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Abstract

Ensembles are among the most effective and successful methods for almost
all supervised tasks. Not long ago, an ensemble approach has been proposed
for quantification learning. The idea of such method is to exploit the prior
knowledge about quantification tasks, building ensembles in which diversity
is achieved by training each model with a different distribution. These train-
ing samples are generated taking into account the expected drift in class
distribution. This paper extends this method proposing three new quantifier
selection criteria particularly devised for quantification problems, where two
of them are defined for dynamic ensemble selection. The experiments demon-
strate that, in many cases, these selection functions outperform straightfor-
ward approaches, like averaging all models and using quantification accuracy
to prune the ensemble. Moreover, the results show that performance heavily
depends on the combination of the base quantification algorithm and the
selection measure.

Keywords: Quantification, Ensembles, Dynamic Ensemble Selection

1. Introduction

Quantification learning is a fairly new supervised task introduced by For-
man [1]. It is aimed at obtaining models able to predict an aggregate esti-
mate for a collection of instances, without providing individual predictions
for each of them. A typical example is related to sentiment analysis in social
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Pérez-Gállego, Alberto Castaño, José Ramón Quevedo, Juan José del Coz)



networks [2], e.g., to estimate the percentage of positive comments about a
certain topic of interest during a concrete time period [3].

Interestingly, quantification methods have been lately applied to solve
several real-world problems from different application areas. For instance,
automatic methods based on quantification have been used to predict the
proportion of membrane-intact sperm cells, which it is one of the most im-
portant aspects analyzed in fertility studies and was traditionally carried out
by human experts [4]. Quantifiers have been also applied to quantify re-
current issues based on the analysis of technical-support call logs recorded
by customer services [5]. Early detection of such issues is useful, among
others things, to identify problems that may become epidemics. In Epidemi-
ology, [6] proposed a quantification approach to estimate the cause of death
distribution in a population using verbal autopsies. A verbal autopsy is a
procedure that helps to determine the cause of a death recollecting the de-
ceased’s health information/symptoms, and also the events prior to death
from relatives, friends or other informants. This method is cheaper because
physician reviews are not required. Plankton abundance estimation [7, 8]
is another paradigmatic quantification task, whose goal is to estimate the
abundance of some taxonomic groups given plankton samples taken from the
oceans.

Ensemble learning is undoubtedly one of the most effective learning ap-
proaches –is the winner of many challenges– and has been adapted to tackle
almost any kind of supervised task. An ensemble consists of a group of
models whose predictions are combined to produce a final, single response.
Usually, an ensemble method comprises at least two main steps: 1) in the
training phase, the ensemble models are obtained using some base learning
algorithm; and 2) in the prediction phase, the outputs of these models are
combined to produce a collective decision for a given unseen case. This fu-
sion strategy mainly depends on the learning task, being majority voting the
predominant rule for classification, and averaging for regression and proba-
bility estimation. In any case, ensemble models can be treated equally or
not, assigning a different weight to each one that is is usually proportional
to the accuracy/precision of the model.

In the past years, an additional intermediate step, consisting in select-
ing only some models before combining them, has been studied in depth [9].
The goal of this process, named as ensemble pruning [10, 11, 12] or ensem-
ble selection [13, 14, 15], depending on the author, is to improve ensembles’
accuracy and complexity by just using some models instead of all [16]. En-
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semble model selection can be further divided into two phases: 1) to define
a function or criterion for evaluating/ranking the models and 2) to use a
search algorithm to find the best group of models. Obviously, the definition
of the selection measure is a crucial component of the whole process. Com-
petence and diversity are the usual concepts applied to devise such functions.
Besides, ensemble selection methods can be either static or dynamic [9, 12?
, 18]. In the former case, a fixed subset of models is selected (the rest of
models will never be used), while in the latter, a different group of models
may be selected for each testing example (no model is discarded). Static se-
lection has the advantage of being computationally more efficient because it
needs less memory to store the final models and predictions can be delivered
faster. The rationale of using dynamic approaches is that each testing case
may require the use of different models, or put another way, each model has
its own area of competence within the input space [9]. [14, 15? ] provide
nice reviews on ensemble selection and dynamic selection methods, proposing
different taxonomies.

Recently, the use of ensembles has been extended to quantification learn-
ing [19]. As we shall discuss in Section 2, one of the main characteristics of
quantification tasks is that data distribution changes between training and
testing. By problem definition, it is known that at least the class probabil-
ities, P (y), change. The idea in [19] is to exploit this prior knowledge to
build ensembles of quantifiers (EoQ) in which each model is trained with a
different class distribution. From a conceptual point of view, this approach
obeys one of the main ensemble learning principles, which is to build a col-
lection of models with some kind of diversity [10, 21, 22]. In this approach,
the concept of diversity is appropriately adapted to quantification problems.
The expected behavior is that the ensemble will contain some models that
were trained with a class distribution similar to the one observed in a new
unseen test sample. In their paper, the authors employ the simplest combina-
tion strategy: averaging the prediction of all models. Despite this simplicity,
the proposed ensemble algorithm significantly outperforms current state-of-
the-art quantification methods. This result suggests that EoQ are already
effective for quantification problems. However, their performance could be
further improved using more sophisticated fusion strategies like the ones ap-
plied for classification and regression tasks.

The main contribution of this paper is to propose three new selection
criteria particularly devised for quantification problems and for some con-
crete quantification algorithms. One of them is static and the other two are
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defined for dynamic ensemble selection. All of them are appropriate to be
used with ranking-based selection methods [14], that is, those that are based
on ranking the models according to some evaluation metric and selecting
afterwards the best subset following that order. Besides, the paper presents
an exhaustive experimental study in which EoQ are analyzed from different
perspectives. First, the ensembles are built using five different base quanti-
fiers that follow contrasting approaches, extending the experiments reported
in [19]. Then, each of them is applied with four selection measures (the
three criteria proposed here and one additional straightforward static crite-
rion based on quantification accuracy). The aim is to study which selection
criterion is more appropriate for each base quantifier. Moreover, dynamic
ensemble selection methods are compared with the static selection approach.
This exhaustiveness allows us to extract some interesting conclusions on the
design of ensembles for quantification problems, establishing a solid point of
departure for future research in the field of EoQ.

The rest of this manuscript is organized as follows. Section 2 briefly
reviews quantification learning, introducing the notation, performance mea-
sures and describing some quantification methods, including the one based
on EoQ. Section 3 introduces the new quantifier selection measures proposed
in the paper. The experiments performed and the results are discussed in
Section 4. The paper ends with some conclusions and directions for future
work.

2. Quantification learning

Given a training set D = {(x1, y1), . . . , (xn, yn)}, in which xi ∈ X and
yi ∈ {+1,−1}, the goal of binary quantification is to induce a model or
quantifier

h̄ : NX −→ [0, 1], (1)

able to estimate the prevalence, p̂, of the positive class for an unseen test set,
T , i.e. p̂ = h̄(T ) = PT (y = +1).

