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Abstract

Model-free regression capabilities of fuzzy systems are studied in this paper. Un-

der general conditions, fuzzy systems constructed by the usual expedient of combining

statistical data and expert knowledge, are capable of learning arbitrary regression sur-

faces and their derivatives to any arbitrary finite order. Expert knowledge provides

bounds which usefully constrain the estimation processes, potentially avoiding ill-posed

solutions and meaningless fuzzy rules. Results include least squares and conditional

quantile regressions. An application to quantile–based profitability forecasting is in-

cluded.
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1 Introduction and motive

The paradigm of fuzzy systems (FSs) has developed in the last four decades, with both

a remarkable amount of theoretical research and an increasing variety of applications in

multiple fields. FSs have their foundation in principles of fuzzy logic. However, many useful

properties of FSs can be studied by conventional (i.e., mathematical and statistical) tech-

niques. Hence, a number of recent contributions (e.g., Kosko, 1991; Wang and Mendel,

1992; Mao et al., 1997; the list is far from complete) have shown that FSs are universal

approximators in a number of function spaces of practical relevance. This gives a clear-cut

mathematical meaning to the vague notion of “flexibility” of this kind of models, providing

an analytical foundation to the intuition that a FS with a sufficiently high number of rules

is, in principle, capable of mimicking arbitrary functions. Of course, the above universal

approximation (UA) property —which is also shared by many other mathematical devices,

such as algebraic/trigonometric polynomials, wavelets and artificial neural networks— only

ensures that good approximators for the mappings of interest exist, although usually does

not provide any means to construct them. This last issue has been a concern for both

theorists and practitioners, who rapidly became aware of the usefulness of automatic or

semiautomatic methods for fuzzy-rule building.

This drives us to the other source of flexibility of FSs, namely, their ability to integrate

different sources of information (expert knowledge/statistical data). In many practical ap-

plications, both sources of knowledge are combined in order to efficiently construct an FS

with optimal —or, at least, adequate— performance. A vast array of literature has appeared

on the subject, and a number of statistical/neural learning mechanisms —including, e.g.,

batch and on-line algorithms for rule fine-tuning, and cross-validation-based techniques for

model selection and evaluation of model performance— have been adapted, and often specif-

ically designed, to enhance the performance of FSs (e.g., Takagi and Sugeno, 1985; Sugeno

and Tanaka, 1991; Kosko, 1991, 1992; Wang, 1994; Jang, 1993; Watanabe and Imaizumi,

1997; among many others). Endowed with these algorithms, FSs provide a means to inte-

grate (possibly imprecise and subjective) expert knowledge and statistical information in

order to achieve higher performance than available by using purely subjective information.

In contrast to the study of UA capabilities, which is now a well-developed field, the analysis

of the statistical properties of FSs endowed with these “training” devices has remained a
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largely unexplored area. In fields such as engineering FSs are required to coexist with other

approaches whose statistical properties are well established. The successful performance

of FSs in those environments evidently indicates that FSs must also have good statistical

properties, although formal mathematical proofs for this fact were lacking until very re-

cently. Many fuzzy theorists (e.g., Kosko, 1992; Wang, 1994) soon became aware of the

above facts.2 Although statistical considerations are not explicitly present when a practi-

tioner is trying to build a FS in a practical application, the ingredients he/she uses for such

a purpose (i.e., a data set, expert information, a training algorithm) may be easily nested

into a statistical framework. An advantage of the approach we propose in this paper is that

it permits us to analyze FSs in terms of the same methodological framework which includes,

e.g., state space models, artificial neural networks and many other paradigms used in the

fields where FSs find applications. The relevant ideas closely parallel the statistical theory

developed for artificial neural networks (ANNs).3

The reader may argue at this point that, certainly, FSs are very different from ANNs. Neural

networks are just computational black-boxes, scarcely user-friendly and interpretable, and

(at most) with a limited ability to incorporate expert knowledge. As pointed out in lit-

erature, the theoretical goal of learning only from data, as required for ANNs and other

computational black-boxes, often seems unrealistic, essentially because of the enormous

amounts of data which may be required (for a thorough discussion see Geman et al., 1992).

As to be detailed in next sections, the ability of FSs to incorporate expert knowledge (i.e.,

constraints on the learning process) can turn the learning task much easier. Typically, ANNs

(and most nonparametric regression devices) only are consistent estimators for general re-

gression surfaces under rather stringent conditions (basically, the permitted complexity of

the ANNs must increase with sample size at a sufficiently slow rate). As to be seen below, in

the case of FSs, expert knowledge permits consistent learning under much milder conditions.

This peculiarity of FSs, much stressed in literature (e.g. Nguyen et al., 1996), drives us far

2L.X. Wang emphasized this issue with particular insight:

“‘Fuzzy systems are constructed and justified based on fuzzy logic; very little is known about
their statistical properties when they are used in a random environment. (...) Up to now,
it seems that the successful application of fuzzy logic systems is to the control of industrial
processes where random noise always exists. Therefore, knowing the statistical properties of
various kinds of fuzzy logic systems is important.”(Wang, 1994, chapter 7)

3A very general theory concerning the statistical properties of ANNs is now available (e.g., White, 1989;
1990; Kuan and White, 1994; Chen and Shen, 1998).
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away from the world of computational black boxes and purely nonparametric methods.4

In this paper we elaborate on the above arguments. We shall argue that the expedient of

combining statistical data and expert knowledge is not only a practically convenient device,

but also endows FSs with useful statistical properties. In particular, we will show that FSs

are capable to learn consistently arbitrary regression surfaces.

The rest of the paper has the following structure. We start in Section 2 with a brief review

of universal approximation capabilities of FSs. The basic elements of FS-based learning

in stochastic contexts are outlined in Section 3. Section 4 contains the theoretical results

of the paper: first, the classical problem of least squares learning, and then we focus on

nonparametric conditional quantile regression (including median regressions as a particular

instance). Our results permit consistent estimation of functions (and, when required, their

derivatives to any finite order). In Section 4 some simulation results and an application

in the field of profitability forecasting are presented. Mathematical proofs are collected in

Appendix.

2 Fuzzy systems and universal approximation capabilities. A

brief excursion

Many (but not all) of the available results on UA properties of FSs refer to the class of

additive FS. These have very close cousins in mathematics, under the form of convolution

operators. For a function f : Rd → R the following convolution-based approximant can be

defined:

f̂σ(x) =
∫

Rd

f(µ)ρ
(

µ− x

σ

)
dµ (1)

with ρ being a probability density function and σ > 0 being a smoothing parameter. f̂σ(x)

approximates f(x) by the simple expedient of computing a local average of values of f

around x. Classical results on function approximation by using convolutions are well-known

4It is in this precise sense that FSs, and in particular additive FSs, differ from computational black-
boxes such as kernel regressions and radial basis functions, which may even be functionally equivalent (in
the sense of being constructed on the basis of the same classes of functions). The capability of FSs to process
expert information would point out some potential commonalities of FSs with Bayeasin statistics, although
in the latter field subjective information has a very specific nature (prior beliefs), and is processed in a very
formalized way (i.e., by applying Bayes Theorem).
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(e.g., Devore and Lorentz, 1993). The above convolution may be discretized as follows:

f̃m,σ(x) =

∑m
j=1 f(µj)ρ

(
µj−x

σ

)

∑m
j=1 ρ

(
µj−x

σ

) (2)

with {µj , j = 1, . . . , m} being a grid of points in the domain of f . The functional form (2)

basically coincides with that of additive FSs.5 Classes of functions obtained by discretizing

a convolution operator inherit the approximation properties of the original operator. This

is the basis for most of the mathematical proofs of UA properties for additive FSs, and has

permitted researchers to derive UA theorems for FSs in many function spaces of practical

relevance (e.g., the instances provided in Section 1 above). Since it is required in the fol-

lowing sections, we adopt the following definition for the UA property.

