Hindawi

Journal of Sensors

Volume 2017, Article ID 9643279, 12 pages
https://doi.org/10.1155/2017/9643279

Research Article

Hindawi

A Model-Based Virtual Sensor for Condition Monitoring of
Li-Ion Batteries in Cyber-Physical Vehicle Systems

Luciano Sanchez,! Inés Couso,’ José Otero,’ Yuviny Echevarria,! and David Ansean’

IComputer Science Department, Universidad de Oviedo, Oviedo, Spain

2Statistics Department, Universidad de Oviedo, Oviedo, Spain

3Electrical Engineering Department, Universidad de Oviedo, Oviedo, Spain

Correspondence should be addressed to Luciano Sanchez; luciano@uniovi.es

Received 7 March 2017; Accepted 27 August 2017; Published 12 October 2017

Academic Editor: Qing Tan

Copyright © 2017 Luciano Sanchez et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

A model-based virtual sensor for assessing the health of rechargeable batteries for cyber-physical vehicle systems (CPVSs) is
presented that can exploit coarse data streamed from on-vehicle sensors of current, voltage, and temperature. First-principle-based
models are combined with knowledge acquired from data in a semiphysical arrangement. The dynamic behaviour of the battery
is embodied in the parametric definition of a set of differential equations, and fuzzy knowledge bases are embedded as nonlinear
blocks in these equations, providing a human understandable reading of the State of Health of the CPVS that can be easily integrated

in the fleet through-life management.

1. Introduction

Cyber-physical vehicle systems (CPVSs) integrate locomo-
tion, computational, and communication components, aim-
ing to leverage interdependent behaviour by integrating
control, computing, communications, and physical systems
[1]. Monitoring, fault detection, and diagnosis of CPVSs
are achieved through a combination of hardware sensors
and decision-making software [2], often by “anytime” or
“imprecise computing” algorithms that balance resources
and performance, refining the solutions when the resources
become available [3] or degrading gracefully with reduced
cyber resources [4]. On the physical side, health monitoring
of rechargeable batteries is an important part of both the
monitoring and the energy management subsystems of a
vehicle and measures the battery ageing that can manifest
itself either as a gradually decreasing capacity (understood as
the amount of electric charge that can be stored and released),
a downtrending efficiency when the battery is charged or
discharged or, in certain cases, as a catastrophic failure that
destroys the cell [5].

Energy management algorithms for CPVS fleets should
take into account the fact that the batteries in the vehicles

are in different health conditions. Monitoring the battery
health in due course has profound practical consequences,
because there are silent deteriorations (those that cannot be
perceived through a loss of capacity) that can trigger a sudden
failure if not detected and acted upon. Ideally, the Battery
Management Systems (BMSs) embedded in the powertrains
of the vehicles should monitor the State of Health (SoH)
of the batteries and notify the supervisor if a degradation
is detected. However, as of yet there are no commercially
available sensors of the health of a battery that can be used
for this purpose. In this paper it is proposed that a virtual
sensor (soft sensor) of the SoH is developed that combines
signals already present in the BMS and also makes use of a
battery model for synthesizing a “health signal” that is sent to
the supervisor if an incipient degradation is detected.
Certain “first-principles” (electrochemical) models can
estimate health-related variables taking current, voltage, and
temperature as inputs [6]. Since these three inputs are avail-
able in standard BMSs, these models could, in principle, be
part of the proposed virtual sensor. However, electrochemical
processes during charge and discharge are different whether
the battery is new or aged. Thus, first-principle models are not
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effective in mutable scenarios, such as a fleet of CPVSs with
different ages.

