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Abstract

M-estimators of location have been adapted to summarize the central tendency

of random fuzzy numbers in a robust way. Under mild conditions on the loss

function, which include the well-known Huber and Hampel families of loss func-

tions, fuzzy number-valued location M-estimators exist and can be expressed as

weighted means of the observations. Huber and Hampel loss functions depend

on one and three tuning parameters, respectively. Some empirical analyses have

been developed to compare the finite-sample behavior of the corresponding lo-

cation M-estimators when these tuning parameters are well-chosen quantiles of

the distribution of distances from an initial estimate to each observation. In

that sense, it has been shown that the flexibility of the three tuning parameters

in the Hampel loss function makes the corresponding M-estimator more accu-

rate than the M-estimator based on the Huber loss function in many situations.

More recently, Tukey’s biweight (or bisquare) loss function has also been used to

compute M-estimators of location for random fuzzy numbers. The robustness of

all these estimators has been proven by their finite sample breakdown point, but

a simulation study to compare the finite-sample behavior of the M-estimators

defined in terms of Hampel and Tukey loss functions is still lacking. This paper

aims to develop such simulation results and analyze the advantages of choosing
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the Tukey loss function.

Keywords: M-estimator of location, random fuzzy number, Hampel loss
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1. Introduction

The interest of the statistical analysis of fuzzy number-valued data mainly

lies in the wide variety of real-life experiments, characterized by an underlying

imprecision, that this type of data can model mathematically. Indeed, fuzzy

numbers are especially useful to describe ratings, opinions, judgements, percep-5

tions and other data often in connection with human valuations in a natural

and very expressive way. As discussed in De la Rosa de Sáa et al. [1], in these

situations, responses cannot usually be expected to be expressible in terms of

values on a precise scale, since they are essentially imprecise. For this reason,

numerous methodologies have already been adapted to cover the fuzzy-valued10

setting. Most of these procedures are based on the use of the Aumann-type

mean as location measure. The Aumann-type mean (see [2]) is a generalization

of the concept of mean for real-valued random variables, from which it inher-

its not only very convenient statistical and probabilistic properties, but also

the high sensitivity to outliers or data changes. Unfortunately, this means that15

the statistical conclusions of the developed methods involving the Aumann-type

mean may be invalidated under data contamination, which is very frequent in

real-life experiments.

In order to limit the influence of outliers on the location estimate, some

robust measures have already been proposed in the literature. Among them,20

we could mention different extensions of the concept of median to the fuzzy

number-valued case (see e.g. [3] and [4]) or, more recently, the more general

M-estimation approach ([5]).

In the classical framework, M-estimators of location were introduced by Hu-

ber [6] as a way to overcome the lack of robustness of the standard least squares25
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and maximum likelihood estimators. The key aspect is the involvement of a

loss function applied to the errors of the data that is selected to be less rapidly

increasing than the square loss function that is used in the least squares or

maximum likelihood procedures. There exist several well-known families of loss

functions, such as Huber, Hampel and Tukey biweight (or bisquare), that can30

be used for the computation of M-estimators.

Regarding the adaptation of this notion to the fuzzy number-valued case,

Sinova et al. [5] proved that under mild conditions on the loss function, fuzzy

number-valued location M-estimators exist and can be expressed as weighted

means of the observations. Although only Huber and Hampel families of loss35

functions were explicitly mentioned in [5], it was commented in [7] that the

Tukey biweight loss function could be used as well to compute M-estimators of

location for random fuzzy numbers. That is to say, the three families of loss

functions fulfill the required conditions to guarantee the existence of the cor-

responding fuzzy number-valued M-estimators of location and express them as40

convex linear combinations of the sample observations. Moreover, the robust-

ness of the M-estimators of location based on these three choices has already

been proven by means of their finite sample breakdown point. However, once

M-estimators of location based on Huber and Hampel loss functions have al-

ready been studied, is there still some interest in introducing the ones based45

on the Tukey biweight loss function? In other words, does the Tukey biweight

loss function present any advantage in contrast to the previously studied loss

functions?

Huber and Hampel loss functions depend on one and three nonnegative

tuning parameters, respectively. Although different values for these parameters50

could be proposed, a quite convenient way to take into account the measurement

units of the problem and avoid the consequences of the lack of scale equivariance

of M-estimators of location consists of choosing the values through quantiles of

the distribution of distances from an initial location estimate to each observa-

tion. This approach was suggested by Kim and Scott in [8] and followed by55

Sinova et al. [5]. In the latter paper, an empirical comparison of the use of
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Huber and Hampel loss functions with tuning parameters selected in this way

(the parameter for Huber’s being the median of the distribution of the distances

to the initial estimate and the three parameters for Hampel’s being the median,

the 75th and the 85th percentiles) showed that Hampel’s was, in general, a more60

accurate choice because of the flexibility allowed by the larger number of tuning

parameters.

Tukey biweight loss function has a shape more similar to the Hampel loss

function since it is not convex, contrary to the Huber loss function, and it is

bounded. For that reason, we find their comparison particularly interesting. In-65

deed, the common aspects of the two loss functions allow us to develop a deeper

empirical study than the one presented in [5]. Once we have chosen the three

tuning parameters involved in Hampel’s loss function as detailed above, our aim

will be to conclude whether it is possible to select the tuning parameter for the

Tukey biweight loss function in such a way that the finite-sample performance70

of the fuzzy number-valued M-estimator of location based on Tukey’s loss func-

tion improves the results achieved by the M-estimator based on Hampel’s loss

function.

The rest of the paper is structured as follows. In Section 2, the preliminaries

on the space of fuzzy numbers and their main features are recalled. Location75

M-estimators for random fuzzy numbers are introduced in Section 3 and their

main properties, including strong consistency and robustness, are summarized.

The empirical comparison of the finite-sample behaviour of the M-estimators of

location for random fuzzy numbers, which is the main focus of this paper, is

presented in Section 4 and illustrated by means of a real-life example in Section80

5. Finally, some concluding remarks are provided in Section 6.
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2. Preliminaries on the space of fuzzy numbers

Let Fc(R) denote the class of (bounded) fuzzy numbers, that is, the map-

pings Ũ : R → [0, 1] such that their α-levels

Ũα =





{x ∈ R : Ũ(x) ≥ α} if α ∈ (0, 1]

cl{x ∈ R : Ũ(x) > 0} if α = 0,

are nonempty compact intervals. Ũ(x) can be interpreted as the ‘degree of

compatibility’ of x with Ũ ’ (or ‘degree of truth’ of the assertion “ x is Ũ”).

As can be deduced from this definition, the levels involved in fuzzy number-85

valued data add a certain gradualness to the imprecision of interval-valued data.

This fact makes fuzzy data very convenient to describe ratings, opinions and

other imprecise human assessments.

With respect to the arithmetic to handle these data, Zadeh’s extension prin-

ciple, which extends level-wise the usual interval arithmetic, is generally consid-90

ered.

Definition 2.1. Let Ũ , Ṽ ∈ Fc(R). The sum of Ũ and Ṽ is defined as the

fuzzy number Ũ + Ṽ ∈ Fc(R) given for each α ∈ [0, 1] by

(Ũ + Ṽ )α = Minkowski sum of Ũα and Ṽα =
[
inf Ũα + inf Ṽα, sup Ũα +sup Ṽα

]
.

Let Ũ ∈ Fc(R) and γ ∈ R. The product of Ũ by the scalar γ is defined as

the fuzzy number γ · Ũ ∈ Fc(R) given for each α ∈ [0, 1] by

(γ · Ũ)α = γ · Ũα =





[
γ · inf Ũα, γ · sup Ũα

]
if γ ≥ 0

[
γ · sup Ũα, γ · inf Ũα

]
otherwise.

It should be remarked that the space (Fc(R),+, ·) is not linear, so there is

no “difference operation” between fuzzy numbers that is well-defined and, at

the same time, keeps the main properties of the difference between real values

in connection with the sum. For that reason, differences involved in statistical95

developments for real numbers are often replaced by distances between fuzzy
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numbers whenever this is possible (see [9] and [10] for more details about the

distance-based analysis of fuzzy number-valued data).

The following family of distances between fuzzy numbers has been chosen

due to its versatility. It was introduced by Montenegro et al. [11] (and, later,100

generalized to fuzzy vector-valued data in [12]) as an extension of the family of

metrics proposed by Bertoluzza et al. [13].