Definition (UA property). Let Θ be a space of functions X → R endowed with a

metric d, and let Θm be a class of FSs with m rules such that Θm ⊂ Θ. The sequence {Θm}
is said to satisfy the UA property in Θ when, for any θ∗ ∈ Θ, a sequence of FSs {θ∗m ∈ Θm}
exists such that limm→∞d (θ∗m, θ∗) = 0. 2

The above definition encompasses general (additive and non-additive) FS structures.

The statistical learning capabilities studied in this paper are referred to generic classes of

FSs satisfying a suitable UA property. In particular, we shall consider UA properties based

on uniform approximation in spaces of continuous functions. (Details are provided in the

following sections.)

The discretization (2) provides a straightforward method to build FSs, although sometimes

a sufficiently fine grid of data {(xi, f(xi)) |i = 1, . . . , n} may be unavailable, and very often,

instead of a deterministic setting such as that in Figure 1 below, we may have to cope with

something less favorable, as in Figure 2, i.e., a set of observations {(xi, yi)| i = . . . , n} with

the xi values irregularly spread along the domain of f , and the observed values possibly being

corrupted by some kind of noise εi, i.e., yi = f(xi) + εi. Effective methods to filter noise

and provide an accurate approximant to f are required, and the naive quasi-interpolation

scheme (2) may be problematic (e.g., a careful control of the smoothing parameter σ may

5The same structure is also used within kernel regressions (e.g., the classical Nadaraya-Watson estimator).
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Figure 1: A learning problem in noiseless environment. (Asterisks denote observed values.
The underlying mapping is indicated by the continuous line.)
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Figure 2: A learning problem in noisy environment.
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be required).6 This drives us to the next section.

3 The ingredients of learning. Connections with sieve ex-

tremum estimation

The elements of the learning problem are as the follows:

� The data generating process, i.e., a random mechanism which is assumed to

generate (crisp) data to be used by the modeler.7

� The mapping to be learned. It is a non-random characteristic of the observed

system (e.g., a regression surface which permits optimal prediction/control in any

sense).

� A finite data set, generated by the system under study.

� Expert knowledge, under the form of crisp constraints provided by the researcher.

In particular, we only assume that some bounds are available that constrain the per-

mitted values and the oscillatory behavior of the fitted FSs.8

� A fuzzy system structure, i.e., a class of FSs having a suitable UA property.

� A learning paradigm. It includes the goal function to be optimized (algorithmic

details are not relevant at this level).

The result of the above modelling effort is a fuzzy-rule-based system which fits data in the

above specified sense, also satisfying the set of constraints provided by expert knowledge.

We will analyze the behavior of the whole mechanism as both sample size and model com-

plexity (indexed by the number of fuzzy rules) grow to infinity. We will show that, under

6An additional inconvenience is that fuzzy rule-based systems built by using the “one-datum-one-rule”
approach are likely to be unnecessarily complex, since close observations basically providing the same infor-
mation may be grouped together into a single fuzzy rule, in order to achieve a “parsimonious” approximation
to the desired mapping. Typically, FSs have a number of rules much lower than the size of the samples used
in their construction.

7True randomness is not required. The results are valid for deterministic —e.g., chaotic— systems for
which the ergodic distributions required in the following sections exist.

8The bounds must be crisp, although they are permitted to be more or less loose, depending on the
available knowledge. The approach altogether differs from Bayesian methods, where a priori information is
probabilistic in nature.
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general conditions, the resulting sequence of FSs converges to the desired regression surface.

This is much stronger a result than the typical argument in parametric statistics (e.g., clas-

sical linear regression with finite dimension parameter), since the regression surface is now

a generic mapping. Expert knowledge is required to provide some qualitative information

on the function to be learned, but the requirements are much less demanding than in clas-

sical statistics, where a very precise knowledge of the problem —embodied in a parametric

specification with only a small number of free parameters to be estimated— is assumed.

3.1 The method of sieves. Basic statistical background

A key issue is that a FS is only an approximate model, in the sense that the true object to

be learned is a generic function (e.g., y = xa) which would generally require an infinite set

of fuzzy rules to be represented, and of course only FSs with a finite number of rules can be

constructed on the basis of a finite data set. FSs have been seen as approximate models for

more complex systems since the earliest contributions (Zadeh, 1973). On the other hand,

even when the mapping to be learned can be represented by a finite FS, as the available data

set is finite, the FSs we can construct are only estimates of the true (population) mapping.9

The emphasis of fuzzy modelling on finding “simple” structures to achieve representations

of complex phenomena also appears in other branches of mathematics (e.g., approximation

theory) and statistics (e.g., nonparametric estimation). A connection which is of interest to

us is that of FSs with the statistical method of sieves, proposed by U. Grenander (1981).10

Not surprisingly, sieve estimation methods apply ideas which are very close (in spirit) to the

rationale of FSs. The former provide methods to obtain consistent estimators in “too large”

parameter spaces, whereas the latter were conceived as approximate models for complex

systems for which a “complete” model is unavailable.

In the statistics literature many estimators are obtained as solutions to optimization prob-

lems. Typically, we wish to estimate or learn, on the basis of a given data set, a parameter

9In statistical jargon, the effect of using a finite set of fuzzy rules to approximate a function which
requires an infinite set of rules to be represented is bias. The effects of finite sample size had to do with
variance of the estimates.

10The basic idea of the method of sieves consists of replacing the whole parameter space by an adequately
chosen sequence (called sieve) of “simpler” parameter spaces which have the UA property in the whole
parameter space (e.g., Geman and Hwang, 1982). Under general conditions, estimates computed on the
chosen sieve are consistent for the desired parameter (typically, a generic regression surface). Most classes
of nonparametric estimators used in statistics may be seen as sieve estimators. These include modelling
paradigms whose origin was far from statistics, such as artificial neural networks (e.g., White, 1990).
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θ∗ which is a point in a suitable parameter space Θ. Very often θ∗ solves a population

optimization problem, such as

min
θ∈Θ

Q(θ) (3)

for a suitably chosen criterion Q(·) (e.g., expected squared error). An extremum estimator

θ̂n is defined as an (approximate and measurable) minimizer of the sample criterion Qn(·),
i.e.,

θ̂n = arg min
θ∈Θ

Qn(θ) (4)

with Qn(·) converging in probability to Q(·) as the sample size n grows to infinity (in the

following sections we shall use “ P−→ ′′ to denote convergence in probability under the mea-

sure P ). Very often the above optimization (4) is not carried out over the whole parameter

space, but on a suitably chosen subset Θm, whose complexity (e.g., the dimension of the

subset) is indexed by m. If {Θm} has the UA property in Θ, the sequence of approximating

spaces {Θm} is called a sieve, and the approximate minimizer θ̂m
n = arg minθ∈Θm Qn(θ) is

called a sieve extremum estimator. Under general conditions sieve estimators are consistent

for θ∗ as n →∞.