There are two main differences between classification and quantification:

1. A quantifier produces estimates for bags or samples (groups of in-
stances), instead of making predictions for individual examples like a
classifier does. In the previous definition, NX represents a multiset, i.e.,
a test sample may contain duplicate instances according to the input
space X .
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2. Many classification algorithms assume that the distribution does not
change. On the contrary, the class distribution in quantification tasks
changes between training and testing, PD(y = +1) 6= PT (y = +1), by
the own definition of these tasks. Otherwise quantification tasks would
be trivial: a quantifier would predict just the prevalence of the positives
in the training set: p̂ = h̄(T ) = PD(y = +1).

This last aspect is crucial to differentiate quantification from classification
and it is the reason that a classifier trained assuming that the distribution
does not change is suboptimal [3, 24] in quantification tasks when the clas-
sify and count approach is used (see Section 2.2). In fact, characterizing the
expected changes in data distribution is the first step to designing new quan-
tification algorithms. Assuming that there is a drift in the distribution, in
symbols PD(x, y) 6= PT (x, y), and if we represent PT (x, y) = P(y) ·P(x|y),
we know that, by the own definition of quantification problems, P(y) changes,
and the main question is to decide whether P(x|y) changes or not. Most
quantification algorithms, as we shall see below, assume that P(x|y) remains
constant.

Notice that changes in the distribution also occur in other learning prob-
lems, including covariate shift, where P(x) changes but P(y|x) remains con-
stant, and concept drift [? ] where P(y|x) changes but P(x) does not. In
general, most problems that deal with data streams mining suffer some kind
of drift in the distribution.

2.1. Performance evaluation

The performance of a quantifier is assessed in terms of the error for a ran-
dom bag or sample. Therefore, the difference with respect to classification
is that the unit of evaluation is a sample, not an individual instance. This
makes quantifier evaluation a more complex task because we need a repre-
sentative group of samples, otherwise the performance of a quantifier will not
be accurately estimated. Given a collection of testing samples, {T1, . . . , Ts},
the performance of a quantifier, h̄, is computed as:

Performance(h̄, L, {T1, . . . , Ts}) =
1

s

s∑
j=1

L(h̄, Tj), (2)

in which L(·, ·) represents a quantification loss function. In some cases, the
experimental design may require adapted versions of well-known validation

5



methods, like cross-validation [23]. Usually L must compare the predicted
class distribution and the actual one. In the case of binary quantification,
it is enough to compute the difference between the predicted prevalence of
the positive class, p̂, and the actual prevalence, p. Then, one may use any
loss function devised for regression problems, for instance, the absolute error,
AE(h̄, T ) = |p̂−p|, and the squared error, SE(h̄, T ) = (p̂−p)2. In this paper
we shall employ both to define our two target performance measures for
binary quantification, Mean Absolute Error (MAE) and Mean Square
Error (MSE):

MAE(h̄, {T1, . . . , Ts}) =
1

s

s∑
j=1

|p̂j − pj|, (3)

MSE(h̄, {T1, . . . , Ts}) =
1

s

s∑
j=1

(p̂j − pj)2. (4)

MAE is easier to interpret than MSE, but it is less sensitive to large er-
rors. See [? ? ? ? ] for other performance measures commonly used in
quantification papers .

2.2. Quantification methods

This section just describes the quantification algorithms used in the ex-
periments of the paper (Section 4), for a complete review see [24]. The
straightforward approach for quantification learning is the CC (Classify and
Count) method [25]. It works as follows: 1) a classifier is induced from D,
2) such classifier is used to classify a testing sample, T , and 3) the number
of examples predicted as positives is counted in order to compute p̂. The
main drawback of this approach is that the training phase does not take into
account the fact that the data distribution will change. In fact, CC usually
performs worse when the drift in distribution increases [3].

The AC (Adjusted Count) method [25] tries to overcome the issues of the
CC approach. It is based on the learning assumption that the class proba-
bility distribution P(y) changes, as discussed before, but P(x|y) is constant,
i.e. PD(x|y) = PT (x|y). If such is the case, the prevalence perceived by the
CC method can be expressed in terms of the actual prevalence p:

p̂CC = tpr · p+ fpr · (1− p), (5)
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in which tpr and fpr are the true positive rate and the false positive rate
respectively. It is worth noting that these two rates remain constant when
P(x|y) does not change. Thus, the above expression is quite useful because
if we estimate tpr and fpr, using for instance cross validation as Forman sug-
gests [25] or a separate validation set, we can compute the actual prevalence
solving for p in (5):

p =
p̂CC − fpr
tpr − fpr

. (6)

Then, AC comprises four steps: 1) to train a classifier using D, 2) to estimate
its rates (tpr and fpr), 3) to classify and count the testing sample, T , and
4) to correct the prevalence obtained in the previous step by applying (6).
The key step is the estimation of tpr and fpr, in fact, if both estimates are
accurate, AC makes perfect predictions independently of the accuracy of the
underlying classifier. However, it is unrealistic to obtain perfect estimates for
tpr and fpr because, either the P(x|y) assumption does not hold, or because
there is some bias in the own estimation process. Thus, AC usually produces
imperfect quantifications despite its solid theoretical foundations.

In [26], the authors introduce the probabilistic versions of CC and AC
methods, denoted here as Probabilistic Classify & Count (PCC) and Prob-
abilistic Adjusted Count (PAC), respectively. The main difference between
PCC and CC is that the later uses crisp classifications as we have seen be-
fore, and the former requires a probabilistic classifier. Such classifier usually
returns the probability of belonging to the positive class, so PCC computes
the prevalence of the positives as the average of such probabilities over the
testing set. In symbols:

p̂PCC =
1

n

n∑
i=1

P(yi = +1|xi). (7)

PCC presents similar issues to CC, mainly that ignores the expected changes
in the distribution. Then, the same authors propose the PAC quantifier [26]
that adjusts the estimated provided by PCC using a probabilistic version of
(6):

p̂PAC =
p̂PCC − FPpa

TPpa − FPpa
, (8)

in which TPpa =
∑

i∈D+ P(yi=+1|xi)

|D+| is the averaged probability of the positive

examples and FPpa =
∑

i∈D− P(yi=+1|xi)

|D−| is the averaged probability of the neg-
atives. Both rates are again estimated using cross validation or a validation
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set. D+ and D− represent the set of positive and negative examples in D,
respectively.

The last method, called HDy [27], follows a completely different approach
as it is not based on counting and correcting. The key idea consists in rep-
resenting and comparing training and testing distributions. The acronym
merges the Hellinger Distance (HD), employed to measure the similarity be-
tween both distributions, and the predicted values, y, used to represent the
distributions. HDy starts learning a classifier using D. A probabilistic clas-
sifier is preferred because its outputs are bounded in the range [0..1]. This
classifier is applied to collect the predicted values for the training instances.
The goal is to obtain two distributions, one for the positive and one for
the negative examples: the range [0..1] is partitioned into b bins, and two
histograms are built in which each training example is assigned to the cor-
responding bin depending on its probabilistic score. The same procedure
is applied over the test set, but in this case just one histogram is obtained
because the class values are unknown. Once we have the three distributions
(positive, negative and testing), HDy employs a linear search seeking for the
value p̂ ∈ [0..1] that makes the combination of the positive distribution and
the negative distribution most similar to the test distribution according to
the Hellinger Distance. The combination for each value of p̂ is obtained using:

|D′i|
|D′|

=

∣∣D+
i

∣∣
|D+|

· p̂+

∣∣D−i ∣∣
|D−|

· (1− p̂), (9)

in which |D+|(|D−|) is the number of examples in D belonging to the posi-
tive(negative) class and

∣∣D+
i

∣∣(∣∣D−i ∣∣) the number of positive(negative) exam-
ples in D belonging to the i-th bin. Notice that in this procedure all the bins
are uniformly modified using p̂ assuming that P(x|y) does not change.