Definition 2.2. Let θ ∈ (0,+∞) and let ϕ be an absolutely continuous probabil-

ity measure on ([0, 1],B[0,1]) with the mass function being positive on (0, 1). The

mid/spr-based L2 distance between any two fuzzy numbers Ũ , Ṽ ∈ Fc(R) is

defined as

Dϕ
θ (Ũ , Ṽ ) =

[∫

[0,1]

(
mid Ũα −mid Ṽα

)2

dϕ(α)

+ θ

∫

[0,1]

(
spr Ũα − spr Ṽα

)2

dϕ(α)

]1/2

,

where mid Ũα = (inf Ũα + sup Ũα)/2 and spr Ũα = (sup Ũα − inf Ũα)/2.

The nonnegative parameter θ included in the definition of the mid/spr-based

L2 distance weighs the relative importance assigned to the ‘deviation in shape’

(represented by spr) in contrast to the ‘deviation in center’ (represented by

mid). Neither θ nor the measure ϕ have a stochastic meaning. Some interesting

choices for θ are 1 (Dϕ
1 generalizes the well-known distance ρ2 by Diamond and

Kloeden [14]) and 1/3 (Dϕ
1/3 assigns the same relevance to all the points in the

intervals, since the metric can be rewritten as

Dϕ
1/3(Ũ , Ṽ ) =

√∫

[0,1]

∫

[0,1]

(
Ũ

[η]
α − Ṽ

[η]
α

)2

dℓ(η) dϕ(α),

with ℓ = Lebesgue measure on ([0, 1],B[0,1]) and Ũ
[η]
α = η·sup Ũα+(1−η)·inf Ũα

for all η ∈ [0, 1]).105

The fact that the space (Fc(R), D
ϕ
θ ) can be isometrically embedded into

a convex cone of a certain Hilbert space by means of the so-called support

function (in Puri and Ralescu’s sense [15]) will be crucial for the adaptation
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of M-estimators of location. For more details about this identification, please

check, among others, [12, 16, 17].110

Regarding the mathematical modelling of the random mechanism generating

fuzzy data, the notion of random fuzzy number in Puri and Ralescu’s sense [15,

18] will be considered. Notice that randomness affects the generation of the

data, whereas fuzziness is assumed to affect the nature of the data.

Definition 2.3. Let (Ω,A, P ) be a probability space modeling a random exper-115

iment. A mapping X : Ω → Fc(R) is said to be a random fuzzy number

associated with the random experiment if, and only if, for each α ∈ [0, 1] the

interval-valued mapping Xα (where Xα(ω) =
(
X (ω)

)
α
for all ω ∈ Ω) is a random

compact interval or equivalently, the real-valued functions inf Xα and supXα are

random variables.120

Indeed, a random fuzzy number is Borel-measurable with respect to the Borel

σ-field associated with the mid/spr-based L2 distance, among other metrics

(see e.g. [17]), which guarantees that notions like the induced distribution of a

random fuzzy number or the stochastic independence of random fuzzy numbers

(and, hence, the notion of simple random sample from a random fuzzy number)125

can be immediately stated.

Certainly, the best-known measure to summarize the central tendency of a

random fuzzy number is the Aumann-type mean given by

Definition 2.4. Let X be a random fuzzy number and assume that the expected

values of the random variables inf X0 and supX0 are finite. The Aumann-type

mean of X is the fuzzy number Ẽ(X ) ∈ Fc(R) such that for each α ∈ [0, 1]

(
Ẽ(X )

)
α
= [E(inf Xα), E(supXα)] .

The Aumann-type mean of a random fuzzy number fulfills very nice proper-

ties inherited from the classical settings, such as Strong Laws of Large Numbers130

(see [19]) and the Fréchet approach [20] using theDϕ
θ metric. Unfortunately, also

the lack of robustness has been inherited, which has motivated the search for lo-

cation measures with a more robust behavior. Several extensions of the concept
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of median have been proposed (see [3, 4] for more details) and, more recently,

M-estimators of location have been adapted to cover the fuzzy number-valued135

setting. Such an adaptation will be carefully reviewed in the next section.

3. Location M-estimators for random fuzzy numbers

In this section, the adaptation of location M-estimators to the fuzzy number-

valued setting will be reviewed. As already said in the introduction, M-estimators

of location were first introduced by Huber [6] as a way to overcome the high140

sensitivity of the standard least squares and maximum likelihood estimators to

outliers or data changes, by replacing the square loss function by a less rapidly

increasing function. We assume that the loss function, denoted by ρ, satisfies

the conditions

C.1 ρ : R+ → R is continuous and non-decreasing, and ρ(0) = 0.145

The M-estimators of location for fuzzy number-valued data are then defined as

follows.

Definition 3.1. Let (Ω,A, P ) be a probability space and X : Ω → Fc(R) be

an associated random fuzzy number. Moreover, let (X1, . . . ,Xn) be a simple

random sample from X . Then, the fuzzy M-estimator of location is the

fuzzy number-valued statistic ̂̃gM [(X1, . . . ,Xn)], given by

̂̃gM [(X1, . . . ,Xn)] = arg min
Ũ∈Fc(R)

1

n

n∑

i=1

ρ(Dϕ
θ (Xi, Ũ)),

if it exists.

The Representer Theorem (Theorem 3.1) is a consequence of Kim and Scott’s

theory on robust kernel density estimation (see [8]). Although they studied150

Hilbert spaces in this particular context, their results remain valid for any

Hilbert space. Taking into account that, as pointed out, fuzzy numbers can

be identified with a convex cone of a Hilbert space thanks to an isometrical

embedding, the theorem has been adapted to cover fuzzy M-estimators of loca-

tion. Note that the adaptation of any methodology from Hilbert Space-Valued155
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Data Analysis to the fuzzy-valued framework must guarantee that the result

does not move out of the convex cone. In this case, this is easy to ensure since

the Representer Theorem below expresses fuzzy M-estimators of location as a

weighted mean of the observations and such an operator is closed in Fc(R).

Theorem 3.1. [5] Let (X1, . . . ,Xn) be a simple random sample from a random160

fuzzy number X : Ω → Fc(R) on a probability space (Ω,A, P ). Moreover, let the

loss function ρ satisfy the assumptions

C.2 limx→0 ρ(x)/x = 0,

C.3 Let φ(x) = ρ′(x)/x and φ(0) ≡ limx→0 φ(x). Assume that φ(0) exists and

is finite.165

Then, the M-estimator of location exists and can be expressed as

̂̃gM [(X1, . . . ,Xn)] =
n∑

i=1

ωi · Xi

with ωi ≥ 0,
∑n

i=1 ωi = 1. Furthermore, ωi ∝ φ(Dϕ
θ (Xi, ̂̃gM [(X1, . . . ,Xn)])).

The conditions on ρ assumed in the Representer Theorem are not too strong,

since well-known families such as Huber, Tukey and Hampel fulfill them (see

[5] for the study of Huber and Hampel families of loss functions and [7] for the

analysis of Tukey’s family). These families of loss functions are now recalled.170

The Huber loss function [21] given by

ρHa (x) =





x2/2 if 0 ≤ x ≤ a

a(x− a/2) otherwise,

with a > 0 a tuning parameter, is a convex function and puts less emphasis on

large errors compared to the squared error loss. On the other hand, the Tukey

biweight or bisquare [22] family of loss functions is given by

ρTd (x) =





d2/6 · (1− (1 − (x/d)2)3) if 0 ≤ x ≤ d

d2/6 otherwise,
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with tuning parameter d > 0, and the Hampel loss function [23] corresponds to

ρa,b,c(x) =





x2/2 if 0 ≤ x < a

a(x− a/2) if a ≤ x < b

a(x− c)2

2(b− c)
+

a(b+ c− a)

2
if b ≤ x < c

a(b+ c− a)

2
if c ≤ x,

where the nonnegative parameters a < b < c allow us to control the degree of

suppression of large errors. The smaller their values, the higher this degree.

Both the Tukey biweight and Hampel families of loss functions are not convex

anymore and can better cope with extreme outliers, since observations far from

the center (x ≥ d or x ≥ c) all contribute equally to the loss.175

Even while the Tukey biweight and Hampel loss functions share key aspects,

and the Hampel loss function had already been used for the computation of

fuzzy M-estimators of location, it has also been interesting to study fuzzy M-

estimators of location based on the Tukey biweight loss function. As Sinova and

Van Aelst comment in [7], “the benefit of the Tukey loss function is to combine180

the better performance of Hampel’s loss function regarding extreme outliers

with the simplicity of an expression depending on just one tuning parameter,

like the Huber loss function”.