In a recent paper (Landajo, 2004) we applied the sieve framework to analyze some learning

capabilities of fuzzy systems in stochastic environment. The basic idea consists of per-

mitting the number of fuzzy rules to increase with the available sample size (see Figure 3

below). In next section we improve on these results. We obtain consistency in terms of a

stronger norm (involving approximation of derivatives), and extend previous least-absolute-

deviation learning results in order to permit estimation of conditional quantiles. We shall

borrow ideas and results from the statistical literature on ANN models (basically, Gallant

and White, 1992) and nonparametric econometrics (in particular, Newey and Powell, 2003).

4 Model-free learning by using fuzzy systems

We shall consider estimation in parameter space which is both relatively simple and suf-

ficiently general to include a number of interesting practical situations. In particular, we

assume that the mapping θ∗ to be learned is an element of Θ, a subset of the space Cr(X)

of X → R mappings with continuous partial derivatives up to the r-th order (Θ is a func-
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Figure 3: Ingredients of learning in fuzzy-rule-based sieves.

tion space, instead of the usual finite dimension spaces of parametric statistics). We follow

the standard notation, and for any multi-index α = (α1, . . . , αd) we define the order of

derivation as |α| = α1 + · · ·+αd, and denote by Dαθ(·) the corresponding partial derivative

of θ(·) —the usual convention D0θ(·) = θ(·) is applied—. We endow Θ with the metric

d(·, ·) induced by the norm ‖θ‖ = max
0≤|α|≤r

sup
x∈int(X)

|Dαθ(x)|,11 for some r ≥ 0 (i.e., for any

θ, θ′ ∈ Θ, d(θ, θ′) = ‖θ′ − θ‖).

4.1 Least squares learning

The data generating process (DGP) is as follows: we consider a data set D = {(xt, yt, ) | t =

1, . . . , n}, with xt ∈ X ⊂ Rd (a row vector), and yi ∈ R. D is assumed to be a finite

realization of a stochastic process {(Xt, Yt) | t = 1, 2, . . .}, with values of Yt generated by the

following regression structure:

Yt = θ∗ (Xt) + σ∗ (Xt) εt, t = 1, ..., n; n = 1, 2, ... (5)

with θ∗(·) being the mapping of interest (a conditional expectation), which is assumed to

belong to the parameter space Θ. σ∗(·) : X → R+ is the square root of the conditional

11int(X) denotes the set of interior points of X.
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variance of Yt given values of X, i.e. V ar (Yt|Xt = x) = σ∗(x)2, and εt is a random noise

term with null expectation. We impose the following catalogue of assumptions:

Assumption 1. (i) The underlying probability space (Ω,F, P ) is complete, with the

process {(Xt, εt) | t = 1, 2, ...} being independent identically distributed (i.i.d.) and the

random sequences {Xt| i = 1, 2, . . .} and {εt| i = 1, 2, . . .} being mutually independent. In

addition, (ii) the error process has expectation E(εt) = 0 and V ar(εt) = σ2
ε < ∞, and (iii)

X ⊂ Rd is a convex compact set with nonempty interior, and the marginal distribution of

Xt, denoted as PX (·), satisfies the requirement that PX(O) > 0 for any nonempty open

O ⊂ X.

Assumption 2. (i) θ∗ ∈ Θ, a compact subset of Cr(X), endowed with the norm ‖ · ‖. In

addition, (ii) σ∗(·) is a continuous X→ R+ mapping.

Assumption 3. (i) {Θm} is a sequence of compact subsets of Θ satisfying the UA property

with respect to ‖ · ‖. In addition, (ii) m̂ is an Ω → N = {1, 2, . . .} mapping which satisfies

m̂
P−→∞ as n →∞.

Assumption 4. (i) θ∗ is the unique minimizer on Θ of the function Q : Θ → R+ defined

as follows: Q(θ) = Σ +
∫
X

[θ∗(x)− θ(x)]2 PX(dx), with Σ = σ2
ε

∫
X

σ∗(x)2PX(dx). 2

We will analyze the limiting properties of the class of FS-based sive considered in As-

sumption 3 above when applied to estimate θ∗ by using least squares learning.

Theorem 1. Under Assumptions 1 to 4, let θ̂m̂ be a solution to the problem

min
θ∈Θm̂

Qn(θ) ≡ n−1
n∑

t=1

[Yt − θ(Xt)]2. (6)

Then
∥∥∥θ̂m̂ − θ∗

∥∥∥ P−→ 0 as n →∞. 2
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Comments

Assumption 1 defines a generic least-squares regression context. The compactness require-

ment in Assumption 2 embodies the expert knowledge a priori available. Some instances

are provided below.

Model complexity m̂ in Assumption 3 may be chosen by any deterministic rule —e.g., by any

increasing function of n which grows to infinity with sample size—, but it is also permitted

to be data-driven. The only technical requirement is that as n grows to infinity the selected

number rules also goes to infinity with probability approaching one. This includes standard

criteria for model selection, such as cross-validation (e.g., Sugeno and Tanaka, 1991) or com-

plexity penalization mechanisms (e.g., some kind of information criterion, such as Akaike’s

AIC, or Schwarz’s BIC), which can be applied to a range of permitted model complexities

m ∈ {mn−, . . . , mn+}, with mn− →∞ as n →∞.12 The above general-purpose result may

be particularized to many especial contexts of interest.

Example 1 (Function estimation in a SISO case). We may take a bounded interval

X = [a, b] (with a < b) and let Θ be the space of continuous [a, b] → R mappings, endowed

with supnorm, i.e., ‖θ‖ = supx∈[a,b] |θ(x)|. Compactness is achieved by imposing suitable

bounds on the values of the mapping to be learned and its variation. For instance, for a

priori known bounds B1, B2 < ∞ we may have supx∈[a,b] |θ(x)| ≤ B1 and |θ(x1)− θ(x2)| ≤
B2 |x1 − x2| for any x1, x2 ∈ [a, b].13 Constants B1 and B2 embody the available expert

knowledge, and are imposed both on Θ and on the sieved FSs we construct to approximate

θ∗. For instance, a very simple sieve we may chose may be based on additive FSs with

symmetric triangular membership functions. We may select as Θm the class of FSs with

the following structure:

gm(x, δ) =

m∑
j=1

δjT
(

x−µj

σ

)

m∑
j=1

T
(

x−µj

σ

) (7)

12Measurability issues have not been considered in this paper. In the case when m̂ is a deterministic

function of sample size, e.g., m̂ =
h
n1/3

i
, with [·] denoting the integer part function, Theorem 2.2 in White

and Wooldridge (1991) applies to ensure that measurable minimizers of the sample criterion function exist.
When m̂ is random (e.g., obtained by cross-validation), general results in Stinchcombe and White (1992)
may be applied to ensure measurability or almost-measurability.