Similarity between both histograms is measured with the Hellinger Dis-
tance defined for discrete distributions:

HD(D′, T ) =

√√√√ b∑
i=1

(√
|D′i|
|D′|
−

√
|Ti|
|T |

)2

, (10)

in which D′ and T represent the combined distribution of D (9) and the
testing distribution, respectively.

2.3. Ensembles for quantification learning
In [19] the authors present the first ensemble approach devised for quan-

tification. The main hypothesis of the paper is that ensembles are a good
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alternative for those problems in which the data distribution changes, like
it occurs in quantification tasks. The reason is that each model of the en-
semble can be trained with a training set whose data distribution may be
different from the distribution of the original dataset. This fact can be fur-
ther exploited in learning problems that suffer a characterizable drift in the
distribution. The main idea is to generate a collection of training samples
(one for training each ensemble model) having different data distributions,
thus taking into account the expected drift. The aim is to introduce enough
diversity [10, 21, 22] taking advantage of our prior knowledge about the
problem. Notice that this approach differs from those methods based on re-
moving/adding models to the ensemble because these ensembles do not need
further modifications once they have been trained.

The first step of the method is to generate the training samples for the
models. Each sample has a different prevalence (selected according to the
expected change in the class distribution) but its examples are chosen using
random sampling with replacement to ensure that P(x|y) does not change
(adopting the same assumption that other quantification algorithms dis-
cussed before). In the next phase, the models of the ensemble are trained
using a base quantification algorithm with the samples generated in the pre-
vious step. In the prediction phase, all models are applied over the test set
T and the predicted prevalences are aggregated using the arithmetic mean.

3. Selection measures

As it was stated in the Introduction, there are several ways of combining
EoQ. In contrast to using all models with the same importance, the main
alternatives are ensemble weighting and ensemble selection. The former con-
sists in assigning different weights to the models comprising the ensemble.
The idea is that the best models contribute more to the final prediction than
the worst ones. The second method is based on selecting the best subset
of models, discarding the rest. Notice that they can be used together, se-
lecting the best models but combining them with different weights. From a
conceptual point of view, both approaches present a comparable complexity
in the sense that they may have the same two elements: a selection/ranking
criterion to assess and compare the model contribution to the ensemble and a
method able to assign the concrete weight to each model or to select the best
subset of models. Despite there may be some interaction between both ele-
ments, in the sense that a particular criterion would fit better for a selection
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method, in the literature these two problems are usually solved separately to
reduce the complexity of obtaining optimal ensembles [28]. In fact, assigning
optimal weights is a problem hard to solve and the search problem to find
the best group of models is NP-complete [29]: the searching space has 2m−1
different non-empty subsets, being m the ensemble size.

Following the above reasoning, this paper just focuses on selection mea-
sures/criteria: the main aim is not to obtain the best possible combination
strategy with optimal weights or with an optimal selection, but to study what
kind of criterion works better for selecting or ranking the ensemble models.
Despite we acknowledge that there may exist a possible interaction between
both, the selection/ranking criteria can be better analyzed if they work in
isolation, without combining them with additional algorithms to select mod-
els or to assign weights. Otherwise, the analysis of the combination of both
elements would hinder the suitability of a particular ranking criterion given
a quantification algorithm, which it is our goal. The analysis of the three
elements together (selection criteria, selection methods and quantification al-
gorithms) would make more difficult to extract useful conclusions. Thus, the
aim of this paper is to analyze the interaction between selection criteria and
state-of-the-art quantification methods. Specifically, we shall focus on the
quality of the rankings provided by different criteria studying, for instance,
the performance of different subsets of models, increasing the size by includ-
ing first those models with the highest rankings. Our primal interest is to
find out which is the best selection measure for some base quantifiers. As
will be discussed later, we are particularly interested in analyzing criteria for
dynamic selection in the context of EoQ. For these reasons, the use of differ-
ent selection methods proposed in the literature, like hill-climbing search[13],
meta-learning [? ], clustering [30], probabilistic models [? ], genetic algo-
rithms [34], quadratic integer programming [35] or hybrid methods [9], just
to cite a few, is out of the scope of the paper.

Two different groups of selection measures are considered in this paper.
The first group leads to static ensemble selection, meaning that the same
subset of models is used for all testing samples, discarding the rest. The
second group allows dynamic selection, that is, applying a different subset
for each sample. Static selection presents same advantages, mainly that
predictions can be delivered faster and less memory is required to store the
models. On the other hand, dynamic ensemble selection allows a flexible
structure of the ensemble and an adaptive behavior [9].
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3.1. Static selection measures

The most commonly used static selection measures are based on the ac-
curacy/precision of the models. The idea is straightforward: select the best
(strongest) models, discarding the worst (weakest) ones. This kind of se-
lection criterion is defined in terms of performance measures. For instance,
accuracy is a natural choice for classification problems: select the models with
the highest accuracy. We also apply here this approach, named as ACC, but
adapted to binary quantification. This means to use a binary quantification
measure instead of classification accuracy. In our experiments, the models
are ranked and selected according to their MSE scores (4). It is worth not-
ing that, in addition to the selected performance measure, it is important to
define the validation process to estimate such errors. As it was discussed in
Section 2.1, in quantification, it is essential to employ a representative collec-
tion of samples with a suitable range of prevalences. In our experiments, error
estimation for each model is made by using the training samples generated
for the rest of models.

This paper introduces a new selection criterion that it is related to ACC,
but adapted to the characteristics of some paradigmatic quantification al-
gorithms. This selection measure is called MAX, and is especially devised
for AC and PAC quantifiers. MAX was inspired by the method of the same
name proposed in [25]. The idea is to select those models that maximize
the difference tpr − fpr for the AC method and TPpa − FPpa for the PAC
method. This means that MAX measure prefers those models with a large
value for the denominator in the correction equations, (6) and (8). A smaller
value in the denominator implies a bigger and risky correction. It is prefer-
able a smooth correction, meaning that the prediction of CC/PCC is already
rather accurate.

Notice that this criterion is somehow similar to ACC, but at the same
time, presents subtle differences that become relevant for imbalanced do-
mains in which the class distribution is skewed, since examples of one class
(usually the negative class) appear much more frequently. For balanced do-
mains, a model with a higher accuracy will also have a high tpr and a low
fpr, resulting in a large value for the difference between both. But in an im-
balanced situation, one model may have a high accuracy, but a small value
for tpr−fpr, for instance if the model predicts always the negative (majority)
class (tpr = 0, fpr = 0).
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3.2. Dynamic selection measures

The main characteristic of quantification problems, the fact that data
distribution changes, makes that dynamic quantifier ensemble selection [? ]
seems a much more appealing approach than static selection. Our proposal
is to select those models that were trained using a training distribution more
similar to the distribution of the testing sample. The key issue is how to
compare such distributions in a computationally efficient manner, avoiding
other complex approaches like, for instance, density estimation [36, 37]. This
paper proposes two different criteria.

