈ R | [x, y] = [f(x), f(y)] for allx ∈ R};

• Z1(R, f) = {y ∈ R | [f(x), f(y)] = [f(y), x] + [y, f(x)] for allx ∈ R}.

They proved that if R is a semiprime ring and d a derivation, then Z∗(R, d) =
Z(R) = Z∗∗(R, d). Moreover if R is prime, charR 6= 2, and d is a non zero deriva-
tion, then Z1(R, d) = Z(R).

In the present chapter, we shall extend the results of Bell and Daif [25] to
generalized derivations. Further, we also will give some examples to show that the
restrictions imposed on the hypotheses of the various results are not super�uous.

The following de�nitions seem quite natural:

• Z?1(R, f) = {y ∈ R | [f(x), f(y)] = [f(x), y] + [x, f(y)] for allx ∈ R}.

• Z2(R, f) = {y ∈ R | [y, x] = [f(y), x] + [y, f(x)] for allx ∈ R}.

• Z?
2(R, f) = {y ∈ R | [y, x] = [f(x), y] + [x, f(y)] for allx ∈ R}.

• Note that: Z∗(R, f) ∩ Z1(R, f) ⊆ Z2(R, f) and Z∗∗(R, f) ∩ Z1(R, f) ⊆
Z?

2(R, f).

First of all let's notice that there exist maps that are both right and left gener-
alized derivations, related to the same derivation d, but that are not derivations,
as the following example shows.

Example 4.1.1. Let R be an arbitrary ring with a nonzero central element c. We
de�ne the map F on R by F (x) = cx+ d(x) for all x ∈ R, where d is a derivation
of R. Then it is easy to check that F is both, right and left generalized derivation
associated to d. However, F is not a derivation on R.
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4.2 Preliminaries

Let's start by reminding a lemma that will be used in our results.

Lemma 4.2.1. [[35], Lemma 4] Let R be a 2-torsion free semiprime ring and let
a, b ∈ R. If axb+ bxa = 0 holds for all x ∈ R, then axb = bxa = 0 for all x ∈ R.

Now, we prove two lemmas which will be essential to get our main results.

Lemma 4.2.2. Let R be a ring, F a left and a right generalized derivation asso-
ciated to a derivation d. Then F (Z(R)) ⊆ Z(R).

Proof. Suppose that a ∈ Z(R), that is ax = xa for all x ∈ R. Then F (ax) =
F (xa) that is (by using that F is left and right generalized derivation) F (a)x +
ad(x) = xF (a) + d(x)a. This gives [F (a), x] + [a, d(x)] = 0. But [a, d(x)] = 0
because a ∈ Z(R). So [F (a), x] = 0 for all x ∈ R, that is F (a) ∈ Z(R). �

Lemma 4.2.3. Let R be a prime ring, charR 6= 2 and F a left and a right
generalized derivation associated to a nonzero derivation d. Then H(R,F ) =
Z(R).

Proof. Since Z(R) ⊆ H(R,F ) we only need to show that H(R,F ) ⊆ Z(R).
Let a ∈ H(R,F ), then

[a, F (x)] = 0 for allx ∈ R. (4.1)

Let us replace x by xy in (4.1), to obtain

F (x)[a, y] + [a, F (x)]y + [a, x]d(y) + x[a, d(y)] = 0 for allx ∈ R. (4.2)

Using (4.1) in (4.2) we get

F (x)[a, y] + [a, x]d(y) + x[a, d(y)] = 0 for allx, y ∈ R. (4.3)

and substituting x by yx in (4.3), we have, for all x, y ∈ R

yF (x)[a, y] + d(y)x[a, y] + y[a, x]d(y) + [a, y]xd(y) + yx[a, d(y)] = 0. (4.4)

Using (4.3) in (4.4), we obtain

d(y)x[a, y] + [a, y]xd(y) = 0 for allx, y ∈ R. (4.5)

Lemma 4.2.1 gives d(y)x[a, y] = 0 for all y ∈ R. Given a �xed y ∈ R, either
d(y) = 0 or [a, y] = 0. But R1 = {y ∈ R | d(y) = 0} and R2 = {y ∈ R | [a, y] = 0}
are both additive subgroups of R and R = R1 ∪R2. So either R = R1 or R = R2.
But R = R1 contradict our assumption d 6= 0. Then R = R2 that is, [a, y] = 0 for
all y ∈ R, so H(R,F ) ⊆ Z(R). �
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4.3 On center-like subsets Z∗(R,F ), Z∗∗(R,F ) and

Z1(R,F )

Theorem 4.3.1. Let R be a prime ring, charR 6= 2, and F a left and a right
generalized derivation associated to a nonzero derivation d. Then Z∗(R,F ) =
Z(R).

Proof. Let z ∈ Z(R). Since F (Z(R)) ⊆ Z(R)(by Lemma 4.2.2), and thus
[F (z), F (x)] = 0 = [x, z] for all x ∈ R, that is Z(R) ⊆ Z∗(R,F ). Now we only
need to show that Z∗(R,F ) ⊆ Z(R). Let t ∈ Z∗(R,F ), i.e.,

[t, x] = [F (x), F (t)] for all x ∈ R. (4.6)

Let us replace x by xy in (4.6) to get

[t, x]y + x[t, y] = x[F (y), F (t)] + [x, F (t)]F (y)

+d(x)[y, F (t)] + [d(x), F (t)]y
for allx, y ∈ R (4.7)

Using (4.6) in (4.7), we have

[t, x]y = [x, F (t)]F (y) + d(x)[y, F (t)] + [d(x), F (t)]y for allx, y ∈ R (4.8)

Substituting y by yw in (4.8) and simplifying using (4.8), we get

[t, x]yw = [x, F (t)]F (y)w + [x, F (t)]yd(w) + d(x)[y, F (t)]w

+d(x)y[w,F (t)] + [d(x), F (t)]yw
for allx, y, w ∈ R

(4.9)

Using (4.8) in (4.9), we obtain

[x, F (t)]yd(w) + d(x)y[w,F (t)] = 0 for allx, y, w ∈ R. (4.10)

Doing w = x in (4.10), we get [x, F (t)]yd(x) + d(x)y[x, F (t)] = 0 for all x, y ∈ R,
Lemma 4.2.1 gives that [x, F (t)]yd(x) = 0 for all x, y ∈ R. Given a �xed x ∈ R,
either d(x) = 0 or [x, F (t)] = 0. But R1 = {x ∈ R | d(x) = 0} and R2 = {x ∈
R | [x, F (t)] = 0} are both additive subgroups of R and R = R1 ∪ R2. So either
R = R1 or R = R2. If R = R1, that is a contradiction to our assumption d 6= 0.
Then R = R2 that is [x, F (t)] = 0 for all x ∈ R. So that F (t) ∈ Z(R). By (4.6)
we obtain that t ∈ Z(R). �

Theorem 4.3.2. Let R be a prime ring, charR 6= 2, and F is a left and right
generalized derivation associated to a nonzero derivation d. Then Z∗∗(R,F ) =
Z(R).
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Proof. The proof follows the same lines of the previous one. �

Theorem 4.3.3. Let R be a prime ring, charR 6= 2, and F a left and a right
generalized derivation associated to a nonzero derivation d. Then Z1(R,F ) =
Z(R).

Proof. We only need to prove that Z1(R,F ) ⊆ Z(R), since the other inclusion
is immediate from Lemma 4.2.2. Let t ∈ Z1(R, d), so that

[F (x), F (t)] = [F (t), x] + [t, F (x)] for all x ∈ R. (4.11)

Substituting x by xy in (4.11), we get

[F (x), F (t)]y + F (x)[y, F (t)] + x[d(y), F (t)] + [x, F (t)]d(y)

= [F (t), x]y + x[F (t), y] + [t, F (x)]y

+F (x)[t, y] + [t, x]d(y) + x[t, d(y)]

for allx, y ∈ R.

(4.12)

Using (4.11) in (4.12), we get

F (x)[y, F (t)] + x[d(y), F (t)] + [x, F (t)]d(y) =

x[F (t), y] + F (x)[t, y] + [t, x]d(y) + x[t, d(y)]
for allx, y ∈ R. (4.13)

We can replace x by zx in (4.13), we obtain

zF (x)[y, F (t)] + d(z)x[y, F (t)] + zx[d(y), F (t)] + z[x, F (t)]d(y)

+[z, F (t)]xd(y) = zx[F (t), y] + zF (x)[t, y] + d(z)x[t, y]

+z[t, x]d(y) + [t, z]xd(y) + zx[t, d(y)]

for allx, y, z ∈ R.

(4.14)

Using (4.13) in (4.14), we have

d(z)x[y, F (t)] + [z, F (t)]xd(y) = d(z)x[t, y] + [t, z]xd(y) for allx, y, z ∈ R.
(4.15)

That is

d(z)x[y, F (t) + t] + [z, F (t) + t]xd(y) = 0 for allx, y, z ∈ R. (4.16)

Doing z = y in (4.16), we obtain

d(y)x[y, F (t) + t] + [y, F (t) + t]xd(y) = 0 for allx, y ∈ R. (4.17)
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Lemma 4.2.1 gives that d(y)R[y, F (t) + t] = 0 for all y ∈ R. Then using the
same arguments used in the proof of Theorem 4.3.1 (Brauer's trick), we get that
d(y) = 0 for all y ∈ R or [y, F (t)+t] = 0 for all y ∈ R. If d = 0 it is a contradiction
to our assumption, then [y, F (t) + t] = 0 for all y ∈ R, so F (t) + t ∈ Z(R); thus
[F (t) + t, F (x)] = [F (t), F (x)] + [t, F (x)] = 0, i.e [F (t), F (x)] = [F (x), t]. From
(4.11) we conclude that [F (t), x] = 0 for all x ∈ R, so that F (t) ∈ Z(R). From
(4.11) we obtain that [t, F (R)] = 0, so Z1(R,F ) ⊆ H(R,F ), hence by Lemma
4.2.3, Z1(R,F ) ⊆ Z(R).

�

Theorem 4.3.4. Let R be a prime ring, charR 6= 2, and F a left and a right
generalized derivation associated to a nonzero derivation d. Then Z?

1(R,F ) =
Z(R).

Proof. The proof follows the same lines of the previous one. �

If in Theorem 4.3.3 R is assumed to be semiprime instead of prime, we do not
get any longer that Z1(R,F ) ⊆ Z(R), as the following example shows.

Example 4.3.5. Let R1 a commutative domain, d1 a nonzero derivation on R1,
and R2 is a noncommutative prime ring. If we de�ne R = R1 ⊕ R2, then R is a
semiprime ring. Let's de�ne d : R→ R and F : R→ R as following:

d((r1, r2)) = (d1(r1), 0) for all r1 ∈ R1, r2 ∈ R2,

and
F (r) = cr + d(r) for all r ∈ R, and c = (c1, 0), c1 ∈ R1.

It's easy to check that d is a nonzero derivation, and F is a left and a right
generalized derivation associated to d. If y = (0, r2), we have F (y) = 0 and
[y, F (r)] = 0 for all r ∈ R; hence y ∈ Z1(R,F ). That is S = {(0, r2)|r2 ∈ R2} ⊆
Z1(R,F ), but S * Z(R)

4.4 On center-like subsets Z2(R,F ) and Z?
2(R,F )

In this section, we consider the sets Z2(R,F ) and Z?
2(R,F )

Theorem 4.4.1. Let R be a prime ring, charR 6= 2, and F a left and a right
generalized derivation associated to a nonzero derivation d. Then Z2(R,F ) =
Z(R).
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Proof. We only need to prove that Z2(R,F ) ⊆ Z(R), since the other inclusion
is clear. Let t ∈ Z2(R, d), then

[t, x] = [F (t), x] + [t, F (x)] for all x ∈ R. (4.18)

Substituting x by xy in (4.18), we get

[t, x]y + x[t, y] = [F (t), x]y

+x[F (t), y] + [t, F (x)]y + F (x)[t, y] + [t, x]d(y) + x[t, d(y)]
for allx, y ∈ R.

(4.19)

Using (4.18) in (4.19), we get

x[t, y] = x[F (t), y] + F (x)[t, y] + [t, x]d(y) + x[t, d(y)] for allx, y ∈ R. (4.20)

We can replace x by zx in (4.20), we obtain

zx[t, y] = zx[F (t), y] + zF (x)[t, y] + d(z)x[t, y]

+z[t, x]d(y) + [t, z]xd(y) + zx[t, d(y)]
for allx, y, z ∈ R. (4.21)

Using (4.20) in (4.21), we have

d(z)x[t, y] + [t, z]xd(y) = 0 (4.22)

Doing z = y in (4.22), we obtain

d(y)x[t, y] + [t, y]xd(y) = 0 for allx, y ∈ R. (4.23)

Lemma 4.2.1 gives that d(y)R[t, y] = 0 for all y ∈ R. Then using the same
arguments used in the proof of Theorem 4.3.1 (Brauer's trick), we get that d(y) = 0
for all y ∈ R or [t, y] = 0 for all y ∈ R. Since d = 0 contradiction our assumption,
we get [y, t] = 0 for all y ∈ R. So Z2(R,F ) ⊆ Z(R). �

Theorem 4.4.2. Let R be a prime ring, charR 6= 2, and F is a left and right
generalized derivation associated to a nonzero derivation d. Then Z?

2(R,F ) =
Z(R).

Proof. The proof follows the same lines of the previous one. �

The following example shows that the primeness condition in the previous
Theorems is not super�uous.

Example 4.4.3. Let Z be the set of integers, and R =

{(
x y
0 z

)
|x, y, z ∈ Z

}
.
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i. Now, let's de�ne the maps F : R→ R and d : R→ R as follows:

F

((
x y
0 z

))
=

(
x x− z
0 z

)
, d

((
x y
0 z

))
=

(
0 x− y − z
0 0

)
.

It is easy to check that d is the inner derivation given by d(x) = [x, e11 +e12],
F is left and right generalized derivation associated to d. For an arbitrary

element W =

(
w1 w2

0 w3

)
, we have [W,X] = [F (W ), X] + [X,F (W )] for

all X ∈ R; hence W ∈ Z2(R,F ). Thus R = Z1(R,F ). However, R is not
commutative.

ii. If we de�ne the maps F1 : R→ R and d1 : R→ R as follows:

F1

((
x y
0 z

))
=

(
x x+ y − z
0 z

)
, d1

((
x y
0 z

))
=

(
0 x− z
0 0

)
.

Then it is easy to check that d1 is the inner derivation given by d1(x) =
[x, e12], F is a left and a right generalized derivation associated to d. For

W1 =

(
w1 w2

0 w1

)
, we have [W1, X] = [F (W1), F (X)] for all X ∈ R; hence

W1 ∈ Z∗∗(R,F ). However, W1 /∈ Z(R).

iii. If we de�ne the maps F2 : R→ R and d2 : R→ R as follows:

F2

((
x y
0 z

))
=

(
x −y
0 z

)
, d2

((
x y
0 z

))
=

(
0 −2y
0 0

)
.

Then it is easy to check that d2 is the inner derivation given by d2(x) =
[x, e11 − e22], F is a left and a right generalized derivation associated to d.

For W2 =

(
w1 w2

0 w3

)
, we have [W3, X] = [F (X), F (W3)] for all X ∈ R;

hence W2 ∈ Z∗(R,F ). However, W2 /∈ Z(R). R is not commutative.

What happens in Theorems 4.3.3 and 4.4.1 if F is only right or only left
generalized derivation? The following example shows that the result in the above
theorems can not be recovered.

Example 4.4.4. Let Z be the set of integers, andR =

{(
x y
z w

)
|x, y, z, w ∈ Z

}
.

Then R is a prime ring. We de�ne the maps F : R→ R and d : R→ R as follows:

F

((
x y
z w

))
=

(
x 0
0 −w

)
, d

((
x y
z w

))
=

(
0 −y
z 0

)
.
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Then it is easy to check that d is the inner derivation given by d(x) = [x, 2e11+e22],
F is a right generalized derivation associated to d, but F is NOT a left generalized
derivation on R associated to d.

i. For Y =

(
y 0
0 −y

)
, we have [F (X), F (Y )] = [F (Y ), X] + [Y, F (X)] for all

X ∈ R; hence Y ∈ Z1(R,F ). Thus S = {
(
y 0
0 −y

)
|y ∈ Z} ⊆ Z1(R,F ).

That is, Z1(R,F ) * Z(R).

ii. If we take C =

(
c 0
0 c

)
, then C /∈ Z1(R,F ), but C ∈ Z(R). That is

Z(R) * Z1(R,F ).

iii. On the other hand, if we take Y =

(
−y 0
0 0

)
, we have [Y,X] = [F (Y ), X]+

[Y, F (X)] for all X ∈ R, hence Y ∈ Z2(R,F ). Thus S = {
(
−y 0
0 0

)
|y ∈

Z} ⊆ Z2(R,F ). That is, Z2(R,F ) * Z(R).
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Chapter 5

Orthogonality of Generalized Derivations

on Semiprime Rings

5.1 Introduction and preliminaries

Two maps d, g : R→ R are called orthogonal if,

d(x)Rg(y) = (0) = g(y)Rd(x) for all x, y ∈ R.

The concept of orthogonal derivation was introduced by M. Bre�sar and J. Vukman
in [43]. The following example shows that there exist l-generalized derivations and
r-generalized derivations which are orthogonal.

Example 5.1.1. Let Z be the ring of integers, and R = {
(
a b
0 c

)
|a, b, c ∈ Z}.

De�ne maps F : R→ R, d : R→ R, G : R→ R, and g : R→ R as follows:

F (

(
a b
0 c

)
) =

(
0 a+ c
0 0

)
, d(

(
a b
0 c

)
) =

(
0 a− c
0 0

)
,

G(

(
a b
0 c

)
) =

(
0 c− 2a
0 0

)
, and g(

(
a b
0 c

)
) =

(
0 c− a
0 0

)
.

Then its easy to prove that F is a l-generalized derivation associated to the
derivation d, G is a r-generalized derivation associated to the derivation g and
F (R)RG(R) = (0) = G(R)RF (R), that is F and G are orthogonal.

Posner studied, for prime rings, the composition of two derivations d1 and d2.
He proved in [114] that d1d2 is a derivation only when d1 = 0 or d2 = 0. He also
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proved that if ad(a)− d(a)a ∈ Z(R) for every a ∈ R then either R is commutative
or d = 0.

In [43], M. Bre�sar and J. Vukman introduced the concept of orthogonal
derivations in order to extend Posner result to 2-torsion free semiprime rings.
Now if d1d2 is a derivation it does not follow that d1 = 0 or d2 = 0. We can only
say that d1 and d2 are orthogonal. In a concrete way the following Theorem is
proved in [43]. Let R be a 2-torsion free semiprime ring, d and g two derivations
of R. Then the following assertions are equivalent, (a) d and g are orthogonal; (b)
dg = 0; (c) dg + gd = 0; (d) d(x)g(x) = 0 for all x ∈ R; (e) dg is a derivation; (f)
There exist a, b ∈ R such that (dg)(x) = ax + xb for all x ∈ R. In [131], Yenigul
and Argac proved that the results of Bre�sar and Vukman still hold assuming only
orthogonality over a nonzero ideal I of R.

In [11], Argac, Nakajima and Albas extended the previous idea of Posner
and Bre�sar and Vukman to l-generalized derivations and Albas extended the re-
sults of Yenigul and Argac in [3]. In a more concrete way, authors proved in
[11] the following Theorem. Let (D, d), (G, g) be two l-generalized derivations of
a 2-torsion free semiprime ring, then the following conditions are equivalent: (i)
(D, d) and (G; g) are orthogonal; (ii) For all x, y ∈ R, the following relations
hold: (a) D(x)G(y) + G(x)D(y) = 0 and (b) d(x)G(y) + g(x)D(y) = 0; (iii)
D(x)G(y) = d(x)G(y) = 0 for all x, y ∈ R; (iv) D(x)G(y) = 0 for all x, y ∈ R
and dG = dg = 0; (v) (DG, dg) is a generalized derivation and D(x)G(y) = 0 for
all x, y ∈ R; (vi) There exist ideals U and V of R such that: (a) U ∩ V = 0 and
U ⊕ V is an essential ideal of R (An ideal I of R is called an essential ideal if I
has nonzero intersection with every other nonzero ideal of R), (b) D(R), d(R) ⊆ U
and G(R), g(R) ⊆ V , (c) D(V ) = d(V ) = 0 and G(U) = g(U) = 0.