Notice that the expression provided by the Representer Theorem, which

presents fuzzy M-estimators of location as a weighted mean of the observations,185

is implicit, since the fuzzy M-estimator of location itself is involved in the compu-

tation of the weights. For that reason, an algorithm is required to approximate

the value of the fuzzy M-estimator of location in practice. A natural choice is

the standard iteratively re-weighted least squares algorithm:

Step 1. Select initial weights ω
(0)
i ∈ R, for i ∈ {1, . . . , n}, such that ω

(0)
i ≥ 0190

and
∑n

i=1 ω
(0)
i = 1 (e.g. based on a preliminary robust estimator of

location to initialize the algorithm).
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Step 2. Generate a sequence {g̃M(k)}k∈N by iterating the following procedure:

g̃M(k) =

n∑

i=1

ω
(k−1)
i Xi, ω

(k)
i =

φ(Dϕ
θ (Xi, g̃

M
(k)))∑n

j=1 φ(D
ϕ
θ (Xj , g̃M(k)))

.

Step 3. Terminate the algorithm when

| 1n
∑n

i=1 ρ(D
ϕ
θ (Xi, g̃

M
(k+1)))− 1

n

∑n
i=1 ρ(D

ϕ
θ (Xi, g̃

M
(k)))|

1
n

∑n
i=1 ρ(D

ϕ
θ (Xi, g̃M(k)))

< ε,

for some desired tolerance ε > 0.

It has been shown that Kim and Scott’s suggestion of selecting the tuning

parameters involved in the loss functions on the basis of the distribution of the195

distances to the center provides us with good estimates (see [8, 5]). More pre-

cisely, first an initial robust estimator of location is computed (e.g., the 1-norm

median in [4]) and then, we calculate the distance between each observation and

this initial estimate. Following Kim and Scott’s suggestion, a, b and c are taken

to be the median, the 75th and the 85th percentiles of those distances.200

Several properties of fuzzy M-estimators of location have been theoretically

studied in [5, 7]. In particular, all fuzzy M-estimators of location based on a

loss function fulfilling the conditions required for the Representer Theorem have

been proven to be translation equivariant. Scale equivariance does not hold

unless ρ is a power function, but the selection procedure chosen for the tuning205

parameters and described above avoids the influence of the measurement units

on the estimate.

The following theorem provides us with a set of sufficient conditions to guar-

antee the strong consistency of fuzzy M-estimators of location. Note that the

space is limited to fuzzy numbers defined on a bounded referential, which is210

very common in practice (see e.g. [24]). The sufficient assumptions on ρ include

the Huber, Tukey and Hampel families of loss functions, among others.

Theorem 3.2. [7] Consider the metric space (Fc([q, r]), D
ℓ
θ), with q < r. Let

X : Ω → Fc([q, r]) be a random fuzzy number associated with a probability space

(Ω,A, P ). Under any of the following assumptions:215
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• ρ is subadditive and unbounded,

• ρ has linear upper and lower bounds with the same slope,

• ρ is bounded,

and whenever the associated M-location value

g̃M (X ) = arg min
Ũ∈Fc([q,r])

E
[
ρ
(
Dℓ

θ(X , Ũ )
)]

exists and is unique, the M-estimator of location is a strongly consistent esti-

mator of g̃M (X ), i.e.,

lim
n→∞

Dℓ
θ(

̂̃gM [(X1, . . . ,Xn)], g̃
M (X )) = 0 a.s. [P].

Finally, the robustness of the fuzzy M-estimation approach can be theo-

retically proven by means of the finite sample breakdown point (fsbp). This220

measure (see [25, 26]) indicates the minimum proportion of sample observations

that have to be perturbed to make the distance between the M-estimates of the

original data and contaminated data arbitrarily large.

Theorem 3.3. [5, 7] Let X : Ω → Fc(R) be a random fuzzy number associated

with a probability space (Ω,A, P ) and let (x̃1, . . . , x̃n) be a sample of observations225

obtained from X . Moreover, let ρ be a loss function fulfilling the assumptions

in Theorem 3.1, such that the corresponding sample M-estimate of location is

unique. Then, the finite sample breakdown point of the corresponding location

M-estimator is at most 1
n⌊n+1

2 ⌋, where ⌊·⌋ denotes the floor function.

Moreover, under any of these additional assumptions,230

• ρ has linear upper and lower bounds with the same slope,

• ρ is bounded by a constant C < ∞ and satisfies

ρ

(
max

1≤i,j≤n
Dℓ

θ(x̃i, x̃j)

)
<

n− 2⌊n−1
2 ⌋

n− ⌊n−1
2 ⌋ − 1

· C,

the finite sample breakdown point is exactly 1
n⌊n+1

2 ⌋.
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4. Empirical comparison

In Section 3, it has been recalled that the Huber, Tukey and Hampel fam-

ilies of loss functions fulfill the sufficient conditions stated by the Representer235

Theorem to guarantee the existence of the corresponding fuzzy number-valued

M-estimators of location and express them as convex linear combinations of

the sample observations. Regarding the robustness of these fuzzy M-estimators

of location, the three measures based on the Huber, Tukey and Hampel loss

functions share the same finite sample breakdown point, which means that the240

impact of global data contamination is the same. Under some assumptions, it

has been proven that they can even withstand up to 50% data contamination,

which is the maximum for translation equivariant location estimators.

Fuzzy M-estimators of location were first computed using the Huber and

Hampel families of loss functions (see [5]), whereas Tukey’s biweight loss func-245

tion has been considered more recently [7]. Taking into account the good the-

oretical and empirical performance of fuzzy M-estimators of location based on

the Huber and Hampel loss functions, we could wonder about the necessity of

introducing M-estimators based on Tukey’s biweight loss function.

The empirical studies in [5] showed that in general the Hampel loss func-250

tion is a more suitable choice than the Huber loss function when the tuning

parameters are chosen as explained in Section 3. It should be clarified that the

procedure suggested by Kim and Scott in [8] to select the values for the tuning

parameters seems to be specifically designed for the Hampel loss function and

the procedure was adapted to cover the Huber loss function as well. Naturally,255

other choices for the value of the tuning parameter in the Huber loss function

could be explored depending on each dataset, as will be done for the Tukey

biweight loss function in this section.

The aim is to analyze the potential advantages of using the Tukey loss func-

tion instead of the Hampel loss function for the definition and computation of260

fuzzy M-estimators of location. We have not included Huber’s loss function in

the computations of this section for the following two reasons. On the one hand,
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the flexibility allowed by the three tuning parameters in the Hampel loss func-

tion makes the comparison Hampel versus Tukey more interesting than Huber

versus Tukey (since the latter families of loss functions depend on only one tun-265

ing parameter). On the other hand, the Hampel and the Tukey loss functions

are closer in shape than the Huber and the Tukey loss functions.

The simulation study developed in this section completes the variety of sit-

uations considered in [5]. However, the focus of the simulations is not centered

on the comparison of the Hampel M-estimator and the Tukey M-estimator for270

a certain value of the tuning parameter that appears in the Tukey biweight loss

function, but on the search for a value of such a tuning parameter to improve

the results from the Hampel M-estimator. That is, once the tuning parame-

ters for the Hampel loss function have been selected following Kim and Scott’s

suggestion and the Hampel M-estimator of location has been computed, our275

interest lies in the search for a value of the tuning parameter involved in the

Tukey loss function such that the corresponding Tukey M-estimator provides a

better estimate than the Hampel M-estimator.

4.1. Comparison of Tukey’s and Hampel’s loss functions

Since the Tukey biweight loss function has a shape similar to that of the280

Hampel loss function, as has already been mentioned, we first compare both

loss functions. Figure 1 shows the Tukey loss function with tuning parameter

d = 4.685 and the Hampel loss function with a = 2, b = 4 and c = 8. Both are

not convex (contrary to the Huber loss function) and they are bounded.

As can be seen in Figure 1, both loss functions assign a constant value to all285

the observations that lie far from the center (x ≥ d or x ≥ c), but this value,

which coincides with the upper bound of ρ, differs from one loss function to

another. Tukey’s biweight loss function is bounded by d2/6 and Hampel’s loss

function by a(b+c−a)/2. For the comparison, it would be reasonable to bound

both loss functions by the same constant. That is, once the tuning parameters290

a, b and c have been selected, d would be chosen to satisfy d2/6 = a(b+c−a)/2.

Solving the equation yields d =
√
3a(b+ c− a).
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Figure 1: Tukey loss function with d = 4.685 (left) and Hampel loss function with a = 2,

b = 4 and c = 8 (right)

For example, if a, b and c have been selected as in Figure 1, then correspond-

ingly d = 7.745967. Loss functions ρ2,4,8 and ρT7.745967 have been displayed in

Figure 2 (left) to easily check how close they are. Functions φ2,4,8 and φT
7.745967295

in Figure 2 (right) allow us to easily compare the weights that the M-estimators

of location based on the loss functions ρ2,4,8 and ρT7.745967 assign to the outlying

observations, since the weights from the Representer Theorem are proportional

to the φ function evaluated on the corresponding distances.
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Figure 2: Tukey loss function with d = 7.745967 (dashed line) and Hampel loss function with

a = 2, b = 4 and c = 8 (left) and their φ function (right)
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In this case,
√
3a(b+ c− a) < c and thus the Tukey biweight loss function300

classifies as extreme more observations than the Hampel loss function. This

means that if there is more data contamination than the one handled by Ham-

pel’s loss function (those observations with x ≥ c, with c the 85th percentile

as explained before), the Tukey biweight loss function better copes with the

remaining outliers (the outlying observations with
√
3a(b+ c− a) ≤ x < c).305

However, the final performance of the Tukey biweight loss function also de-

pends on the importance it assigns to small errors (i.e., whether it focuses more

or less than the Hampel loss function on those errors). On the other hand, if the

Hampel loss function already treats all the outliers as extreme observations, the

Tukey ρTd loses some valid information when considering some non-contaminated310

observations as outliers.