Learning models (equivalent circuits, statistical methods,
neural networks, etc.) could be better suited for the problem
being considered. It is remarked that pure data-driven models
are not adequate either, because these models may generalize
wrongly when subjected to unforeseen combinations of the
input variables. For instance, a data-driven model that is
learnt with data sampled from charge-discharge cycles at
low currents will perform poorly when the current is high.
Conversely, a “first-principles” model of a cell that is able to
reproduce the behaviour of a new battery for both small and
high currents will be inaccurate when applied to an ageing
battery, as mentioned. A balance must be sought between
the learning capabilities of the model and the amount of
prior knowledge about the electrochemical processes that is
placed in the model definition. To this we can add that the
quality of on-vehicle measurements of current, voltage, and
temperature is low, this being particularly true for the temper-
ature. Generally speaking, the uncertainty in the values of the
input variables lowers the accuracy of any kind of model, but
some models are more resilient to uncertainty than others.
Because of these reasons, a computational intelligence-based
soft sensor is proposed that is intermediate between first-
principle and pure data-driven models, as it is based on a
“grey-box” model of the battery. By “grey-box” it is meant
that the model is learnt from data, but at the same time it
depends on physically meaningful parameters of the battery.
The virtual sensor introduced in the present contribution
is based on an “imprecise computing” model that exploits
unreliable data streamed from on-vehicle sensors of current,
voltage, and temperature. Parts of the proposed sensor are
implemented with Fuzzy Rule-Based Systems (FRBS) that
are fitted to operational data with Genetic Fuzzy Systems
(GFSs).

The structure of the paper is as follows: in Section 2, the
literature about fast methods for determining the health of
a battery is reviewed. In Section 3, the proposed model is
introduced. In Section 4, numerical results are provided. The
paper concludes in Section 5 with some remarks and a list of
yet-unsolved problems and challenges.

2. State of the Art in the State of
Health Monitoring

The best reported methods for assessing battery health
compute the functional dependence between the stored
charge and the open circuit voltage (OCV) of the battery at
equilibrium, by determining the positions of the peaks at the
Incremental Capacity (ICA) [7]. This last curve is obtained
by differentiating the battery charged capacity with respect to
the OCV. In Figure 1(a), an example of the evolution in time
of the ICA curve is shown, measured at one of the batteries
used in this study. Alternatively, the inverse derivative (OCV
with respect to the capacity) is the Differential Voltage (DVA)
curve that also gives a clear insight of the efficiency of the
battery (see Figure 1(b)). In both cases, a precise knowledge
of the OCV is crucial for monitoring the condition of
automotive batteries.
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The most accurate method for obtaining the OCV is the
“voltage relaxation” procedure [8]. Voltage relaxation consists
in a sequence of short calibrated incremental charges (or
discharges) that are combined to obtain a pointwise estima-
tion of the OCV curve. However, this method is extremely
slow and therefore unsuitable for on-board monitoring (in
this particular case, the battery had to be removed from the
vehicle for 4 days). In Figure 1(c), a graph showing voltage and
current of a battery during an actual voltage relaxation essay
is displayed.

Given that relaxation experiments are not a practical
method for determining the OCV curve of the battery of a
CPVS, accelerated methods are a must. However, these curves
must be determined while the battery is at equilibrium, that
is, when a charge (discharge) current is not flowing [9]. In
practical circumstances, ICA and DVA analysis can be carried
out when a current is flowing that is not higher than 1/25
of the capacity of the battery measured in Ah (or “C25”
cycle); thus direct measurements are not reliable if they are
completed in less than 25 hours [10].

Different procedures have been published where the OCV
is approximated with data sampled during lapses shorter than
a day, with varying accuracies; see, for instance, [11-15]. The
problem is harder when the time window is shortened: if
the battery has to be drained faster, the discharge current
has to be raised accordingly and the memory effects of the
battery are no longer negligible. Unfortunately, it is difficult to
model the memory effects of a Li-Ion battery. As mentioned
in Introduction, neither first-principles (or “white boxes”)
nor data-driven (or “black boxes”) methods are valid. On
the one hand, although the electrochemical, thermodynamic,
and transport phenomena that define the behaviour of a
Li-Ion battery are well known [16], white models are not
valid because these models depend on a large number
of parameters that are not provided by the manufacturer
[17]. On the other hand, black boxes are unreliable when
predicting unforeseen states and cannot incorporate prior
knowledge about the mentioned phenomena [18]. A balance
between white and black boxes is needed, and these are the
“grey boxes,” also known as “semiphysical models.”