In this chapter, we consider the situation in which we have one l-generalized
derivation and one r-generalized derivation and �nd necessary and su�cient con-
ditions for them to be orthogonal on a nonzero ideal of a semiprime ring R. We
also study the connections between orthogonality and some properties of the com-
position of a l-generalized derivation and a r-generalized derivation of R.

To prove our result we will use the following lemmas.

Lemma 5.1.2. [131, Lemma 1] Let R be a 2-torsion free semiprime ring and I a
nonzero ideal of R. Then for any a, b ∈ R the following conditions are equivalent:
(i) axb = 0 for all x ∈ I.
(ii) bxa = 0 for all x ∈ I.
(iii) axb+ bxa = 0 for all x ∈ I.
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Moreover, if one of the three conditions is ful�lled and the left annihilator of I is
zero (l(I) = (0)), then ab = ba = 0.

Lemma 5.1.3. [119, Lemma 2.1]. Let R be a semiprime ring, I a nonzero ideal
of R and a ∈ I. If axa = 0 for all x ∈ I, then a = 0.

Remark 5.1.1. If f , g are orthogonal maps of a 2-torsion free semiprime ring then
Lemma 5.1.2 gives that f(x)g(y) = 0 for all x, y ∈ R. Conversely, this condition
also implies orthogonality if either f or g is a derivation. This fact, when both f
and g are derivations, is part of the following:

Lemma 5.1.4. [131, Main Theorem]. Let R be a 2-torsion free semiprime ring,
I a nonzero ideal of R such that l(I) = 0 and d, g two derivations of R. Then the
following assertions are equivalent.
(a) d and g are orthogonal.
(b) d(x)g(x) = 0 for all x ∈ I.
(c) dg = 0.
(d) dg is a derivation.

Lemma 5.1.5. Let R be a semiprime ring, I a nonzero ideal of R such that
l(I) = (0). If a ∈ R and axa = 0 for all x ∈ I, then a = 0.

Proof. Since axa = 0 for all x ∈ I, in particular, ayra = 0 for all y ∈ I, r ∈ R.
Right multiplication by y gives ayray = 0. Semiprimeness of R gives ay = 0 for
all y ∈ I. Since l(I) = (0), then a = 0. �

5.2 Orthogonality of a left and a right generalized

derivations

We begin with the following lemmas which are essential for the development
of our main results.

Lemma 5.2.1. Let R be a semiprime ring, and I a nonzero ideal of R. Suppose
that the relation axb + bxc = 0 holds for all x ∈ I and some a, b, c ∈ R. Then
bxc = cxb for all x ∈ I and, consequently, (a + c)xb = 0 for all x ∈ I. Similarly
axb = bxa for all x ∈ I and so bx(a+ c) = 0.

Proof. According to our assumption,

axb+ bxc = 0 for allx ∈ I. (5.1)

If we replace in (5.1) x by xby, y ∈ I, we get

axbyb+ bxbyc = 0 for allx, y ∈ I. (5.2)
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On the other hand, if we multiply (5.1) to the right by yb we get

axbyb+ bxcyb = 0 for allx, y ∈ I. (5.3)

Subtracting (5.3) from (5.2), we obtain

bx(byc− cyb) = 0 for allx, y ∈ I. (5.4)

Now if we substitute x by ycx, and multiply (5.4) to the left by cy, we get respec-
tively

bycx(byc− cyb) = 0 for allx, y ∈ I, (5.5)

and
cybx(byc− cyb) = 0 for allx, y ∈ I. (5.6)

Subtracting (5.6) from (5.5), we obtain

(byc− cyb)x(byc− cyb) = 0 for allx, y ∈ I. (5.7)

Lemma 5.1.3 gives byc = cyb for all y ∈ I. The equality axb = bxa for all x ∈ I is
obtained in the same way.

�

Lemma 5.2.2. Let R be a 2-torsion free semiprime ring, I a nonzero ideal of R
such that l(I) = (0), (D, d) a l-generalized derivation and (G, g) a r-generalized
derivation. If D(I)IG(I) = (0) (resp. G(I)ID(I) = (0)), then D(R)RG(R) =
(0)(resp. G(R)RD(R) = (0)), and d, g are orthogonal.

Proof. Notice that D(I)IG(I) = (0) implies G(I)ID(I) = (0) by lemma 5.1.2.
And conversely.
Assume that

D(x)zG(y) = 0 for allx, y, z ∈ I. (5.8)

Lemma 5.1.2 gives

G(y)D(x) = 0 = D(x)G(y) for allx, y ∈ I. (5.9)

If we replace x by xr in (5.9), we get G(y)xd(r) = 0 for all x, y ∈ I, r ∈ R. Lemma
5.1.2 gives

G(y)d(r) = 0 = d(r)G(y) for all y ∈ I, r ∈ R. (5.10)

Similarly, replacing y by ry in (5.9), we get

g(r)D(x) = 0 = D(x)g(r) for all x ∈ I, r ∈ R. (5.11)
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Now, we replace x by xs in (5.11) and use Lemma 5.1.2 to obtain

g(r)d(s) = 0 = d(s)g(r) for all r, s ∈ R. (5.12)

That is d and g are orthogonal. If we replace y by ys in (5.10), we get

d(r)yG(s) = 0 for all y ∈ I, r, s ∈ R. (5.13)

Similarly, replacing x by sx in (5.11), we get

D(s)xg(r) = 0 for allx ∈ I, r, s ∈ R. (5.14)

Replacement of x by rx, and of y by ys in (5.9), and the use of (5.12), (5.13) and
(5.14), gives

D(r)xyG(s) = 0 for allx, y ∈ I, r, s ∈ R. (5.15)

Lemma 5.1.2 gives D(r)xG(s) = 0, and changing x by xt, t ∈ R, we get that
D(r)tG(s) = 0 for all r, t, s ∈ R. In the same way G(R)RD(R) = (0) can be
proved. �

Lemma 5.2.3. Let R be a 2-torsion free semiprime ring, I a nonzero ideal of R
such that l(I) = (0). If (D, d) a l-generalized derivation associated to a derivation
d and (G, g) a r-generalized derivation associated to a derivation g. Then the
following conditions are equivalent :
(i) For any x, y ∈ I, the following relations holds.

(a) D(x)g(y) + d(x)G(y) = 0
(b) G(x)d(y) + g(x)D(y) = 0

(ii) D(x)g(y) = G(x)d(y) = d(x)g(y) = 0 for all x, y ∈ I.
Moreover, if the conditions of (i) are ful�lled and D(x)G(y) + G(x)D(y) = 0 for
all x, y ∈ I, then D(x)G(y) = 0 (and G(x)D(y) = 0) for all x, y ∈ I.

Proof. To start, notice that D(x)g(y) = 0 is equivalent to g(y)D(x) = 0 by
Lemma 5.1.2. Similarly G(x)d(y) = 0 ⇔ d(y)G(x) = 0 and d(x)g(y) = 0 ⇔
g(y)d(x) = 0. So (ii) ⇒ (i) is obvious.
(i) ⇒ (ii). We replace x by xw in (i. a) (respectively, y by wy ), to obtain

D(x)wg(y) +xd(w)g(y) +d(x)wG(y) +xd(w)G(y) = 0 for allx, y, w ∈ I, (5.16)

and

D(x)g(w)y+D(x)wg(y)+d(x)wG(y)+d(x)g(w)y = 0 for allx, y, w ∈ I. (5.17)

Subtracting them we get

D(x)g(w)y+ d(x)g(w)y− xd(w)G(y)− xd(w)g(y) = 0 for allx, y, w ∈ I. (5.18)
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Using (a) in (5.18) we get

D(x)g(w)y+ d(x)g(w)y+ xD(w)g(y)− xd(w)g(y) = 0 for allx, y, w ∈ I. (5.19)

Now, we replace y by yt in (5.19) to obtain

x(D(w)yg(t)− d(w)yg(t)) = 0 for allx, y, w, t ∈ I. (5.20)

Lemma 5.1.3, gives that D(w)yg(t)−d(w)yg(t) = 0, that is (D(w)−d(w))Ig(t) =
(0) for all w, t ∈ I. Lemma 5.1.2 gives that

D(w)g(t) = d(w)g(t) for allw, t ∈ I. (5.21)

On the other hand, we replace x by xw in (i. b) and we obtain

g(x)wd(y) + g(x)wD(y) = 0 for allx, y, w ∈ I. (5.22)

If we multiply (5.22) to the left by d(y) and to the right by g(x) we have

d(y)g(x)wd(y)g(x) + d(y)g(x)wD(y)g(x) = 0 for allx, y, w ∈ I. (5.23)

Lemma 5.2.1 gives that

(D(y)g(x) + d(y)g(x))wd(y)g(x) = 0 for allx, y, w ∈ I. (5.24)

Using (5.21) and 2-torsion freeness, (5.24) gives d(y)g(x)wd(y)g(x) = 0 for all
x, y, w ∈ I. Lemma 5.1.5 implies d(y)g(x) = 0 for all x, y ∈ I. D(y)g(x) = 0 for
all x, y ∈ I by (5.21). By hypothesis (i.a), we get d(y)G(x) = 0 for all x, y ∈ I. If
we replace y by wy, and use Lemma 5.1.2, gives that G(x)d(y) = 0 for all x, y ∈ I.
This �nishes the equivalence of (i) and (ii).
Now assume that, in addition to (i), we have

D(x)G(y) +G(x)D(y) = 0 for allx, y ∈ I. (5.25)

We can replace x by xz (respectively, y by zy), to get (again using Lemma 5.1.2
and the equivalence between (i) and (ii))

D(x)zG(y) + xG(z)D(y) = 0 for allx, y, z ∈ I, (5.26)

and
D(x)zG(y) +G(x)D(z)y = 0 for all x, y, z ∈ I. (5.27)

Subtracting the last two identities, and using (5.25), we get

G(x)D(z)y + xD(z)G(y) = 0 for allx, y, z ∈ I. (5.28)
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Now, we replace z by zt in (5.28) to obtain

G(x)D(z)ty + xD(z)tG(y) = 0 for allx, y, z, t ∈ I. (5.29)

Multiplying (5.29) to the right by D(z), and doing y = x, we get

G(x)D(z)txD(z) + xD(z)tG(x)D(z) = 0 for allx, z, t ∈ I. (5.30)

Lemma 5.2.1 gives that

xD(z)tG(x)D(z) = 0 for allx, z, t ∈ I. (5.31)

We replace t by tG(y) in (5.31) and we obtain

xD(z)tG(y)G(x)D(z) = 0 for allx, y, z, t ∈ I. (5.32)

Multiplying (5.29) to the right by G(x)D(z), and using (5.32), we obtain

G(x)D(z)tyG(x)D(z) = 0 for allx, y, z, t ∈ I. (5.33)

Lemma 5.1.5 implies G(x)D(z)t = 0 and so G(x)D(z) = 0, since l(I) = 0. �

Now we can prove the main Theorem.

Theorem 5.2.4. Let R be a 2-torsion free semiprime ring, I a nonzero ideal
of R such that l(I) = (0). If (D, d) is a l-generalized derivation associated to a
derivation d and (G, g) is a r-generalized derivation associated to a derivation g.
Then the following conditions are equivalent:
(i) D and G are orthogonal.
(ii) For any x, y ∈ I, the following relations holds.

(a) D(x)g(y) + d(x)G(y) = 0,
(b) G(x)d(y) + g(x)D(y) = 0,
(c) D(x)G(y) +G(x)D(y) = 0.

(iii) D(x)G(y) = D(x)g(y) = d(x)G(y) = 0 for all x, y ∈ I.
(iv) D(x)G(y) = 0 for all x, y ∈ I, and d(G(x)) = d(g(x)) = 0, for all x ∈ I.
(v) (Dg, dg) is a left generalized derivation on I, and D(x)G(y) = 0 for all x, y ∈ I

Proof. (i)⇒ (ii). By assumption we have D(r)sG(t) = 0 = G(t)sD(r), for all
r, s, t ∈ R. Lemma 5.1.2, gives D(r)G(t) = 0 = G(t)D(r). In particular, we get

D(x)G(y) = 0 = G(y)D(x) for all x, y ∈ I. (5.34)

This implies (ii)(c). On the other hand, if we replace x by xw in (5.34) we obtain

D(x)wG(y) + xd(w)G(y) = 0 for allx, y, w ∈ I. (5.35)
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That is xd(w)G(y) = 0 for all x, y, w ∈ I. Similarly, replacing y by wy , we get

D(x)wG(y) +D(x)g(w)y = 0 for allx, y, w ∈ I, (5.36)

and so D(x)g(w)y = 0 for all x, y, w ∈ I. Lemma 5.1.5 gives, d(w)G(y) = 0 =
G(y)d(w), D(x)g(w) = 0 = g(w)D(x) for all x, y, w ∈ R. This shows (ii).

(ii)⇒ (iii). It is clear by Lemma 5.2.3.
Note that Lemma 5.2.3 says that (ii)⇒ (iii) and d(w)g(y) = 0. But we will show
that (iii) implies also d(w)g(y) = 0.
(iii)⇒ (iv). By assumption we have D(x)g(y) = 0 for all x, y ∈ I. If we replace y
by wy (resp. x by xw) we get D(x)wg(y) = 0 and D(x)wg(y) +xd(w)g(y) = 0 for
all x, y, w ∈ I, this gives xd(w)g(y) = 0 and so d(w)g(y) = 0 for all y, w ∈ I. Now
from Lemma 5.1.4 it follows that dg = 0.
On the other side, using that d(x)G(y) = 0 and replacing x by xw, we get
d(x)wG(y) = 0 for all x, y, w ∈ I. Lemma 5.2.2 gives d(r)sG(t) = 0 for all
r, s, t ∈ R. Thus 0 = d(d(r)sG(t)) = d(d(r))sG(t) + d(r)d(s)G(t) + d(r)sd(G(t)).
That is d(r)sd(G(t)) = 0 for all r, s, t ∈ R. In particular d(G(t))sd(G(t)) = 0. By
semiprimeness we get dG = 0.

(iv) ⇒ (v). By assumption, d(G(x)) = 0. For all x ∈ I. So 0 = d(G(xy)) =
d(x)G(y) + d(g(x))y + g(x)d(y). Using the hypothesis dg = 0 and Lemma 5.1.4,
we get

d(x)G(y) = 0 for allx, y ∈ I. (5.37)

On the other hand, sinceD(x)G(y) = 0, in particular 0 = D(xw)G(y) = D(x)wG(y)
by (5.37) for arbitrary x, y, w ∈ I. Now Lemma 5.1.2 gives G(y)D(x) = 0, for all
x, y ∈ I. Replacing y by yw, to get g(y)wD(x) = 0, again Lemma 5.1.2 gives that

D(x)g(y) = 0 for allx, y ∈ I. (5.38)

By the other side. Since Dg(xy) = Dg(x)y+ g(x)d(y) +D(x)g(y) +xdg(y). Using
our hypothesis, and (5.38), to get Dg(xy) = Dg(x)y for all x, y ∈ I. Therefore
(Dg, dg) is a l-generalized derivation from I to R.

(v) ⇒ (i). By assumption (Dg, dg) is a l-generalized derivation from I to R,
then Dg(xy) = Dg(x)y+xdg(y). But D(g(xy)) = Dg(x)y+g(x)d(y)+D(x)g(y)+
xdg(y). So

g(x)d(y) +D(x)g(y) = 0 for allx, y ∈ I. (5.39)

Since dg is a derivation from I to R. So

g(x)d(y) + d(x)g(y) = 0 for allx, y ∈ I. (5.40)
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Subtracting (5.40) from (5.39), we obtain

d(x)g(y)−D(x)g(y) = 0 for allx, y ∈ I. (5.41)

Replacing x by xw in (5.41), to get

d(x)wg(y)−D(x)wg(y) = 0 for allx, y, w ∈ I. (5.42)

Now, we can replace w by G(z)w and using D(x)G(y) = 0, to get

d(x)G(z)wg(y) = 0 for allx, y, z, w ∈ I. (5.43)

On the other hand. By assumption D(x)G(y) = 0. If we replace x by xw (resp. y
by wy), we get

D(x)wG(y) + xd(w)G(y) = 0 for allx, y, w ∈ I. (5.44)

And
D(x)wG(y) +D(x)g(w)y = 0 for allx, y, w ∈ I. (5.45)

Subtracting the last two identities, we obtain

D(x)g(w)y + xd(w)G(y) = 0 for allx, y, w ∈ I. (5.46)

Multiply (5.43) to the left by t and using (5.46), we get D(t)g(x)zwg(y) = 0.
Lemma 5.1.2 gives that D(t)g(x)zg(y) = 0. We can replace z by zD(t), to obtain
D(t)g(x)zD(t)g(x) = 0 for all x, z, t ∈ I. Lemma 5.1.5 gives that

D(t)g(x) = 0 for allx, t ∈ I. (5.47)

Using (5.47) in (5.45), we obtain D(x)wG(y) = 0 for all x, y, w ∈ I. Lemma 5.2.2
gives D(R)RG(R) = (0) = G(R)RD(R). Thus D,G are orthogonal. �

Now we give an example showing that if D and G are l-generalized and
r-generalized derivation of a semiprime ring R respectively and G(R)D(R) = 0,
then it does not imply that D and G are orthogonal.

Example 5.2.5. Let a be non-zero element of R. Let D(x) = ax and G(x) =
xa be left and right multiplications by a, respectively. Let's assume that a2 =
0. Then (D, 0) and (G, 0) are non-zero left and right generalized derivations,
respectively, and G(R)D(R) = 0. If (D, 0) and (G, 0) are orthogonal, then 0 =
G(R)RD(R) = RaRaR. That is aRaRaRa = 0, If R is a semiprime ring, then
a = 0 a contradiction.
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Corollary 5.2.6. Let R be a 2-torsion free semiprime ring, I a nonzero ideal of
R such that l(I) = (0). If D is a l-generalized derivation associated to a derivation
d and G a r-generalized derivation associated to a derivation g that are orthogonal
on I, then D, g are orthogonal, G, d are orthogonal and g, d are orthogonal.

Proof. Since by hypothesis, D and G are orthogonal on I, Lemma 5.2.2 gives
that D and G are orthogonal on R. The result follows from Theorem 5.2.4. �

The following Example shows that the converse of Corollary 5.2.6 is not
true.

Example 5.2.7. Consider R a semiprime ring and (D, g) and (G, d) as in Example
5.2.5. It is clear that D and g, G and d, d and g are orthogonal. However D and
G are not orthogonal.

Remark 5.2.1. Corollary 5.2.6 shows that D and G do not play a symmetric role in
Theorem 5.2.4. Indeed, D(x)G(y) = D(x)g(y) = d(x)G(y) = 0 =⇒ G(x)D(y) =
0. However G(x)D(y) = G(x)d(y) = g(x)D(y) = 0 does not imply D(x)G(y) = 0.
So the fact that D and G orthogonal is not equivalent to G(x)D(y) = 0 for every
x, y ∈ I and g(D(x)) = g(d(x)) = 0.
By the other side if D and G are orthogonal imply that (Dg, dg) and (gD, gd) are
l-generalized derivations and (Gd, gd) and (dG, dg) are r-generalized derivations.

Corollary 5.2.8. Let R be a 2-torsion free semiprime ring, I a nonzero ideal of
R such that l(I) = (0), D a l-generalized derivation associated to a derivation d
and G a r-generalized derivation associated to a derivation g. If G(x)D(y) = 0 for
all x, y ∈ I, then D, g are orthogonal, G, d are orthogonal and g, d are orthogonal.

Proof. Our hypothesises, G(x)D(y) = 0 for all x, y ∈ I. We replace x by xz
(resp. y by zy), we obtain g(x)zD(y) = 0 (resp. G(x)zd(y) = 0 ) for all x, y, z ∈ I.
Now the proof follow using the same lines in the proof of Corollary 5.2.6. �

5.3 Relationship between orthogonality and the com-

position of l- and r- generalized derivations

In this section, we study the connections between orthogonality and some prop-
erties of the composition of l-generalized derivation and a r-generalized derivation
of a semiprime ring.