Analogously, the case
√
3a(b+ c− a) > c can be studied. If all the out-

liers are identified correctly by the Tukey loss function, then the Hampel loss

function may classify some observations as outliers when they are not. The

final choice between the Tukey and Hampel loss functions depends on their fo-315

cus on small errors. On the other hand, in case not all data contamination is

handled correctly by Tukey (since there exist some outlying observations with

x <
√
3a(b+ c− a)), the Hampel loss function may better cope with the re-

maining outlying observations (at least with those which fulfill x ≥ c).

4.2. A proposal for the tuning parameter in the Tukey loss function320

We could now try to slightly modify the proposal d =
√
3a(b+ c− a) in

order to improve these results, i.e., to get an M-estimator of location based on

the Tukey loss function with a better finite-sample performance than the one

based on the Hampel loss function in as many situations as possible.

• First, when the Hampel loss function identifies all the outliers correctly,325

and Tukey’s loss function may lose some valid information (d ≤ c ≤ x),

we could think of choosing the loss function ρTc instead of ρT√
3a(b+c−a)

.

• Analogously, when the Hampel loss function does not necessarily identify

16



all the outliers, but at least identifies more extreme observations than the

Tukey loss function (i.e., d > c and some outliers satisfy 0 ≤ x < d), we330

could also choose the loss function ρTc .

• Recall that, as it has already been commented, the choice ρT√
3a(b+c−a)

in

the other two situations (d ≤ c and some outliers fulfilling 0 ≤ x < c,

and d > c and all outliers with x ≥ d) does not always guarantee that

the Tukey fuzzy M-estimator of location will present a better performance335

than the Hampel fuzzy M-estimator of location. Notice that in case both

of them identify the outliers correctly, the final decision will depend on

the weights assigned to small errors, which have not been discussed above.

With respect to the choice of ρTc in some cases, the comparison between

ρTc and the Hampel loss function ρa,b,c, as shown in Figure 3, is addressed by340

multiplying ρTc by the constant 3a(b+ c− a)/c2, so both loss functions have the

same upper bound.
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Figure 3: 0.9375 · ρT
8

(dashed line) and ρ2,4,8 loss functions (left) and their φ function (right)

It can be proven using the derivatives of the loss functions 3a(b+ c− a)/c2 · ρTc
and ρa,b,c that the first one assigns a bit less importance to large errors, as Fig-

17



ure 3 shows. Notice that the derivative of the loss function ρTc is given by

d

dx
ρTc (x) =





x− 2
x3

c2
+

x5

c4
if 0 ≤ x ≤ c

0 otherwise,

and the derivative of ρa,b,c is

d

dx
ρa,b,c(x) =





x if 0 ≤ x < a

a if a ≤ x < b

a(x− c)

b− c
if b ≤ x < c

0 if c ≤ x.

Proposition 4.1. Let 0 < a < b < c be the tuning parameters in the Hampel

loss function. Given any 0 < ε < min

{
ac3

27a(c− b)(b+ c− a)
, c− b

}
, it holds

that [
d

dx

(
3a(b+ c− a)

c2
ρTc (x)

)]

x=c−ε

<

[
d

dx
ρa,b,c(x)

]

x=c−ε

,

and, consequently,
3a(b+ c− a)

c2
φT
c (c− ε) < φa,b,c(c− ε).

Proof First, simplifying the expression of
d

dx

(
3a(b+ c− a)

c2
ρTc (x)

)
evaluated

at c− ε, we get
[
d

dx

(
3a(b+ c− a)

c2
ρTc (x)

)]

x=c−ε

=
3a(b+ c− a)

c2

(
c− ε− 2

(c− ε)3

c2
+

(c− ε)5

c4

)

=
3a(b+ c− a)

c2

(
4
ε2

c
− 8

ε3

c2
+ 5

ε4

c3
− ε5

c4

)
.

Since 0 < ε < c, we know that
ε3

c3
≤ ε

c
and

[
4
ε

c
− 8

(ε
c

)2

+ 5
(ε
c

)3

−
(ε
c

)4
]
≤ 9

ε

c
.

Note that ε <
ac3

27a(c− b)(b + c− a)
implies that a > 9

ε

c
(c− b)

3a(b+ c− a)

c2
, so

the following inequality holds

3a(b+ c− a)

c2

(
4
ε2

c
− 8

ε3

c2
+ 5

ε4

c3
− ε5

c4

)
≤ 3a(b+ c− a)

c2
9
ε

c
ε
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<
a

c− b
ε =

[
d

dx
ρa,b,c(x)

]

x=c−ε

,

which completes the proof and allows us to conclude that
3a(b+ c− a)

c2
ρTc as-345

signs a bit less importance to large errors than ρa,b,c. �

In summary, in order to try to improve the results achieved by the Ham-

pel fuzzy M-estimator of location, we could choose the value for the tuning

parameter in the Tukey loss function as specified in Table 1.

Table 1: Choice for the tuning parameter in the Tukey biweight loss function ρT
d

x ≥ max{
√
3a(b+ c− a), c} holds for

Case all outliers some outliers

√
3a(b+ c− a) ≤ c ρTc ρT√

3a(b+c−a)√
3a(b+ c− a) > c ρT√

3a(b+c−a)
ρTc

The problem with the proposal in Table 1 is that, in practice, we do not know350

how much contamination is present in the dataset and whether the outlying

observations fulfill the condition x ≥ max{
√
3a(b+ c− a), c} or not, while the

suggested choice for the tuning parameter is exactly the opposite in these two

situations.

The proposal could be summarized as

d = λmin{
√
3a(b+ c− a), c}+ (1− λ)max{

√
3a(b+ c− a), c},

with λ equal to 0 when all the outliers fulfill x > max{
√
3a(b+ c− a), c} and355

equal to 1 if it holds x ≤ max{
√
3a(b+ c− a), c} for some outliers.

In order to distinguish between the two contamination situations (λ = 0

or λ = 1), we can use the information given by the tuning parameters in the

Hampel loss function. Recall that a, b and c represent the median, 75th and

85th percentiles of the distances between the observations and an initial estimate360
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(throughout this paper, this initial estimate is chosen to be the 1-norm median

[4]) following Kim and Scott’s procedure. As the considered contamination

proportion in the simulation design from Section 4.3 is at most 0.4, note that

if not all outliers are farther than c from the initial estimate, then at least one

of the ratios a/b and b/c becomes quite small. We could then estimate λ by365

1 − min{a/b, b/c}. For this reason, in the simulation study developed in this

section, we select the value for the tuning parameter in the Tukey loss function

as follows

d =

(
1−min

{
a

b
,
b

c

})
min{

√
3a(b+ c− a), c}

+min

{
a

b
,
b

c

}
max{

√
3a(b+ c− a), c}.

4.3. Simulation design370

The general scheme of the simulations completes the designs used in [5] (note

that CASE 2 has been slightly modified by replacing the term 0.1 · χ2
1 by

√
χ2
1

inspired by the relation of the χ2
n−1 distribution with the variance estimator).

Trapezoidal fuzzy data are generated according to four real-valued random

variables. In CASES 1-4, 6 and 11-14, X = Tra(X1 −X2 − X3, X1 −X2, X1 +375

X2, X1+X2+X4), so inf X0 = X1−X2−X3, inf X1 = X1−X2, supX1 = X1+X2

and supX0 = X1 + X2 + X4, whereas in CASES 5 and 7-10, the trapezoidal

fuzzy data are generated according to X = Tra(X(1), X(2), X(3), X(4)), with X(1)

≤ X(2) ≤ X(3) ≤ X(4) the order statistics of X1, X2, X3, X4.

A contamination proportion equal to cp ∈ {0, 0.1, 0.2, 0.4} is introduced in380

each sample. Although it is not explicitly detailed in this next section, any

kind of outlier is allowed in these simulation studies: the four random variables

detailed above can follow the corresponding distributions for the contaminated

observations or just some (at least one) of them. This means that we deal with

outliers in location, outliers in shape and/or outliers in both location and shape.385
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STUDY 1 (mid-points of the 1-levels generated from a symmetric distribution)

A second parameter, CD ∈ {0, 1, 5, 10, 100}, determines the distance between

the distribution of the regular and contaminated observations.