The first selection criterion assumes that both distributions are similar
when the prevalence of the positive class is also similar in both distributions.
The problem is that we know the prevalence of the positive class in the train-
ing distribution, but we totally ignore the prevalence of the testing sample.
This is precisely what we want to estimate. Our idea is to use all the models
in the ensemble to obtain a first estimate of the prevalence for the testing
sample. Then, in a second round, we will rank the models according to the
difference between the prevalence of the their corresponding training samples
and the first estimation obtained using all the models. The aim is to select
the models that are close to such first estimate, discarding those that are far
away.

This criterion, called Ptr in the experiments, seems very simplistic at first
sight, but is closely related to several formal algorithms, namely AC, PAC
and HDy. Actually, Ptr makes exactly the same learning assumption that
those quantification algorithms, that is, Ptr also assumes that P(x|y) does
not change. When such assumption holds, a change in the data distribution
is only due to a variation in the prevalence of the classes. Notice that HDy
follows a similar idea when applies linear search to obtain the value of the
prevalence that makes the combination of the positive distribution and the
negative distribution most similar to the testing distribution (9).

The second criterion, called DS (Distribution Similarity), is inspired in
the HDy algorithm. The idea is to compare the distribution of the y values for
the testing and the training samples. The procedure is analogous to the one
described above for the HDy algorithm. First, during the training phase, the
training distribution of each ensemble model is summarized computing the
histogram of its y values. The same y-histogram is computed for the testing
sample, and both histograms are compared using the Hellinger distance. The
models are then ranked according to these distances.
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Notice that, from a computational point of view, Ptr and DS are very
similar. Both require to apply all models over the testing sample: in the
former case, to calculate a first estimation for the testing sample prevalence,
and in the latter, to obtain the distribution of the testing examples output
values. Comparing these two approaches with ACC and MAX criteria, pre-
sented above, we find that Ptr and DS are less efficient in the testing phase,
because static approaches do not require to make any process during the test-
ing phase (the best models are selected in the training phase). And for the
same reason, ACC and MAX are less efficient in the training phase because
they require to estimate quantification accuracy or the difference between
some rates (e.g. tpr − fpr).

4. Experimental results

The experiments described in this section analyze the performance of the
different selection measures discussed in the previous section. The main goal
is to prove that selecting a group of models by applying these proposed cri-
teria outperforms the straightforward approach of taking the average predic-
tion of all ensemble models. Additionally, ensembles were built considering
a group of representative base quantifiers to extend the significance of the
experiments. The idea was to analyze whether the best criterion depends on
the base quantifier or, in contrast, one of the criterion prevails over the rest,
independently of the used quantification method.

4.1. Experimental setting

Thirty two datasets were used in the experiments, exactly the same em-
ployed in [19]. Table 1 describes their main properties. Approximately half
of them are multi-class problems (balance, cmc, ctg, iris, pageblocks and
wine) in which one of the classes was mapped as the positive class and the
others comprised the negative class. The rest are originally binary problems.
The most important characteristic for binary quantification problems is the
prevalence of the positive class (last column in Table 1). Notice that this
value ranges from 2% to 70%, thus providing enough variability.

We considered five different base quantification algorithms to learn the
ensemble models: CC, PCC, AC, PAC and HDy (see Section 2.2). The
corresponding ensemble versions shall be denoted as ECC, EPCC, EAC,
EPAC and EHDy, respectively. In this sense, this paper extends the results
reported in [19] by the addition of EPCC and EPAC. Notice that all these
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Table 1: Summary of datasets: n is the number of examples, d is the dimension of the
input space, P (N) the number of positive (negative) examples and p the prevalence of the
positive class

name n d P N p

balance.1 625 4 288 337 46%
balance.2 625 4 49 576 8%
balance.3 625 4 288 337 46%
breast-cancer 683 9 444 239 65%
cmc.1 1473 9 629 844 43%
cmc.2 1473 9 333 1140 23%
cmc.3 1473 9 511 962 35%
ctg.1 2126 22 1655 471 78%
ctg.2 2126 22 295 1831 14%
ctg.3 2126 22 176 1950 8%
diabetes 768 8 268 500 35%
german 1000 24 700 300 70%
haberman 306 3 81 225 26%
ionosphere 351 34 126 225 36%
iris.2 150 4 50 100 33%
iris.3 150 4 50 100 33%

name n d P N p

mammographic 830 5 403 427 49%
pageblocks.5 5473 10 115 5358 2%
phoneme 5404 5 1586 3818 29%
semeion 1593 256 155 1438 10%
sonar 208 60 97 111 47%
spambase 4601 57 1813 2788 39%
spectf 267 44 55 212 21%
tictactoe 958 9 332 626 35%
transfusion 748 4 178 570 24%
wdbc 569 30 212 357 37%
wine.1 178 13 59 119 33%
wine.2 178 13 71 107 40%
wine.3 178 13 48 130 27%
wine-q-red 1599 11 855 744 53%
wine-q-white 4898 11 3258 1640 67%
yeast 1484 8 429 1055 29%

quantification methods need an underlying classifier. We decided to use
probabilistic classifiers for all of them because some of the algorithms, namely
PCC, PAC, require a probabilistic classifier, and it is also preferable for
others, like HDy. Additionally, this decision allows us to ensure that all
the ensembles are formed by the same models for a given dataset. Thus,
despite we are just interested in studying the selection criteria for each EoQ
separately, the reader could also compare all ensembles methods with the
new selection measures.

The probabilistic classifier employed was Logistic Regression [38]. The
regularization parameter (C) was selected through a search in the interval
[10−3, . . . , 103] optimizing the geometric mean using CV5x2 (cross validation,
5 folds and 2 repetitions) over the training examples. Geometric mean was
chosen to deal with imbalanced datasets which frequently appear in quantifi-
cation tasks. Besides, the positive class and the negative class were balanced
(−w parameter in LibLinear [38]) to obtain good classifiers even for severe
imbalanced cases. Additionally, AC/EAC and PAC/EPAC require estimat-
ing the values of (tpr, fpr) in (6) and (TPpa ,FPpa) in (8), respectively. This
was done by means of a CV10x1 over the training data.
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The number of models to build the ensembles was set to m = 50. The
procedure for generating the training sample or bag for each model was the
following: the prevalence of each training sample, pi, was uniformly selected
from [5%−95%] and then, the examples of the new sample were chosen using
random sampling with replacement (trying to maintain P(x|y) constant).
The size of the sample was always equal to the size of the original training
set.

We studied two aggregation strategies. Firstly, we computed the average
prediction of all the models, that is, the strategy employed by [19]. This
approach is denoted as ALL in the results. Our goal was to analyze if these
results can be significantly improved. The second strategy is to select 50%
of the models, just the best models given a new test sample according to the
four selection measures discussed in the paper:

1. ACC: selects those models with the highest quantification accuracy, or
lowest error measure in terms of mean square error (4),

2. MAX: picks the models that maximize the denominator of equations (6)
and (8) depending on the base quantifier used: tpr− fpr for ECC and
EAC, and TPpa −FPpa for the probabilistic-oriented methods (EPCC,
EPAC and EHDy),

3. Ptr: chooses those models that were trained with a sample that had a
similar prevalence than that of the testing sample, and

4. DS: selects the models whose training distribution is most similar to the
distribution of the testing sample, measured in terms of the Hellinger
distance. Probabilities were discretized in 8 bins to compare both dis-
tributions.