Theorem 5.3.1. Let R be a 2-torsion free semiprime ring. If D is a l-generalized
derivation associated to a derivation d and G is a r-generalized derivation associ-
ated to a derivation g, then D and G are orthogonal if and only if DG = 0 and
D(R)G(R) = (0).
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Proof. Assume that D and G are orthogonal, then G(x)yD(z) = 0 for all
x, y, z ∈ R. Therefore

0 = D(G(x)yD(z)) = D(G(x))yD(z) +G(x)d(y)D(z)

+G(x)yd(D(z))
for allx, y, z ∈ R. (5.48)

SinceD andG are orthogonal, it follows from Corollary 5.2.6 thatD(G(x))yD(z) =
0 for all x, y, z ∈ R. We replace z by G(x) and use semiprimeness of R, then
D(G(x)) = 0 for all x ∈ R.
On the other hand, we assume that D(G(z)) = 0 and D(x)G(y) = 0 for all
x, y, z ∈ R. If we replace x by xw, we get

D(x)wG(y) + xd(w)G(y) = 0 for allx, y, w ∈ R. (5.49)

Now, we replace x by G(x) in (5.49), and use D(G(x)) = 0, we obtain

G(x)d(w)G(y) = 0 for allx, y, w ∈ R. (5.50)

We replace x by xt in (5.50), we get

g(x)td(w)G(y) = 0 for allx, y, w, t ∈ R. (5.51)

Lemma 5.1.2 gives that d(w)G(y)g(x) = 0. Now we can replace w by wt, and
use again Lemma 5.1.2, to get G(y)g(x)d(w) = 0. Replacing y by ys, which
gives g(y)sg(x)d(w) = 0 for all x, y, w, s ∈ R, and using semiprimeness we get
g(x)d(w) = 0 for all x,w ∈ R. By the other side, if we replace y by ty in (5.50),
and use the fact d(z)g(t) = 0 for all z, t ∈ R, we obtain G(x)d(w)tG(y) = 0. Now
it su�ces to multiply to the right by d(w), and use semiprimeness of R, to get
G(x)d(w) = 0, thus d(w)G(x) = 0 for all x,w ∈ R. Substitution in (5.49), we
obtainD(x)wG(y) = 0. Lemma 5.1.2 gives thatG(y)wD(x) = 0 for all x,w, y ∈ R.
This proves that D and G are orthogonal. �

The following example shows that semiprimeness condition in Theorems 5.2.4
and 5.3.1 is not super�uous.

Example 5.3.2. Let Z be the ring of integers, and

R = {

 0 a b
0 0 c
0 0 0

 |a, b, c ∈ Z}.
Let's de�ne maps D : R→ R and d : R→ R as follows:
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D(

(
0 a b
0 0 c
0 0 0

)
) =

(
0 a a+ b+ c
0 0 c
0 0 0

)
, d(

(
0 a b
0 0 c
0 0 0

)
) =

(
0 −a a− b− c
0 0 0
0 0 0

)
.

Similarly G : R→ R, and g : R→ R are de�ned as follows:

G(

(
0 a b
0 0 c
0 0 0

)
) =

(
0 a c− b
0 0 0
0 0 0

)
, g(

(
0 a b
0 0 c
0 0 0

)
) =

(
0 −a a− b+ c
0 0 0
0 0 0

)
.

Then it is easy to prove that D is a l-generalized derivation associated to the
derivation d, G is a r-generalized derivation associated to the derivation g and
D, G are orthogonal. However g(R)D(R) 6= 0, G(R)D(R) 6= 0, d(G(R)) 6= 0,
d(g(R)) 6= 0 and D(G(R)) 6= 0.
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Chapter 6

Symmetric Generalized Biderivations on

Jordan Ideals in Prime Rings

6.1 Introduction

If B : R × R → R is a symmetric map (B(x, y) = B(y, x) for all x, y ∈ R)
the map f : R → R de�ned by f(x) = B(x, x) is the trace of B. If B is also
biadditive (i.e., additive in both arguments), its trace f satis�es f(x + y) =
f(x)+f(y)+2B(x, y), for all x, y ∈ R. A symmetric biadditive map B : R×R→ R
is a symmetric biderivation if B(xy, z) = B(x, z)y + xB(y, z) for all x, y, z ∈ R.
The concept of symmetric biderivation was introduced by G. Maksa in [106]. A
symmetric biadditive map τ : R × R → R is a symmetric left bicentralizer if
τ(xy, z) = τ(x, z)y (and consequently τ(x, yz) = τ(x, y)z) for all x, y, z ∈ R.

Symmetric biderivations were proved to be related to the general solution of some
functional equations (see [107]). The maps (x, y) → λ[x, y], λ ∈ C, are typical
examples of biderivations and they were called inner biderivations. Here C is the
extended centroid of R, that is, the center of the two-sided Martindale quotient
ring Q (we refer the reader to [18] for more details).
Bre�sar, Martindale, and Miers in [42], shown that every biderivation of a noncom-
mutative prime ring R is inner. In [39], Bre�sar extended this result to semiprime
rings. In [125], Vukman proved that if B is a nonzero symmetric biderivation,
where R is a prime ring of characteristic not two, with the property:

B(x, x)x = xB(x, x), x ∈ R. (6.1)

then R is commutative. He also proved that if B1, B2 are nonzero biderivations
on R, D is a symmetric biadditive map and f1(f2(x)) = d(x) holds for all x ∈ R,
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where f1, f2, and d are the traces of B1, B2, and D, respectively, then either
B1 = 0 or B2 = 0. Let's mention two results proved in [126]. The �rst one states
that if B1 and B2 are symmetric biderivations on a prime ring R, charR 6= 2, 3,
such that B1(x, x)B2(x, x) = 0 holds for all x ∈ R, then either B1 = 0 or B2 = 0.
The second result says that if [[B(x, x), x], x] ∈ Z(R) for all x ∈ R, then R is
commutative. Yenigul and Argac in [130, 12] extended the results of Vukmun in
[125] assuming condition (6.1) over a nonzero ideal and a nonzero Lie ideal of a
prime ring respectively.

The notion of generalized biderivation was introduced by Bre�sar in [40]. A bi-
additive map G : R×R→ R is a generalized biderivation linked to a biderivation
B : R × R → R if for every x ∈ R, the maps y → G(x, y) and y → G(y, x)
are generalized derivations of R linked to B(x, .) and B(., x). That is, G(xy, z) =
G(x, z)y + xB(y, z) and G(x, yz) = G(x, y)z + yB(x, z) hold for all x, y, z ∈ R.
Bre�sar shown that every generalized biderivation G of an ideal I (G : I × I → R)
of a prime ring R with charR 6= 2, is of the form G(x, y) = xay + ybx for some
a, b ∈ Q, where Q is Martindale quotient ring of R ( see [71] and [80] for details).
In [4] Ali, Filippis and Shujat extended some results of Vukman contained in
[125, 126] to generalized biderivations on prime and semiprime rings. Recently, in
[17], symmetric generalized (σ, τ)-biderivations of a prime ring R with charR 6= 2
have been considered.

Remark 6.1.1. A symmetric left bicentralizer is a symmetric generalized bideriva-
tion linked to the biderivation B = 0

Example 6.1.1. Let R be a ring. If B is a biderivation of R and τ : R×R→ R
is a biadditive map such that τ(x, yz) = τ(x, y)z and τ(xy, z) = τ(x, z)y for all
x, y, z ∈ R, then B + τ is a generalized biderivation of R linked to B.

In [57] some results concerning generalized derivations were proved. Here simi-
lar results are obtained for symmetric generalized biderivations. Precisely, we will
consider the commutativity of a prime ring which admits a generalized biderivation
G linked to a biderivation B satisfying one of the following algebraic conditions:

i. In section 6.3: f(u) ∈ Z(R) and g1(u)u = ug2(u) for all u ∈ J .

ii. In section 6.4: B(g(u), u) = 0, G(f(u), u) = 0 and G(g(u), u) = 0 for all
u ∈ J .

iii. In section 6.5: B(g(u), g(v)) = 0, [g1(u), g2(v)] = 0, (g(u))2 = 0 and g2(u)−
f 2(u) = fg(u)− gf(u) for all u, v ∈ J .

Where J be a nonzero Jordan ideal of R. Here g, g1, g2 and f denote the traces of
G,G1, G2 and B, respectively.
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6.2 Preliminaries

We will use the following lemmas in our results.

Lemma 6.2.1. [108, Lemma 3]. If the prime ring R contains a commutative
nonzero right ideal I, then R is commutative.

Lemma 6.2.2. [132, Lemma 2.6]. Let R be a prime ring with charR 6= 2 and J a
nonzero Jordan ideal of R. If a, b ∈ R and aJb = (0), then either a = 0 or b = 0.

Lemma 6.2.3. [132, Lemma 2.7]. Let R be a prime ring with charR 6= 2 and J a
nonzero Jordan ideal of R. If J is commutative, then J ⊆ Z(R).

Lemma 6.2.4. [125, Theorem 4]. Let R be a 2-torsion free semiprime ring. If
there exists a symmetric biderivation B(., .) : R×R→ R such that B(f(x), x) = 0
for all x ∈ R, where f denotes the trace of B, then B = 0.

Remark 6.2.1. If J is a Jordan ideal of R, and u ∈ J , we have u ◦ u ∈ J , therefore
2u2 ∈ J , for all u ∈ J .

Lemma 6.2.5. Let R be a 2-torsion free ring, and B : R×R→ R be a symmetric
biadditive map with trace f . If f(r) = 0 for all r ∈ R, then B = 0.

Proof. Since f(r) = 0 for all r ∈ R, f(r + s) = 0, for all r, s ∈ R. This implies
that f(r) + f(s) + 2B(r, s) = 0. Then B(r, s) = 0 for all r, s ∈ R. �

Lemma 6.2.6. Let R be a ring. If G : R × R → R is a symmetric generalized
biderivation linked to a symmetric biderivation B : R × R → R, then the map
G−B : R×R→ R is a symmetric left bicentralizer of R.

Proof. The map T = G−B, is clearly biadditive. For all x, y, z ∈ R, we have

T (xy, z) = (G−B)(xy, z) = G(xy, z)−B(xy, z)

= G(x, z)y −B(x, z)y = T (x, z)y
(6.2)

Therefore, T is a symmetric left bicentralizer of R. �

Note that Lemma 6.2.6 says that every symmetric generalized biderivation is
obtained as in Example 6.1.1.

Lemma 6.2.7. Let R be a prime ring, charR 6= 2, J a nonzero Jordan ideal of
R. If T : R × R → R is a symmetric left bicentralizer such that T (u, u) = 0 for
all u ∈ J , then T = 0.
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Proof. Suppose that

T (u, u) = 0 for allu ∈ J. (6.3)

Then
2T (u, v) = 0 for allu, v ∈ J. (6.4)

Using the fact that characteristic of R is not 2, we get

T (u, v) = 0 for allu, v ∈ J. (6.5)

Let us replace u by ur + ru in (6.5), to obtain

T (r, v)u = 0 for allu, v ∈ J, r ∈ R. (6.6)

That is, T (r, v)JT (r, v) = 0 for all v, r ∈ J . By Lemma 6.2.2, T (r, v) = 0 for all
v ∈ J, r ∈ R. Now, we can replace v by vs+sv, for all s ∈ R. We have T (r, s)v = 0
for all v ∈ J, r, s ∈ R, that is T (r, s)J = (0) for all r, s ∈ R. Lemma 6.2.2 gives
T (r, s) = 0 for all r, s ∈ R. �

6.3 The cases f (J) ⊆ Z(R) and G1(u, u)u = uG2(u, u)

We begin with the following lemma which is essential for the development of our
main results.

Lemma 6.3.1. Let R be a prime ring, charR 6= 2, J a nonzero Jordan ideal of
R, and B : R×R→ R a symmetric biderivation with trace f . If f(u) = 0 for all
u ∈ J , then either J ⊆ Z(R) or B = 0.

Proof. Suppose that
f(u) = 0 for allu ∈ J. (6.7)

Then
B(u,w) = 0 for allu,w ∈ J. (6.8)

If we replace u by ur + ru ∈ J in (6.8), r ∈ R, we get

uB(r, w) +B(r, w)u = u ◦B(r, w) = 0 for allu,w ∈ J, r ∈ R. (6.9)

Replacing r by rv, where v ∈ J , and using (6.8), we get

0 = u ◦ (B(r, w)v) + u ◦ (rB(v, w)) = u ◦ (B(r, w)v) for allu,w, v ∈ J, r ∈ R,
(6.10)
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By using the identity 1.2, we obtain

0 = u◦(B(r, w)v) = (u◦B(r, w))v−B(r, w)[u, v] for allu,w, v ∈ J, r ∈ R. (6.11)

From (6.9), (6.11) it follows that

B(r, w)[u, v] = 0 for allu,w, v ∈ J, r ∈ R. (6.12)

If we replace r by rs, s ∈ R, we get B(r, w)s[u, v] = 0 for all u,w, v ∈ J and
r, s ∈ R. Hence B(r, w)R[u, v] = (0). By primeness of R it follows that either
[u, v] = 0 for all u, v ∈ J or B(r, w) = 0 for all w ∈ J, r ∈ R. If [u, v] = 0 for
all u, v ∈ J , then J ⊆ Z(R) by Lemma 6.2.3. In other case, B(r, w) = 0 for all
w ∈ J, r ∈ R. Replacing w by ws+ sw, we get

wB(r, s) +B(r, s)w = 0 for allw ∈ J, r, s ∈ R, (6.13)

Replacing s by su, where u ∈ J , we get

wB(r, s)u+B(r, s)uw = 0 for allu,w ∈ J, r, s ∈ R, (6.14)

If we multiply (6.13) by u to the right, and then subtract (6.14), we getB(r, s)[u,w] =
0 for all u,w ∈ J, r, s ∈ R. Replacing r by tr, t ∈ R, we get B(t, s)R[u,w] = 0. So
by primeness of R either B = 0 or J is commutative. Now Lemma 6.2.3 gives the
result. �

In [12], the following theorem was proved: Let R be a prime ring, charR 6= 2,
and U be a nonzero Lie ideal of R. Let B : R×R→ R be a symmetric biderivation
and f its trace. Then the following assertions are true (i) f(U) = 0 implies
U ⊆ Z(R) or f = 0. (ii) f(U) ⊆ Z(R) and U square closed imply U ⊆ Z(R) or
f = 0.

Here we will show that this result can also be obtained for a nonzero Jordan
ideal of R.

Theorem 6.3.2. Let R be a prime ring, charR 6= 2, J a nonzero Jordan ideal of
R, and B : R×R→ R a symmetric biderivation with trace f . If f(u) ∈ Z(R) for
all u ∈ J , then either J ⊆ Z(R) or B = 0.

Proof. By assumption we have

f(u) ∈ Z(R) for allu ∈ J. (6.15)

Then
2B(u,w) ∈ Z(R) for allu,w ∈ J. (6.16)
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Let us replace u by 2u2 in (6.16). Then we have

4uB(u,w) + 4B(u,w)u = 8uB(u,w) ∈ Z(R) for allu,w ∈ J. (6.17)

Therefore, in particular 8uf(u) ∈ Z(R) for all u ∈ J . Then we have

0 = [uf(u), r] = [u, r]f(u) + u[f(u), r] = [u, r]f(u) for allu ∈ J, r ∈ R. (6.18)

So for every r, s ∈ R, [u, rs]f(u) = 0 = r[u, s]f(u) + [u, r]sf(u) = [u, r]sf(u) for
all u ∈ J, r, s ∈ R. By primeness, given a arbitrary element u ∈ J we have either

f(u) = 0 oru ∈ Z(R) for allu ∈ J. (6.19)

If Z(R) ∩ J = 0, then f(u) = 0 ∀u ∈ J .
Assume Z(R) ∩ J 6= 0. If J * Z(R), then ∃v ∈ J \ Z(R). Then ∀u ∈ Z(R) ∩ J ,
the elements u + v, u − v ∈ J \ Z(R). Hence f(u + v) = 0 and f(u − v) = 0.
Adding both equations 2f(u) = 0 that is, f(u) = 0 using that R is 2-torsion free.
In conclusion, we have proved that f(u) = 0 ∀u ∈ Z(R) ∩ J and we already know
by (6.19) that f(u) = 0 ∀u ∈ J \Z(R). That is f(u) = 0 for all u ∈ J . By Lemma
6.3.1, either J ⊆ Z(R) or B = 0. �

Corollary 6.3.3. Let R be a prime ring, charR 6= 2, I a nonzero ideal of R, and
B : R× R→ R a symmetric biderivation with a nonzero trace f . If f(x) ∈ Z(R)
for all x ∈ I, then R is commutative.

Proof. It immediately follows from Theorem 6.3.2 and Lemma 6.2.1. �

Theorem 6.3.4. Let R be a prime ring, charR 6= 2, J a nonzero Jordan ideal
that is also a subring of R, and G1, G2 : R × R → R two symmetric generalized
biderivations linked to symmetric biderivations B1, B2 : R × R → R, respectively.
If G1(u, u)u = uG2(u, u) for all u ∈ J and B2 6= 0, then J ⊆ Z(R).

Proof. Suppose that g1, g2, f1, f2 are traces of G1, G2, B1, B2, respectively. By
hypothesis we have

g1(u)u = ug2(u) for allu ∈ J. (6.20)

Then

g1(u)v + g1(v)u+ 2G1(u, v)u+ 2G1(u, v)v

= ug2(v) + vg2(u) + 2uG2(u, v) + 2vG2(u, v)
for allu, v ∈ J. (6.21)

Substituting u by −u in (6.21), we get

g1(u)v − g1(v)u+ 2G1(u, v)u− 2G1(u, v)v

= −ug2(v) + vg2(u) + 2uG2(u, v)− 2vG2(u, v)
for allu, v ∈ J. (6.22)
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Adding up (6.21) and (6.22), and using the fact that characteristic of R is not 2,
we obtain

g1(u)v + 2G1(u, v)u = vg2(u) + 2uG2(u, v) for allu, v ∈ J. (6.23)

Substituting v by vu in (6.23), we have

(g1(u)v + 2G1(u, v)u− 2uG2(u, v))u+ 2vf1(u)u

= vug2(u) + 2uvf2(u)
for allu, v ∈ J. (6.24)

Using (6.23) in (6.24), we get

vg2(u)u+ 2vf1(u)u = vug2(u) + 2uvf2(u) for allu, v ∈ J. (6.25)

Replacing v by wv in (6.25), and subtracting the new identity from (6.25) multi-
plied by w to the left, we get

[w, u]vf2(u) = 0 for allu, v, w ∈ J. (6.26)

This implies that [w, u]Jf2(u) = 0 for all u,w ∈ J . Lemma 6.2.2, gives that
for an arbitrary element u ∈ J either u ∈ Z(J) or f2(u) = 0. If Z(J) = 0,
then f2(J) = 0. If J = Z(J), then J ⊆ Z(R) by Lemma 6.2.3. Let us assume
that J 6= Z(J) 6= 0. Then ∃u ∈ J \ Z(J). So f2(u) = 0 since f2(v) = 0 for
all v ∈ J \ Z(J). Take 0 6= w ∈ Z(J). Then u + w, u − w ∈ J \ Z(J) and so
B2(u+w, u+w) = 0 = B2(u−w, u−w), that is, B2(u, u)+2B2(u,w)+B2(w,w) = 0
and B2(u, u)− 2B2(u,w) +B2(w,w) = 0. Adding the above two relations, we get
2f2(w) = 0. Since R is 2-torsion free, we have f2(w) = 0 for all w ∈ J . Using
Lemma 6.3.1 we get J ⊆ Z(R). �

Theorem 6.3.5. Let R be a prime ring, charR 6= 2, J a nonzero subring and
Jordan ideal of R, and G1, G2 : R×R→ R two symmetric generalized biderivations
linked to nonzero symmetric biderivations B1, B2 : R × R → R, respectively. If
G1(u, u)u+ uG2(u, u) = 0 for all u ∈ J and B2 6= 0, then J ⊆ Z(R).

Proof. The proof follows the same lines of the previous one. �

Corollary 6.3.6. Let R be a prime ring, charR 6= 2, I a nonzero ideal of R,
G1, G2 : R×R→ R two symmetric generalized biderivations linked to nonzero sym-
metric biderivations B1, B2 : R× R→ R, respectively. If G1(x, x)x = ±xG2(x, x)
for all x ∈ I, then R is commutative.