In CASE 1 the variables Xi are independent. In particular,

• X1 ∼ N (0, 1) and X2, X3, X4 ∼ χ2
1 for the regular observations.390

• X1 ∼ N (0, 3) + CD and X2, X3, X4 ∼ χ2
4 + CD for the contaminated

observations.

In CASE 2 dependence between the variables Xi is introduced as follows.

• X1 ∼ N (0, 1) andX2, X3, X4 ∼ 1/(X2
1+1)2+

√
χ2
1 for the non-contaminated

subsample (with χ2
1 independent of X1),395

• X1 ∼ N (0, 3) + CD and X2, X3, X4 ∼ 1/(X2
1 + 1)2 +

√
χ2
1 + CD for the

contaminated subsample (with χ2
1 independent of X1).

STUDY 2 (mid-points of the 1-levels generated from an asymmetric distribution)

The parameter CD again determines the distance between the distribution

of the regular and contaminated observations.400

In CASE 3 the variables Xi are independent and

• X1 ∼ W(2, 3) (Weibull distribution of parameters of shape and scale 2

and 3, respectively) and X2, X3, X4 ∼ χ2
1 for the regular observations.

• X1 ∼ W(6, 3) + CD and X2, X3, X4 ∼ χ2
4 + CD for the contaminated

observations.405

In CASE 4 dependence between the variables Xi is introduced as follows.

• X1 ∼ W(2, 3) andX2, X3, X4 ∼ 1/(X2
1+1)2+

√
χ2
1 for the non-contaminated

subsample (with χ2
1 independent of X1),

• X1 ∼ W(6, 3) + CD and X2, X3, X4 ∼ 1/(X2
1 + 1)2 +

√
χ2
1 + CD for the

contaminated subsample (with χ2
1 independent of X1).410
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STUDY 3 (bounded referential [0,1] and mid-points of the 1-levels generated

from a symmetric distribution)

In this study, the parameter CD ∈ {0, 1, 5, 10, 100} does not measure the

distance between the distribution of the regular and contaminated observations

anymore, since the 0-level of all fuzzy numbers is assumed to belong to the415

interval [0, 1] and, therefore, regular and contaminated observations do not lie

far from each other. In this situation, CD determines the difference in shape of

regular and contaminated observations.

In CASE 5 the variables Xi are distributed as

• X1, X2, X3, X4 ∼ Beta(5, 5) for the regular observations.420

• X1, X2, X3, X4 ∼ Beta
(
0.5, 5

max{0.5,CD}

)
for the contaminated observa-

tions.

In CASE 6 the variables Xi are distributed as

• X1 ∼ Beta(5, 5),X2 ∼ Uniform[0,min{X1, 1−X1}],X3 ∼ Uniform[0, X1−
X2] and X4 ∼ Uniform[0, 1 − X1 −X2] for the regular observations.425

• X1 ∼ Beta
(
0.5, 5

max{0.5,CD}

)
,X2 ∼ min{X1, 1−X1}·Beta

(
0.5, 5

max{0.5,CD}

)
,

X3 ∼ (X1 − X2) · Beta
(
0.5, 5

max{0.5,CD}

)
and X4 ∼ (1 − X1 − X2) ·

Beta
(
0.5, 5

max{0.5,CD}

)
for the contaminated observations.

STUDY 4 (bounded referential [0,1] and mid-points of the 1-levels generated

from an asymmetric distribution)430

As in STUDY 3, the parameter CD determines the difference in shape of

regular and contaminated observations.

For CASES 7-10, the variables Xi are distributed as

• X1, X2, X3, X4 ∼ Beta(p, q) for the regular observations.

• X1, X2, X3, X4 ∼ Beta(q, CD + 1) if p > q or435

X1, X2, X3, X4 ∼ Beta(CD + 1, p) if p < q for the contaminated observa-

tions.
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The choices for the parameters p and q in the beta distribution are specified

in Table 2.

CASES p q

7 & 11 5 1

8 & 12 4 2

9 & 13 2 4

10 & 14 1 5

Table 2: Choices for p and q in CASES 7-14 of STUDY 4

For CASES 11-14, the variables Xi are distributed as440

• X1 ∼ Beta(p, q),X2 ∼ Uniform[0,min{X1, 1−X1}],X3 ∼ Uniform[0, X1−
X2] and X4 ∼ Uniform[0, 1 − X1 −X2] for the regular observations.

• X1 ∼ Beta(q, CD + 1), X2 ∼ min{X1, 1 − X1} · Beta(q, CD + 1), X3 ∼
(X1 −X2) · Beta(q, CD + 1) and X4 ∼ (1−X1 −X2) · Beta(q, CD + 1) if

p > q or445

X1 ∼ Beta(CD + 1, p), X2 ∼ min{X1, 1 − X1} · Beta(CD + 1, p), X3 ∼
(X1 −X2) · Beta(CD + 1, p) and X4 ∼ (1−X1 −X2) · Beta(CD + 1, p) if

p < q for the contaminated observations.

Again, the choices for the parameters p and q in the beta distribution are

specified in Table 2.450

For each of the four cases above, the steps to follow are now explained in

detail. The considered metric is Dℓ
1/3 and the tuning parameters in the Hampel

and Tukey loss functions are fixed as in Section 4.2, taking the 1-norm median

as initial estimate.

Step 1. The population targets associated with the M-estimates based on Ham-455

pel and Tukey loss functions are approximated by Monte Carlo using

N = 10000 samples consisting of n = 100 regular fuzzy number-valued

observations (cp = CD = 0).
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Step 2. For each case and each choice (cp, CD), we generated N = 1000 random

samples of size n = 100 and calculated the corresponding M-estimates460

based on Hampel and Tukey loss functions. Their performance has been

compared by means of the corresponding mean squared error.

4.4. Results

Tables 3-7 show the results of the comparative analysis described in Sec-

tion 4.3. The practical calculation of M-estimates of location as in Section 3465

has been implemented in R [27] and the functions are available in

http://bellman.ciencias.uniovi.es/smire/Archivos/FuzzyMestimators.R.

For each situation, the lowest estimated mean squared error has been high-

lighted in bold. Indeed, a t-test has been applied to check if the lowest mean

square error in each situation is significantly smaller than the other one. Fur-470

thermore, the variance associated to the fuzzy M-estimates of location based on

Hampel and Tukey loss functions has been computed.

It can be seen that the proposal for the choice of the tuning parameter in the

Tukey loss function does not provide us with a uniformly best fuzzy M-estimator

of location. However, these empirical studies show that the corresponding fuzzy475

M-estimator is competitive and improves the results achieved by the Hampel

fuzzy M-estimator of location with tuning parameters selected following Kim

and Scott’s procedure in most of the studied situations. The results could be

summarized as follows. In general, the Tukey fuzzy M-estimator of location

behaves better480

• for moderate amounts of contamination (cp ≤ 0.1 and also cp = 0.2 with

CD < 5) in all cases except from CASE 2 with CD = 5, 10, 100;

• for intermediate amounts of contamination (cp = 0.2 and CD ≥ 5) in

CASES 5-9 and 11-13. Note that this includes all cases concerning the

bounded referential (STUDIES 3 and 4) except CASES 10 and 14, which485

are, indeed, the most similar situations to the simulation procedure used

when the referential is unbounded;
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Table 3: CASES 1-3: Mean squared error and variance (both multiplied by 100) associated to fuzzy M-estimates of location based on Hampel and

Tukey loss functions with tuning parameters fixed as in Section 4.2. A t-test has been applied to check if the lowest mean square error in each

situation (in bold) is significantly smaller than the other one, and, in case there is no significant difference (at significant level 0.05), such a situation

has been distinguished in grey colour.