13Arzelá-Ascoli Theorem ensures that with these bounds Θ is a totally bounded subset of the space of
continuous [a, b] → R mappings endowed with supnorm (e.g., Adams, 1975, Chapter 1).
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with x ∈ [a, b], δ = (δ1, . . . , δm) ∈ Rm, m ≥ 1, and T (z) = 1 −min (1, |z|). For simplicity

we may consider an equispaced triangular array of centers µj = a + (b− a)(j − 1)/(m− 1),

and σ = (b− a)/(m− 1).14 Once m̂ is chosen, e.g., by cross-validation, only δ needs to be

computed, and the abstract optimization problem (6) reduces to

min
δ∈Bm̂

n∑

t=1

[yt − gm̂ (xt, δ)]2 (8)

with Bm̂ =
{
δ| |δj | ≤ B1, j = 1, 2, ..., m̂, and |δj − δj−1| ≤ B2 |µj − µj−1| , j = 2, ..., m̂

}
,

which is just a constrained linear least squares problem that can be easily solved by quadratic

programming techniques. Although the above example is rather simplistic, the sieve is in-

tuitive and the estimators are easy to compute.

Example 2 (Simultaneous estimation of a function and its derivatives, SISO case). The

above scheme may be extended to least squares learning of the derivatives of θ∗ up to the

r-th order. In the SISO case with X = [a, b], sufficient conditions are as follows:

Θ =
{

θ : [a, b] → R | max
0≤|α|≤r

sup
x∈(a,b)

|Dαθ(x)| ≤ B1,

|Drθ(x1)−Drθ(x2)| ≤ B2 |x1 − x2| , x1, x2 ∈ [a, b]
}

, (9)

for known (finite) B1 and B2. The above set is compact in the space of r times continu-

ously differentiable functions on [a, b] endowed with norm ‖θ‖ = max
0≤|α|≤r

sup
x∈(a,b)

|Dαθ(x)| (see
Adams, 1975, Chapter 1). By applying least squares learning to a FS-based sieve (a suitable

UA property is required, see Landajo et al., 2001), with the set of constraints (9) imposed

on Θm, a consistent estimator for θ∗ is obtained.

Remark. The bounds B1 and B2 restrict the estimation process to a relatively “small”

14The vector (µ1, . . . , µm) and the spread σ were assumed fixed a priori in this sieve. The conditions of
Theorem 1 permit them to be random. This includes two-step procedures, with a preliminary stage which
finds suitable values for the antecedents of the rules, and a second step which gives suitable values for the
consequents. Conditions required for the first step are mild: it is only required that the antecedent fuzzy
sets provide an increasingly fine fuzzy covering of the pattern space X, with probability approaching 1 as
n → ∞. These conditions hold, for instance, for the simple choice µj = xj , i.e., when the values of X for
the first m observations in the sample are taken as centers for the antecedents of the fuzzy rules. Of course,
a suitable clustering mechanism may generally provide a better choice of centers and spreads which avoids
redundant rules.
A fully nonlinear-least-squares procedure to obtain (given m̂) all parameters simultaneously is also permitted
(see Landajo, 2004).
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parameter space. Of course, if sufficiently rich knowledge is available, these bounds may

be very tight, but in the absence of precise knowledge very loose bounds are enough to

ensure consistency (although in this case very large sample sizes may be required). The

expedient of replacing unconstrained learning by constrained estimation ensures that θ̂m̂

has a number of desirable regularity properties. First, it avoids ill-posed solutions in cer-

tain inverse problems (see Newey and Powell, 2003). Secondly, it may greatly reduce the

risk of obtaining meaningless fuzzy rules. As observed by Guillaume (2001), the effects

of applying unconstrained learning schemes (e.g., standard backpropagation) to problems

with natural constraints can be potentially serious, greatly affecting the semantic aspects

of fuzzy systems constructed on the basis of statistical/neural devices.

4.2 Least absolute deviation learning. Nonparametric quantile regres-

sions

Linear quantile regression (LQR) is now a standard technique which has been successfully

applied to a number of research tasks in the field of economics, and more specifically,

financial economics (see Fitzenberger et al., 2001, and references therein). LQR provides a

generalization to classical least absolute deviation (LAD) linear regression. In the SISO case,

given a finite sample {(xt, yt) | t = 1, . . . , n} drawn from the studied population, where it is

assumed that the q-th conditional quantile of Y given X = x has the form Qq(x) = βq
0 +βq

1x,

an estimate for the free parameters of the quantile model is obtained as a solution to the

asymmetric least absolute deviation (ALAD) problem:

min
(βq

0 ,βq
1)

n∑

t=1

`q [yt − βq
0 − βq

1xt] (10)

where `q [u] = q max{u, 0} + (1 − q)max{−u, 0}. The above problem may be solved by

linear programming techniques (e.g., Koenker, 2000). LQR offers some well-known advan-

tages over least-squares-based linear modelling, its robustness to skewed tails and departures

from normality being the most relevant (e.g., Mata and Machado, 1996). In addition, under

very general conditions, the asymptotic distribution of the vector of estimated coefficients

is multivariate normal, which permits standard inferences to be carried out.

A number of nonparametric quantile regression tools have also been proposed in statis-
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tics and econometrics literature. Among them, contributions by Yu and Jones (1998) —

who used kernel estimators—, White (1992) —proposing multilayer-feed-forward neural

networks—, and Koenker et al. (1994), who devised quantile series estimators based on

regularized B-splines, can be highlighted. FSs may also be used to consistently estimate

the q-th order conditional quantile of Y given X. Minor modifications of the framework we

considered for least-squares regressions permit this to be proven.

4.2.1 General background

The basic framework generic quantile regression is as follows. Assuming that the relationship

between the variable to forecast (Y ) and a set of regressors (X) is studied, for any q ∈ (0, 1)

the q-th quantile of Y conditional on X is a mapping Qq which assigns to each x ∈ X a

number y = Qq(x) such that the conditional probability P (Y ≤ y|X = x) = q. Conditional

quantiles provide an alternative (but complete) description of the probability distribution of

Y conditional on X. A typical object of interest is the conditional median, which coincides

with the 50% quantile. Other conditional quantiles, especially those related to very high

or very low q values may be useful in order to highlight certain patterns of the studied

relationship more related to the behavior of the “best” or the “worst” behaved individuals

(in terms of Y value) in the studied populations (e.g., Hendricks and Koenker, 1992).

Hence, when the analysis is extended in order to include other quantiles, a considerably

richer picture emerges. This is in contrast with classical regression methods, in the sense

that they focus on estimating a single regression line which summarizes some central aspects

(e.g., conditional expectations/medians) of the studied relationships.

Conditional quantiles have a number of useful features (e.g., Koenker and Basset, 1978).

First, they naturally provide prediction intervals, without relying on any strong assumption

(e.g., Gaussianity). In particular, as P (Qα/2(x) ≤ Y ≤ Q1−α/2(x)|X = x) = 1 − α, the

interval
[
Qα/2(x,Q1−α/2(x)

]
provides a (1−α)×100 prediction interval for Y given X = x.

Conditional quantiles inherit some nice properties of marginal quantiles. In particular, for

Z = Φ(Y ) with Φ(·) being any continuous increasing mapping, the q−th quantile of Z

may be simply obtained as Qq
Z = Φ

(
Qq

Y

)
. An analogous property holds for conditional

quantiles. This implies that monotonic transformations of the response variable can be
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carried out without affecting the basic structure of the problem. (As well known, for least

squares regression such a property only is available for affine transformations.)