Proof. It immediately follows from Theorems 6.3.4, 6.3.5 and Lemma 6.2.1. �
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Corollary 6.3.7. Let R be a prime ring, charR 6= 2, J a nonzero subring and
Jordan ideal of R, and G : R × R → R a symmetric generalized biderivation
associated to a symmetric biderivation B : R × R → R. If [G(u, u), u] = 0 (or
G(u, u) ◦ u = 0) for all u ∈ J , then J ⊆ Z(R) or B = (0).

Corollary 6.3.8. Let R be a prime ring, charR 6= 2, I a nonzero ideal of R, and
G : R × R → R a symmetric generalized biderivation associated to a symmetric
biderivation B : R × R → R. If G(x, x)x = ±xB(x, x) for all x ∈ I, then R is
commutative or G is a left bicentralizer.

Proof. It immediately follows from Theorem 6.3.4 and Lemma 6.2.1. �

6.4 The cases B(g(u), u) = 0, G(f (u), u) = 0 and

G(g(u), u) = 0

Theorem 6.4.1. Let R be a prime ring, charR 6= 2, J a nonzero subring and
Jordan ideal of R and G : R×R→ R a symmetric generalized biderivation linked
to a symmetric biderivation B : R × R → R. Let g and f be the traces of G and
B respectively. If B(g(u), u) = 0 for all u ∈ J , then either B = 0 or J ⊆ Z(R).

Proof. By assumption we have

B(g(u), v) +B(g(v), u) + 2B(G(u, v), u) + 2B(G(u, v), v) = 0

for allu, v ∈ J.
(6.27)

Substituting u by −u in (6.27), we get

B(g(u), v)−B(g(v), u) + 2B(G(u, v), u)− 2B(G(u, v), v) = 0

for allu, v ∈ J.
(6.28)

Adding up (6.27) and (6.28), and using the fact that characteristic of R is not 2,
we obtain

B(g(u), v) + 2B(G(u, v), u) = 0 for allu, v ∈ J. (6.29)

Substituting v by vz in (6.29), and using (6.29), we have

vB(g(u), z) + 2G(u, v)B(z, u) + 2B(v, u)B(u, z) + 2vB(B(u, z), u) = 0

for allu, v, z ∈ J.
(6.30)

Replacing v by wv in (6.30), subtracting the new identity from (6.29) multiplied
by w to the left, and characteristic of R is not 2, we get

G(u,w)vB(z, u)− wG(u, v)B(z, u)

+wB(u, v)B(z, u) +B(w, u)vB(u, z) = 0
for allu, v, z, w ∈ J. (6.31)
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Taking w = v in (6.31), we obtain

G(u, v)vB(z, u)− vG(u, v)B(z, u)

+vB(u, v)B(z, u) +B(v, u)vB(u, z) = 0
for allu, v, z, w ∈ J. (6.32)

This implies that

([G(u, v), v] +B(u, v2))B(u, z) = 0 for allu, v, z ∈ J. (6.33)

Now, we can replace z by tz, t ∈ J in (6.33) and we obtain

([G(u, v), v] +B(u, v2))JB(u, z) = 0 for allu, v, z ∈ J.

Given a �xed u ∈ J , either B(u, z) = 0 for all z ∈ J or [G(u, v), v] + B(u, v2) = 0
for all v ∈ J . But A1 = {u ∈ J | [G(u, v), v] + B(u, v2) = 0 ∀v ∈ J} and
A2 = {u ∈ J | B(u, z) = 0 ∀v ∈ J} are both additive subgroups of J and
J = A1 ∪ A2. So either J = A1 or J = A2. If J = A2, then B(u, z) = 0 for all
u, z ∈ J . Theorem 6.3.2 gives that J ⊆ Z(R) or B = 0.
On the other hand, if J = A1, then [G(u, v), v] + B(u, v2) = 0 for all u, v ∈ J .
Replacing u by uw, where w ∈ J , we get

G(u, v)[w, v] + u[B(w, v), v] + [u, v]B(w, v) + uB(w, v2) = 0 for allu, v, w ∈ J.
(6.34)

Taking w = v in (6.34), we get

u[f(v), v] + [u, v]f(v) + uB(v, v2) = 0 for allu, v ∈ J. (6.35)

Substituting u by tu in (6.35), gives

[t, v]uf(v) = 0 for allu, v, t ∈ J. (6.36)

Then using the same arguments used in the proof of Theorem 6.3.4, we get that
J ⊆ Z(R) or B = 0. �

Theorem 6.4.2. Let R be a prime ring, charR 6= 2, J a nonzero subring and
Jordan ideal of R and G : R × R → R a symmetric generalized biderivation
linked to a symmetric biderivation B : R × R → R. Let f be the trace of B. If
G(f(u), u) = 0 for all u ∈ J , then either B = 0 or J ⊆ Z(R).

Proof. By assumption we have

G(f(u), v) +G(f(v), u) + 2G(B(u, v), u)

+2G(B(u, v), v) = 0
for allu, v ∈ J. (6.37)
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Substituting u by −u in (6.37), we get

G(f(u), v)−G(f(v), u) + 2G(B(u, v), u)

−2G(B(u, v), v) = 0
for allu, v ∈ J. (6.38)

Adding up (6.37) and (6.38), and using the fact that characteristic of R is not 2,
we obtain

G(f(u), v) + 2G(B(u, v), u) = 0 for allu, v ∈ J. (6.39)

Substituting v by vz in (6.39), and using (6.39), we have

vB(f(u), z) + 2B(u, v)B(z, u) + 2G(v, u)B(u, z)

+2vB(B(u, z), u) = 0
for allu, v, z ∈ J. (6.40)

Replacing v by wv in (6.40), subtracting the new identity from (6.39) multiplied
by w to the left, and characteristic of R is not 2, we get

G(u,w)vB(u, z)− wG(v, u)B(u, z)

+wB(v, u)B(u, z) +B(u,w)vB(u, z) = 0
for allu, v, z, w ∈ J. (6.41)

Taking w = v in (6.41), we obtain

G(u, v)vB(z, u)− vG(u, v)B(z, u)

+vB(u, v)B(z, u) +B(v, u)vB(u, z) = 0
for allu, v, z, w ∈ J. (6.42)

This implies that

([G(u, v), v] +B(u, v2))B(u, z) = 0 for allu, v, z ∈ J. (6.43)

Then using the same arguments that were used to prove Theorem 6.4.1, we get
that J ⊆ Z(R) or B = 0. �

Theorem 6.4.3. Let R be a prime ring, charR 6= 2, J a nonzero subring and
Jordan ideal of R and G : R × R → R a symmetric generalized biderivation
associated to a symmetric biderivation B : R × R → R. Let g be the trace of G.
If G(g(u), u) = 0 for all u ∈ J , then either B = 0 or J ⊆ Z(R).

Proof. By assumption we have

G(g(u), v) +G(g(v), u) + 2G(G(u, v), u)

+2G(G(u, v), v) = 0
for allu, v ∈ J. (6.44)

Substituting u by −u in (6.44), we get

G(g(u), v)−G(g(v), u) + 2G(G(u, v), u)

−2G(G(u, v), v) = 0
for allu, v ∈ J. (6.45)
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Adding up (6.44) and (6.45), and using the fact that characteristic of R is not 2,
we obtain

G(g(u), v) + 2G(G(u, v), u) = 0 for allu, v ∈ J. (6.46)

Substituting v by vz in (6.46), and using (6.46), we have

vB(g(u), z) + 4G(u, v)B(z, u)

+2vB(B(u, z), u) = 0
for allu, v, z ∈ J. (6.47)

Replacing v by wv in (6.47), subtracting the new identity from (6.46) multiplied
by w to the left, and characteristic of R is not 2, we get

G(u,w)vB(z, u)− wG(u, v)B(z, u)

+wB(u, v)B(u, z) = 0
for allu, v, z, w ∈ J. (6.48)

Taking w = v in (6.48), we obtain

G(u, v)vB(z, u)− vG(u, v)B(z, u)

+vB(u, v)B(z, u) = 0
for allu, v, z, w ∈ J. (6.49)

This implies that

(G(u, v2)− vG(u, v))B(z, u) = 0 for allu, v, z ∈ J. (6.50)

Now, we can replace z by tz, t ∈ J in (6.50) and we obtain

(G(u, v2)− vG(u, v))JB(z, u) = 0 for allu, v, z ∈ J. (6.51)

Arguing as in the proof of Theorem 6.4.1, either B(u, z) = 0 for all u, z ∈ J or
G(u, v2)− vG(u, v) = 0 for all u, v ∈ J . In the �rst case, Theorem 6.3.2 gives that
J ⊆ Z(R) or B = 0. On the other hand, if G(u, v2)− vG(u, v) = 0 for all u, v ∈ J .
Replacing u by uw, where w ∈ J , and using the previous relation, we get

uB(w, v2)− vuB(w, v) = 0 for allu, v, w ∈ J. (6.52)

Substituting u by tu in (6.52), and using (6.52) gives

[t, v]uB(w, v) = 0 for allu, v, w, t ∈ J. (6.53)

Then using the same arguments that were used in the proof of Theorem 6.3.4, we
get that J ⊆ Z(R) or B = 0. �
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6.5 The cases B(g(u), g(v)) = 0, [g1(u), g2(v)] = 0 and

(g(u))2 = 0

Theorem 6.5.1. Let R be a prime ring, charR 6= 2, J a nonzero subring and
Jordan ideal of R and G : R×R→ R a symmetric generalized biderivation linked
to a symmetric biderivation B : R×R→ R. Let g be the trace of G. If g(J) ⊆ J ,
and B(g(u), g(v)) = 0 for all u, v ∈ J , then either B = 0 or J ⊆ Z(R).

Proof. By linearization, our assumptions imply

B(G(u,w), g(v)) = 0 for allu, v, w ∈ J. (6.54)

Substituting w by wz in (6.54), and using (6.54) we get

G(u,w)B(z, g(v)) +B(w, g(v))B(u, z)

+wB(B(u, z), g(v)) = 0
for allu, v, w, z ∈ J. (6.55)

Substituting z by g(z) in (6.55), and using our assumption, we have

B(w, g(v))B(u, g(z)) + wB(B(u, g(z)), g(v)) = 0 for allu, v, w, z ∈ J. (6.56)

Substituting w by sw in (6.56), and using (6.56), we obtain

B(w, g(v))sB(u, g(z)) = 0 for allu, v, w, s, z ∈ J. (6.57)

In particular, B(u, g(u))JB(u, g(u)) = 0 for all u ∈ J . Lemma 6.2.2, gives
B(u, g(u)) = 0 for all u ∈ J . Theorem 6.4.1 gives that J ⊆ Z(R) or B = 0.
�

Theorem 6.5.2. Let R be a prime ring with charR 6= 2, 3, J a nonzero subring and
Jordan ideal of R and G1, G2 : R×R→ R two symmetric generalized biderivations
linked to nonzero symmetric biderivations B1, B2 : R × R → R, respectively. Let
g1, g2 be the traces of G1, G2 respectively. If g2(J) ⊆ J and [g1(u), g2(v)] = 0 for
all u, v ∈ J , then J ⊆ Z(R).

Proof. By linearization,

[g1(u), G2(v, w)] = 0 for allu, v, w ∈ J. (6.58)

Replace w by wz in (6.58) and using (6.58), we get

G2(v, w)[g1(u), z] + [g1(u), w]B2(v, z)

+w[g1(u), B2(v, z)] = 0
for allu, v, w, z ∈ J. (6.59)
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Replace z by g2(z) in (6.59) and using our assumption, we get

[g1(u), w]B2(v, g2(z)) + w[g1(u), B2(v, g2(z))] = 0 for allu, v, w, z ∈ J. (6.60)

Substituting w by tw in (6.60), and using (6.60), we get

[g1(u), t]wB2(v, g2(z)) = 0 for allu, v, w, z, t ∈ J. (6.61)

This implies that [g1(u), t]JB2(v, g2(z)) = 0 for all u, v, z, t ∈ J . Lemma 6.2.2
guarantees that either [g1(u), t] = 0 for all u, t ∈ J or B2(v, g2(z)) = 0 for all
v, z ∈ J . If [g1(u), t] = 0, then Corollary 6.3.7 gives that J ⊆ Z(R). On the other
hand, if B2(v, g2(z)) = 0 then J ⊆ Z(R) follows from Theorem 6.4.1. �

Theorem 6.5.3. Let R be a prime ring with charR 6= 2, J a nonzero subring and
Jordan ideal of R and G : R×R→ R a symmetric generalized biderivations linked
to a symmetric biderivation B : R×R→ R. Let g be the trace of G. If g(J) ⊆ J
and (g(u))2 = 0 for all u ∈ J , then either B = 0 or J ⊆ Z(R).

Proof. By linearization (we refer readers to [134]), our assumptions imply

g(u)G(u,w) +G(u,w)g(u) = 0 for allu,w ∈ J. (6.62)

Replacing w by wz in (6.62) and using (6.62), we get

G(u,w)[z, g(u)] + g(u)wB(u, z) + wB(u, z)g(u) = 0 for allu,w, z ∈ J. (6.63)

Doing z = g(u) in (6.63), we obtain

g(u)wB(u, g(u)) + wB(u, g(u))g(u) = 0 for allu,w ∈ J. (6.64)

Substituting z by tg(u) in (6.63), and using (6.63), we get

g(u)wtB(u, g(u)) + wtB(u, g(u))g(u) = 0 for allu,w, t ∈ J. (6.65)

Replacing w by g(u) in (6.65) and using our assumption, we obtain

g(u)tB(u, g(u))g(u) = 0 for allu, t ∈ J. (6.66)

Right multiplication of (6.66) by B(u, g(u)) gives

B(u, g(u))g(u)tB(u, g(u))g(u) = 0 for allu, t ∈ J. (6.67)
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Now Lemma 6.2.2, gives

B(u, g(u))g(u) = 0 for allu ∈ J. (6.68)

Using 6.68 in 6.64 we have

g(u)wB(u, g(u)) = 0 for allu,w ∈ J. (6.69)

This implies that g(u)JB(u, g(u)) = 0 for all u ∈ J . Let's �x some element u1.
Lemma 6.2.2 gives that g(u1) = 0 or B(u1, g(u1)) = 0. But g(u1) = 0 implies
B(u1, g(u1)) = 0. Then we have B(u, g(u)) = 0 for all u ∈ J . Theorem 6.4.1 gives
that B = 0 or J ⊆ Z(R). �

Theorem 6.5.4. Let R be a prime ring with charR 6= 2, 3, J a nonzero subring
and Jordan ideal of R, and G : R × R → R a symmetric generalized biderivation
associated to a symmetric biderivation B : R × R → R. If G(G(u, u), G(u, u)) −
B(B(u, u), B(u, u)) = B(G(u, u), G(u, u))−G(B(u, u), B(u, u)) for all u ∈ J ,then
one of the following holds:
(i) B = 0 or (ii) G = B. or (iii) J ⊆ Z(R).

Proof. Let g, f be the traces of G,B, respectively. By hypothesis we have

g2(u)− f 2(u) = fg(u)− gf(u) for allu ∈ J. (6.70)

The substitution of u by u+ v in (6.70), gives

4g(G(u, v)) + 2G(g(u), g(v)) + 4G(g(u), G(u, v))

+4G(g(v), G(u, v))− 4f(B(u, v))− 2B(f(u), f(v))

−4B(f(u), B(u, v))− 4B(f(v), B(u, v))

= 4f(G(u, v)) + 2B(g(u), g(v)) + 4B(g(u), G(u, v))

+4B(g(v), G(u, v))− 4g(B(u, v))− 2G(f(u), f(v))

−4G(f(u), B(u, v))− 4G(f(v), B(u, v))

for allu, v ∈ J. (6.71)

Substituting v by −v in (6.71), we obtain

4g(G(u, v)) + 2G(g(u), g(v))− 4G(g(u), G(u, v))

−4G(g(v), G(u, v))− 4f(B(u, v))− 2B(f(u), f(v))

+4B(f(u), B(u, v)) + 4B(f(v), B(u, v))

= 4f(G(u, v)) + 2B(g(u), g(v))− 4B(g(u), G(u, v))

−4B(g(v), G(u, v))− 4g(B(u, v))− 2G(f(u), f(v))

+4G(f(u), B(u, v)) + 4G(f(v), B(u, v))

for allu, v ∈ J. (6.72)
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Adding (6.71), (6.72), and using charR 6= 2, we get

2g(G(u, v)) +G(g(u), g(v))− 2f(B(u, v))

−B(f(u), f(v)) = 2f(G(u, v)) +B(g(u), g(v))

−2g(B(u, v))−G(f(u), f(v))

for allu, v ∈ J. (6.73)

The substitution v by v + w in (6.73), gives

2G(G(u, v), G(u,w)) +G(g(u), G(v, w))

−2B(B(u, v), B(u,w))−B(f(u), B(v, w))

= 2B(G(u, v), G(u,w)) +B(g(u), G(v, w))

−2G(B(u, v), B(u,w))−G(f(u), B(v, w))

for allu, v, w ∈ J. (6.74)

Let us take T = G−B, and denote k = g+f the trace of K = G+B. By Lemma
6.2.6, T is a symmetric left bicentralizer of R. Then (6.74), reduces to

2T (G(u, v), G(u,w)) + T (g(u), G(v, w))

+2T (B(u, v), B(u,w)) + T (f(u), B(v, w)) = 0
for allu, v, w ∈ J. (6.75)

Replacing w by wx in (6.75), we get

2T (G(u, v), w)B(u, x) + T (g(u), w)B(v, x)

+2T (B(u, v), w)B(u, x) + T (f(u), w)B(v, x) = 0
for allu, v, w, x ∈ J. (6.76)

That is

2T (K(u, v), w)B(u, x) + T (k(u), w)B(v, x) = 0 for allu, v, w, x ∈ J. (6.77)

Doing v = u in (6.77), and using charR 6= 3, we get

T (k(u), w)B(u, x) = 0 for allu, x, w ∈ J. (6.78)

Doing x = u in (6.77), we obtain

2T (K(u, v), w)f(u) + T (k(u), w)B(v, u) = 0 for allu, v, w ∈ J. (6.79)

Using (6.78) in (6.79), and charR 6= 2, we have

T (K(u, v), w)f(u) = 0 for allu, v, w ∈ J. (6.80)

Substituting v by vt in (6.80), gives

T (K(u, v)t+ 2vB(u, t), w)f(u) = 0 for allu, v, w, t ∈ J. (6.81)
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That is,

T (K(u, v), w)tf(u) + 2T (v, w)B(u, t)f(u) = 0 for allu, v, w, t ∈ J. (6.82)

By replacing w by wt in (6.80) and using the new equation in (6.82), we obtain

T (v, w)B(u, t)f(u) = 0 for allu, v, w, t ∈ J. (6.83)

Now, we can replace w by ww1 in (6.83) and we obtain T (v, w)JB(u, t)f(u) =
0 ∀u, v, w, t ∈ J . Lemma 6.2.2, gives either T (v, w) = 0 for all v, w ∈ J or
B(u, t)f(u) = 0 for all u, t ∈ J . In the �rst case, Lemma 6.2.7 proves that T = 0.
Therefore G = B. On the other hand if B(u, t)f(u) = 0 for all u, t ∈ J , then
replacing t by ut, we have f(u)Jf(u) = (0) for all u ∈ J . By Lemma 6.2.2,
f(u) = 0 for all u ∈ J . Theorem 6.3.2 gives that J ⊆ Z(R) or B = 0. �

Corollary 6.5.5. Let R be a prime ring, charR 6= 2, I a nonzero ideal of R, and
G : R × R → R a symmetric generalized biderivation associated to a symmetric
biderivation B : R × R → R. If G(G(x, x), G(x, x)) − B(B(x, x), B(x, x)) =
B(G(x, x), G(x, x))−G(B(x, x), B(x, x)) for all x ∈ I, then R is commutative or
G = B or G is a left bicentralizer.

Proof. It immediately follows from Theorem 6.5.4 and Lemma 6.2.1. �

The following example shows that the primeness condition in Theorems
6.3.4, 6.3.5, 6.4.1, 6.4.2, and 6.5.3 is not super�uous.

Example 6.5.6. Let Z be the set of integers, and R =

{(
a 0
b 0

)
|a, b ∈ Z

}
.