STUDY 1 - CASE 1 STUDY 1 - CASE 2 STUDY 2- CASE 3

TUKEY HAMPEL T-TEST TUKEY HAMPEL T-TEST TUKEY HAMPEL T-TEST

cp CD MSE VAR MSE VAR p-value MSE VAR MSE VAR p-value MSE VAR MSE VAR p-value

0 0 2.6157 2.6144 2.8727 2.8714 1.50·10−13
4.0925 2.2892 4.3831 2.7220 1.90·10−15

5.5997 5.5987 6.1656 6.1651 1.24·10−10

0.1 0 2.9977 2.7922 3.2317 3.0099 <2.2·10−16
3.8895 2.3682 4.1096 2.7536 5.64·10−8

5.5960 5.1089 6.1760 5.6531 3.76·10−15

0.1 1 2.9636 2.7252 3.2305 2.9721 <2.2·10−16
4.3790 2.2339 4.6151 2.6419 3.90·10−10

6.5221 5.3313 7.2127 5.9216 1.62·10−12

0.1 5 2.8791 2.6579 2.9736 2.7416 1.28·10−6 3.4926 2.0876 3.4137 2.2798 0.0004 4.8249 4.3409 5.0416 4.4175 2.24·10−6

0.1 10 2.5937 2.3612 2.6824 2.4407 1.60·10−7 3.4132 2.3137 3.3370 2.4666 7.44·10−5
4.8918 4.3709 5.0939 4.3823 5.90·10−6

0.1 100 2.7117 2.4736 2.7479 2.4986 0.04784 3.1375 2.0568 3.0774 2.2210 0.0027 4.8532 4.1680 5.1570 4.2380 4.77·10−11

0.2 0 4.0221 3.0956 4.2861 3.2855 <2.2·10−16
3.8828 2.5353 4.1622 3.0020 4.34·10−12

6.6272 4.9124 7.1932 5.3646 6.93·10−13

0.2 1 4.4077 3.0964 4.6602 3.2568 4.51·10−16
5.2680 2.5492 5.4307 2.9154 8.18·10−6

11.3933 6.2881 12.1995 6.8560 3.36·10−12

0.2 5 4.7338 2.7454 4.5900 2.7708 4.53·10−11 3.5835 2.2396 3.4675 2.3362 1.42·10−9
8.4816 4.6093 9.0706 4.6129 < 2.2·10−16

0.2 10 5.9077 2.7116 4.6859 2.6752 <2.2·10−16
2.1459 1.8035 2.3182 1.8591 < 2.2·10−16 10.2730 3.8425 9.6049 3.8252 < 2.2·10−16

0.2 100 8.1551 2.6064 4.6307 2.5906 <2.2·10−16
1.7404 1.6692 2.1991 1.8056 < 2.2·10−16 15.1263 3.8554 10.5225 3.9183 < 2.2·10−16

0.4 0 10.3164 4.3191 10.8703 4.4841 <2.2·10−16
3.4834 2.5817 3.5338 2.8018 0.0491 13.6835 6.6060 14.5373 7.0396 < 2.2·10−16

0.4 1 13.8694 4.7834 14.6758 4.9372 <2.2·10−16
7.9043 3.2041 7.9223 3.4848 0.3211 38.6145 11.8231 40.3808 12.5889 < 2.2·10−16

0.4 5 29.6953 7.6437 34.8549 8.6801 <2.2·10−16
15.0096 5.0720 17.3709 5.9372 < 2.2·10−16

55.2370 14.8144 59.7958 14.9210 4.16·10−10

0.4 10 44.8112 11.8664 53.3491 12.9101 <2.2·10−16
20.8983 8.0349 27.7716 9.3791 < 2.2·10−16

58.1400 15.0637 79.9412 18.3472 < 2.2·10−16

0.4 100 24.5023 17.0867 82.3317 31.3990 <2.2·10−16
25.0629 24.8888 58.7913 34.9118 < 2.2·10−16

37.5671 18.7257 118.4374 34.1891 < 2.2·10−16

2
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Table 4: CASES 4-6: Mean squared error and variance (both multiplied by 100) associated to fuzzy M-estimates of location based on Hampel and

Tukey loss functions with tuning parameters fixed as in Section 4.2. A t-test has been applied to check if the lowest mean square error in each

situation (in bold) is significantly smaller than the other one, and, in case there is no significant difference (at significant level 0.05), such a situation

has been distinguished in grey colour.

STUDY 2 - CASE 4 STUDY 3 - CASE 5 STUDY 3- CASE 6

TUKEY HAMPEL T-TEST TUKEY HAMPEL T-TEST TUKEY HAMPEL T-TEST

cp CD MSE VAR MSE VAR p-value MSE VAR MSE VAR p-value MSE VAR MSE VAR p-value

0 0 4.9822 4.9361 5.5423 5.4935 7.72·10−13
0.0167 0.0167 0.0210 0.0210 < 2.2·10−16

0.0504 0.0503 0.0595 0.0594 < 2.2·10−16

0.1 0 5.7313 5.1098 6.4991 5.7361 1.12·10−15
0.0164 0.0158 0.0184 0.0179 < 2.2·10−16

0.0457 0.0453 0.0502 0.0498 < 2.2·10−16

0.1 1 8.6874 6.6169 10.5960 8.2461 < 2.2·10−16
0.0158 0.0153 0.0179 0.0175 < 2.2·10−16

0.0470 0.0463 0.0521 0.0516 < 2.2·10−16

0.1 5 4.9733 4.4412 5.2503 4.5375 8.39·10−7
0.0159 0.0155 0.0190 0.0186 < 2.2·10−16

0.0460 0.0459 0.0537 0.0536 < 2.2·10−16

0.1 10 4.5576 4.0488 4.8021 4.0884 6.89·10−7
0.0172 0.0169 0.0204 0.0201 < 2.2·10−16

0.0466 0.0466 0.0544 0.0543 < 2.2·10−16

0.1 100 4.8090 4.2800 5.0210 4.2679 9.03·10−5
0.0155 0.0153 0.0170 0.0169 2.05·10−13

0.0450 0.0446 0.0499 0.0496 < 2.2·10−16

0.2 0 6.4002 4.6650 7.3476 5.2929 1.09·10−9
0.0219 0.0161 0.0231 0.0176 1.31·10−6

0.0462 0.0433 0.0491 0.0462 3.64·10−8

0.2 1 18.0175 9.4674 21.7114 11.8630 < 2.2·10−16
0.0209 0.0154 0.0219 0.0171 1.32·10−5

0.0491 0.0457 0.0522 0.0491 6.65·10−10

0.2 5 7.0356 3.8855 7.8717 3.9147 < 2.2·10−16
0.0180 0.0158 0.0206 0.0185 < 2.2·10−16

0.0483 0.0474 0.0528 0.0520 < 2.2·10−16

0.2 10 8.7300 3.1452 8.7429 3.1606 0.4076 0.0183 0.0168 0.0207 0.0192 < 2.2·10−16
0.0467 0.0467 0.0516 0.0516 < 2.2·10−16

0.2 100 13.3225 2.8159 10.1470 3.2899 < 2.2·10−16
0.0186 0.0147 0.0193 0.0159 0.0002 0.0483 0.0463 0.0506 0.0488 5.22·10−7

0.4 0 9.0811 4.2936 10.4543 4.8743 < 2.2·10−16 0.1435 0.0328 0.1366 0.0366 7.69·10−6 0.0977 0.0691 0.0855 0.0621 0.0062

0.4 1 56.8851 18.2626 64.0791 21.0338 < 2.2·10−16 0.1335 0.0270 0.1303 0.0297 0.0023 0.1013 0.0705 0.0891 0.0635 4.45·10−9

0.4 5 34.3435 11.0423 37.7986 11.0676 2.32·10−8
0.0439 0.0214 0.0471 0.0240 7.28·10−11

0.0560 0.0504 0.0584 0.0533 5.54·10−6

0.4 10 41.1221 11.9462 58.2582 15.1092 < 2.2·10−16
0.0318 0.0201 0.0360 0.0229 < 2.2·10−16

0.0517 0.0515 0.0549 0.0547 1.00·−9

0.4 100 40.6934 25.8834 94.0305 39.1042 < 2.2·10−16 0.1166 0.0261 0.1154 0.0290 0.1155 0.0908 0.0731 0.0862 0.0716 0.0086

2
6



Table 5: CASES 7-9: Mean squared error and variance (both multiplied by 100) associated to fuzzy M-estimates of location based on Hampel and

Tukey loss functions with tuning parameters fixed as in Section 4.2. A t-test has been applied to check if the lowest mean square error in each

situation (in bold) is significantly smaller than the other one, and, in case there is no significant difference (at significant level 0.05), such a situation

has been distinguished in grey colour.