Results in Section 4.2 and Section 4.3 were computed with CV5x2 experi-
ments. 101 samples were generated with each test fold in order to adequately
measure quantification performance. The procedure to obtain these testing
bags was the same than that used for generating the training samples de-
scribed before: the prevalence of each testing bag was in this case uniformly
selected in the range from 0% to 100% (101 bags) and the size equal to the
corresponding test fold, choosing its examples using again random sampling
with replacement. Thus, each reported result in the next sections corre-
sponds to the average of 1010 quantification tests (2 repetitions × 5 folds
× 101 testing bags generated per fold). In order to study the behavior of
the considered approaches, we have chosen the two measures discussed in
Section 2, MAE and MSE.
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4.2. Results
Tables 2-6 show the MAE scores for the ensemble method using one par-

ticular base quantifier and applying different selection measures. For in-
stance, Table 2 reports the results using CC as the base quantifier. The
difference between the scores are just due to the selection strategies, because
the ensemble models are the same. It is worth noting that ALL is the worst
approach in this case. All selection approaches clearly boost the results of
ALL. The best two methods are DS and ACC. In fact, they obtain the best
results in 28 out of 32 datasets; ALL is not the best in any.

Table 3 shows the scores when PCC is the base quantifier of the ensemble
method. Here, it is clear that ACC is the best performer: not only it ranks
first in terms of average ranking, but it also obtains the best score for 25
datasets. The second best approach is MAX: so it seems that in this case the
static selection and the criteria based on the performance of the underlying
quantifiers are better than dynamic selection and those measures based on
distribution similarity. Again, ALL does not obtain the best result in any of
the datasets and is outperformed by all selection approaches.

Table 4 contains the MAE scores for the ensemble method based on AC
quantifier. Three approaches obtain similar results with this method: DS,
ALL and MAX. The difference between them is small, both in terms of
average ranking and the number of wins (13, 8 and 10 wins respectively).
Interestingly, MAX achieves better performance than ACC, something that
did not happen with ECC and EPCC. This could be somehow expected
because MAX criterion was inspired by the equation that defines AC.

Table 5 shows the results for EPAC ensemble. MAX is the selection
function that achieves the best average ranking, winning in 19 cases. This
result is in line with the one described before for EAC ensemble. It makes
sense that MAX outperforms other selection measures because it is designed
for EPAC ensembles. The results for the rest of the approaches are pretty
similar, being DS the second best method.

Table 6 contains the latest scores, those corresponding to EHDy ensem-
bles. As one could expect in this case, DS is the best criterion. However,
the difference with respect to ALL and ACC is small. The worst method
is MAX, maybe because the correction idea has nothing to do with EHDy
ensembles.

Results for MSE are very similar to those previously discussed for MAE.
The complete MSE scores have been omitted but the average rankings and
their corresponding statistical analysis are included in the next section.
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4.3. Statistical analysis
The obtained results may be analyzed using several statistical tests. First,

we compare all the methods together taking into account their average ranks
[39]. This procedure comprises two steps: 1) a Friedman test to reject/accept
the null hypothesis (all approaches perform equally well from a statistical
point of view) and 2) a set of pairwise comparisons using the Bergmann-
Hommel test to analyze if one particular method is significantly better than
other. We are mainly interested in comparing ALL with the proposed se-
lection measures. The average rankings of all ensemble methods using MAE
and MSE are in Table 7.

The Friedman test rejects the null hypothesis (so there are significant
differences among the methods) except for EPAC (p = 0.3084) and EHDy
(p = 0.2248), both considering MSE. Analyzing the pairwise comparisons
using the Bergmann-Hommel test (α = 0.05), we can observe that most
of the significant differences occur for ECC and EPCC: all the selection
measures are significantly better than ALL, except MAX when MAE is the
performance measure, and Ptr for MSE. For the rest of ensemble models
(EAC, EPAC and EHDy), the only significant difference is between ALL and
ACC (MSE scores for EAC). There are other cases in which the difference
is close to be significant, for instance MAX versus ALL (EAC and MAE,
p = 0.057).

Regarding the rest of the pairwise comparisons (not involving ALL), we
see that ACC is significantly better than other selection functions for ECC
and EPCC ensembles, for instance ACC is significantly better than DS, Ptr

and MAX for EPCC ensembles, but it is worse for EAC, EPAC and EHDy
ensembles, e.g. ACC is significantly worse than DS(EAC), MAX(EPAC).
This suggests that ACC is a better criterion for those quantifiers that are
based on the classify and count approach; more sophisticated quantifiers
require other specific selection measures like the ones proposed in the paper.

However, the Bergmann-Hommel test discussed before presents some is-
sues [40], basically because it depends on the set of compared methods: the
outcome of the comparison between a pair of approaches depends also on the
performance of the rest of the methods included in the study. This problem
can be even worse in our experiments because some of the approaches are
correlated (ACC and MAX, and DS and Ptr). Following [40] we perform
multiple comparisons using the Wilcoxon signed-rank test. The p-values are
in Table 8. The Wilcoxon tests confirm that all the selection functions are
significantly better than ALL for ECC and EPCC both for MAE and MSE.
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This includes MAX for CC ensembles, whose difference was not significant
using the Bergmann-Hommel test. However, the most interesting results
from our point of view are that: 1) MAX significantly outperforms ALL for
ensembles based on PAC, 2) DS also significantly improves the scores of ALL
for HDy ensembles, and 3) ALL is significantly better than ACC for EAC
ensembles.

The first two results point out that ad-hoc criteria, specifically designed
to work with a concrete quantifier, can help to boost the performance of the
ensemble methods. MAX criterion is defined to prefer those models that
maximize TPpa − FPpa which is the denominator of the correction formula
(8) of PAC models. Therefore, it is reasonable that the performance of MAX
for EPAC is good. Even more interesting is the case of the combination
of EHDy and DS. The idea behind HDy quantifiers is to match the test
distribution with the training distribution. Thus, it makes sense that best
models in the EHDy ensemble are those trained with a distribution similar
to the test distribution. In fact EHDy with DS obtains the best overall
results. If we perform Wilcoxon signed rank tests between the best method
for each ensemble we obtain that: EHDy-DS is significantly better for MAE
than: ECC-DS (p = 5.771e − 06), EPCC-ACC (p = 1.603e − 05), EAC-DS
(p = 0.0011) and EPAC-MAX (p = 4.392e− 05); and for MSE is also better
than the rest with the following p-values: ECC-ACC (p = 2.313e − 06),
EPCC-ACC (p = 2.313e − 06), EAC-ALL (p = 0.00941) and EPAC-MAX
(p = 0.0009569). Be aware, however, that these differences are not just
motivated by the selection measure, but by the combination of both elements.