Now, let's take J =

{(
0 0
b 0

)
, b ∈ Z

}
. It can be easily checked that J is an

ideal (so a Jordan ideal and a subring) of R. We de�ne maps G : R×R→ R and
B : R×R→ R as follows:

B

((
a 0
b 0

)
,

(
c 0
d 0

))
=

(
0 0
ac 0

)
, G

((
a 0
b 0

)
,

(
c 0
d 0

))
=

(
0 0
bd 0

)
.

Then it is easy to check that B is a biderivation, G is a generalized bideriva-
tion associated to B, [G(u, u), u] = 0, G(u, u) ◦ u = 0, B(G(u, u), u) = 0, and
(G(u, u))2 = 0 for all u ∈ J . However, B 6= 0, B 6= G and J * Z(R).
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Chapter 7

Multiplicative (Generalized)-derivations on

Semiprime Rings

7.1 Introduction

The idea of multiplicative derivation was introduced in 1991 by Daif [51] as
follows: A map D : R → R (not necessarily additive) is called a multiplicative
derivation of R if D(xy) = D(x)y + xD(y) for all x, y ∈ R. Daif's work [51] was
motivated by the work of Martindale [81]. Further, the complete description of
those maps were given by Goldmann and �Semrl in [66].

The notion of multiplicative derivation was extended to multiplicative gener-
alized derivation by Daif and Tammam in [53] as follows: A map F : R→ R (not
necessarily additive) is said to be a multiplicative generalized derivation if there
exist a multiplicative derivation D : R → R such that F (xy) = F (x)y + xD(y)
for all x, y ∈ R. Further, Dhara and Ali [56] generalized this de�nition of mul-
tiplicative generalized derivation by considering D as any map on R. So, a
map F : R → R (not necessarily additive) is called multiplicative (generalized)-
derivation if F (xy) = F (x)y + xg(y) holds for all x, y ∈ R, where g : R → R is
any map (not necessarily a derivation nor additive). Hence, the concept of mul-
tiplicative (generalized)-derivation covers the concept of multiplicative derivation.
Moreover, multiplicative (generalized)-derivation with g = 0 covers the notion of
multiplicative centralizer (not necessarily additive).

It is obvious that every generalized derivation is multiplicative (generalized)-
derivation on R. However, the converse does not need to be true in general, as the
following examples show:
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Example 7.1.1. Consider R = C[0, 1], the ring of all continuous real functions
and de�ne maps D : R→ R, as follows:

D(f)(x) = {f(x)log|f(x)| for all f(x)6=0
0, otherwise.

And F : R→ R, as follows,

F (f)(x) = {f(x)(1+log|f(x)|) for all f(x) 6=0
0, otherwise.

It is easy to verify that D, F are not additive maps, D is a multiplicative derivation
and F is a multiplicative (generalized)-derivation associated to D.

Example 7.1.2. Consider the ring R = {
(

0 0 b c
0 0 0 d
0 0 0 0
0 0 0 0

)
|a, b, c ∈ R}. De�ne maps

F : R→ R and D : R→ R as follows:

F (

(
0 0 b c
0 0 0 d
0 0 0 0
0 0 0 0

)
) =

(
0 0 0 bd
0 0 0 0
0 0 0 0
0 0 0 0

)
, and D(

(
0 0 b c
0 0 0 d
0 0 0 0
0 0 0 0

)
) =

(
0 0 0 c2

0 0 0 0
0 0 0 0
0 0 0 0

)
.

It is easy to verify that D, F are not additive maps, D is a multiplicative
derivation and F is a multiplicative (generalized)-derivation associated to D.

Over the last three decades, several authors have proved commutativity theo-
rems for prime or semiprime rings admitting automorphisms or derivations which
are centralizing or commuting on some appropriate subsets of R (see [10], [14],
[16], [37], [123] and [119], where further references can be found).

Let S be a nonempty subset of R. A map F : R → R is called commutativ-
ity preserving on a subset S of R if [x, y] = 0 implies [F (x), F (y)] = 0, for all
x, y ∈ S. The map F is called strong commutativity preserving (simply, SCP) on
S if [x, y] = [F (x), F (y)] for all x, y ∈ S. There is also a growing literature on
strong commutativity preserving (SCP) maps and derivations (for reference see
[23], [38], [105], etc.)

In [6], A. Ali, M. Yasen and M. Anwar showed that if R is a semiprime ring
and f is an endomorphism which is a strong commutativity preserving (simply,
SCP) map on a nonzero ideal U of R, then f is commuting on U . In [117], M. S.
Samman proved that an epimorphism of a semiprime ring is strong commutativity
preserving if and only if it is centralizing. Derivations, as well as SCP maps, have
been extensively studied by researchers in the context of operator algebras, prime
rings and semiprime rings too.

In [52], Daif and Bell proved that if R is a semiprime ring, U is a nonzero ideal
of R and d is a derivation of R such that d([x, y]) = [x, y] for all x, y ∈ U then
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U ⊆ Z. This result was considered for generalized derivations by Quadri et al. in
[115]. It was extended by Shang in [120].

In [10] Argac proved that if R is a semiprime ring and I is a nonzero ideal of R,
then a derivation d of R is commuting on I if one of the following conditions holds:
(i) d([x, y]) = ±[x, y]. (ii) d(x ◦ y) = ±x ◦ y. (iii) [d(x), d(y)] = ±d([x, y]). Here
d([x, y]) = ±[x, y] means that for every pair of elements x, y ∈ R d([x, y]) = [x, y]
(resp. d([x, y]) = ±[x, y]). Similarly in the other conditions. Inspired by this re-
sult, Ashraf et al. [14] have studied the situations when the derivation d is replaced
with a generalized derivation F in the setting of prime ring R. In [16] Ashraf et
al. generalized this result to semiprime case and proved the following result: If
F , G are generalized derivations of R associated to derivations d, g respectively,
and they satisfy one of the following algebraic conditions: (i) F (x)x = xG(x), (ii)
[F (x), d(y)] = [x, y], (iii) F ([x, y]) = [d(x), F (y)], (iv) [F (x), y] = [x,G(y)], (vii)
F ([x, y]) = [F (x), y] + [d(y), x] for all x, y in a nonzero ideal in R, then R contains
a nonzero central ideal.

The purpose of this chapter is to prove some results related to multiplica-
tive (generalized)-derivations on semiprime rings which are of independent in-
terest. In fact, our results extend some known results by replacing a two-sided
ideal I by a left-sided ideal L and a generalized derivation by a multiplicative
(generalized)-derivation in the setting of semiprime rings. Let F,G be multiplica-
tive (generalized)-derivations associated to maps d, g respectively. We will consider
the following algebraic conditions:

i. In section 7.2: [F (x), F (y)] = ±[x, y] (SCP map F ), [F (x), y] = ±[x,G(y)],
[g(x), F (y)] = ±[x, y] and [g(x), y] = ±[x, F (y)] for all x, y ∈ L.

ii. In section 7.3: F (x)y = ±xG(y), F (x)y ± xG(y) ∈ Z(R) and F (xy) =
±F (yx) for all x, y ∈ L.

iii. In section 7.4: F ([x, y]) = ±[x, y] and F (x ◦ y) = ±(x ◦ y) for all x, y ∈ L.

In this line of research, Dhara and Ali in [56] proved the following result:
If F a multiplicative (generalized)-derivation associated to a map g and they
satisfy one of the following algebraic conditions: (i) F (xy) ± xy ∈ Z(R), (ii)
F (x)F (y) ± xy ∈ Z(R) for all x, y in a left ideal L of a semiprime ring R, then
L[g(x), x] = (0) for all x ∈ L.

The following lemmas will be used in our results.

Lemma 7.1.3. [22]. Let R be a 2-torsion free semiprime ring and L a left ideal
of R. If a, b ∈ R and axb+ bxa = 0 for all x ∈ L, then axb = 0 and bxa = 0.
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Lemma 7.1.4. [119, Lemma 2.1]. Let R be a semiprime ring, I a nonzero two-
sided ideal of R. If a ∈ I and axa = 0 for all x ∈ I, then a = 0.

Lemma 7.1.5. [71, Lemma 1.1.8]. If R is a semiprime ring, then the center of a
nonzero one sided ideal of R is contained in the center of R.

Lemma 7.1.6. Let R be a semiprime ring and L a nonzero left ideal of R. If
a ∈ R and ax = 0 for all x ∈ L, then a ∈ CR(L).

Proof. Our assumption is ax = 0 for all x ∈ L. Replacing x by rx, where
r ∈ R, we get arx = 0, that is, xarxa = 0 for all r ∈ R. Semiprimeness of R gives
xa = 0 for all x ∈ L. Therefore, ax = xa for all x ∈ L and hence a ∈ CR(L). �

7.2 SCP multiplicative (generalized)-derivation on

left ideal

Theorem 7.2.1. Let R be a 2-torsion free semiprime ring, L a nonzero left ideal
of R and F : R→ R a multiplicative (generalized)-derivation associated to the map
g. If F (xy) = xF (y) + g(x)y x, y ∈ L and F is SCP on L, then L[g(x), x] = 0 and
L[F (x), x] = 0 for all x ∈ L.

Proof. Since F is SCP on L, thus

[F (x), F (y)] = [x, y] for all x, y ∈ L. (7.1)

Replacing y by yx in (7.1), we get

[F (x), F (y)]x+F (y)[F (x), x]+[F (x), y]g(x)+y[F (x), g(x)] = [x, y]x for allx, y ∈ L.
(7.2)

Multiplying (7.1) to the right by x, we have

[F (x), F (y)]x = [x, y]x for allx, y ∈ L. (7.3)

Combining (7.2) and (7.3), we obtain

F (y)[F (x), x] + [F (x), y]g(x) + y[F (x), g(x)] = 0 for allx, y ∈ L. (7.4)

Now if we substitute y by zy in (7.4) and use (7.4), we get

g(z)y[F (x), x] + [F (x), z]yg(x) = 0 for allx, y, z ∈ L. (7.5)
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Take z = x, we have g(x)y[F (x), x] + [F (x), x]yg(x) = 0 for all x, y ∈ L. Lemma
7.1.3, gives

[F (x), x]yg(x) = 0 for allx, y ∈ L. (7.6)

Since F (x2) = F (x)x+ xg(x) = xF (x) + g(x)x for all x ∈ L, this gives

[F (x), x] = [g(x), x] for all x ∈ L. (7.7)

Using (7.7) in (7.6) we have [g(x), x]yg(x) = 0 for all x ∈ L, that is
L[g(x), x]RL[g(x), x] = 0 for all x ∈ L. Use semiprimeness of R, to get L[g(x), x] =
0 for all x ∈ L. Substitution in (7.7), gives L[F (x), x] = 0 for all x ∈ L.
The case [F (x), F (y)] = −[x, y] for all x, y ∈ L is similar.

Remark 7.2.1. In a similar way, the result can be proved for the case [F (x), F (y)] =
−[x, y] for all x, y ∈ L.

Corollary 7.2.2. Let R be a 2-torsion free semiprime ring and F : R → R a
multiplicative (generalized)-derivation associated to the map g. If F (xy) = xF (y)+
g(x)y for all x, y ∈ R and F is SCP on L or [F (x), F (y)] = −[x, y] for all x, y ∈ R,
then g and F are commuting on R.

Theorem 7.2.3. Let R be a semiprime ring, L a nonzero left ideal of R and F,G
two multiplicative (generalized)-derivations associated to maps d, g respectively. If
[F (x), y] = [x,G(y)] or [F (x), y] = −[x,G(y)] for all x, y ∈ L, then L[d(x), x] = 0
and L[g(x), x] = 0 for all x ∈ L.

Proof. Assume
[F (x), y] = [x,G(y)] for all x, y ∈ L. (7.8)

If we replace in (7.8) x by xy, we get

[F (x), y]y+ [x, y]d(y) + x[d(y), y] = [x,G(y)]y+ x[y,G(y)] for all x, y ∈ L. (7.9)

On the other hand, if we multiply (7.8) to the right by y we get

[F (x), y]y = [x,G(y)]y for allx, y ∈ L. (7.10)

Subtracting (7.10) from (7.9), we obtain

[x, y]d(y) + x[d(y), y] = x[y,G(y)] for allx, y ∈ L. (7.11)

Now if we substitute x by rx in (7.11), we get

r[x, y]d(y) + [r, y]xd(y) + rx[d(y), y] = rx[y,G(y)] for all x, y ∈ L, r ∈ R. (7.12)
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If we multiply (7.11) to the left by r, we obtain

r[x, y]d(y) + rx[d(y), y] = rx[y,G(y)] for all x, y ∈ L, r ∈ R. (7.13)

Form (7.12) and (7.13), we get [r, y]xd(y) = 0. If we replace r by d(y), we have

[d(y), y]xd(y) = 0 for allx, y ∈ L. (7.14)

If we multiply (7.14) to the right by y, we get [d(y), y]xd(y)y = 0. Replacing
x by xy in (7.14), to get [d(y), y]xyd(y) = 0. Subtracting the last two iden-
tities, we obtain [d(y), y]x[d(y), y] = 0. Since L is left ideal, its follows that
L[d(y), y]RL[d(y), y] = 0 for all y ∈ L, use semiprimeness of R, then L[d(y), y] = 0
for all y ∈ L.
On the other hand, if we replace y by yx in (7.8) we have

[F (x), y]x+y[F (x), x] = [x,G(y)]x+y[x, g(x)]+[x, y]g(x) for allx, y ∈ L. (7.15)

Using (7.8) in (7.15) we get

y[F (x), x] = y[x, g(x)] + [x, y]g(x) for all x, y ∈ L. (7.16)

We can follow the same lines as above and conclude that L[g(y), y] = 0 for all
y ∈ L.
The case [F (x), y] = −[x,G(y)] for all x, y ∈ L is similar.

Corollary 7.2.4. Let R be a semiprime ring, I a nonzero two sided ideal and F,G
two multiplicative (generalized)-derivations associated to maps d, g respectively. If
[F (x), y] = [x,G(y)] or [F (x), y] = −[x,G(y)] for all x, y ∈ I, then d, g are
commuting on I.

Proof. By Theorem 7.2.3, we have I[d(y), y] = 0 for all y ∈ I. Multiplying to the
left by [d(y), y] we have [d(y), y]I[d(y), y] = 0. Lemma 7.1.4, gives [d(y), y] = 0 for
all y ∈ I, that is, d is commuting on I. In the same way, we get g is commuting
on I.

Theorem 7.2.5. Let R be a 2-torsion free semiprime ring, L a nonzero left ideal
of R and F : R→ R a multiplicative (generalized)-derivation associated to the map
g. If F (xy) = xF (y) + g(x)y and [g(x), F (y)] = [x, y] or [g(x), F (y)] = −[x, y] for
all x, y ∈ L, then L[g(x), x] = 0 and L[F (x), x] = 0 for all x ∈ L.

Proof. Assume that

[g(x), F (y)] = [x, y] for all x, y ∈ L. (7.17)
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Replacing y by yx in (7.17), to get

[g(x), F (y)]x+ F (y)[g(x), x] + [g(x), y]g(x) = [x, y]x for allx, y ∈ L. (7.18)

Multiplying (7.17) to the right by x, we obtain

[g(x), F (y)]x = [x, y]x for allx, y ∈ L. (7.19)

Combining (7.18) and (7.19) we obtain

F (y)[g(x), x] + [g(x), y]g(x) = 0 for allx, y ∈ L. (7.20)

If we replace y by zy in (7.58), we get

zF (y)[g(x), x]+g(z)y[g(x), x]+z[g(x), y]g(x)+[g(x), z]yg(x) = 0 for allx, y, z ∈ L.
(7.21)

Using (7.58) in (7.21) and take z = x, we get

g(x)y[g(x), x] + [g(x), x]yg(x) = 0 for allx, y ∈ L. (7.22)

Lemma 7.1.3, gives [g(x), x]yg(x) = 0 for all x, y ∈ L, this gives

L[g(x), x]RL[g(x), x] = 0 for all x ∈ L.

Since R is semiprime, we conclude that L[g(x), x] = 0 for all x ∈ L. Since F (x2) =
F (x)x+ xg(x) = xF (x) + g(x)x for all x ∈ L, this gives [F (x), x] = [g(x), x], thus
L[F (x), x] = L[g(x), x] = 0 for all x ∈ L.

The case [g(x), F (y)] = −[x, y] for all x, y ∈ L is similar.

Corollary 7.2.6. Let R be a 2-torsion free semiprime ring and F : R → R a
multiplicative (generalized)-derivation associated to the map g. If F (xy) = xF (y)+
g(x)y and [g(x), F (y)] = [x, y] or [g(x), F (y)] = −[x, y] for all x, y ∈ R, then g
and F are commuting on R.

Theorem 7.2.7. Let R be a semiprime ring, L a nonzero left ideal of R and
F a multiplicative (generalized)-derivation associated to a map g. If [g(x), y] =
[x, F (y)] or [g(x), y] = −[x, F (y)] for all x, y ∈ L, then L[d(x), x] = 0 and
L[F (x), x] = 0 for all x ∈ L.

Proof. Assume that

[g(x), y] = [x, F (y)] for all x, y ∈ L. (7.23)

Replacing y by yx in (7.23), we get

[g(x), y]x+ y[g(x), x] = [x, F (y)]x+ y[x, g(x)] + [x, y]g(x) for allx, y ∈ L. (7.24)
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Multiplying (7.23) to the right by x, we obtain

[g(x), y]x = [x, F (y)]x for allx, y ∈ L. (7.25)

Combining (7.24) and (7.25), we have

2y[g(x), x] = [x, y]g(x) for all x, y ∈ L. (7.26)

Now, we can replace y by zy in (7.26) and using (7.26), we get

[x, z]yg(x) = 0 for allx, y, z ∈ L. (7.27)

We replace z by rz in (7.27) we get

[x, r]zyg(x) = 0 for allx, y, z ∈ Lr ∈ R. (7.28)

Replacing z by g(x)z in (7.28), to get 0 = [x, r]g(x)zyg(x), that is

[x, r]g(x)Rzyg(x) = (0) for all x, y, z ∈ L, r ∈ R.

Interchanging z and y and then subtracting one from the other, we have

[x, r]g(x)R[z, y]g(x) = (0) for all x, y, z ∈ L.

In particular (take r = z and y = x), [x, z]g(x)R[x, z]g(x) = (0) for all x, z ∈ L.
Since R is semiprime, thus

[x, z]g(x) = 0 for allx, z ∈ L. (7.29)

multiplying (7.29) to the right by x, we get [x, z]g(x)x = 0 for all x, z ∈ L.
Replacing z by zx , we get [x, z]xg(x) = 0 for all x, z ∈ L. Subtracting the
last two identities, we get [x, z][g(x), x] = 0 for all x, z ∈ L. Replacing z by
g(x)z in the last identity, we obtain [x, g(x)]z[x, g(x)] = 0 for all x, z ∈ L,
that is L[g(x), x]RL[g(x), x] = (0) for all x ∈ L. Semiprimeness of R, gives
L[g(x), x] = (0) for all x ∈ L. By our assumption we have [x, F (x)] = [g(x), x],
that is L[x, F (x)] = L[g(x), x] = 0 for all x ∈ L.

The case [g(x), y] = −[x, F (y)] for all x, y ∈ L is similar.

Corollary 7.2.8. Let R be a semiprime ring, and F a multiplicative (generalized)-
derivation associated to a map g. If [g(x), y] = [x, F (y)] or [g(x), y] = −[x, F (y)]
for all x, y ∈ R, then F and g are commuting maps on R.
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7.3 The case F (x)y ± xG(y) ∈ Z(R)
Theorem 7.3.1. Let R be a semiprime ring, L a nonzero left ideal of R and F,G
two multiplicative (generalized)-derivations associated to maps d, g respectively.
If F (x)y = xG(y) or F (x)y = −xG(y) for all x, y ∈ L, then Lg(L) = 0 and
G(xy) = G(x)y for all x, y ∈ L. Moreover, if F (xy) = xF (y) + d(x)y for all
x, y ∈ L, then d(R) ⊆ CR(L).