STUDY 4 - CASE 7 STUDY 4 - CASE 8 STUDY 4- CASE 9

TUKEY HAMPEL T-TEST TUKEY HAMPEL T-TEST TUKEY HAMPEL T-TEST

cp CD MSE VAR MSE VAR p-value MSE VAR MSE VAR p-value MSE VAR MSE VAR p-value

0 0 0.0123 0.0123 0.0141 0.0141 1.36·10−14
0.0223 0.0223 0.0272 0.0272 < 2.2·10−16

0.0229 0.0228 0.0277 0.0276 < 2.2·10−16

0.1 0 0.0152 0.0136 0.0159 0.0142 0.0005 0.0242 0.0241 0.0288 0.0288 < 2.2·10−16
0.0236 0.0235 0.0288 0.0287 < 2.2·10−16

0.1 1 0.0133 0.0113 0.0139 0.0117 0.0001 0.0260 0.0245 0.0298 0.0282 < 2.2·10−16
0.0301 0.0263 0.0353 0.0317 < 2.2·10−16

0.1 5 0.0129 0.0112 0.0135 0.0115 1.98·10−6
0.0244 0.0217 0.0272 0.0246 1.53·10−14

0.0247 0.0222 0.0271 0.0249 3.85·10−12

0.1 10 0.0129 0.0113 0.0136 0.0116 3.92·10−8
0.0245 0.0219 0.0273 0.0246 2.67·10−14

0.0249 0.0232 0.0276 0.0260 1.94·10−12

0.1 100 0.0127 0.0106 0.0133 0.0108 5.34·10−7
0.0225 0.0211 0.0248 0.0236 9.42·10−11

0.0200 0.0191 0.0216 0.0208 7.66·10−10

0.2 0 0.0224 0.0124 0.0230 0.0126 0.0004 0.0268 0.0263 0.0322 0.0316 < 2.2·10−16
0.0242 0.0240 0.0285 0.0282 < 2.2·10−16

0.2 1 0.0250 0.0116 0.0260 0.0115 5.30·10−11
0.0335 0.0255 0.0384 0.0305 < 2.2·10−16

0.0378 0.0244 0.0416 0.0288 4.34·10−12

0.2 5 0.0282 0.0099 0.0291 0.0098 1.12·10−9
0.0415 0.0244 0.0432 0.0267 0.0003 0.0484 0.0267 0.0496 0.0296 0.0212

0.2 10 0.0277 0.0106 0.0284 0.0107 0.0016 0.0408 0.0230 0.0421 0.0247 0.0162 0.0400 0.0239 0.0414 0.0258 0.0076

0.2 100 0.0290 0.0110 0.0293 0.0110 0.0886 0.0371 0.0227 0.0401 0.0255 1.22·10−8
0.0323 0.0212 0.0330 0.0226 0.0147

0.4 0 0.0860 0.0178 0.0868 0.0175 0.0394 0.0329 0.0306 0.0378 0.0354 < 2.2·10−16
0.0305 0.0295 0.0361 0.0351 < 2.2·10−16

0.4 1 0.1586 0.0195 0.1619 0.0193 1.04·10−5
0.0777 0.0348 0.0802 0.0391 0.0037 0.1024 0.0366 0.1071 0.0424 4.61·10−7

0.4 5 0.2338 0.0212 0.2526 0.0240 < 2.2·10−16 0.2215 0.0403 0.2143 0.0435 6.44·10−5 0.3044 0.0496 0.2939 0.0581 8.50·10−5

0.4 10 0.2518 0.0291 0.2738 0.0350 1.55·10−14 0.2479 0.0402 0.2387 0.0432 0.0003 0.3049 0.0484 0.2876 0.0565 8.07·10−8

0.4 100 0.2779 0.0295 0.2917 0.0418 2.66·10−6
0.2406 0.0402 0.2498 0.0443 3.10·10−7

0.2665 0.0449 0.2680 0.0522 0.3331
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Table 6: CASES 10-12: Mean squared error and variance (both multiplied by 100) associated to fuzzy M-estimates of location based on Hampel

and Tukey loss functions with tuning parameters fixed as in Section 4.2. A t-test has been applied to check if the lowest mean square error in each

situation (in bold) is significantly smaller than the other one, and, in case there is no significant difference (at significant level 0.05), such a situation

has been distinguished in grey colour.

STUDY 4 - CASE 10 STUDY 4 - CASE 11 STUDY 4- CASE 12

TUKEY HAMPEL T-TEST TUKEY HAMPEL T-TEST TUKEY HAMPEL T-TEST

cp CD MSE VAR MSE VAR p-value MSE VAR MSE VAR p-value MSE VAR MSE VAR p-value

0 0 0.0138 0.0138 0.0154 0.0154 4.02·10−11
0.0442 0.0442 0.0499 0.0498 < 2.2·10−16

0.0640 0.0639 0.0735 0.0734 < 2.2·10−16

0.1 0 0.0145 0.0129 0.0154 0.0137 8.88·10−5
0.0405 0.0403 0.0441 0.0440 1.46·10−10

0.0657 0.0653 0.0748 0.0744 < 2.2·10−16

0.1 1 0.0125 0.0108 0.0133 0.0114 1.68·10−8
0.0400 0.0397 0.0441 0.0438 6.14·10−15

0.0669 0.0667 0.0767 0.0766 < 2.2·10−16

0.1 5 0.0131 0.0112 0.0136 0.0113 3.27·10−5
0.0414 0.0406 0.0448 0.0436 2.27·10−9

0.0600 0.0591 0.0656 0.0648 8.49·10−9

0.1 10 0.0131 0.0115 0.0139 0.0118 6.14·10−10
0.0397 0.0391 0.0425 0.0417 3.82·10−6

0.0628 0.0625 0.0679 0.0676 2.15·10−10

0.1 100 0.0125 0.0109 0.0130 0.0111 1.38·10−5
0.0430 0.0423 0.0464 0.0455 9.43·10−10

0.0582 0.0574 0.0634 0.0624 1.60·10−11

0.2 0 0.0219 0.0120 0.0227 0.0124 5.88·10−5
0.0417 0.0397 0.0447 0.0431 1.05·10−8

0.0606 0.0590 0.0682 0.0667 1.41·10−13

0.2 1 0.0266 0.0122 0.0276 0.0122 2.45·10−12
0.0416 0.0389 0.0434 0.0408 7.98·10−5

0.0685 0.0652 0.0741 0.0715 1.59·10−8

0.2 5 0.0283 0.0100 0.0288 0.0100 9.04·10−5
0.0496 0.0455 0.0511 0.0471 0.0006 0.0736 0.0673 0.0768 0.0708 0.0002

0.2 10 0.0274 0.0112 0.0276 0.0112 0.0785 0.0491 0.0446 0.0502 0.0460 0.0278 0.0628 0.0590 0.0669 0.0622 1.67·10−7

0.2 100 0.0289 0.0097 0.0285 0.0096 0.0315 0.0529 0.0472 0.0546 0.0495 0.0217 0.0586 0.0536 0.0638 0.0582 2.30·10−13

0.4 0 0.0943 0.0184 0.0946 0.0182 0.2826 0.0615 0.0460 0.0610 0.0468 0.1184 0.0742 0.0704 0.0832 0.0794 < 2.2·10−16

0.4 1 0.1596 0.0190 0.1639 0.0188 1.17·10−7
0.1059 0.0760 0.1066 0.0779 0.1136 0.1064 0.0840 0.1119 0.0914 8.80·10−5

0.4 5 0.2317 0.0268 0.2539 0.0280 < 2.2·10−16
0.1308 0.1049 0.1532 0.1248 < 2.2·10−16 0.2407 0.1545 0.2160 0.1416 5.46·10−6

0.4 10 0.2436 0.0268 0.2724 0.0306 < 2.2·10−16
0.1092 0.0859 0.1270 0.1023 < 2.2·10−16 0.1934 0.1458 0.1793 0.1391 0.0791

0.4 100 0.2655 0.0357 0.2785 0.0416 1.79·10−5
0.1055 0.0820 0.1098 0.0876 1.78·10−6 0.1074 0.0823 0.1050 0.0803 0.3849
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Table 7: CASES 13-14: Mean squared error and variance (both multiplied by 100) associated to fuzzy M-estimates of location based on Hampel

and Tukey loss functions with tuning parameters fixed as in Section 4.2. A t-test has been applied to check if the lowest mean square error in each

situation (in bold) is significantly smaller than the other one, and, in case there is no significant difference (at significant level 0.05), such a situation

has been distinguished in grey colour.