4.4. Analysis of the selection strategy

The results discussed in the previous section were obtained selecting half
of the models. The main question regarding this policy is what is the behavior
of the ensemble methods when this percentage varies. The goal of this section
is to graphically analyze this issue. Figures 1-5 show the performance for
the ensemble method using one particular base quantifier and varying the
percentage of selected models between 2% (using just the best model) and
100% (ALL strategy). The selection measure applied for each ensemble was
the best performer in the previous experiment. For instance, Figure 1 depicts
the MAE scores using the combination of ECC ensembles and DS selection
measure for all the benchmark datasets. The difference between the scores
are just due to the ability of the selection measure to rank the best models
of the ensemble.
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Figure 1: MAE scores selecting a different percentage of models using ECC-DS
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Figure 2: MAE scores selecting a different percentage of models using EPCC-ACC
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Analyzing the results for ECC-DS combination (Figure 1) we can observe
that taking just the best model (2%) or averaging all (100%) achieves bad
results: the best model rule wins just in 4 datasets (balance2, ctg2, ionosphere
and wine3) and ALL in 3 cases (iris2, wdbc and wine1). The most usual
behavior is that the scores tend to improve when the percentage of selected
model increases from 2% until some point in which the minimum (best)
score is obtained. From that point the scores degrade again. This pattern
occurs in 19 out of 32 datasets. A paradigmatic case is for instance the
top left corner figure corresponding to balance1 dataset. The position of
the minimum depends on the problem, sometimes is reached early between
10% and 30% (e.g. breast cancer), most of the times in the middle of the
range, but it hardly happens for values greater than 70% (such cases mostly
correspond for datasets in which ALL wins).

Figure 2 shows the graphs for EPCC-ACC method. These results are
surprising and totally different from those observed for the rest ensemble
methods. In the most common pattern, the minimum is reached with the
best model and the scores degrade from there, almost linearly, when the
percentage of selected models increases. This occurs in 26 datasets. There
are other 4 cases (ionosphere, iris3, semeion and spectf) in which the pattern
is similar, but the difference is that the minimum is reached taking between
10% and 25% of the models. Only 2 datasets show a clearly different behavior
(balance2 and ctg3). These results suggest that EPCC ensembles contain
many poor PCC models, maybe because the base classifier provides biased
probability estimates.

Figure 3 contains the results of the ensemble method based on AC quan-
tifiers selecting the models using the DS criterion. Here, we observe that
taking all the models produces good results in more cases than in the two
previous methods. ALL rule attains the best result in 6 datasets (cmc1,
german, ionosphere, pageblocks, sonar and spambase) and its score is very
close to the minimum in another 6 (ctg2, diabetes, haberman, iris2, spectf
and wine2). Despite the behavior is somehow unstable (different patterns
and none clearly prevails), we can identify a pattern that occurs in near half
of the cases. We called it the “L” pattern: it starts with a bad result for
the best model (2%), then the scores improve rapidly achieving the minimum
around 30% and the curve remains almost flat from that point. This happens
for approximately half of the datasets.

Figure 4 depicts the scores of the EPAC methods using the MAX selection
function. The performance of ALL is similar to the case of EAC ensembles:
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it is the best performer in 4 domains (balance2, german, iris2 and semeion)
and achieves very good scores in another 10 datasets (balance3, cmc3, ctg1,
diabetes, iris3, phoneme, wdbc, wine1, wine quality red and white). However,
here the “L” pattern appears more frequently. This implies that most of
the models in an ensemble based on PAC quantifiers should be reasonably
good. These results can be explained by the fact that PAC quantifiers should
be much better than the corresponding PCC methods due to the correction
procedure. Recall that EPCC and EPAC use the same models. Nevertheless,
there are also a few domains in which ALL performs quite poorly, noticeably
ctg3, pageblocks, spampbase, tictactoe, transfusion and wine3.

Finally, Figure 5 shows the results of EHDy-DS combination. Here, the
“L” pattern is again present in more than half of the graphs. As before,
this kind of behavior tends to appear more often for the ensembles based on
sophisticated quantifiers (AC, PAC and HDy) than for those based on the
Classify & Count approach (CC and PCC).

5. Conclusions and future work

This paper extends the still embryonic work on ensembles for quantifica-
tion learning. Here, three new selection criteria for ensembles of quantifiers
are proposed, allowing to implement both static and dynamic ensemble se-
lection methods. Moreover, all the proposed criteria are devised for tackling
quantification problems, exploiting their peculiarities. In particular, two of
them are especially designed to work in combination with some state-of-the-
art quantifiers, namely AC, PAC and HDy.

The experiments reported show that using these criteria with a simple
selection scheme based just on ranking improves the performance of the en-
sembles when all the models are averaged. Our results are in line with those
reported in [15] in the sense that most of the times ensemble selection per-
forms better, but not always. Interestingly, these new criteria outperform
in some cases the well-know competence measure based on accuracy. An-
other important conclusion is that the performance strongly depends on an
appropriate combination between the selection criterion used and the base
quantifier. In this sense, dynamic ensemble selection using both the HDy
algorithm and the HDy selection function seems the overall best method.
The fact that quantification learning needs to make estimations for sets of
examples instead for individual instances, requires to extend the work that
has been done in the field of ensemble selection for other learning tasks. Ac-
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Figure 3: MAE scores selecting a different percentage of models using EAC-DS
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Figure 4: MAE scores selecting a different percentage of models using EPAC-MAX
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Figure 5: MAE scores selecting a different percentage of models using EHDy-DS
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cording to our results, the most promising approach is the one that has into
account the similarities between the training and testing distribution.

Finally, several ideas can be considered as future work. The first one
is to take into account the interactions between the selected models, trying
to employ complementary models in order to boost the final performance.
Another interesting idea is to combine somehow static and dynamic criteria,
for instance, dynamically selecting from the best models according to a static
criterion.

Acknowledgments

This research has been funded by MINECO (the Spanish Ministerio de
Economı́a y Competitividad) and FEDER (Fondo Europeo de Desarrollo
Regional), grant TIN2015-65069-C2-2-R (MINECO/FEDER).

References

References

[1] G. Forman, Counting positives accurately despite inaccurate classifica-
tion, in: Machine Learning: ECML 2005, Springer, 564–575, 2005.

[2] W. Gao, F. Sebastiani, Tweet Sentiment: From Classification to Quan-
tification, in: International Conference on Advances in Social Networks
Analysis and Mining (ASONAM 2015), 2015.
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Table 2: Mean absolute errors using different selection functions for the ensemble version
of the Classify & Count (CC) quantifier. The best score for each dataset is in bold