Proof. Assume that
F (x)y = xG(y) for allx, y ∈ L. (7.30)

We can replace y by yz in (7.30) and obtain

F (x)yz = xG(y)z + xyg(z) for all x, y, z ∈ L. (7.31)

Multiplying (7.30) to the right by z, we get

F (x)yz = xG(y)z for allx, y ∈ L. (7.32)

Combining (7.31) and (7.32), we obtain

xyg(z) = 0 for allx, y, z ∈ L, (7.33)

Replacing y by g(z)rx where r ∈ R in (7.33), we have xg(z)rxg(z) = 0 for all
x, z ∈ L, r ∈ R. From the semiprimeness of R its follows that xg(z) = 0 for all
x, z ∈ L, that is Lg(L) = 0. For all x, y ∈ L, we obtain G(xy) = G(x)y + xg(y) =
G(x)y.

On the other hand, replacing x by rx in (7.30) yields

rF (x)y + d(r)xy = rxG(y) for all x, y ∈ L, r ∈ R. (7.34)

Multiplying (7.30) to the left by r we get

rF (x)y = rxG(y) for allx, y ∈ L, r ∈ R. (7.35)

Combining (7.34) and (7.35), we obtain

d(r)xy = 0 for allx, y ∈ L, r ∈ R. (7.36)

Replacing y by sd(r)x where r ∈ R in (7.36), we get d(r)xsd(r)x = 0 for all
x ∈ L, r, s ∈ R. By semiprimeness we get d(r)x = 0 for all x ∈ L, r ∈ R. Lemma
7.1.6, gives d(R) ⊆ CR(L).

The case F (x)y = −xG(y) for all x, y ∈ L is similar.
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Corollary 7.3.2. Let R be a semiprime ring and F and G two multiplicative
(generalized)-derivations associated to maps d, g respectively. If F (x)y = xG(y)
or F (x)y = −xG(y) for all x, y ∈ R, then g = 0 and G(xy) = G(x)y for all
x, y ∈ R. Moreover, if F (xy) = xF (y) + d(x)y for all x, y ∈ R, then d = 0 and
F (xy) = F (x)y for all x, y ∈ R.

Proof. Theorem 7.3.1, gives Rg(R) = 0. By semiprimeness of R, we get g = 0
that is G(xy) = G(x)y for all x, y ∈ R. Similarly, d = 0 that is F (xy) = F (x)y for
all x, y ∈ R.

Theorem 7.3.3. Let R be a semiprime ring, L a nonzero left ideal of R and F,G
two multiplicative (generalized)-derivations associated to maps d, g respectively. If
F (x)y+xG(y) ∈ Z(R) or F (x)y−xG(y) ∈ Z(R) for all x, y ∈ L, then L[g(x), x] =
0 for all x ∈ L. Moreover if F (xy) = xF (y) + d(x)y for all x, y ∈ L, then
L[d(x), x] = 0 for all x ∈ L.

Proof. Assume
F (x)y + xG(y) ∈ Z(R) for all x, y ∈ L. (7.37)

If we substitute y by yz in (7.37), we get

F (x)yz + xG(y)z + xyg(z)

= (F (x)yz + xG(y))z + xyg(z) ∈ Z(R)
for allx, y, z ∈ L. (7.38)

Using (7.37) in (7.38), we obtain

[xyg(z), z] = 0 for allx, y, z ∈ L. (7.39)

Now, we replace x by rx in (7.39), where r ∈ R, to obtain

0 = [rxyg(z), z] = r[xyg(z), z] + [r, z]xyg(z)

= [r, z]xyg(z)
for allx, y, z ∈ L, r ∈ R. (7.40)

Following the same lines that were used in the proof of Theorem 7.2.7, eq. (7.28),
we can prove that L[g(z), z] = 0 for all z ∈ L.

On the other hand, assume that F (xy) = xF (y) + d(x)y for all x, y ∈ L. By
using our hypothesis and replacing x by zx in (7.37), we get

zF (x)y + d(z)xy + zxG(y) = z(F (x)y + xG(y))

+d(z)xy ∈ Z(R)
for allx, y, z ∈ L. (7.41)

Using (7.37) in (7.41) we obtain

[d(z)xy, z] = 0 for allx, y, z ∈ L. (7.42)
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That is
d(z)x[y, z] + [d(z), z]xy = 0 for allx, y, z ∈ L. (7.43)

Replacing y by yt where t ∈ L in (7.43) and using (7.43) we get d(z)xy[t, z] for all
x, y, z, t ∈ L, and hence d(z)LRL[L, z] = (0) for all z ∈ L. Since R is semiprime
and R�Pı is prime. It must contain a family P = {Pı|ı ∈ ∧} of ideals such that
∩Pı = (0) (see [8] for details). If P is any member of P and z ∈ L, it follows that

d(z)L ⊆ P or L[L, z] ⊆ P for all z ∈ L. (7.44)

These two conditions together imply that d(z)L[L, z] ⊆ P for any P ∈ P. There-
fore, d(z)L[L, z] ⊆ ∩ı∈∧Pı = (0) for all z ∈ L, that is d(z)y[x, z] = 0 for all
x, y, z ∈ L. Using the last identity in (7.43), we have

[d(z), z]xy = 0 for allx, y, z ∈ L. (7.45)

Multiplying (7.45) to the right by d(z) we get [d(z), z]xyd(z) = 0. Replacing y by
d(z)y in (7.45) we have [d(z), z]xd(z)y = 0 for all x, y, z ∈ L. From the last two
identities we conclude that [d(z), z]x[d(z), y] = 0 for all x, y ∈ L. In particular,
L[d(z), z]RL[d(z), z] = 0 for all z ∈ L. By semiprimeness we get L[d(z), z] = 0 for
all z ∈ L.

The case F (x)y − xG(y) ∈ Z(R) for all x, y ∈ L is similar.

Corollary 7.3.4. Let R be a semiprime ring, and F : R → R a multiplicative
(generalized)-derivation associated to the map g. If F (x)y + xF (y) ∈ Z(R) or
F (x)y − xF (y) ∈ Z(R) for all x, y ∈ R, then g is commuting on R.

Corollary 7.3.5. Let R be a semiprime ring, I a nonzero ideal of R and F,G
two multiplicative (generalized)-derivations associated to maps d, g respectively. If
F (x)y + xG(y) ∈ Z(R) or F (x)y − xG(y) ∈ Z(R) for all x, y ∈ I, then g is
commuting on I. Moreover, if F (xy) = xF (y) + d(x)y for all x, y ∈ I, then d is
commuting on I.

Proof. Theorem 7.3.3, gives I[d(y), y] = 0 for all y ∈ I, that is [d(y), y]I[d(y), y] =
0. Lemma 7.1.4, gives d is commuting on I. Similarly, g is commuting on I.

Theorem 7.3.6. Let R be a semiprime ring, L a nonzero left ideal of R and
F : R → R a multiplicative (generalized)-derivation associated to a map g. If
F (xy) = F (yx) or F (xy) = −F (yx) for all x, y ∈ L, then L[g(x), x] = 0 for all
x ∈ L.

Proof. Assume that,

F (xy) = F (yx) for allx, y ∈ L. (7.46)
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If we replace x by xy in (7.46), we get

F (xy)y + xyg(y) = F (yx)y + yxg(y) for allx, y ∈ L. (7.47)

Multiplying (7.46) to the right by y, we obtain

F (xy)y = F (yx)y for allx, y ∈ L. (7.48)

Combining (7.47) and (7.48) we obtain

[x, y]g(y) = 0 for allx, y ∈ L. (7.49)

Replacing x by rx where r ∈ R, to get [r, y]xg(y) = 0 for all x, y ∈ L, r ∈ R. It
su�ces to replace r by g(y), to get L[g(y), y]RL[g(y), y] = 0 for all y ∈ L. Use
semiprimeness of R, then L[g(y), y] = 0 for all y ∈ L.

The case F (xy) + F (yx) = 0 for all y ∈ L is similar.

Corollary 7.3.7. Let R be a semiprime ring, and F : R → R a multiplicative
(generalized)-derivation associated to a map g. If F (xy) = F (yx) or F (xy) =
−F (yx) for all x, y ∈ R, then g is commuting on R.

7.4 The case F ([x, y]) = ±[x, y]
Theorem 7.4.1. Let R be a semiprime ring, L a nonzero left ideal of R and
F : R → R a multiplicative (generalized)-derivation associated to a map g. If
F ([x, y]) = [x, y] or F ([x, y]) = −[x, y] for all x, y ∈ L, then L[g(x), x] = 0 for all
x ∈ L.

Proof. Assume that

F ([x, y]) = [x, y] for all x, y ∈ L. (7.50)

Replacing y by yx in (7.50), to get

F ([x, y])x+ [x, y]g(x) = [x, y]x for allx, y ∈ L. (7.51)

Multiplying (7.50) to the right by x, we obtain

F ([x, y])x = [x, y]x for allx, y ∈ L. (7.52)

Combining (7.51) and (7.52), we have

[y, x]g(x) = 0 for allx, y ∈ L. (7.53)

Replacing y by ry where r ∈ R in (7.53), we get [r, x]yg(x) = 0 for all x, y ∈ L, r ∈
R. It su�ces to replace r by g(x), to get L[g(x), x]RL[g(x), x] = 0 for all x ∈ L.
Use semiprimeness of R, then L[g(x), x] = 0 for all x ∈ L.
The case F ([x, y]) = −[x, y] for all x, y ∈ L is similar.
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Corollary 7.4.2. Let R be a semiprime ring and F : R → R a multiplicative
(generalized)-derivation associated to the map g. If F ([x, y]) = [x, y] or F ([x, y]) =
−[x, y] for all x, y ∈ R, then g is commuting on R.

Theorem 7.4.3. Let R be a semiprime ring, L a nonzero left ideal of R and
F : R → R a multiplicative (generalized)-derivation associated to the map g. If
F (x ◦ y) = (x ◦ y) or F (x ◦ y) = −(x ◦ y) for all x, y ∈ L, then L[g(x), x] = 0 for
all x ∈ L.

Proof. Assume that

F (x ◦ y) = (x ◦ y) for all x, y ∈ L. (7.54)

Replacing y by yx in (7.54), to get

F (x ◦ y)x+ (x ◦ y)g(x) = (x ◦ y)x for allx, y ∈ L. (7.55)

Multiplying (7.54) to the right by x, we obtain

F (x ◦ y)x = (x ◦ y)x for allx, y ∈ L. (7.56)

Combining (7.55) and (7.56), we get

(x ◦ y)g(x) = 0 for allx, y ∈ L. (7.57)

Replacing y by yz in (7.57), we have

[x, y]zg(x) = 0 for allx, y, z ∈ L. (7.58)

Replacing y by ry where r ∈ R in (7.58), we get [r, x]yzg(x) = 0 for all x, y, z ∈
L, r ∈ R. Following the same lines that were used in the proof of Theorem 7.3.3,
we can reach L[g(x), x] = 0 for all x ∈ L.

The case F (x ◦ y) = −(x ◦ y) for all x, y ∈ L.

Corollary 7.4.4. Let R be a semiprime ring, and F : R → R a multiplicative
(generalized)-derivation associated to the map g. If F (x◦y) = (x◦y) or F (x◦y) =
−(x ◦ y) for all x, y ∈ R, then g is commuting on R.

7.5 Some Examples

The following example shows that the semiprimeness condition in the previous
Theorems is not super�uous.
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Example 7.5.1. Let Z be the set of integers, and, R = {

 0 a b
0 0 c
0 0 0

 |a, b, c ∈ Z}.
For any 0 6= b ∈ Z,

 0 0 b
0 0 0
0 0 0

R

 0 0 b
0 0 0
0 0 0

 = (0), then R is not a semiprime

ring. We de�ne maps F : R→ R and g : R→ R as follows:

F (

 0 a b
0 0 c
0 0 0

) =

 0 0 b
0 0 0
0 0 0

, and g(

 0 a b
0 0 c
0 0 0

) =

 0 a2 0
0 0 c
0 0 0

 .

Then its easy to check that F is a multiplicative (generalized)-derivation asso-
ciated to the map g. It is straightforward to verify that: F (x)y = yF (x) = 0 for all
x, y ∈ R. So, (i)[F (x), y] = ±[x, F (y)], (ii) F (x)y = xF (y), (iii)F (x)y + xF (y) ∈
Z(R), (iv) F ([x, y]) = [x, y], (v) F (x◦y) = (x◦y) for all x, y ∈ R. However, g 6= 0,
g is not commuting on R, and F (xy) 6= F (x)y.
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An important and active research line in Non-commutative Algebra is the line
known as "Commutative Theorems". The �nal aim in it is to �nd conditions that
guarantee the commutativity of a ring.

This thesis can be placed in this area of work and conditions studied are related
to several types of generalizations of derivations. In a concrete way, conditions have
been applied to prime or semiprime rings.

So in Chapter 2 the notions of l-generalized and r-generalized reverse deriva-
tions have been introduced. These notions extend the one of reverse derivation.
In particular we have proved that the existence of such a map (l-generalized or
r-generalized reverse derivation) in a semiprime ring implies the existence of a
non-zero central ideal. Furthermore, if the ring is 2-torsion free, then the notions
of l-generalized, r-generalized reverse derivations, l-generalized and r-generalized
derivations coincide.

In Chapter 3 we have considered maps on a semiprime ring that are left or right
generalized derivations on a Lie ideal U . In particular we proved that if (F, d) is
a l- and r-generalized derivation and F 2(U) = (0) then d(U) = F (U) = (0) and
d(R), F (R) ⊆ CR(U). On the other side, if (F, d) and (G, g) are right and left
generalized derivations, respectively, and F (u)v = uG(v) for all u, v ∈ U , then
d(U), g(U) ⊆ CR(U).

In Chapter 4 center-like elements have been studied. Di�erent generalized cen-
ters have been de�ned and they have been proved to be all equal to the center of
the ring R when R is prime.

In Chapter 5 the notion of orthogonality has been considered. We have studied,
in particular, the existence of a l-generalized and a r-generalized derivation that
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are orthogonal, �nding necessary and su�cient conditions for their existence. We
have got some consequence of orthogonality on the composition of the maps.

In Chapter 6 we have studied rings having a symmetric generalized biderivation
that satis�es some algebraic conditions on elements of a Jordan ideal J . When the
considered ring R is prime and the biderivation is non-zero then we could conclude
that J ⊆ Z(R).

Finally, in Chapter 7 multiplicative (generalized)-derivations of semiprime rings
have been considered. We have studied some algebraic conditions to derive conse-
quences on the multiplication in the ring.

We believe that some of the studied problems may have sense in a super-rings
context. For instance we can consider the right notion of generalized derivation
and study if their existence may imply supercommutativity. We consider that this
is an interesting line of research that deserves to be explored and that we intend
to consider in a near future.

Posner proved two important theorems in this context:

Th.1 If R is prime, chR 6= 2 and d1, d2 derivations of R. Then d1d2 is not a
derivation.

Th.2 If R is prime and there is a centralizing derivation of R then R is com-
mutative.

M. Mathieu proved that Th.1 implies Th.2 and studied properties of the com-
position of two derivations in a C∗-algebra. He proved that d1d2 is a derivation
only if d1d2 = 0 and that the operator d1d2 is bounded if and only if both d1 and
d2 are bounded.

Bre�sar and Vukman introduced the notion of orthogonality in rings inspired
by Posner's Th.1. They studied orthogonality of derivations in 2-torsion free
semiprime rings deriving some equivalent conditions. In particular Posner Th.1 is
a consequence of those results.

What consequences follow from the orthogonality in a C∗-algebra or in another
normed algebra?

We intend to explore those problems as part of our future work.
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Una importante y activa línea de investigación en Algebra No-commutativa
es la denominada como "Teoremas de Conmutatividad" cuyo objetivo �nal es
encontrar condiciones que garanticen la conmutatividad de un anillo.

La presente tesis se enmarca en este campo de trabajo y, concretamente, se
estudian condiciones de conmutatividad que involucran varios tipos de generaliza-
ciones de derivaciones. Se obtienen resultados para anillos primos y semiprimos.

Así en el capítulo 2 se han introducido las nociones de derivación generalizada
reversa a izquierda y a derecha. En particular hemos probado que la existencia
de una aplicacion de este tipo (a izquierda o a derecha) en un anillo semiprimo
implica la existencia de un ideal central no trivial. Además, si el anillo es libre de
2-torsion, entonces las nociones de derivación generalizada reversa a izquierda, a
derecha, derivación generalizada a izquierda y a derecha coinciden.

En el capítulo 3 hemos considerado aplicaciones sobre un anillo semiprimo que
son derivaciones generalizadas a derecha sobre un ideal de Lie U . Se ha probado,
en particular, que si (F, d) es una derivación generalizada a izquierda (resp. a
derecha) y F 2(U) = (0), entonces d(U) = F (U) = (0) y d(R), F (R) ⊆ CR(U).
Por otro lado, si (F, d) y (G, g) son derivaciones generalizadas a derecha e izqda,
respectivamente, y F (u)v = uG(v) ∀u, v ∈ U , entonces d(U), g(U) ⊆ CR(U).

En el capítulo 4 se han estudiado elementos de "tipo central". Se han de�nido
varios "centros generalizados" y se ha probado que todos ellos coinciden con el
centro en el caso de un anillo primo.

En el capítulo 5 hemos considerado la noción de ortogonalidad ligada, en nues-
tro caso, a una derivación generalizada a izquierda y una derivación generalizada
a derecha. Se han encontrado varias condiciones equivalentes a la ortogonalidad y
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se han obtenido consecuencias en la composición de las aplicaciones.

En el capítulo 6 se han estudiado anillos con una bi-derivación generalizada que
satisface algunas condiciones algebraicas sobre elementos de un ideal de Jordan J .
Cuando el anillo R es primo y la biderivación no es cero, concluimos que J ⊆ Z(R).

Finalmente, en el capítulo 7 se han considerado las derivaciones multiplicati-
vas generalizadas de anillos semiprimos. Se estudian condiciones algebraicas que
implican consecuencias en la multiplicación en el anillo.

Creemos que algunos de los problemas estudiados pueden tener sentido en el
contexto de superanillos. Asi, por ejemplo, parece natural buscar la noción ade-
cuada de (super) derivación generalizada y estudiar en que situaciones su existencia
puede implicar (super) conmutatividad. Consideramos que ésta es una línea de
investigación que merece ser explorada a corto plazo.

Posner probó dos importantes resultado en este contexto:

Teorema 1. Si R es primo, chR 6= 2 y d1,d2 son derivaciones no nulas de R,
entonces d1d2 no es derivación.

Teorema 2. Si R es primo y existe una derivación de R que es "centrali-
zadora", entonces R es conmutativo.

M. Mathieu probó que el teorema 1 implica el teorema 2 y estudió propiedades
de la composición de dos derivaciones en una C∗-álgebra. Probó que d1d2 es una
derivación sólo si d1d2 = 0 y que el operador d1d2 es acotado si y sólo si tanto d1
como d2 son acotadas. Es decir, el teorema 1 de Posner sigue siendo válido en una
C∗-álgebra.

Bre�sar y Vukman introdujeron la noción de ortogonalidad de derivaciones en
anillos inspirados en el teorema 1 de Posner. Estudiaron dicha ortogonalidad en
anillos semiprimos libres de 2-torsión encontrando varias condiciones equivalentes.
En particular el teorema 1 de Posner es una consecuencia de estos resultados.

¾Qué consecuencias se siguen de la ortogonalidad de derivaciones generalizadas
en una C∗-álgebra o en otra álgebra normada?