Grey models are a compromise where some parts of the
definition of the model are taken from granted and other
parts are learnt from data. The most prevalent grey boxes are
equivalent circuit models, where the battery is assimilated
to an electrical circuit comprising a network of resistances
and capacitors [19]. SoH observers have been derived from
equivalent circuit models; see, for instance, [20, 21]. These
models produce estimations of the OCV whose accuracy
is good (about +1%) for a range of State of Charge (SoC)
between 20 and 90%, provided that the charge/discharge
current is between low and moderate. Since these equivalent
circuit models are not based on electrochemical properties
of the battery, the parameters of the OCV curve cannot
be directly deduced from the values of the capacitors and
resistances in the network. However, these models can be
subjected to virtual experiments in accelerated time; that
is, a relaxation experiment that lasts more than one day
with real-world batteries can be simulated with the battery
model in milliseconds. The “pseudo-OCV” curves that are
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FIGURE 1: ICA (a) and DVA (b) curves of a new LiFePO, battery are drawn in black. These curves are superimposed in red for the same
battery after 3000 charge-discharge cycles. The diagnostic of the battery is immediate when these curves are available. (c) Current and voltage
during the experimental OCV determination by voltage relaxation of a typical LiFePO, battery. The relaxation time between partial charges
is on 4 h. Pulses are of 10% of the battery capacity (42 Ah). OCV, IVA, and DVA can be measured at the laboratory, but the procedure is long,
lasting more than four days in batteries with higher capacities. A soft sensor is sought that produces these curves through data sampled with

on-vehicle sensors.

obtained from virtual experiments could, in principle, be
processed to recover ICA or DVA graphs (see, e.g., [7]) but the
accuracy of this kind of “virtual laboratory” experiments is
poor.

3. A Semiphysical Model-Based
Soft Sensor of the SoH

Other kinds of grey boxes have been successfully used in State
of Charge (SoC) predictive models [22, 23], and these can be
adapted to the problem at hand with certain modifications.
These models are based on a physical analogy between
charging a battery and filling a flexible vessel, because the

function linking the height of a fluid with its mass, in a
vessel with the appropriate shape, can also measure the
interdependence between the voltage of a battery and its
charge.

In this section, a design of an ensemble of Fuzzy Rule-
Based Systems (FRBS) and differential equations is presented.
The design follows the principles stated in [24] and is aimed to
obtain an estimation of the SoH: after this ensemble is fitted
to data, the KB of one of its member FRBS comprises a set
of “if-then” rules describing the SoH of the battery through
its OCV. This new definition allows that the SoH is inferred
from the learnt parameters of the model without the need of
a “virtual lab” relaxation experiment.



3.1. Notation. The on-vehicle signals are the charge current,
I(t), the battery voltage, V (¢), the battery temperature, T(t),
and the ambient temperature, T, (t). The hidden variables
are the electrical charge SoC(t) and the overpotential OP(t),
which is the difference between the voltage of the battery and
the OCV for the same SoC. The outputs of the soft sensor
comprise the OCV curve of the battery (as a function of the
SoC), V(t), T(t), and the hidden variables OP(¢) and SoC(t),
given the inputs I(t), T, (¢) and the initial charge of the
battery SoC(0).

3.2. Battery Modelling with Fuzzy Rule-Based Systems. Batter-
ies are complex systems. A black-box model is possible but it
would require a long time window and training data covering
many different scenarios, which is not always available (or
attainable). However, the electrochemical processes that hap-
pen when batteries are charged are well known; thus there is a
high potential for injecting expert knowledge into the model
(by means of if-then rules, physical analogies, etc.) This
addition of knowledge is intended to avoid that the algorithm
that learns the model from data ends up confirming what is
already known.

There are many different contributions regarding the
balance between accuracy and interpretability in FRBS [25].
Most of these studies are intended to improve the linguis-
tic interpretability of models that are intended for verbal
communication (i.e., for explaining the model properties to
a human expert). The proposed model conveys the reverse
path, that is, injecting human knowledge; thus the model
generalizes well for situations not present in the training data.

In this particular case, there are certain pieces of knowl-
edge about the dynamic behaviour of the battery that can
be efficiently represented by means of differential equations.
An outline of the sensor structure is illustrated in Figure 2.
The sensor comprises a combination of dynamical blocks
including three FRBSs, representing the following.

(1) OCV versus SoC. This is the main output of the proposed
soft sensor. The only input to this system is the SoC, which
is the cumulative sum of the charge current, discounting
the charging losses. There is a dotted input in the diagram,
indicating that the OCV should also depend on the battery
temperature, but this dependence can be safely ignored for
LiFePO, batteries [26]. The output of this FRBS is the voltage
of the battery at equilibrium.