4.2.2 FS-based learning of conditional quantiles

We now assume that the data set to be processed, D = {(xt, yt) | t = 1, . . . , n}, is a realiza-

tion of an i.i.d. sequence, with the behavior of Y conditional on vector X being summarized

by the following regression-type structure:

Yt = µ∗(Xt) + σ∗(Xt)εt (11)

where µ∗(x) is the conditional median of Yt given Xt = x, i.e., µ∗(x) = Me(Yt|Xt = x), εt is

an error component with null median, and σ∗(·) is a conditional spread function (variances

are not required to be finite). The above structure directly gives the form of conditional

quantile of Yt given Xt = x:

θ∗q(x) = µ∗(x) + σ∗(x)Qq
ε (12)

where Qq
ε is the q-th quantile of εt. This gives an alternative expression for (11):

Yt = θ∗q(Xt) + σ∗(Xt)U
q
t (13)

with U q
t = εt−Qq

ε being an error term with q-th quantile Qq
U = 0. We impose the following

requirements:

Assumption 1’. Conditions (i) and (iii) in Assumption 1 hold. (ii) the error εt has

Me(εt) = 0 and E |εt| < ∞.

Assumption 4’. (i) θ∗ is the unique minimizer on Θ of the function Q : Θ → R+ defined

as follows: Q(θ) =
∫
X

∫
R
`q

[
σ∗(x)(ε−Qq

ε) + θ∗q(x)− θ(x)
]
PX(dx)Pε(dε). 2

Theorem 2. Under Assumptions 1’, 2, 3 and 4’, let θ̂q
m̂ be a solution to the problem

min
θ∈Θm̂

Qn(θ) ≡ n−1
n∑

t=1

`q [Yt − θ(Xt)] . (14)

Then
∥∥∥θ̂q

m̂ − θ∗q
∥∥∥ P−→ 0 as n →∞. 2
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4.3 B-spline-based FSs for conditional quantile learning

The above results ensure consistent learning for any class of FSs possessing a suitable UA

property, without a priori any preference for a particular specification of FS structure. In

this subsection we will briefly review a number of practical issues related to implementation

of the above framework for quantile regression. Although we shall focus on additive FSs with

(fixed-knot) B-spline membership functions, which provide a very simple implementation in

the SISO cases we study in Section 5, most comments are valid for more general contexts

(e.g., other choices of basis functions —such as Gaussians—are permitted, and the extension

to MISO systems is straightforward, with the habitual complications associated with the

increase of dimensionality). The structure of the spline FS approximators is as follows:

gm(x, δ) ≡
m∑

j=1

δjTj(x) (15)

where x ∈ [a, b] (a bounded interval), and Tj(·) is the j-th element of a basis of normalized

r degree B-splines. For the above basis the local partition of unity property holds, i.e.,
m∑

j=1
Tj(x) = 1 for any x ∈ [a, b]. The set C =

{
c−r < . . . < c0 = a < c1 < . . . < cK−1 < b=

cK < . . . < cK+r

}
collects the knot sequence. The K − 1 knots which are interior to [a, b]

are known as basic knots and the other points are named auxiliary knots. We chose the

equispaced sequence ck = a + k(b− a)/(m− r), with k = −r, . . . , m. The dimension of the

spline space (15) is m, with m ∈ {r +1, r +2, . . .}.15 Vector δ = (δ1, . . . , δm) collects all the

free parameters (once m and C are determined). Standard UA properties of splines and

Theorem 2 above ensure that we can use this class of FSs to estimate the q-th conditional

quantile of Y given X.16

4.3.1 Computational issues

Fixed-knot additive structures provide the remarkable advantage of reducing the generic

ALAD problem (14) to a linear programming problem which can be solved efficiently by

15With this definition the case m = r + 1 corresponds to polynomials of degree r.
16Consistency and other asymptotic properties of nonparametric spline-based quantile regressions have

been established in the statistics literature by He and Shi (1994) and Portnoy (1997), both in the smoothing
splines version (as originally proposed by Koenker et al., 1994) and in the näıve —i.e., fixed-knots (linear)
splines, without roughness penalty— version (Portnoy, 1997).
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specialized routines.17 A further advantage is that (when available) bounds such as those

in (8) and (9) can be easily incorporated, as they just add further linear constraints to

the basic (linear) ALAD problem. In this paper we fitted all quantile models by using

a so-called “Frisch-Newton” algorithm, namely, a simplified version of the interior point

algorithm proposed by Portnoy and Koenker (1997); the algorithm essentially solves the

dual of the linear program associated with LQR.18

4.3.2 Model selection

As to model complexity selection, cross-validation (Stone, 1974) is a leading choice. An

enormous number of variants are available in the literature. The classical leave-one-out

version is computationally demanding, and a number of authors have pointed out a consid-

erable sampling variability in cross-validated estimates. Some authors (e.g., Ripley, 1996,

Chapter 2) have suggested that a compromise reducing computation and producing more

stable estimates —even at the cost of moderate bias— is suitable in many practical ap-

plications. In this paper we used 10-fold cross-validation, although other possibilities (in

particular, the leave-one-out method) produced very close results. For a generic q-th order

quantile and a B-spline fuzzy model with m rules the procedure is as follows. First the data

set is randomly split into 10 sheets or data subsets. Then, the 10-fold cross-validated mean

error is computed:

ECV
q (m) ≡ 1

10

10∑

k=1

E∗
q,k (16)

where

E∗
q,k ≡

1
nk

∑

t∈Sk

`q

[
yt −

m∑

j=1

δ̂j(k)Nj(xt)
]

(17)

i.e., E∗
q,k is a weighted mean of the prediction errors on the sheet Sk (whose cardinality is

nk =
[

9
10n

]
) of the spline model with parameter set δ̂(k) = (δ̂1(k), ..., δ̂m(k)), which was fitted

17The standard linear ALAD problem for the q-th quantile has the following (primal) LP formulation:

min
(β,u,v)

nX
t=1

qut +

nX
t=1

(1− q)vt

s.t.: xtβ
′ + ut − vt = yt; ut, vt ≥ 0; β ∈ Rd; t = 1, . . . , n; u = (u1, . . . , un) and v = (v1, . . . , vn).

18The version used in this paper was written by R. Koenker and is available at
http://www.econ.uiuc.edu/∼roger/research/rq/rq.html. Interior point methods (especially when com-
bined with preprocessing) have enabled dramatic efficiency gains over classical simplex algorithms in ALAD
fitting (see Koenker, 2000). Regularization or roughness penalty methods have also been proposed for
spline-based quantile regression, by Koenker et al. (1994).
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on the basis of the estimation set with sheet Sk excluded. The above procedure is applied

to all the permitted values for m, and the lowest model complexity m∗ which minimizes

ECV
q (m) over the permitted range is selected. The same expedient is successively applied

for each of the studied quantiles.