Intentamos explorar estos problemas como parte de nuestro trabajo futuro.
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Abstract: We generalize the notion of reverse derivation by introducing generalized reverse derivations.
We define an l-generalized reverse derivation (r-generalized reverse derivation) as an additive mapping
F : R → R, satisfying F (xy) = F (y)x + yd(x) (F (xy) = d(y)x + yF (x)) for all x, y ∈ R, where d
is a reverse derivation of R. We study the relationship between generalized reverse derivations and
generalized derivations on an ideal in a semiprime ring. We prove that if F is an l-generalized reverse
(or r-generalized) derivation on a semiprime ring R, then R has a nonzero central ideal.
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1. Introduction

Throughout this paper R denotes an associative ring with center Z(R). If I is a subset of R,
then CR(I) denotes the centralizer of I which is defined by

CR(I) = {x ∈ R | xa = ax for all a ∈ I}.
Recall that R is prime if aRb = (0) implies that a = 0 or b = 0. The ring R is semiprime if aRa = 0
implies a = 0 (obviously, every prime ring is semiprime). As usual, [x, y] denotes the commutator xy−yx.
We will make extensive use of the basic commutator identities [xy, z] = x[y, z] + [x, z]y and [x, yz] =
y[x, z] + [x, y]z. An additive mapping d from R into itself is called a derivation if d(xy) = d(x)y + xd(y)
for all x, y ∈ R. Given a ∈ R, the additive mapping d : R → R defined by d(x) = [x, a] for all x ∈ R is
a derivation called the inner derivation of R determined by a.
The notion of reverse derivation arose in one early paper of Herstein [1], when he studied Jordan

derivations on prime associative rings. The notion of reverse derivation has relations with some general-
izations of derivations. A reverse derivation is an additive mapping d from a ring R into itself satisfying
d(xy) = d(y)x+yd(x) for all x, y ∈ R. So, each reverse derivation is a Jordan derivation (but the converse
is not true in general). In the anticommutative case each reverse derivation is an antiderivation, and each
antiderivation is a reverse derivation. The reverse derivations in the case of prime Lie and prime Malcev
algebras were studied by Hopkins and Filippov. Those papers provided some examples of nonzero reverse
derivations for the simple 3-dimensional Lie algebra sl2 (see [2]) and characterized the prime Lie algebras
admitting a nonzero reverse derivation (see [3, 4]). In particular, Filippov proved that each prime Lie
algebra, admitting nonzero reverse derivation is a PI-algebra. Filippov also described all reverse deriva-
tions of prime Malcev algebras [5]. The supercase of reverse derivations (antisuperderivations) of simple
Lie superalgebras was studied by Kaygorodov in [6] and [7]. He proved that every reverse superderivation
of a simple finite-dimensional Lie superalgebra over an algebraically closed field of characteristic zero is
the zero mapping. After that, Kaygorodov proved that every r-generalized reverse (or l-generalized)
derivation of a simple (non-Lie) Malcev algebra is the zero mapping (see [8]).

The first author was supported by the Erasmus Mundus Programme for the financial support of the PhD
MEDASTAR Program (Grant 2011–4051/002–001–EMA2). The second author was partially supported by Project
MTM2010–18370–C04–01.
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In [1], Herstein showed that if R is a prime ring, and d is a nonzero reverse derivation of R, then R is
a commutative integral domain and d is a derivation. Later Samman and Alyamani extended the result
by Herstein to semiprime rings in [9], proving that if R is a semiprime ring then a reverse derivation is
just a derivation from R to its center.
The generalized derivations were defined by Brešar [10] in 1991. An additive mapping f : R→ R is

called a generalized derivation if there exists a derivation d : R → R such that f(xy) = f(x)y + xd(y)
for all x, y ∈ R. The concept of generalized derivation includes both the concept of derivation and that
of left multiplier (when d = 0). Gölbasi and Kaya [11] distinguish between the l-generalized derivation
associated to a derivation d (Brešar generalized derivations) and the r-generalized derivations associated
to d, the additive mappings F : R→ R satisfying F (xy) = d(x)y + xF (y) for all x, y ∈ R.
In this paper we extend the notion of reverse derivation to that of generalized reverse derivation.

Let R be a ring and let d be a reverse derivation of R. An additive mapping F : R → R is said to be
an l-generalized reverse derivation of R associated with d if

F (xy) = F (y)x+ yd(x) for all x, y ∈ R.
F is said to be an r-generalized reverse derivation associated with d if

F (xy) = d(y)x+ yF (x) for all x, y ∈ R.
The main purpose of this paper is to extend the above results to generalized reverse derivations. If R is
a semiprime ring, I is an ideal of R, and F : I → R is an l-generalized reverse derivation (r-generalized
reverse derivation), then we will show that F is an r-generalized derivation (l-generalized derivation) and
applies I into CR(I). In particular, R has a nonzero central ideal.
Generalized Jordan derivations are considered in [12]. A generalized Jordan derivation of a ring R

is a mapping f : R→ R that satisfies f(x2) = f(x)x+ xd(x) for all x ∈ R for some Jordan derivation d
of R. In Theorem 2.7 the authors of [12] proved that each generalized Jordan derivation of a 2-torsion-
free semiprime ring R is a generalized derivation. Clearly, the notion of r-generalized Jordan derivation
can also be considered. An r-generalized Jordan derivation is a mapping g : R → R that satisfies
g(x2) = d(x)x + xg(x) with d a Jordan derivation of R. The proof of Theorem 2.7 in [12] can be
adapted to prove the same result for an r-generalized Jordan derivation; i.e., each r-generalized Jordan
derivation of a 2-torsion-free semiprime ring R is an r-generalized derivation. Using this extended version
of Theorem 2.7 we will prove in the paper that, in the case of 2-torsion-free semiprime rings, the notions
of r-generalized reverse, l-generalized reverse, r-generalized, and l-generalized derivations coincide.

2. Preliminaries and Examples

The following lemmas will be widely used in our results.

Lemma 2.1 [13, Theorem 3]. Let R be a semiprime ring and let I be a nonzero left ideal. If R
admits a nonzero derivation d centralizing on I, then R has a nonzero central ideal.

Lemma 2.2 [12, Theorem 2.7]. Let R be a 2-torsion-free semiprime ring. Then each generalized
Jordan derivation on R is a generalized derivation (left or right).

The following fact is well known (see [13, Fact IV]).

Proposition 2.3. In a prime ring, the centralizer of each nonzero one-sided ideal is equal to the
center of R. In particular, if R has a nonzero central ideal, then R is commutative.

The examples explore the possible relationships between l-generalized reverse derivations, r-gener-
alized reverse derivations, l-generalized derivations, and r-generalized derivations.

Example 1. Let S be a ring and

R =

{(
0 a b
0 0 c
0 0 0

)
|a, b, c ∈ S

}
.
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Hence R is a ring. Let us define the mappings F : R→ R and d : R→ R as follows:

F

((
0 a b
0 0 c
0 0 0

))
=

(
0 0 a
0 0 0
0 0 0

)
; d

((
0 a b
0 0 c
0 0 0

))
=

(
0 0 a− c
0 0 0
0 0 0

)
.

It is easy to check that d is both a reverse derivation and a derivation, F is an l-generalized reverse
derivation and an r-generalized reverse derivation associated with d. F is also an l-generalized derivation
and an r-generalized derivation associated with d.

Remark. A mapping F can be an l-generalized (r-generalized) (reverse) derivation with respect to
two different reverse derivations. Indeed, in Example 1 F is an l-generalized (r-generalized) (reverse)
derivation with respect to F and d. But if the ring R is semiprime, then the reverse derivation associated
to an l-generalized (r-generalized) (reverse) derivation is unique.

Example 2. Consider the ring R as in Example 1. Define the mappings F : R→ R and d : R→ R
as follows:

F

((
0 a b
0 0 c
0 0 0

))
=

(
0 0 −b
0 0 0
0 0 0

)
, d

((
0 a b
0 0 c
0 0 0

))
=

(
0 a c− a
0 0 −c
0 0 0

)
.

It is easy to check that d is a derivation and a reverse derivation and F is an l-generalized derivation
with respect to d. But F is not an r-generalized derivation with respect to d. Furthermore, F is neither
an l-generalized reverse derivation nor an r-generalized reverse derivation with respect to d.

The next two examples will show that an l-generalized reverse derivation (r-generalized reverse
derivation) with respect to a reverse derivation d that is also a derivation is not necessarily an r-generalized
derivation (l-generalized derivation) with respect to d.

Example 3. Consider the ring

R =

⎧⎪⎨
⎪⎩
⎛
⎜⎝
0 a b c
0 0 0 d
0 0 0 e
0 0 0 0

⎞
⎟⎠ |a, b, c, d, e ∈ R

⎫⎪⎬
⎪⎭ ,

where R is the set of all real numbers. Define the mappings F : R→ R and d : R→ R as follows:

F

⎛
⎜⎝
⎛
⎜⎝
0 a b c
0 0 0 d
0 0 0 e
0 0 0 0

⎞
⎟⎠
⎞
⎟⎠ =

⎛
⎜⎝
0 0 0 b+ e
0 0 0 0
0 0 0 e
0 0 0 0

⎞
⎟⎠

and

d

⎛
⎜⎝
⎛
⎜⎝
0 a b c
0 0 0 d
0 0 0 e
0 0 0 0

⎞
⎟⎠
⎞
⎟⎠ =

⎛
⎜⎝
0 0 0 b− d
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠ .

Then d is a derivation and a reverse derivation, and F is an l-generalized reverse derivation associated
with d, but not an r-generalized derivation associated to d.

Example 4. Consider the ring R as in Example 3. Define the mappings F : R→ R and d : R→ R
as follows:

F

⎛
⎜⎝
⎛
⎜⎝
0 a b c
0 0 0 d
0 0 0 e
0 0 0 0

⎞
⎟⎠
⎞
⎟⎠ =

⎛
⎜⎝
0 0 b 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠
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and

d

⎛
⎜⎝
⎛
⎜⎝
0 a b c
0 0 0 d
0 0 0 e
0 0 0 0

⎞
⎟⎠
⎞
⎟⎠ =

⎛
⎜⎝
0 0 0 b− d
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠ .

It is easy to verify that F is an r-generalized reverse derivation associated with d, but not an l-generalized
derivation associated to d.

3. Generalized Reverse Derivations on Ideals in Semiprime Rings

Theorem 3.1. Let R be a semiprime ring and let I be a nonzero ideal of R. There exists F : I → R,
an l-generalized reverse derivation associated with a nonzero reverse derivation d on I, if and only if
d(I), F (I) ⊆ CR(I), d is a derivation on I, and F is an r-generalized derivation with respect to d on I.
Proof. Assume that F is an l-generalized reverse derivation on I. Then

F (u2v) = F (v)u2 + vd(u2) = F (v)u2 + v(d(u)u+ ud(u)) for all u, v ∈ I,
and so

F (u2v) = F (v)u2 + vd(u)u+ vud(u) for all u, v ∈ I. (3.1)

Moreover,

F (u(uv)) = F (uv)u+ uvd(u) = (F (v)u+ vd(u))u+ uvd(u) for all u, v ∈ I.
Hence,

F (u(uv)) = F (v)u2 + vd(u)u+ uvd(u) for all u, v ∈ I. (3.2)

From (3.1) and (3.2) we get
[u, v]d(u) = 0 for all u, v ∈ I. (3.3)

Replacing v by rv in (3.3) and using (3.3) we have

[u, r]vd(u) = 0 for all u, v ∈ I and r ∈ R. (3.4)

Replacing v by d(u)s[u, r] in (3.4) yields

[u, r]d(u)s[u, r]d(u) = 0 for all u ∈ I and r, s ∈ R. (3.5)

Since R is semiprime, by (3.5) we get

[u, r]d(u) = 0 for all u ∈ I and r ∈ R. (3.6)

The linearization of (3.6) leads to

[w, r]d(u) + [u, r]d(w) = 0 for all u,w ∈ I and r ∈ R.
Thus,

[w, r]d(u) = −[u, r]d(w) for all u,w ∈ I and r ∈ R. (3.7)

Replacing v by d(w)s[w, r] in (3.4) and using (3.7) we get

0 = [u, r]d(w)s[w, r]d(u) = −[u, r]d(w)s[u, r]d(w) for all u,w ∈ I and r, s ∈ R;
i.e.,

[u, r]d(w)R[u, r]d(w) = (0) for all u,w ∈ I and r ∈ R. (3.8)
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Since R is semiprime; therefore,

[u, r]d(w) = 0 for all u,w ∈ I and r ∈ R. (3.9)

Replacing r by rt in (3.9) we have

[u, r]td(w) = 0 for all u,w ∈ I and r, t ∈ R. (3.10)

If we put r = d(w) and replace t by tu in (3.10) then

[u, d(w)]tud(w) = 0 for all w, u ∈ I and t ∈ R.

If we multiply to the right (3.10) by u, then [u, d(w)]td(w)u = 0. Subtracting the last two relations, we
get [u, d(w)]R[u, d(w)] = (0) for all w, u ∈ I. From the semiprimeness of R it follows that [u, d(w)] = 0
for all w, u ∈ I; i.e., d(I) ⊆ CR(I). Thus,

d(xy) = d(y)x+ yd(x) = d(x)y + xd(y) for all x, y ∈ I,

what proves that d is a derivation on I. On the other hand, since F is an l-generalized reverse derivation,
we have

F (uv2) = F (v2)u+ v2d(u) = (F (v)v + vd(v))u+ v2d(u) for all u, v ∈ I,
and so

F (uv2) = F (v)vu+ vd(v)u+ v2d(u) for all u, v ∈ I. (3.11)

Moreover,

F ((uv)v) = F (v)uv + vd(uv) = F (v)uv + v(d(v)u+ vd(u)) for all u, v ∈ I,

F ((uv)v) = F (v)uv + vd(v)u+ v2d(u) for all u, v ∈ I. (3.12)

Combining (3.11) and (3.12), we get

F (v)[u, v] = 0 for all u, v ∈ I. (3.13)

Using the same techniques as above we get that F (I) ⊆ CR(I). Hence,

F (xy) = F (y)x+ yd(x) = xF (y) + d(x)y for all x, y ∈ I,

and F is an r-generalized derivation with respect to d. The converse is trivial.

Theorem 3.2. Let R be a semiprime ring and let I be a nonzero ideal of R. There exists F : I → R,
an r-generalized reverse derivation associated with a nonzero reverse derivation d on I, if and only if
d(I), F (I) ⊆ CR(I), d is a derivation on I, and F is an l-generalized derivation with respect to d on I.
Proof. This follows along the lines of Theorem 3.1.

Corollary 3.3. Let R be a semiprime ring. If there is F : R→ R, an l-generalized (or r-generalized)
reverse derivation associated with a nonzero reverse derivation d on R; then R has a nonzero central ideal.

Proof. By Theorem 3.1 (or Theorem 3.2), we have d(R) ⊆ Z(R), that is [d(x), y] = 0 for all
x, y ∈ R. Then d is centralizing on R. By Lemma 2.1 (with I = R), R has a nonzero central ideal.
The corollary gives the relationship between l-generalized reverse derivations and l-generalized deriva-

tions.
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Corollary 3.4. Let R be a 2-torsion-free semiprime ring. If there exists F : R→ R, an l-generalized
(r-generalized) reverse derivation associated with a nonzero reverse derivation d of R; then F is an r-
generalized (l-generalized) reverse derivation with respect to d. Furthermore, d is a derivation and F is
an l-generalized (r-generalized) derivation related to d.

Proof. Let F be an l-generalized reverse derivation. Then by Theorem 3.1 d is a derivation,
F (I), d(I) ⊆ CR(I). By hypotheses, F (xy) = F (y)x + yd(x) for all x, y ∈ R. Putting y = x, we have
F (x2) = F (x)x + xd(x) for all x ∈ R, and so F is a generalized Jordan derivation on R. By using
Lemma 2.2, F is an l-generalized derivation on R. Using the converse of Theorem 3.2, we know that F
is an r-generalized reverse derivation on R. The case of an r-generalized reverse derivation follows the
same lines.

Corollary 3.5. A mapping d : I → R is a reverse derivation, where I is a two-sided ideal of
a semiprime ring R, if and only if d is a derivation centralizing on I: d(I) ⊆ CR(I).
Definition 3.6. A mapping F is a generalized reverse derivation, if it is an l- and r-generalized

reverse derivation.

From Theorems 3.1 and 3.2 we have

Corollary 3.7. A mapping F on a semiprime ring R is a generalized reverse derivation if and only
if F is a central generalized derivation.

Corollary 3.8. Let R be a prime ring and let I be a nonzero ideal of R. If there exists F : I → I,
an l-generalized (r-generalized) reverse derivation on I associated with a nonzero reverse derivation
d : I → I; then R is commutative.
Proof. Using Corollary 3.3, we know that I (which is clearly prime too) has a nonzero central ideal.

By Proposition 2.3, I is a commutative ring. But Proposition 2.3 implies that I ⊆ CR(I) = Z(R), and
so I is a nonzero central ideal of R and R is commutative.

The example shows that the semiprimeness condition for the ring R is not superfluous.

Example 5. Consider the ring R in Example 3, and let

I =

⎧⎪⎨
⎪⎩
⎛
⎜⎝
0 a b c
0 0 0 −b
0 0 0 −a
0 0 0 0

⎞
⎟⎠ | a, b, c ∈ R

⎫⎪⎬
⎪⎭

be an ideal of R. Define F : R→ R and d : R→ R as follows:

F

⎛
⎜⎝
⎛
⎜⎝
0 a b c
0 0 0 −b
0 0 0 −a
0 0 0 0

⎞
⎟⎠
⎞
⎟⎠ =

⎛
⎜⎝
0 0 0 −c
0 0 0 b
0 0 0 a
0 0 0 0

⎞
⎟⎠ ,

d

⎛
⎜⎝
⎛
⎜⎝
0 a b c
0 0 0 −b
0 0 0 −a
0 0 0 0

⎞
⎟⎠
⎞
⎟⎠ =

⎛
⎜⎝
0 0 0 c
0 0 0 −b
0 0 0 −a
0 0 0 0

⎞
⎟⎠ .

Then it is easy to see that d is a nonzero reverse derivation and a derivation on I, while F is an r-
generalized reverse derivation on I, but not an l-generalized derivation, and d(I), F (I) � CR(I).

Acknowledgment. The authors are very thankful to the referee for the valuable comments, specially
those concerning to the reverse derivations in the anticommutative case which have been included in
improving the presentation of this paper.
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1 Introduction

Throughout this paper R denotes an associative ring (that is not assumed to be com-
mutative) and Z(R) its center. If A is a subset of R, CR(A) denotes the centralizer
of A, that is defined by CR(A) = {x ∈ R | xa = ax for all a ∈ A}. Recall that R
is prime if aRb = (0) implies that a = 0 or b = 0 and R is semiprime if aRa = 0
implies a = 0. A ring R (resp. a subsetU of R) is said to be reduced if it has no nilpo-
tent elements, or, equivalently, if a2 = 0 implies that a = 0 [see, Lam (1991)]. An
additive subgroupU of R is said to be a Lie ideal of R if [U, R] ⊆ U where, as usual,
[x, y] = xy−yx . A Lie ideal is said to be square-closed if u2 ∈ U for all u ∈ U , which
implies that 2uv ∈ U for all u, v ∈ R. Indeed (u+ v)2 = u2 + v2 +uv + vu ∈ U and
[u, v] = uv − vu ∈ U so 2uv ∈ U , (but we do not know if given u, v ∈ U, uv ∈ U ).
Notice that if U is a Lie ideal of R, and u ∈ U , then [u, r ]u ∈ U and u[u, r ] ∈ U for
all r ∈ R. An additive map d : R → R is a derivation if d(xy) = d(x)y + xd(y),
for all x, y ∈ R. For a fixed t ∈ R, the map dt : R → R given by dt (x) = [t, x] is a
derivation which is called an inner derivation.

Following Bresar (1991), an additive mapping F : R → R is called a generalized
derivation if there exists a derivation d : R → R such that F(xy) = F(x)y + xd(y)
for all x, y ∈ R. The concept of generalized derivations includes both the concept of
derivation and the concept of left multiplier (i.e., an additive mapping F : R → R
satisfying F(xy) = F(x)y for all x, y ∈ R). In Golbasi and Kaya (2006), Gölbaşi
and Kaya introduced the notion of a right generalized derivation and a left generalized
derivation. Precisely, an additive mapping F : R → R is called a right generalized
derivation associated with a derivation d if F(xy) = F(x)y+ xd(y) for all x, y ∈ R.
An additive mapping F : R → R is called a left generalized derivation associated
with a derivation d if F(xy) = d(x)y + xF(y) for all x, y ∈ R. Of course in case of
commutative rings both concepts coincide. In Posner (1957), Posner proved that if R
is a prime ring with characteristic different from 2 and d1d2, the composition of two
derivations d1 and d2, is a derivation, then at least one of themmust be zero. Further, he
proved that if a prime ring R admits a nonzero derivation d such that ad(a)−d(a)a ∈
Z(R) for all a ∈ R, then R is commutative. This result is no longer true for semiprime
rings. That’s why Breŝar and Vukman introduced the notion of orthogonal derivations,
and proved that in a semiprime 2-torsion free ring R two derivations d1 and d2 are
orthogonal if and only if d1d2 is a derivation. In particular, d2 = 0 implies d = 0. The
result of Breŝar and Vukman is still true assuming only orthogonality over a nonzero
ideal I of R. In [9], Herstein considered semiprime 2-torsion free rings and proved
that d2t (U ) = (0) for a Lie idealU of R implies dt (U ) = (0). Carina (1985) extended
the above mentioned result to arbitrary derivations d and proved that d2(U ) = (0)
implies d(U ) ⊆ Z(R).