(2) Overpotential in Steady State versus SoC and Tempera-
ture. This FRBS models the difference between the output
voltage and the OCV when the battery is being charged (or
discharged) at a constant pace. The inputs to this second
system are the SoC and the battery temperature. Its output
is not routed to the exterior but is fed to a feedback loop
along with the net charging current that models the kinetic
behaviour of the battery. The output of this feedback loop
is added to the OCV to produce the second output of the
sensor, the predicted battery voltage. The difference between
the prediction of the battery voltage and the measured voltage
is the first of the error signals which will be minimized during
the learning process.
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(3) Internal Calorific Power versus SoC and Current. The third
FRBS models the heat emission of the battery as a function of
the SoC and the charging current. The output of this system
is not routed to the exterior either, but it is the input of an
internal dynamical model of the temperature of the battery
that depends on the specific heat of the cell and the thermal
resistance between the cooling system and the ambient. The
difference between the output of the dynamical model of
the battery and the ambient temperature is the second error
signal, which is also minimized during the learning.

3.3. Equations of the Sensor. The equations associated with
the model in Figure 2 are detailed in this section. These
equations encode the expert knowledge about the battery
behaviour through the parametric definition of a set of dif-
ferential equations. The available expertise about the battery
dynamics is summarized in the following list.

(1) Nonreversible Energy Losses Are Proportional to the Charg-
ing Current, by a Factor That Depends on the Charge. Charging
or discharging the battery is not a completely efficient process.
There are energy losses and, to a lesser degree, charging losses
that are handled by multiplying the input current by a factor
(about 0.999 in this study; this is the “charging losses” box).
Energy losses are modelled by a parasitic series voltage PV,
proportional to the current (“power losses” box):

Energy losses = |I - PV (SoC,I)|. 1)

The absolute value is needed because the current is neg-
ative when discharging. In this model the simplification
PV(SoC,I) = k- I is made, for a constant k that is learnt from
data; thus the nonreversible energy losses are proportional to
the square of the current.

(2) The Difference between the Voltage at Equilibrium and
the Voltage While Charging (or Discharging) Depends on
Charge, Current, and Temperature. The output voltage will
be modelled as the sum of three terms: (a) the voltage in
equilibrium, OCV, that depends on charge and temperature
(this dependence is modelled by FRBS 1in Figure 2), although
in the particular case of LiFePO, technology the dependence
between OCV and temperature was disregarded, as men-
tioned; (b) the overpotential, OP, that depends on charge,
current, and temperature (FRBS 2 and diffusion process, in
the same figure); (c) parasitic voltage associated with energy
losses (“power losses” box)

V (SoC, T, I) = FRBS, (SoC) + OP (SoC, T, I) + k- I. (2)

(3) The Voltage of the Battery in Open Circuit Keeps Changing
for a Certain Time after a Charge or a Discharge Is Applied
(Voltage Relaxation). Charging or discharging the battery
involves diffusion processes, whose speed is limited: it is not
physically possible to charge a battery in a very short time.
According to our experimentation, a first-order differential
equation or exponential decay with time constant 7 is enough
to acknowledge this constraint:

7-OP = -OP + I - FRBS, (SoC, T,sign (I)).  (3)
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FIGURE 2: Block-based representation of the proposed soft sensor. OCV, overpotential, and Calorific Power are represented by FRBSs. These
FRBSs can only be learnt from data in an indirect manner, by comparing the simulations of the model with the evolution of the observable
variables and tuning the fuzzy rules in the three FRBSs until these trajectories become identical.

The forcing function is I - FRBS,(SoC, T, sign(I)), where
FRBS, can be understood as a charge-dependant impedance
that models the linearized quotient between overpotential
and current. If the current is 0, OP eventually also becomes
0, modelling the voltage relaxation mentioned before. Small
batteries have low 7, that is, quick dynamics and vice
versa.

(4) The Temperature of the Battery Depends on the Integral
of the Difference between Generated and Dissipated Calorific
Power. It is proposed that the dynamic properties of the
battery temperature are approximated by this equation:

c¢-T=-p(T~Tyy)+|I-OP|
) (4)
+I" [k + T - FRBS; (SoC, sign (I))],

where c is the specific heat of the battery and p is the thermal
conductance with the ambient. The term I*k was explained
in (1). The thermal power resulting from entropy changes,
that is, 0(OCV)/0T in accordance with Helmholtz equation
[27], is modelled by the triple product of (a) the output of
FRBS;; (b) the absolute temperature of the battery; and (c)
the square of the current. It is remarked that the output of
FRBS; may be negative, when the battery absorbs heat in a
reversible process.