4.3.3 Linearity testing

Since nonparametric methods are more technically demanding than standard linear models,

it is important to have available adequate statistical devices to assess to what extent a

nonlinear/nonparametric approach is worth trying in a given practical problem. Linearity

tests are a basic tool in this respect.19 B-spline-based FSs are particularly well adapted

to this testing framework. The linearity test we propose exploits the so-called piecewise

polynomial form of spline models. The idea is straightforward. As well known, the structure

(15) has the equivalent form:

Qq(x,β) ≡ βq
0 + βq

1x + . . . + βq
rx

r +
K−1∑

j=1

βq
r+j(x− cj)r

+ (18)

where now β = (βq
0, . . . , β

q
r+K−1). Since the linear model is nested in the above functional

form, model (18) is correctly specified in the case when the quantile is linear, and the

vector β̂ of unrestricted ALAD estimators converges to β = (βq
0, β

q
1, 0, . . . , 0) under linearity,

with asymptotic normality ensured under standard conditions. Therefore, we can test for

linearity by testing the following parametric restriction on the spline model:

H0 : βq
2 = . . . = βq

r+K−1 = 0, against

HA : βq
j 6= 0 for some j ≥ 2. (19)

The above restriction may be straightforwardly tested by following the minimum distance

(MD) approach proposed by Buchinsky (1998), since (19) amounts to a set of linear con-

straints (represented by an appropriate restriction matrix R) on the parameters of the

19The proposed test straightforwardly extends to the least-squares nonparametric regressions considered
in the above subsections. MISO systems are also permitted.
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quantile equation. The following test statistic may be constructed:

d = n
(
β̂ −Rβ̂

r
)′

A−1
(
β̂ −Rβ̂

r
)

(20)

where β̂ and β̂
r

are respectively the unrestricted (ALAD) and restricted (MD) estimator

for β,20 the restriction matrix is R = [ri,j ], i = 1, . . . , r + K, j = 1, 2, with r1,1 = r2,2 = 1

and ri,j = 0 otherwise, and A = Λ̂β̂ is an estimate of Λβ̂ (the latter being the asymptotic

covariance of β̂). Under standard conditions the limiting distribution of
√

n
(
β̂

r − β
)

is

normal, and the asymptotic null distribution of (20) is Chi-squared with r +K − 2 = m− 2

degrees of freedom (Buchinsky, ibidem).

The above test has asymptotically correct size for any choice of the spline model complexity

with r ≥ 2 and K ≥ 1 (we adopted the convention of identifying K = 1 with a polynomial

of degree r). However, the power of the test (i.e., its capability to detect nonlinear pat-

terns) increases with the complexity of (18), since more complex spline models permit us

to approximate more complicated nonlinear patterns. A usual recommendation in related

literature is undersmoothing, i.e., permitting a model complexity (basically, a K value)

somewhat higher than selected by cross-validation or penalization methods (e.g., Hong and

White, 1995, in application of spline models in nonparametric testing within the frame-

work of least squares regression; also Racine, 1997). Other protection usually recommended

against bias is nesting the null (i.e., linear) model into the nonparametric estimator. This

is ensured in our setting by the structure of splines.21 In the next section we shall apply

the above testing strategy in order to assess linearity in a number of practical problems.22

20The MD estimator is a minimizer of Q̃(βr) = (β̂ − Rβr)A−1(β̂ − Rβr)′, with R being a restriction
matrix and A being a positive definite matrix.

21For other classes of FSs not nesting linear models a slight modification of the above testing framework
is required. For instance, for additive FSs with Gaussian membership functions (any other class which does
not include linear functions is permitted), we may consider the following augmented structure:

f(x, β, δ) = βx + gm(x, δ) = βx +

mP
j=1

δjT
�

x−µj

σ

�

mP
j=1

T
�

x−µj

σ

�

with T (·) denoting Gaussian membership function (the array of centers µj and centers σj is assumed a priori
fixed). Linearity amounts to a parametric restriction of the form δ1 = . . . = δm. With a suitable modification
of the restriction matrix R we proceed as in (20).

22Other tests, based on comparing conditional predictive ability in out-of-sample forecasting, can also be
applied to assess linearity of one or a set of conditional quantiles. We omit details for brevity (see Landajo
et al., 2007b).
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5 Some Applications

Two applications to SISO modelling are included in this section. We applied cubic-spline-

based FSs (i.e., r = 3 was set). With this choice, the case when the number of fuzzy rules is

m = 4 corresponds to a cubic polynomial, and cubic splines properly correspond to m ≥ 5.

For m = 3 we reduced the degree to r = 2, and a quadratic polynomial is obtained.

5.1 Example 1. A generic quantile learning problem

We considered the following learning problem. Observations were generated by the following

system:

Yt = 4 + 3 sin(πXt) + (1 + 2X4
t )εt

with {Xt} and {εt} being mutually independent i.i.d. sequences, Xt following a uniform

distribution with suport in [0, 1] and εt following a standard normal density. A sample of

size n = 1, 000 was drawn from the above population. 70% of the data set was used for

model fitting and the rest of the sample was set apart for predictive evaluation purposes.

We tried to estimate quantiles q = 0.1, 0.25, 0.5, 0.75 and 0.9 by using the above spline-

based FS structure (expert information was not incorporated). We permitted the number

of fuzzy rules to range between 2 and 10. Ten-fold cross-validation was used for complexity

selection. Figure 4 below shows the data and the population’s conditional quantiles, and the

FS-fitted quantiles are displayed in Figure 5. The shapes of the estimated quantiles closely

resemble those of their population’s counterparts. Table 1 shows, for each quantile, the

main diagnostics of model fitting and cross-validation, as well as the results of MD linearity

tests, for a range of m values (estimates for the asymptotic covariance matrix Λβ̂ were

computed by using design matrix bootstrap with B = 500 resamples). As expected, very

strong evidence against linearity is provided by the tests for all the studied quantiles. Table

1 also reports the mean ALAD prediction errors on the prediction set. Finally, estimates

for the L1 and supnorm distances between estimated and population quantiles appear in

the same Table.23 These distances were approximated by using a grid of v = 1, 000 points

23We were not specifically concerned with learning of derivatives. This goal usually requires higher sample
sizes and/or more accurate expert information.
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Figure 4: Data vs. population conditional quantiles.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

0

2

4

6

8

10

12

X 

Y 

Figure 5: Data vs. spline-based FSs for conditional quantiles.
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Table 1: Results of B-spline-based FS models for conditional quantiles in example 1 (“error”
means “`q error)”.

QUANTILE 10% 25% 50% 75% 90%
Model Fitting
Complexity (m) 4 4 6 5 3
Mean B-spline error 0.242 0.442 0.558 0.446 0.239
Cross-validation
Mean error 0.245 0.446 0.562 0.449 0.241
Linearity Tests
m = 4 (Cubic polynomial)
Chi-squared stat. 163.24 248.24 189.40 154.443 111.449
p-value 0.000 0.000 0.000 0.000 0.000
m = 8
Chi-squared stat. 204.05 308.167 207.085 204.592 122.149
p-value 0.000 0.000 0.000 0.000 0.000
m = 10
Chi-squared stat. 184.842 246.538 188.485 151.918 104.616
p-value 0.000 0.000 0.000 0.000 0.000
Prediction
Mean error 0.249 0.451 0.572 0.464 0.253
Approximation accuracy

d1

(
θ̂q
m̂, θ∗q

)
0.070 0.071 0.118 0.069 0.121

d∞
(
θ̂q
m̂, θ∗q

)
0.187 0.248 0.274 0.365 0.831

of the form x̃i = 0 + (i− 1)/(v − 1), i = 1, . . . , v, i.e., we calculated:

d1

(
θ̂q
m̂, θ∗q

)
= v−1

v∑

i=1

∣∣∣θ̂q
m̂(x̃i)− θ∗q(x̃i)

∣∣∣

and

d∞
(
θ̂q
m̂, θ∗q

)
= max

i=1,...,v

∣∣∣θ̂q
m̂(x̃i)− θ∗q(x̃i)

∣∣∣ .