Coming back to prime rings R, charR �= 2, it was proved in Lee and Lee (1983) that
if 0 �= d ∈ Der(R) satisfies d(R) ⊆ Z(R), then R is commutative. If d2(U ) ⊆ Z(R),
thenU ⊆ Z(R), whereU is a nonzero Lie ideal of R. The same result is still true if we
consider a generalized derivation instead of a derivation, as it was proved by Dalgin
(2010) and Golbasi and Koç (2011) proved that if (F, d), (G, g) are, respectively, left
and right generalized derivations of R satisfying F(u)v = uG(v) for all u, v ∈ U ,
where U is a Lie ideal of R, then U ⊆ Z(R).
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The aim of this paper is to extend the results mentioned above for semiprime rings
and generalized derivations. We will prove for a semiprime 2-torsion free ring R, a
noncentral Lie idealU of R and (F, d) a left generalized derivation that F2(U ) = (0)
implies d3(U ) = (0), and (d2(U ))2 = 0. Furthermore, if F(uv) = uF(v) + d(u)v

for all u, v ∈ U , then d(U ) = F(U ) = (0), d(R), F(R) ⊆ CR(U ). If (F, d), (G, g)
are, respectively, left and right generalized derivations that satisfy G(u)v = uF(v)

for all u, v ∈ U , then d(U ), g(U ) ⊆ CR(U ).
These results extends and unify some previous results by Herstein (1970), Carina

(1985), Lee and Lee (1981), Golbasi and Koç (2011), and Dalgin (2010).

2 Preliminaries

In what follows R denotes a ring (associative but not necessarily commutative) and Q
its Martindale quotient ring. The center C of Q is called the extended centroid of R
(see Herstein (1976) and Martindale (1969) for details).

We will use the following lemmas in our results.

Lemma 2.1 [Motoshi (2011), Corollary 2.1] Let R be a semiprime 2-torsion free ring,
U a Lie ideal of R, U � Z(R), and a, b ∈ U. Then

(1) If aUa = (0), then a = 0.
(2) If aU = (0) (or Ua = (0) ), then a = 0.
(3) If U is square-closed and aUb = 0, then ab = 0 and ba = 0.

Lemma 2.2 [Carina (1985), Lemma 1] Let R be a semiprime 2-torsion free ring with
a derivation d and U a Lie ideal of R. If d2(U ) = 0, then d(U ) ⊆ Z(R).

Lemma 2.3 [Bergen et al. (1981), Lemma 2] Let R be a prime ring and U a Lie ideal
of R. If U � Z(R), then CR(U ) = Z(R).

Lemma 2.4 [Ali and Shujat (2012), Lemma 3] Let R be a semiprime 2-torsion free
ring and I a nonzero ideal of R. If d is a nonzero derivation of R such that I d2(I ) =
(0), then I ⊆ Z(R).

Lemma 2.5 [Bergen et al. (1981), Lemmas 6 and 11] Let R be a prime ring with
charR �= 2, d a nonzero derivation of R and U a Lie ideal of R.

(i) If d(U ) ⊆ Z(R), then U ⊆ Z(R).
(ii) If d3(U ) = (0), then d3 = (0).

Lemma 2.6 [Beidar et al. (1996), Theorem 2.3.2] Let R be a semiprime ring, Q =
Qmr (R), RUR ⊆ RQR a subbimodule of Q and f : RUR → RQR a homomorphism
of bimodules. Then there exists an element λ ∈ C such that f (u) = λu for all u ∈ U.

Lemma 2.7 Let R be a semiprime ring, U a Lie ideal of R, U � Z(R). If a ∈ R
satisfies a[x, r ] = 0 (resp. [x, r ]a = 0) for every element x ∈ U, r ∈ R, then
a ∈ CR(U ).

123

Author's personal copy



844 Beitr Algebra Geom (2016) 57:841–850

Proof By assumption, for all x ∈ U, r ∈ R, we have

a[x, r ] = 0. (2.1)

If we substitute r by ra in (2.1) we get

0 = a[x, ra] = ar [x, a] + a[x, r ]a = ar [x, a]. (2.2)

If we substitute r by xr in (2.2) we get axr [x, a] = 0. Multiplying (2.2) by x to the
left we get xar [x, a] = 0. Then [x, a]R[x, a] = (0) for all x ∈ U . It follows from
semiprimeness of R that [x, a] = 0, that is, a ∈ CR(U ). ��

3 Main results

Now we can prove the main results of this paper.

Theorem 3.1 Let R be a semiprime 2-torsion free ring, U a noncentral square-closed
Lie ideal of R and F a right generalized derivation associated with a derivation d.
If F2(U ) = (0) and F(U ), d(U ) ⊆ U, then d3(U ) = (0) and (d2(U ))2 = (0).
Moreover, if F(uv) = uF(v) + d(u)v for all u, v ∈ U (that is, F is also a left
generalized derivation onU), then d(U ) = 0, F(U ) = 0, and d(R), F(R) ⊆ CR(U ).

Proof By assumption we have

F2(u) = (0) for all u ∈ U. (3.1)

If we replace u by 2uv in (3.1), we get

2F(F(u)v + ud(v)) = 2(F2(u)v + F(u)d(v) + F(u)d(v) + ud2(v)) = 0
for all u, v ∈ U.

(3.2)

By (3.1), and using that R is 2-torsion free it follows that

2F(u)d(v) + ud2(v) = 0 for all u, v ∈ U. (3.3)

We can replace u by F(u) in (3.3) and obtain

2F2(u)d(v) + F(u)d2(v) = 0 for all u, v ∈ U. (3.4)

Now, using (3.1) we have

F(u)d2(v) = 0 for all u, v ∈ U. (3.5)

Replacing v by d(v) in (3.3) we have

2F(u)d2(v) + ud3(v) = 0 for all u, v ∈ U. (3.6)
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From (3.5) and (3.6), it follows that ud3(v) = 0, for all u, v ∈ U , that isUd3(v) =
(0). Since d3(v) ∈ U , Lemma 2.1, gives that d3(U ) = (0).
On the other hand, if we replace u by 2ud2(w) in (3.3) we obtain

2(2F(u)d2(w)d(v) + 2ud3(w)d(v) + ud2(w)d2(v)) = 0 for all u, v, w ∈ U.

(3.7)

Using (3.5), and the fact that d3(U ) = (0) in (3.7), we get ud2(w)d2(v) = 0 for
all u, v, w ∈ U , that is U (2d2(w)d2(v)) = (0), and again Lemma 2.1, says that

d2(w)d2(v) = 0 for all v,w ∈ U. (3.8)

In particular (d2(v))2 = 0 for all v ∈ U , that is (d2(U ))2 = (0).
Now, let’s assume that F(uv) = uF(v) + d(u)v for all u, v ∈ U . We replace u by
2wu in (3.3) to get

2wF(u)d(v) + 2d(w)ud(v) + wud2(v) = 0 for all u, v, w ∈ U. (3.9)

By the other side, multiplying (3.3) to the left by w we have

2wF(u)d(v) + wud2(v) = 0 for all u, v, w ∈ U. (3.10)

Thus,

d(w)ud(v) = 0 for all u, v, w ∈ U. (3.11)

In particular d(v)Ud(v) = (0) for all v ∈ U . Again Lemma 2.1, gives d(U ) = (0).
Thus d([u, r ]) = 0 for all u ∈ U, r ∈ R, that is [d(u), r ] + [u, d(r)] = 0. Thus
[u, d(r)] = 0 for all u ∈ U, r ∈ R. Hence d(R) ⊆ CR(U ). On the other hand,
d(U ) = (0), implies F(uv) = F(u)v = uF(v) for all u, v ∈ U . Thus,

0 = F(F(uv − vu)) = F(F(u)v − vF(u)) = F2(u)v − F(v)F(u) for all u, v ∈ U.

(3.12)

Since we are assuming that F2(U ) = (0), then F(u)F(v) = 0 for all u, v ∈ U . It
suffices to replace u by 2vw, to get F(v)UF(v) = (0). Hence F(U ) = (0) again by
Lemma 2.1 . In particular 0 = F(ur − ru) = −F(r)u + ud(r) = (−F(r) + d(r))u
for all u ∈ U, r ∈ R since d(r) ∈ CR(U ) as was proved above. Let us define
G(r) = F(r) − d(r). Thus

G(r)u = 0 for all u ∈ U, r ∈ R. (3.13)

If we multiply (3.13) to the left by v and substitute u by 2vu, we get vG(r)u = 0,
G(r)vu = 0. Hence [G(r), v]u = 0 for all u, v ∈ U, r ∈ R, and again by Lemma
2.1, we conclude that [G(r), v] = 0, that is 0 = [F(r) − d(r), v] = [F(r), v] for all
v ∈ U, r ∈ R. Thus F(R) ⊆ CR(U ). ��
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The following four results follow immediately from Theorem 3.1.

Corollary 3.2 Let R be a semiprime 2-torsion free ring, U a noncentral square-
closed reduced Lie ideal of R and F a right generalized derivation associated with a
derivation d. If F2(U ) = (0) and F(U ), d(U ) ⊆ U, then d(U ) ⊆ Z(R).

Proof By Theorem 3.1, we have (d2(U ))2 = (0). Since U is reduced (that is, u2 = 0
implies u = 0), then d2(U ) = (0). Lemma 2.2 gives that d(U ) ⊆ Z(R). ��
Corollary 3.3 Let R be a semiprime 2-torsion free ring, I a nonzero reduced ideal of
R and F a right generalized derivation associated with a derivation d. If F2(I ) = (0)
and F(I ), d(I ) ⊆ I , then d(I ) = 0 and I ⊆ Z(R).

Proof ByTheorem3.1,we have (d2(I ))2 = (0). Since R is reduced, thend2(I ) = (0).
Lemma 2.4 gives that I ⊆ Z(R). On the other hand, 0 = d2(y2) = d(d(y)y +
yd(y)) = 2(d(y))2 for all y ∈ I . So we get d(I ) = 0. ��
Corollary 3.4 Let R be a prime ring with charR �= 2, U a noncentral square-closed
Lie ideal of R and F a right generalized derivation associated with a nonzero deriva-
tion d. If F2(U ) = (0), then d3 = 0.

Proof It immediately follows from Theorem 3.1 and Lemma 2.5 (ii). ��
Corollary 3.5 Let R be a prime ring with charR �= 2, U a square-closed reduced Lie
ideal of R and F a right generalized derivation associated with a non-zero derivation
d. If F2(U ) = (0) and F(U ), d(U ) ⊆ U, then U ⊆ Z(R).

Proof Let’s assume that U � Z(R). Then we can apply Corollary 3.2 to conclude
that d(U ) ⊆ Z(R). But Lemma 2.5 (i) now gives U ⊆ Z(R), a contradiction. ��

The following proposition describes the structure of a left and right generalized
derivation associated with a derivation d on a semiprime ring.

Proposition 3.6 Let R be a semiprime ring with an extended centroid C. If R admits
a left and right generalized derivation F associated with a derivation d, then there
exists an element λ ∈ C such that F(x) = d(x) + λx for all x ∈ R.

Proof Take T := F − d. Since F is a left and right generalized derivation, then

T (xy) = T (x)y = xT (y) for all x, y ∈ R. (3.14)

In particular we can used Lemma 2.6, we get T (x) = λx for all x ∈ R. That is
F(x) = d(x) + λx for all x ∈ R. ��

The following example shows a map F on a semiprime ring, that is not a derivation.
However (F, d) is a right generalized derivation and, over a Lie idealU of R, it is also
a left generalized derivation.
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Example 3.7 Let Z be the set of integers, and R =
{(

a b
c d

)
|a, b, c, d ∈ Z

}
. Then

R is a semiprime ring. Now, take U =
{(

a 0
0 a

)
, a ∈ Z

}
. It can be easily checked

that U is a Lie ideal of R. Since, u2 =
(
a2 0
0 a2

)
∈ U , U is an square-closed Lie

ideal. We define the maps F : R → R and d : R → R as follows:

F

((
a b
c d

))
=

(
a 0
0 −d

)
, d

((
a b
c d

))
=

(
0 −b
c 0

)
.

Then it is easy to check that d is the inner derivation given by d(x) = [x, 2e11 + e22],
F is a right generalized derivation associated with d, and F(uv) = uF(v) + d(u)v

for all u, v ∈ U , that is F is left generalized derivation on U . However, F is not a
derivation on R.

Now we remove the assumptions F(U ), d(U ) ⊆ U in Theorem 3.1.

Theorem 3.8 Let R be a semiprime 2-torsion free ring, U a noncentral square-closed
Lie ideal of R and F a right generalized derivation associated with a derivation d. If
F2(U ) = (0) and F(uv) = uF(v) + d(u)v for all u, v ∈ U, then d(U ) ⊆ CR(U ).

Proof Following the same lines that were used in the proof of Theorem 3.1, we can
reach the equation (3.11), that is d(w)ud(v) = 0 for all u, v, w ∈ U . Multiplying to
the left byw1 we havew1d(w)ud(v) = 0. If we replace in (3.11) u by 2w1u we obtain
d(w)w1ud(v) = 0, and subtracting these two relationswe have [d(w),w1]ud(v) = 0.
In the same way, we get [d(w),w1]u[d(v), v1] = 0 for all u, v, v1, w,w1 ∈ U . Doing
w = v,w1 = v1, we obtain [d(v), v1]U [d(v), v1] = (0) for all u, v1 ∈ U . Lemma
2.1, gives [d(v), v1] = (0) for all u, v1 ∈ U , that is, d(U ) ⊆ CR(U ). ��

The following example shows that the semiprimeness condition in Theorem 3.1 is
not superfluous.

Example 3.9 Let Z be the set of integers, and R =
{(

a b
0 c

)
|a, b, c ∈ Z

}
. For any

0 �= b ∈ Z,

(
0 b
0 0

)
R

(
0 b
0 0

)
= (0), then R is not a semiprime ring. Now, take

U =
{(

a b
0 a

)
, a, b ∈ Z

}
. It can be easily checked thatU is a Lie ideal of R. Since,

u2 =
(
a2 ab
0 a2

)
∈ U , U is an square-closed Lie ideal. We define maps F : R → R

and d : R → R as follows:

F

((
a b
0 c

))
=

(
0 a
0 0

)
, d

((
a b
0 c

))
=

(
0 a − c
0 0

)
.

Then it is easy to check that d is the inner derivation given by d(x) = [x, e12],
F is a right generalized derivation associated with d, d(U ), F(U ) ⊂ U , F(uv) =
uF(v) + d(u)v for all u, v ∈ U and F2(U ) = (0). However, F(U ) �= (0).
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Now, we will extend Theorem 3.4 in Golbasi and Koç (2011) to semiprime rings.

Theorem 3.10 Let R be a semiprime ring, U a noncentral Lie ideal of R,and F,G
maps satisfying G(u)v = uF(v) for all u, v ∈ U. If F is a right generalized derivation
associated with a derivation d and G is a left generalized derivation associated with
a derivation g, then d(U ), g(U ) ⊆ CR(U ).

Proof Let’s start by considering that

G(u)v = uF(v) for all u, v ∈ U. (3.15)

If we replace in (3.15) the element v by [v, r ]v, r ∈ R, (and by [v, r ]), we get

G(u)[v, r ]v = uF([v, r ])v + u[v, r ]d(v) for all u, v ∈ U, r ∈ R. (3.16)

And

G(u)[v, r ] = uF([v, r ]) for all u, v ∈ U, r ∈ R. (3.17)

Consequently,

u[v, r ]d(v) = 0 for all u, v ∈ U, r ∈ R. (3.18)

Now we can replace u by [u, s], s ∈ R, in (3.18), and get 0 = [u, s][v, r ]d(v) =
us[v, r ]d(v) − su[v, r ]d(v) = us[v, r ]d(v) for all u, v ∈ U, r, s ∈ R. Again we
replace u by [v, r ] and s by d(v)s, to have [v, r ]d(v)s[v, r ]d(v) = 0 for all u, v ∈
U, r, s ∈ R. Thus [v, r ]d(v)R[v, r ]d(v) = (0). Since R is semiprime, we conclude
that

[v, r ]d(v) = 0 for all v ∈ U, r ∈ R. (3.19)

Linearizing (3.19), we get

[v, r ]d(u) = −[u, r ]d(v) for all u, v ∈ U, r ∈ R. (3.20)

Now, if we replace r by rs in (3.19), and use again (3.19), we get

[v, r ]sd(v) = 0 for all u, v ∈ U, r, s ∈ R. (3.21)

In particular, 0 = [v, r ]d(u)s[u, r ]d(v) = −[v, r ]d(u)s[v, r ]d(u), that is [v, r ]d(u)

R[v, r ]d(u) = (0). Since R is semiprime we have [v, r ]d(u) = 0, for all u, v ∈
U, r ∈ R. From Lemma 2.7 it follows that d(U ) ⊆ CR(U ).

On the other hand, we replace in (3.15) u by u[u, r ] (and by [u, r ]), we get

uG([u, r ])v + g(u)[u, r ]v = u[u, r ]F(v) for all u, v ∈ U, r ∈ R. (3.22)
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And,

G([u, r ])v = [u, r ]F(v) for all u, v ∈ U, r ∈ R. (3.23)

Consequently, g(u)[u, r ]v = 0. So, we can follow the same lines as above and con-
clude that g(U ) ⊆ CR(U ). ��

An immediate consequence of Theorem 3.10 is the following corollary.

Corollary 3.11 Let R be a prime ring with charR �= 2, U a Lie ideal of R and
F,G maps satisfying G(u)v = uF(v) for all u, v ∈ U. If F is a right generalized
derivation associatedwith a nonzero derivation d andG is a left generalized derivation
associated with a nonzero derivation g, then U ⊆ Z(R).

Proof Suppose that U � Z(R). Theorem 3.10, gives d(U ) ⊆ CR(U ) and CR(U ) =
Z(R) by Lemma 2.3, hence d(U ) ⊆ Z(R). Lemma 2.5 (i) gives U ⊆ Z(R), the
contradiction. ��

The following example shows that the semiprimeness condition in Theorem 3.10
is not superfluous.

Example 3.12 Consider the ring R as inExample3.9.TakeU=

{(
a b
0 −a

)
, a, b∈Z

}
.

It can be easily checked that U is a Lie ideal of R. Define maps G, g, F, d : R → R
as follows:

G

((
a b
0 c

))
=

(
0 b + c
0 c

)
, g

((
a b
0 c

))
=

(
0 b
0 0

)
,

F

((
a b
0 c

))
=

(
0 a
0 c

)
, d

((
a b
0 c

))
=

(
0 a − c
0 0

)
.

Then it is easy to check that g and d are the inner derivations given by g(x) =
[x, e11 + 2e22] and d(x) = [x, e12], F is a right generalized derivation associated
with d, G is a left generalized derivation associated with g and G(u)v = uF(v) for
all u, v ∈ U . However, d(U ) � CR(U ).

Acknowledgments Authors thank the referee for the valuable comments and suggestions.

References

Ali, A., Shujat, F.: Remarks on semiprime rings with generalized derivations. Int. Math. Forum 7(26),
1295–1302 (2012)

Bergen, J., Herstein, I.N., Kerr, J.W.: Lie ideals and derivations of prime rings. J. Algebra 71, 259–267
(1981)

Beidar, K.I., Martindale, W.S. III., Mikhalev, A.V.: Rings with generalized identities. Monographs and
textbooks in pure and applied mathematics, vol. 196, p. xiv+522. Marcel Dekker, New York (1996).
(ISBN: 0-8247-9325-0)

Bresar, M.: On the distance of the composition of two derivations to the generalized derivations. Glasg.
Math. J. 33, 89–93 (1991)

123

Author's personal copy



850 Beitr Algebra Geom (2016) 57:841–850

Carini, L.: Derivations on Lie ideals in semiprime rings. Rend. Circ. Mat. Palermo 34, 122–126 (1985)
Dalgin, H.: Lie ideals and generalized derivations of prime rings. Int. J. Math. 4(10), 461–467 (2010)
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