ECC - Ensembles of CC
dataset ALL ACC MAX Ptr DS
balance.1 0.0404 0.0417 0.0396 0.0397 0.0396
balance.2 0.3024 0.3116 0.3032 0.3042 0.2875
balance.3 0.0365 0.0373 0.0367 0.0359 0.0360
breast-cancer 0.0783 0.0757 0.0753 0.0624 0.0619
cmc.1 0.1809 0.1801 0.1808 0.1794 0.1778
cmc.2 0.1995 0.1982 0.1987 0.1981 0.1978
cmc.3 0.0624 0.0596 0.0620 0.0609 0.0605
ctg.1 0.0796 0.0749 0.0778 0.0803 0.0792
ctg.2 0.0379 0.0378 0.0377 0.0362 0.0361
ctg.3 0.1514 0.1492 0.1506 0.1502 0.1508
diabetes 0.1488 0.1470 0.1487 0.1429 0.1418
german 0.0983 0.0948 0.0962 0.0962 0.0956
haberman 0.2064 0.2030 0.2042 0.2090 0.2085
ionosphere 0.1307 0.1145 0.1247 0.1283 0.1269
iris.2 0.1766 0.1671 0.1731 0.1779 0.1701
iris.3 0.0232 0.0233 0.0253 0.0218 0.0215
mammographic 0.0237 0.0228 0.0229 0.0218 0.0217
pageblocks.5 0.1391 0.1218 0.1258 0.1451 0.1441
phoneme 0.0596 0.0478 0.0518 0.0643 0.0615
semeion.8 0.1337 0.1318 0.1332 0.1321 0.1315
sonar 0.1406 0.1327 0.1398 0.1308 0.1356
spambase 0.1795 0.1778 0.1790 0.1781 0.1782
spectf 0.1598 0.1580 0.1587 0.1498 0.1444
tictactoe 0.1865 0.1857 0.1862 0.1844 0.1827
transfusion 0.1703 0.1701 0.1704 0.1701 0.1702
wdbc 0.0625 0.0602 0.0633 0.0629 0.0631
wine.1 0.0443 0.0398 0.0461 0.0449 0.0442
wine.2 0.0538 0.0496 0.0549 0.0540 0.0526
wine.3 0.0210 0.0210 0.0223 0.0201 0.0197
wine-quality-red 0.1333 0.1326 0.1333 0.1315 0.1312
wine-quality-white 0.1462 0.1435 0.1454 0.1491 0.1473
yeast 0.1381 0.1343 0.1365 0.1362 0.1358
Avg. rank 4.1250 2.2500 3.5781 2.9375 2.1094
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Table 3: MAE results using different selection functions for the ensemble version of the
Probabilistic Classify & Count (PCC). The best score for each dataset is in bold

EPCC - Ensembles of PCC
dataset ALL ACC MAX Ptr DS
balance.1 0.0861 0.0750 0.0755 0.0836 0.0847
balance.2 0.2609 0.2639 0.2631 0.2612 0.2587
balance.3 0.0575 0.0531 0.0539 0.0553 0.0554
breast-cancer 0.1416 0.1278 0.1278 0.1292 0.1272
cmc.1 0.2184 0.2155 0.2157 0.2175 0.2158
cmc.2 0.2302 0.2286 0.2287 0.2299 0.2293
cmc.3 0.0809 0.0767 0.0782 0.0789 0.0785
ctg.1 0.1044 0.0994 0.1003 0.1028 0.1020
ctg.2 0.0485 0.0473 0.0477 0.0462 0.0462
ctg.3 0.2076 0.2014 0.2016 0.2054 0.2072
diabetes 0.1932 0.1897 0.1903 0.1907 0.1885
german 0.1334 0.1280 0.1291 0.1322 0.1319
haberman 0.2276 0.2225 0.2226 0.2265 0.2287
ionosphere 0.1283 0.1169 0.1285 0.1209 0.1221
iris.2 0.2085 0.2008 0.2017 0.2056 0.2093
iris.3 0.0427 0.0378 0.0399 0.0393 0.0391
mammographic 0.0296 0.0271 0.0274 0.0276 0.0276
pageblocks.5 0.1166 0.1066 0.1089 0.1182 0.1168
phoneme 0.1192 0.0984 0.1042 0.1248 0.1199
semeion.8 0.1866 0.1813 0.1814 0.1841 0.1859
sonar 0.1893 0.1805 0.1829 0.1772 0.1835
spambase 0.2148 0.2128 0.2128 0.2145 0.2134
spectf 0.1913 0.1865 0.1871 0.1825 0.1817
tictactoe 0.2159 0.2138 0.2139 0.2154 0.2133
transfusion 0.2136 0.2097 0.2105 0.2142 0.2131
wdbc 0.0776 0.0723 0.0734 0.0753 0.0751
wine.1 0.0610 0.0548 0.0587 0.0588 0.0587
wine.2 0.0788 0.0693 0.0730 0.0768 0.0757
wine.3 0.0331 0.0277 0.0314 0.0312 0.0299
wine-quality-red 0.1756 0.1725 0.1731 0.1753 0.1738
wine-quality-white 0.1901 0.1862 0.1870 0.1922 0.1902
yeast 0.1814 0.1732 0.1761 0.1836 0.1801
Avg. rank 4.5625 1.4062 2.5156 3.5625 2.9531
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Table 4: Mean absolute errors using different selection functions for the ensemble version
of the Adjusted Count (AC) quantifier. The best score for each dataset is in bold

EAC - Ensembles of AC
dataset ALL ACC MAX Ptr DS
balance.1 0.0371 0.0374 0.0349 0.0367 0.0368
balance.2 0.3284 0.3926 0.4067 0.3163 0.2970
balance.3 0.0252 0.0258 0.0257 0.0252 0.0252
breast-cancer 0.0559 0.0570 0.0598 0.0524 0.0521
cmc.1 0.0952 0.0947 0.0970 0.0950 0.0940
cmc.2 0.1186 0.1180 0.1122 0.1176 0.1167
cmc.3 0.0272 0.0271 0.0268 0.0283 0.0282
ctg.1 0.0254 0.0257 0.0254 0.0254 0.0253
ctg.2 0.0285 0.0289 0.0283 0.0284 0.0283
ctg.3 0.0662 0.0658 0.0663 0.0678 0.0666
diabetes 0.0692 0.0721 0.0692 0.0701 0.0702
german 0.0659 0.0677 0.0630 0.0683 0.0680
haberman 0.1929 0.1941 0.1892 0.1910 0.1880
ionosphere 0.0853 0.0915 0.0947 0.0891 0.0884
iris.2 0.1810 0.1857 0.1737 0.1782 0.1740
iris.3 0.0208 0.0213 0.0229 0.0208 0.0202
mammographic 0.0186 0.0194 0.0188 0.0192 0.0189
pageblocks.5 0.0535 0.0561 0.0527 0.0544 0.0546
phoneme 0.0128 0.0131 0.0130 0.0143 0.0139
semeion.8 0.0335 0.0341 0.0336 0.0331 0.0331
sonar 0.1072 0.1089 0.1092 0.1134 0.1105
spambase 0.0793 0.0798 0.0791 0.0799 0.0803
spectf 0.1165 0.1109 0.1193 0.1213 0.1159
tictactoe 0.1427 0.1426 0.1376 0.1423 0.1423
transfusion 0.1070 0.1082 0.1106 0.1087 0.1054
wdbc 0.0450 0.0455 0.0447 0.0452 0.0450
wine.1 0.0395 0.0389 0.0398 0.0402 0.0394
wine.2 0.0483 0.0479 0.0491 0.0508 0.0492
wine.3 0.0262 0.0261 0.0238 0.0239 0.0237
wine-quality-red 0.0637 0.0639 0.0647 0.0633 0.0632
wine-quality-white 0.0371 0.0371 0.0378 0.0377 0.0379
yeast 0.0672 0.0697 0.0699 0.0710 0.0681
Avg. rank 2.6875 3.5469 2.8438 3.4531 2.4688
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Table 5: MAE results using different selection functions for the ensemble version of the
Probabilistic Adjusted Count (PAC) quantifier. The best score for each dataset is in bold