5.2 Example 2. FS-based profitability forecasting

Company performance is usually measured by profitability, which may itself be proxied by

using the return on assets (ROA) ratio, defined as the quotient of net profit after taxes

to total assets. This ratio is very popular among both academics and financial analysts.

Typically, the value of the ROA ratio for a given firm is assessed by comparison with the

so-called ‘industry norm’, this being a suitable synthesis (e.g., mean or median) of the val-
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ues of the ratio in the relevant population (namely, the industry to which the company

under scrutiny belongs). The suitability of the above comparison requires that the bivariate

relationship between the components of the ratio satisfies a number of statistical properties.

In particular, the method requires this relationship to be linear and strictly proportional

(in statistical jargon, this amounts to assuming that the relationship between returns and

assets is well summarized by a linear regression model with null intercept). However, a

number of authors (e.g., Lev and Sunder, 1979; Whittington, 1980) have pointed out that

the assumptions of linearity and strict proportionality rarely hold, which would imply that

the use of the ratio form to summarize the relationship between two accounting variables

can be generally inadequate.

In a recent work (Landajo et al., 2007a) we relaxed the linearity assumption, and considered

ANN-based nonparametric LAD estimation. In Landajo et al. (2007b) we addressed the

problem from a more general standpoint, in order to consider potential nonlinear features

associated with extreme conditional quantiles. Nonparametric regressions provide a flexi-

ble implementation of the quantile framework, which permits a differentiated treatment for

each quantile. The latter is a particularly useful feature in the case of profitability analysis,

because of the potential presence of nonlinear features (e.g., scale economies) which may

affect extreme quantiles much more strongly than more ‘central’ regression lines. In this

subsection we apply the FS-based quantile regression approach outlined in Subsection 4.3

above. We used as a benchmark a representative data base from an homogeneous sector,

namely, the Spanish book-publishing firms (NACE 2211). Once a number of filters were

applied we obtained a final data set made up of 520 firms (details on the data base and

underlying economic theory appear in Landajo et al., 2007b).

As the available sample size was relatively small, the number of rules was limited to range

between 3 and 6 (this limitation had basically no practical effects, as detailed below). A

visual inspection of the estimated conditional quantiles (see Figure 6) reveals the main

features of the nonparametric analysis. Basically, the estimated quantiles are remarkably

smooth-looking curves, with moderate degrees of complexity. The fitted ‘central’ quantiles

(25%,50%,75%) are clearly linear, although the situation for the extreme quantiles appears

to be somewhat different, suggesting moderate departures from linearity.

More elaborate conclusions may be drawn from a careful analysis of the results in Table 2.

Results of LQR were also displayed for comparison. First, model fitting results —with 10-
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Figure 6: Fitted FS-based estimates for the conditional quantiles in example 2.

fold cross-validated model complexities and mean errors— are displayed. The most evident

detail is that cross-validation tended to select remarkably simple models. The complexity

m = 3, i.e., a quadratic polynomial (hence including linear models as a restriction), is the

most frequent choice. For the 90% quantile the chosen complexity is also m = 3, although

the form displayed in Figure 5 is clearly quadratic, which would be congruent with the shape

expected in the presence of economies of scale. A slightly more complicated nonlinear pat-

tern appears at the 10% quantile. The selected complexity is m = 5, which corresponds to

a cubic spline with 1 basic knot. Figure 5 also shows a slight crossing of the 10% and 25%

quantiles (this being clearly a consequence of the few observations on that area).

The shapes of the 10% and 90% quantiles appear to correspond to those predicted by eco-

nomic theory. As to the 10% quantile, the U-shaped curve suggests the presence of the

so-called “small firm effect”. Regarding the 90% quantile, the estimated curve suggests that

returns tend to grow at increasing rates as assets increase, indicating that only the best

performing firms are capable of taking advantage of the benefits of scale.

Table 2 also reports the results of MD linearity testing, for several choices of model com-

plexity (as commented above, a certain degree of overfitting may be desirable to enhance

the power of the test against a sufficiently wide range of nonlinear alternatives). We per-
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mitted complexities ranging from the quadratic and cubic polynomials up to cubic splines

with K = 6 (or equivalently, FSs with 3 ≤ m ≤ 10 rules). The results roughly support

the conclusions from visual analyses. As to the central quantiles, for all the considered

nonlinear alternatives the p-values are rather large, indicating that no significant evidence

against linearity may be deduced from data. On the contrary, the linearity tests for the

10% quantile strongly suggest the presence of nonlinear patterns, with low p-values under

all the alternative nonlinear specifications, going under 0.005 when the permitted model

complexity becomes sufficiently large. However, for the 90% quantile, the tests suggest no

significant departure from linearity, with large p-values for the most complicated spline mod-

els, although when we restrict the search to quadratic and cubic polynomials the linearity

hypothesis seems to be in doubt, with moderately low p-values which would be congruent

with a low degree polynomial pattern.
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Table 2: Linear vs. FS-based quantile models in example 2. Model fitting and cross-
validation (mean `q error), number of fuzzy rules (m), and results of linearity tests.

QUANTILE 10% 25% 50% 75% 90%
Model Fitting
Complexity 5 3 3 3 3
Mean linear error 26.74 39.72 49.19 44.05 26.91
Mean B-spline error 25.46 39.57 48.93 43.94 25.82
10-fold cross-validation
Mean linear error 26.85 39.80 49.67 44.15 27.25
Mean B-spline error 26.00 39.76 49.82 44.13 26.37
Linearity Tests
m = 3
Chi-squared stat. 3.894 0.567 1.021 0.045 2.611
p-value 0.049 0.451 0.312 0.833 0.106
m = 4
Chi-squared stat. 5.393 1.286 2.314 0.071 5.071
p-value 0.067 0.526 0.314 0.965 0.079
m = 5
Chi-squared stat. 11.327 2.961 1.940 2.182 4.902
p-value 0.010 0.398 0.585 0.536 0.179
m = 6
Chi-squared stat. 11.439 2.170 2.953 2.117 5.015
p-value 0.022 0.705 0.566 0.714 0.286
m = 8
Chi-squared stat. 24.056 4.810 1.705 3.924 5.211
p-value 0.001 0.568 0.945 0.687 0.517
m = 10
Chi-squared stat. 21.915 3.631 1.322 4.350 4.008
p-value 0.005 0.889 0.995 0.824 0.856
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6 Concluding remarks and further research

The results in this paper show that any class of FSs having suitable universal approximation

properties, constructed on the basis of statistical data and expert information provided by

the user, possesses model-free learning capabilities analogous to those of the most sophis-

ticated nonparametric statistical techniques. We studied two classical learning paradigms,

namely least squares and least absolute deviation. When sufficiently large samples are

available, FSs can approximate with high accuracy the mappings of interest as well as their

derivatives to any finite order. This provides further support to the application of fuzzy

models in random contexts such as those arising in many fields. Knowledge of the statis-

tical properties of FSs may help improve the design and performance of such models (e.g.,

conventional inference tools can be applied) without having to renounce interpretability

(constrained learning may help in this respect).