Summarizing, the differential equations describing the
dynamics of the sensor model are

SoC =1
V =FRBS; +OP +k-1I

7-OP = —-OP + I - FRBS,



c-T=—p(T~Tyy) +|I-OP|

+I? [k + T - FRBS;],
(5)

where FRBS, (SoC), FRBS, (SoC, T, sign(I)), and FRBS,(SoC,
sign(I)) are rule-based systems that are indirectly learnt from
operation data, as described in the following subsection.

3.4. Learning Algorithm. Assuming that the battery temper-
ature is controlled (thus there are no extreme temperature
changes during the operation of the vehicle), the sensor
equations can be discretized through the implicit Euler’s
method [28]:

SoC,,; =SoC, + At - 1,,,
1
OPt+1 = m [T'Opt +At'1t+1

- FRBS, (S0C,,y, sign ()]
V,,; = FRBS; (SoC,,;) + OP,,; + k- I, ©)
Tiyy
B At - [P “Tombg1 + |1 - OPpyy | + I, 'k] +c T,
c+At-(p+1I2, - FRBS; (SoC,,;,sign (I,,,)))

>

where SoC, stands for SoC(t), SoC,,; means SoC(t + At), and
so forth.

Assuming that SoC is known and given a sequence of N
samples of the input variables, I; and T, , , fort = 1,2..., N,
then the computer simulation of the outputs V, and T, and
the hidden variables OP, and SoC, consists in successive
applications of (6), once for each time period t.

Given a sequence of on-vehicle sampled values V,*, T,
and the initial charge SoC, learning this model from data
consists in determining

(1) the constants k, 7, p, and ¢,

(2) the rule-based systems FRBS,(SoC), FRBS,(SoC, T,
sign(I)), and FRBS;(SoC, sign(I))

that minimize the dissimilarities between the computer
simulation and the measured values.

As mentioned, on-vehicle measurements are not reliable
and nonlinear least squares are not robust in these conditions,
because a single outlier can alter the results. The rule learning
algorithm described in [29] is resilient to the presence of
outliers and will be used here. This algorithm is based on
the genetic optimization of a multivariate fuzzy-valued error
which is a function of the parameters described before. This
fuzzy function is described in the following paragraphs.

Let us suppose that the difference between the true tem-
perature of the battery T;™" and the perceived temperature
TP is lower than a certain bound 8. with a probability
greater than 1 — o,

T = [19% - 61,17 + o7

7)
P(T/ eT))21-a
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Observe that the most specific estimation of the squared error
of the model for each level « is

N
erry. = <|Z (T,-1,): 1, € Tf‘]» (8)

T=1

and the same course of reasoning can be applied to the
voltage, for a different set of bounds 8)::

V;x _ [‘/tperc _ 80\:" ‘/tperc + 8;/]

N 9)
erry, = {Z(Vf —) i, € V‘tx]» .

t=1

Following [30], the nested families of sets err. and erry, can
be regarded as fuzzy sets érr; and erry,, whose membership
function is as follows:

erty (1) = sup {a : 7 € errf}
(10)
erty (v) = sup {a : v € erry,}

allowing the application of the genetic algorithm described
in [29]. It is remarked that values 5}: and 5OTC are tolerance
intervals describing the accuracy of on-board sensors. If §) =
Oand 85 = 0, the procedure described in this section reduces
itself to ordinary nonlinear least squares; thus the estimation
becomes precise if accurate sensors are available and degrades
gracefully when quality information is not available.

4. Numerical Results

The experimental setup, comprising the battery type, the test
equipment, and the charging and discharging protocols, is
described in the first place. The numerical results of the
experimentation are detailed in Section 4.2, including the
compared results of the proposed method against a selection
of fast OCV estimators.