EPAC - Ensembles of PAC
dataset ALL ACC MAX Ptr DS
balance.1 0.0340 0.0338 0.0335 0.0332 0.0333
balance.2 0.3486 0.4748 0.4497 0.3253 0.3039
balance.3 0.0257 0.0262 0.0259 0.0257 0.0256
breast-cancer 0.0506 0.0511 0.0531 0.0475 0.0476
cmc.1 0.0843 0.0800 0.0808 0.0832 0.0840
cmc.2 0.0979 0.0980 0.0967 0.0981 0.0980
cmc.3 0.0240 0.0237 0.0235 0.0242 0.0241
ctg.1 0.0289 0.0294 0.0282 0.0285 0.0284
ctg.2 0.0311 0.0310 0.0305 0.0308 0.0307
ctg.3 0.0564 0.0559 0.0545 0.0553 0.0554
diabetes 0.0674 0.0680 0.0708 0.0681 0.0684
german 0.0521 0.0536 0.0516 0.0534 0.0534
haberman 0.2040 0.2096 0.1984 0.2023 0.2017
ionosphere 0.0784 0.0809 0.0884 0.0829 0.0825
iris.2 0.1660 0.1689 0.1662 0.1662 0.1652
iris.3 0.0288 0.0277 0.0283 0.0276 0.0269
mammographic 0.0179 0.0181 0.0178 0.0182 0.0181
pageblocks.5 0.0456 0.0459 0.0438 0.0473 0.0469
phoneme 0.0151 0.0130 0.0141 0.0188 0.0163
semeion.8 0.0311 0.0316 0.0309 0.0311 0.0311
sonar 0.1088 0.1092 0.1085 0.1097 0.1123
spambase 0.0865 0.0888 0.0856 0.0861 0.0864
spectf 0.1137 0.1129 0.1125 0.1142 0.1145
tictactoe 0.1233 0.1248 0.1189 0.1220 0.1221
transfusion 0.1150 0.1181 0.1103 0.1153 0.1166
wdbc 0.0409 0.0401 0.0413 0.0411 0.0410
wine.1 0.0407 0.0419 0.0402 0.0406 0.0405
wine.2 0.0550 0.0549 0.0524 0.0575 0.0560
wine.3 0.0253 0.0244 0.0243 0.0236 0.0234
wine-quality-red 0.0602 0.0597 0.0605 0.0590 0.0591
wine-quality-white 0.0336 0.0335 0.0327 0.0342 0.0343
yeast 0.0609 0.0616 0.0608 0.0631 0.0623
Avg. rank 3.1406 3.5000 2.1719 3.2344 2.9531
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Table 6: Mean absolute errors using different selection functions for the ensemble version
of the HDy quantifier. The best score for each dataset is in bold

EHDy - Ensembles of HDy
ddataset ALL ACC MAX Ptr DS
balance.1 0.0282 0.0277 0.0288 0.0281 0.0279
balance.2 0.3537 0.3573 0.3469 0.3312 0.3406
balance.3 0.0195 0.0197 0.0205 0.0201 0.0200
breast-cancer 0.0482 0.0478 0.0571 0.0422 0.0412
cmc.1 0.0783 0.0764 0.0813 0.0776 0.0776
cmc.2 0.0891 0.0889 0.0906 0.0894 0.0891
cmc.3 0.0210 0.0197 0.0223 0.0198 0.0198
ctg.1 0.0260 0.0260 0.0261 0.0252 0.0252
ctg.2 0.0266 0.0267 0.0268 0.0264 0.0262
ctg.3 0.0482 0.0483 0.0483 0.0476 0.0474
diabetes 0.0704 0.0673 0.0719 0.0657 0.0664
german 0.0501 0.0507 0.0506 0.0518 0.0518
haberman 0.1980 0.2107 0.1950 0.1926 0.1904
ionosphere 0.1221 0.0992 0.1151 0.1234 0.1207
iris.2 0.1221 0.1288 0.1267 0.1252 0.1221
iris.3 0.0229 0.0236 0.0227 0.0253 0.0246
mammographic 0.0162 0.0152 0.0149 0.0157 0.0156
pageblocks.5 0.0252 0.0255 0.0252 0.0256 0.0251
phoneme 0.0102 0.0101 0.0103 0.0100 0.0101
semeion.8 0.0239 0.0240 0.0241 0.0240 0.0240
sonar 0.1095 0.1088 0.1164 0.1105 0.1082
spambase 0.0785 0.0796 0.0772 0.0802 0.0799
spectf 0.1206 0.1207 0.1208 0.1193 0.1085
tictactoe 0.1047 0.1063 0.1012 0.1049 0.1047
transfusion 0.1160 0.1215 0.1101 0.1180 0.1148
wdbc 0.0363 0.0351 0.0387 0.0364 0.0362
wine.1 0.0328 0.0334 0.0334 0.0322 0.0325
wine.2 0.0440 0.0429 0.0425 0.0443 0.0432
wine.3 0.0177 0.0168 0.0181 0.0191 0.0180
wine-quality-red 0.0542 0.0543 0.0552 0.0543 0.0543
wine-quality-white 0.0320 0.0321 0.0325 0.0322 0.0322
yeast 0.0581 0.0559 0.0592 0.0582 0.0588
Avg. rank 2.8594 2.8438 3.7656 3.1719 2.3594
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Table 7: Average ranking for all ensemble methods using MAE (top) and MSE (bottom) as
performance measures. Symbol † indicates that the selection function in the correspond-
ing column is significantly better than ALL using a Bergmann-Hommel test (p < 0.05).
Symbol § indicates the opposite

MAE average rankings
Algorithm ALL ACC MAX Ptr DS
ECC 4.1250 2.2500 † 3.5781 2.9375† 2.1094†
EPCC 4.5625 1.4062† 2.5156 † 3.5625† 2.9531 †
EAC 2.6875 3.5469 2.8438 3.4531 2.4688
EPAC 3.1406 3.5000 2.1719 3.2344 2.9531
EHDy 2.8594 2.8438 3.7656 3.1719 2.3594

MSE average rankings
Algorithm ALL ACC MAX Ptr DS
ECC 4.0156 2.1250† 3.5938 † 2.9531 2.3125 †
EPCC 4.6094 1.4219† 2.5156 † 3.4844† 2.9688 †
EAC 2.4531 3.6250 § 3.1250 3.1875 2.6094
EPAC 2.9219 3.4219 2.5938 2.9219 3.1406
EHDy 2.9688 3.1250 3.4688 2.8750 2.5625

Table 8: p-values for the comparison between ALL and the proposed selection functions
using the Wilcoxon signed-rank test

ECC ACC MAX Ptr DS
MAE 0.000069 0.012080 0.034120 0.000381
MSE 0.000044 0.006810 0.079819 0.000633

EPCC ACC MAX Ptr DS
MAE 0.000002 0.000002 0.000641 0.000008
MSE 0.000005 0.000008 0.002938 0.000031

EAC ACC MAX Ptr DS
MAE 0.004080 0.537180 0.180012 0.658280
MSE 0.004387 0.316767 0.626407 0.834729

EPAC ACC MAX Ptr DS
MAE 0.099776 0.016635 0.975385 0.945307
MSE 0.266549 0.015474 0.903040 0.637021

EHDy ACC MAX Ptr DS
MAE 0.929713 0.263913 0.940368 0.026648
MSE 0.577523 0.745263 0.483749 0.084681
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