STUDY 4 - CASE 13 STUDY 4 - CASE 14

TUKEY HAMPEL T-TEST TUKEY HAMPEL T-TEST

0 0 0.0651 0.0650 0.0743 0.0742 3.67·10−16
0.0441 0.0440 0.0508 0.0508 < 2.2·10−16

0.1 0 0.0671 0.0667 0.0788 0.0784 < 2.2·10−16
0.0425 0.0418 0.0451 0.0446 8.45·10−8

0.1 1 0.0637 0.0629 0.0726 0.0720 1.47·10−15
0.0429 0.0410 0.0457 0.0444 7.48·10−7

0.1 5 0.0674 0.0655 0.0716 0.0700 3.40·10−6
0.0401 0.0383 0.0428 0.0414 5.39·10−9

0.1 10 0.0631 0.0609 0.0687 0.0664 1.19·10−7
0.0418 0.0398 0.0444 0.0428 1.31·10−8

0.1 100 0.0571 0.0554 0.0625 0.0607 1.35·10−12
0.0428 0.0400 0.0454 0.0431 2.68·10−7

0.2 0 0.0670 0.0653 0.0738 0.0721 2.88·10−10
0.0460 0.0436 0.0478 0.0459 0.0014

0.2 1 0.0705 0.0668 0.0780 0.0746 1.91·10−9
0.0458 0.0385 0.0459 0.0400 0.4047

0.2 5 0.0660 0.0562 0.0687 0.0598 0.0002 0.0475 0.0351 0.0460 0.0354 6.70·10−5

0.2 10 0.0662 0.0577 0.0691 0.0606 5.23·10−6 0.0562 0.0397 0.0538 0.0397 8.84·10−8

0.2 100 0.0612 0.0514 0.0655 0.0545 7.32·10−12 0.0598 0.0415 0.0583 0.0420 0.0020

0.4 0 0.0923 0.0796 0.1010 0.0889 1.05·10−11 0.0612 0.0458 0.0603 0.0466 0.0373

0.4 1 0.0959 0.0798 0.0995 0.0850 0.0043 0.1247 0.0609 0.1238 0.0623 0.0674

0.4 5 0.2501 0.1375 0.2308 0.1313 7.14·10−7
0.1476 0.0571 0.1564 0.0612 1.41·10−9

0.4 10 0.2417 0.1362 0.2219 0.1325 0.0009 0.1492 0.0566 0.1639 0.0610 2.07·10−15

0.4 100 0.1875 0.1007 0.1943 0.1113 0.2080 0.1708 0.0661 0.1832 0.0692 5.90·10−11
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• for high amounts of contamination (cp = 0.4) in CASES 1-4 (that is,

those considering an unbounded referential), 7 and 10 (among the cases

contained in STUDY 4, those with a larger distance between the regular490

and the contaminated observations, that is, more similar to the unbounded

referential situation).

In summary, the referential set being unbounded or bounded seems to have

much more influence on the performance of fuzzy M-estimators of location than

the symmetry of the distribution generating the mid-points of the 1-levels of495

the fuzzy numbers. The results indicate that the Tukey biweight loss function

can also be a very useful choice for the computation of fuzzy M-estimators of

location for both an unbounded (mainly low or high contamination rates with

this choice of the tuning parameter) and a bounded referential set (mainly low

or intermediate contamination rates with this tuning parameter).500

In relation to those cases in which the Tukey fuzzy M-estimator of location

has not improved the results achieved by the Hampel fuzzy M-estimator, the

following comments should be taken into account.

• Due to the proposed choice of the tuning parameter in Tukey’s loss func-

tion, the Tukey fuzzy M-estimator of location mainly detects low or high505

amounts of contamination, whereas it can experience some problems when

dealing with an intermediate amount of contamination. For example, in

STUDIES 1 and 2, when cp = 0.2 and CD is large, the proposal correctly

guesses that not all the outliers are larger than max{
√
3a(b+ c− a), c}.

Therefore, the estimate of λ is close to 1 and d is approximately equal510

to min{
√
3a(b+ c− a), c}. However, if c is so large in comparison with

a and b (which are not affected by the 20% of outliers), the computation
√
3a(b+ c− a) may lead to a value greater than c and, in consequence,

the Tukey fuzzy M-estimator would be even less suitable than the Hampel

version.515

• Even while the Tukey fuzzy M-estimator of location is design to mainly

detect low or high amounts of contamination, this is not always achieved,
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as it can be seen in STUDIES 3 and 4 (see Tables 4-7). The reason is that

in those situations fuzzy numbers are generated within a small referential

set and the regular and contaminated observations are not far away, so520

some of the numerous contaminated observations may mislead the final

estimate.

5. Real-life example

The comparison of the fuzzy M-estimates based on Hampel and Tukey loss

functions is now illustrated by means of a real-life example, concerning the well-525

known TIMSS-PIRLS assessments. In 2011, TIMSS (Trends in International

Mathematics and Science Study) and PIRLS (Progress in International Reading

Literacy Study) joined to assess the fourth grade students in three fundamental

curricular areas: mathematics, science, and reading.

We have adapted some items for the Student questionnaire TIMSS/PIRLS530

(see http://timss.bc.edu/ timss2011/downloads/T11 StuQ 4.pdf) to work with a fuzzy

rating scale [24] instead of a 4-point Likert scale (namely disagree a lot,

disagree a little, agree a little and agree a lot), which is the standard

format. The reason is that the fuzzy rating scale allows us to combine a free-

response format with a fuzzy valuation, in such a way that human valuations535

are captured more expressively and richly (see e.g. [1]). More details about the

data collection can be found in [5].

Sixty-eight fourth grade students from Colegio San Ignacio in Asturias (Spain)

answered this questionnaire after receiving some instructions. Only trapezoidal

fuzzy numbers have been considered to ease their understanding of the task.540

The results are shown in Figure 4. We now consider the information about the

item “My teacher of Mathematics is easy to understand” collected among the

male students.

The output for the location M-estimates based on Hampel and Tukey loss

functions is displayed in Figure 5.545

It can be seen that Hampel and Tukey M-estimates, which are based on the
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Figure 4: Sample fuzzy data of the 68 fuzzy rating scale-based responses
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Figure 5: Aumann-type mean (grey), Hampel (−−) and Tukey (black) location M-estimates

of the 68 fuzzy rating scale-based responses

Dℓ
1/3 metric and use the 1-norm median as initial solution, almost coincide in

this real-life example when the parameter of the Tukey loss function is chosen as

explained in Section 4.2. Naturally, both of them improve the behaviour of the
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Aumann-type mean and, as explained in [5, 7], they preserve the trapezoidal550

shape of the sample data. It is quite remarkable that the Tukey M-estimate,

which depends on just one tuning parameter, performs as well as the Hampel

M-estimate, whose three tuning parameters provide much more flexibility.

6. Concluding remarks

In this paper, the relevance of the Tukey biweight or bisquare family of loss555

functions for the computation of fuzzy number-valued M-estimators of location

has been analyzed. Their use has been recently introduced in the literature and

a comparative analysis with the Hampel fuzzy M-estimators of location, which

had been previously proposed, was of interest for practical reasons.

First, the concept of fuzzy M-estimators of location has been recalled, as560

well as their main properties. To complement these theoretical results, some

simulations have been designed in order to compare the fuzzy M-estimators

based on two different families of loss functions: Hampel and Tukey biweight.

For Hampel’s loss function, Kim and Scott proposed a selection procedure for

its tuning parameters in [8], which had been used in the adaptation of M-565

estimators to the fuzzy-valued setting (see [5]). We have now shown that the

Tukey loss function can be a very competitive alternative when a careful choice

of its tuning parameter is used. Its advantages with respect to the Hampel fuzzy

M-estimator seem to depend more on the bounded or unbounded referential than

on the distribution of the mid-points of the 1-levels being symmetric or not. It570

is interesting to notice that even when our motivation to propose the choice

for the tuning parameter in the Tukey loss function comes from the Hampel

estimate (since, as it has already been said, it provided us with the best results

in general), the Hampel estimate does not have to be calculated first in order

to calculate the newly tuned Tukey estimate and the inspiration could have575

come from anywhere else. For instance, some fixed specific quantiles of the

distribution of distances to the initial estimate could also have been considered

as possible values for the tuning parameter of the Tukey loss function, namely,
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the median, the 75th and the 85th percentiles of those distances (that is, the

previous choice for the three parameters involved in the Hampel loss function).580

In principle, this option seems to be more rigid and not to cover as many different

situations as our proposal, but the comparison in terms of mean squared error

could be tackled in the future.

In future research, it would be interesting to develop a more thorough study

of those situations in which the Hampel fuzzy M-estimator of location still585

presents a better finite-sample behaviour than the M-estimator based on Tukey

loss function. Another problem of interest would be the analysis of other families

of loss functions for which the Representer Theorem still holds.
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[12] W. Trutschnig, G. González-Rodŕıguez, A. Colubi, M. A. Gil, A new family

of metrics for compact, convex (fuzzy) sets based on a generalized concept

of mid and spread, Inf. Sci. 179 (2009) 3964–3972.

[13] C. Bertoluzza, N. Corral, A. Salas, On a new class of distances between640

fuzzy numbers, Math & Soft Comput. 2 (1995) 71–84.

[14] P. Diamond, P. Kloeden, Metric spaces of fuzzy sets, Fuzzy Sets Syst. 35

(1990) 241–249.

[15] M. L. Puri, D. A. Ralescu, Fuzzy random variables, J. Math. Anal. Appl.

114 (1986) 409–422.645

[16] A. Blanco-Fernández, M. R. Casals, A. Colubi, N. Corral, M. Garca-
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