4.1. Experimental Setup. The tested cell is a LiFePO, (LFP)
pouch battery from European Batteries (see Figure 3). This
cell uses a LFP cathode in combination with graphite anode
active material. The rated capacity is 42 Ah at C/5 (the
discharge current at C/5 is 42/5 = 8.4A). The average
operating voltage is 3.2 V. The discharge and charge cut-oft
voltages are 2.5V and 3.65 V, respectively. The dimensions in
mm are 275 x 166.5 x 13.3. The weight cell is 1010 g.

All tests have been done using a setup that consists of
a SBT 10050 battery test system from PEC in combination
with an ICP 750 climate chamber from Memmert. All
tests were carried out at an ambient temperature of 23°C.
Testing-machine adjustments were performed to improve
the reliability and accuracy of the measurements. The first
stage of the testing procedure was commissioning, during
which the battery was identified and weighed. Then, a
conditioning test was performed according to the USABC
[8]. It consisted of three different constant current (C/3,
C/2, and C) discharge cycles. The standard charging method
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FIGURE 3: (a) SBT 10050 battery test system from PEC and ICP 750 climate chamber. (b) Detail of the LiFePO, (LFP) pouch battery from

European Batteries, rated at 42 Ah at C/5, used in the tests.

provided by the manufacturer was used to charge the cell. This
consists of a constant current (CC) stage at C/2 until the cell
reaches the charging cut-off voltage, followed by a constant
voltage (CV) stage until the current decreases to 0.05 C. For
subsequent testing, the battery capacity is considered stable
when three successive C3/3 discharges agree within 2%.

After the capacity had stabilized, a full charge/discharge
cycle was performed at a rate of C/25. The results of the
C/25 measurements provide a practical capacity reference
with minimal kinetic effects which is close to the maximum
capacity attainable by the cell. The battery capacity was
measured at C/5 and the result was 44.6 Ah instead of the
rated capacity of 42 Ah. The measured capacity was taken into
account for the open circuit voltage (OCV) at equilibrium
measurements. To determine the battery OCV the voltage
relaxation method was used [20]. With this method the
battery voltage relaxes to the OCV at equilibrium after
current interruption. To obtain the OCV at equilibrium
at different states of charge (SoC) the voltage relaxation
measurements were performed by charging and discharging
a cell in 4460 mAh steps (approximately 10% of the measured
capacity at C/5) at C/5 constant current. At the end of
charge/discharge voltage, a constant voltage (CV) stage is
applied until I < C/100 to ensure full charge/discharge
voltage of the cell. Each charge and discharge step was
followed by a rest period of 4 hours, after which the voltage
was sampled. This voltage was assumed to be equal to the
OCV at equilibrium.

Finally, the battery was subjected to discharges at C/5,
C/3, C/2, and C constant currents. Discharging was carried
out at CC until reaching the discharging cut-off voltage
recommended by the manufacturer. There was an inactivity
period of one hour after each charge or discharge until the
battery temperature fell below 24.5°C.

4.2. Numerical Results and Discussion. In Figure 4 the OCV
estimation produced by the proposed method is plotted
in blue over the OCV points obtained with the relaxation
method (in red). The hysteresis of the charge/discharge cycle
used to determine the OCV is plotted along the data.

The slowest cycle at C/25 (50 hours) produced the
most accurate estimation, which is in the same error range
compared to the relaxation method for charges of 4 Ah and

higher (SoC >10%). The accuracy of the estimation is reduced
for C/5, C/3, C/2, and C, but the results are in the 20 mV
range for charges as fast as C/2 (4 hours). Observe the
excellent results when extrapolating the OCV to 45 Ah from
all cycles faster than C/25. The determination of the OCV is
not accurate for charges lower than 4 Ah (10% SoC); however
this is a problem shared by all fast OCV estimators, as shown
later.

The differences in accuracy as a function of the charge/
discharge current are shown in detail in Figure 5. Observe
that the relaxation method, being the most accurate experi-
mental procedure itself, is also subjected to a small variance of
+10 mV, depending on whether the point was sampled when
the cell is being charged or discharged. This variability has
been displayed with the red error bars in Figure 5. In addition
to this, the mean accuracy of the estimation is plotted against
the experimental time in Figure 6, showing that the expected
error grows quickly if the current is higher than C/2. The dot-
ted superimposed grey curve is an exponential fitting to the
data.