The topics analyzed in the text provide only a small sample (we focused on consistency)

of the statistical properties of FSs that practitioners may exploit in order to enhance the

performance of their fuzzy models. It can be expected that FS-based sieves possess other

useful properties similar to those of standard nonparametric techniques (e.g., asymptotic

normality of the limiting distributions of smooth functionals; see Pagan and Ullah, 1999).

The above results remain valid when cross-sectional data are replaced by time series data

generated by stationary ergodic processes, and can also be extended to extraction of deter-

ministic components (e.g., trends) in some classes of non-stationary systems. Continuous

functionals of the regression surfaces (e.g., average derivatives) can also be consistently

estimated, by using the plug-in method.

Appendix. Mathematical proofs.

The results in this paper follow as particularizations of the following general purpose results of Newey

and Powell (2003).

Lemma A.1. Suppose i) Q(θ) has a unique minimum on Θ at θ∗; ii) Q̂(θ) and Q(θ) are con-

tinuous, Θ is compact and maxθ∈Θ

∣∣∣Q̂(θ)−Q(θ)
∣∣∣ P−→ 0; iii) Θ̂ are compact subsets of Θ such that

for any θ ∈ Θ there exists θ̃ ∈ Θ̂ such that θ̃
P−→ θ. Then θ̂ = arg minθ∈Θ̂Q̂(θ) P−→ θ∗. 2
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Proof. See Lemma A1 in (Newey and Powell, 2003). 2

Lemma A.2. If i) Θ is a compact subset of a space with norm ‖ · ‖; ii) Q̂(θ) P−→ Q(θ) for all

θ ∈ Θ; iii) there is δ > 0 and Bn = OP (1) such that for all θ, θ̃ ∈ Θ,
∣∣∣Q̂(θ)− Q̂(θ̃)

∣∣∣ ≤ Bn‖θ − θ̃‖δ,

then Q(θ) is continuous and supθ∈Θ

∣∣∣Q̂(θ)−Q(θ)
∣∣∣ P−→ 0.

Proof. See Lemma A2 in (Newey and Powell, 2003). 2

Proof of Theorem 1.

We only have to check that conditions of Lemma A.1 above hold. By assumption Θ is compact

and Q(·) has a unique minimum on Θ at θ∗. The role of Q̂(·) is played by our Qn(·). For fixed

D = {(xt, yt), t = 1, . . . , n}, Qn(·) is easily shown to be continuous with respect to θ, as for any

θ, θ′ ∈ Θ, it holds

|Qn(θ′)−Qn(θ)| ≤ n−1
n∑

t=1

2|yt||θ′(xt)− θ(xt)|+ n−1
n∑

t=1

|θ(xt) + θ′(xt)| |θ′(xt)− θ(xt)|

≤
(

n−1
n∑

t=1

2|yt|+ 2‖θ‖+ ‖θ′ − θ‖
)
‖θ′ − θ‖

which converges to zero as ‖θ′ − θ‖ → 0. As to the weak uniform law of large numbers (WULLN),

Lemma A.2 applies. This requires a WLLN and a stochastic Lipschitz condition to hold for Qn(·).
As to the WLLN, it is straightforwardly derived from the standard decomposition

Qn(θ) = n−1
n∑

t=1

[σ∗(Xt)εt + θ∗(Xt)− θ(Xt)]
2 = I + II + III

with I = n−1
n∑

t=1
σ∗(Xt)2ε2

t , II = n−1
n∑

t=1
2σ∗(Xt)εt (θ∗(Xt)− θ(Xt)), and III = n−1

n∑
t=1

[θ∗(Xt)− θ(Xt)])2.

Since Assumptions 1 and 2 imply E |σ∗(Xt)εt|2 < ∞, Kolmogorov’s LLN for i.i.d. sequences (to-

gether with independence of Xt and εt) give that I
P−→ Σ ≡ σ2

ε

∫
X

σ∗(x)2dPX(x) < ∞ as n →∞. As

to II, an analogous argument gives II
P−→ 0. Similarly, boundedness of Θ and the LLN for i.i.d. se-

quences gives III
P−→ ∫

X

[θ∗(x)− θ(x)]2 dPX(x). As to the Lipschitz condition, it is straightforwardly

derived. For any θ, θ′ ∈ Θ

|Qn(θ′)−Qn(θ)| ≤ n−1
n∑

t=1

2|εt|σ∗(xt)|θ′(xt)− θ(xt)|

+n−1
n∑

t=1

|2θ∗(xt)− θ′(xt)− θ(xt)| |θ′(xt)− θ(xt)| ≤ (Bn + 4B) ‖θ′ − θ‖
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where Bn = n−1
∑n

t=1 2|εt|σ∗(xt), which is bounded in probability as a consequence of the WLLN,

and B = supθ∈Θ ‖θ‖, which is finite by compactness of Θ. Hence, Qn(·) satisfies a stochastic Lip-

schitz condition (with exponent 1). Thereof, Lemma A.2 ensures that Q(·) is continuous on Θ, and

that a WULLN holds for Qn(·) on the same set, as required by Lemma A.1 above. The remaining

conditions in Lemma A.1 are ensured by identifying Θm̂ = Θ̂, which is a (random) compact set. The

UA property in Assumption 3 above, together with the requirement m̂
P−→∞, ensure the existence

of θ̃m̂ (e.g., we can take θ̃m̂ = arg minθ∈Θm̂
‖θ − θ∗‖) which satisfies θ̃m̂

P−→ θ∗ as n → ∞ for any

choice of θ∗ ∈ Θ. Hence, the requirements of Lemma A.1 are fulfilled and the conclusion of the

Theorem straightforwardly follows. 2

Remark. Uniqueness of θ∗ imposed in Assumption 4 is redundant. The mapping Q(θ) =

Σ+
∫
X

[θ∗(x)− θ(x)]2 dPX(x) only can have a unique minimum over Θ, at θ∗, as any other minimizer

θ∗∗ should satisfy the equality
∫
X

(θ∗(x)− θ∗∗(x))2 dPX(x) = 0, which implies θ∗∗ ≡ θ∗ (this being a

consequence of continuity of θ∗∗ and θ∗ on X, plus the requirement in Assumption 1 that PX(O) > 0

for any nonempty open subset of X.

Proof of Theorem 2.

We proceed as in Theorem 1. The inequality |`q(u)− `q(u′) |≤ |u− u′| gives

|Qn(θ′)−Qn(θ)| ≤ n−1
n∑

t=1

|`q [yt − θ(xt)]− `q [yt − θ′(xt)]| ≤

n−1
n∑

t=1

|θ′(xt)− θ(xt)| ≤ ‖θ′ − θ‖

for any θ, θ′ ∈ Θ, which proves Lipschitz continuity of Qn(·) with respect to θ. Since

E
∣∣σ∗(Xt)U

q
t + θ∗q (Xt)− θ(Xt)

∣∣ < ∞, the WLLN required by Lemma A.2 follows from Kolmogorov’s

LLN for i.i.d. sequences. Hence, for any θ ∈ Θ, Qn(θ) P−→ Q(θ). The rest of the proof is identical

to that of Theorem 1. 2
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