In Table 1 the compared error values (average of the
absolute error in volts) of the proposed method and Xu et
al’s [21] and AbuSharkh and and Doerftel’s [20] methods
are displayed. Points of the relaxation OCV taken at charges
higher than 40 Ah were discarded for the C/3, C/2, and C
curves. A Friedman test was used to check that there are
statistical differences between the methods. Observe that the
proposed method was the best in all cases, with a single
tie at C/25 between the proposed method and Xu et als.
Pairwise Mann-Whitney tests were also applied between
the proposed method and each of the alternatives. The
differences were regarded as significant when the p value of
the Mann-Whitney test is lower than 0.05. Best results were
marked in boldface.

To clearly perceive the differences between the proposed
algorithm and the best alternative, the OCV estimation with
the Xu et al’s method is shown in Figure 7. Observe that
the fitting is less accurate for charges below 8 Ah (20% SoC)
or over 40 Ah (89% SoC), and the extrapolation to charges
over the sampled data is not as regular as the soft sensor.
The differences are clearer in Figure 8, showing that the
alternatives are more efficient for small currents (the C/25
curve is not statistically different than the best) and the
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FIGURE 4: OCV estimated through the proposed method (in blue) over the OCV points obtained with the relaxation method (in red). The
charge/discharge cycle used to learn the OCV is plotted along the data.
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TaBLE 1: Compared error values (average of the absolute error in volts) of the proposed method and Xu et al’s [21] and AbuSharkh and
Doerffel’s [20] methods. The proposed method was the best in all cases, with statistically significant differences (p value of a Mann-Whitney
test lower than 0.05). The only nonstatistical difference was at C/25 between the proposed method and Xu et al’s.

. ; AbuSharkh and
Current Proposed Upper limit Xuetals p value Doerftel’s method p value
method (Ah) method [21] [20]
C/25 0.0094 44 0.0378 0.1557 0.0393 0.0454
C/5 0.0117 44 0.0181 0.0046 0.0192 0.0007
C/3 0.0117 40 0.0181 0.0001 0.0192 le - 05
C/2 0.0115 40 0.0188 le - 05 0.0173 6e — 05
C 0.0186 40 0.0188 le - 05 0.0188 le - 05
Compared estimations C25, C5, C3, C2, C °
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— Experimental OCV Model C3 experimental time. The expected error grows abruptly if the current
—— Model C25 Model C2 is higher than C/2. The dotted grey curve is an exponential fitting to
—— Model C5 —— Model C

FIGURE 5: Compared results of the proposed method for charge
currents of C/25, C/5, C/3, C/2, and C. The reference points obtained
with the relaxation technique are plotted with red error bars.

estimated OCV is not accurate for very low or very high
charges, confirming the conclusions expressed by the authors
of that method.

5. Concluding Remarks and Future Work

A novel model-based soft sensor for fault detection and
diagnosis of rechargeable batteries for CPVSs has been
proposed. The main contribution of the present work is the
implementation of an “imprecise computing,” learning semi-
physical model of a battery. The proposed model contains
three learnable FRBSs, connected with different dynamical
blocks, in a setup that allows obtaining certain parameters
of the underlying physical process that are costly or hard
to estimate with a dedicated experiment. In particular, this
virtual sensor is able to approximate the SoH of an automotive
battery from on-vehicle measurements of current, voltage,

the data.

and temperature, being resilient to inaccurate sensors. The
present approximation is much faster than direct measure-
ments by relaxation and the range of application of the new
method extends that of the alternatives to SoCs under 20%
and over 80%.

The results are promising but there is still a margin for
improvement. The dependence between the time constants
of the model, the current, and the charge is prone to
overfitting, and it is possible that a new set of differential
equations would exist that allows for a better fitting for
SoCs below 10%. In future works, the first-order assump-
tion for the dynamics of the overpotential will be dropped
and replaced by a fractional-order differential equations
model. Also, it is remarked that the experiments have been
made in an off-vehicle temperature controlled environment.
Further experiments are needed where the battery tem-
perature is subjected to larger changes for different use
patterns.
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FIGURE 7: OCV estimated through Xu et al’s method (in blue) over the OCV points obtained with the relaxation method (in red). The
charge/discharge cycle used to learn the OCV is plotted along the data. Observe that the fitting is inaccurate for charges below 8 Ah (20%
SoC) or over 40 Ah (89% SoC).
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