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In analyzing and classifying data from a statistical perspective, fuzzy sets
and logic have become a valuable tool either to model and handle imprecise
data or to establish flexible techniques to deal with precise data.

From the very beginning of his 52 years-old theory, Professor Zadeh high-
lighted that “Probability Theory/Statistics and Fuzzy Logic should be viewed
as complementary rather than competitive,” and he anticipated and encour-
aged the materialization of such a complementarity. Nowadays, this assertion
is a reality, as shown by the many related papers, specialized conferences,
special sessions and tracks in general conferences, and so on.

This special issue started in 2015, with the 50th anniversary of the seminal
paper on fuzzy sets by Zadeh [156], aiming to collect a sample of research
papers about the current trends on the combination of Fuzzy Sets/Logic and
Data Analysis/Classification.

When this special issue was almost ready for publication, Zadeh unfor-
tunately passed away at age 96 (February 4, 1921 - September 6, 2017). We
wish this special issue to be dedicated to Professor Zadeh, as a mod-
est part of the many tributes that he will receive, and intending to
show that Fuzzy Sets/Logic and Data Analysis/Classification can
certainly work in synergy.
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1 Introduction

This issue means a contribution of a well-known rather young journal from
a scientific field that, sometimes and especially at the beginning of the in-
troduction of fuzzy theory, put it into question. However, Zadeh has been
permanently trying to build bridges between Statistics/Probability and Fuzzy
Logic. We have thought that this was a cordial and gentle way to combate
criticisms, in accordance with his well-known friendly attitude, by demon-
strating the potential benefits of collaboration between both fields. But we
have been ‘probably’ wrong. Zadeh’s fondness and affection towards Probabil-
ity and Statistics is neither incidental nor temporary, but distant in time.

To illustrate the last assertion, in his 2015’s paper [161] Professor Zadeh
has taken a look back over his past in research and he says: “... The early years
in my academic career coincided with the birth of the age of computers and
information. It was an exciting period, spurred by competition between the
United States and the Soviet Union. At Columbia, my research was focused
on system theory and information systems. Probability theory had a position
of centrality in my work. My first paper, published in 1949 in the Journal
of Applied Physics, was entitled, Probability criterion for the design of ser-
vomechanisms. My second paper, published also in the Journal of Applied
Physics in 1950, was entitled, An extension of Wiener’s theory of prediction.
I had a close relationship with the Department of Mathematical Statistics
and its Chair, Herbert Robbins, a brilliant mathematician, who became my
best friend...” Actually, many of Zadeh’s first publications’ titles involve un-
equivocally statistical terms such as stochastic operators, correlation functions,
prediction, time-series, and so on. The same applies to several communications
presented in meetings of the American Mathematical Society.

Anyway, as it often happens with new theories and approaches, there has
been more than two decades in which probabilistic and statistical journals
scarcely publish papers concerning fuzzy material, but maybe some eventual
debates. In this respect, as outlined in Belohlavek et al. [7] and Ross et al. [129],
one should at least mention the following:

e First, the debate along the Conference on the Calculus of Uncertainty in
Artificial Intelligence and Expert Systems held in 1984. In this conference,
Lotfi Zadeh, as supporter of fuzzy logic, Dennis Lindley, as supporter of
subjective probability, Glenn Shafer, as supporter of evidence theory, and
David Spiegelhalter, as supporter of applications of expert systems, acted
as invited speakers. This debate was mostly gathered in the Issue 1 of
Volume 2 of the journal Statistical Science [140], although Zadeh could
not send his written presentation in due time but he often referred to what
was discussed there in different papers.

e Secondly, the invited paper with discussions by Laviolette et al. [102] in the
journal Technometrics, where Laviolette et al. reviewed some basic ideas in
fuzzy theory and offer what they consider to be simpler alternatives based
on traditional probability and statistical theory; the corresponding Zadeh’s
discussion [159] argued that probability theory by itself is not sufficient
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for dealing with uncertainty and imprecision in real-world settings, but
allowing them to coexist is much more effective and reasonable.

e Finally, another interesting debate is the one around the invited paper with
discussions by Singpurwalla and Booker [138] in the Journal of the Amer-
ican Statistical Association, in which authors articulated that probability
theory has a sufficiently rich structure for incorporating fuzzy sets within
its framework, and that probability and fuzzy set theories can work in con-
cert. Zadeh’s discussion about this last paper [160] suggested to restructure
probability theory by involving a shift in its foundations from bivalent to
fuzzy logic.

As we have already commented, nowadays the controversy has been sub-
stantially diminishing and ideas of reconciliation and coexistence of fuzzy
and probability /statistics theories and the development of hybrid models and
methods have been thriving. Kruse et al. have pointed out [99] that “... We
must differentiate between fuzzy data analysis and fuzzy data analysis. The
former deals with the analysis of classical data using methods based on fuzzy
set theory. These methods, e.g., fuzzy clustering or fuzzy regression analysis,
have been used successfully in lots of industrial applications. The second ap-
proach tries to analyze fuzzy data by using statistical methods...” In other
words, Fuzzy Data Analysis and Classification studies are mainly focussed

— either on developing concepts, results and methods to deal with classical

(non-fuzzy) data, where fuzziness is involved in the construction of the

analysis/classification procedures,

— or on developing/extending concepts, results and methods concerning data
analysis and classification of fuzzy-valued data,
— or on both.

2 On the fuzzy analysis and the fuzzy classification of
non-fuzzy /standard data

The development of fuzzy approaches to classify ‘crisp’ data started soon af-
ter the formalization of fuzzy sets by Zadeh [156]. In fact, Zadeh along with
Bellman and Kalaba were the first in suggesting fuzzy sets as a theoretical
basis to develop clustering algorithms [6]. Some of the most influential pioneer
works on the subject are, among others, those by Ruspini [132,133], Tamura
et al. [141], Dunn [59,60], Bezdek [9-11], and Bezdek et al. [13], which have
inspired both applications and many further methodologies. At present, this is
one of the most successful topics involving Fuzzy Sets and Statistical theories,
and the number of research papers on it is unquestionably growing (among
the most recent ones see, for instance, the approaches in Liu et al. [107], Gong
et al. [78], Yamashita and Mayekawa [152], Ruan et al. [130], and Nguyen-
Trangand and Vo-Van [118]), and it appears often either combined with or
supporting other data analysis problems.

In more detail, useful references to the extensive literature on the fuzzy
clustering (from both theoretical and applicative points of view) can be found
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in the chapter on the fuzzy clustering by D’Urso [32], the seminal monograph
by Bezdek [12], the books by Jain and Dubes [93], De Oliveira and Pedrycz [52],
Miyamoto et al. [113] and, e.g., the following journals: Fuzzy Sets and Systems,
IEEE Transactions on Fuzzy Systems, Information Sciences, Pattern Recog-
nition, Applied Soft Computing, Soft Computing, Advances in Data Analysis
and Classification, Computational Statistics and Data Analysis, Chemomet-
rics and Intelligent Laboratory Systems, Pattern Recognition Letters, etc.

As remarked by D’Urso [33], there are different uncertainty-based cluster-
ing methods that can be considered extensions, variants and alternatives of
the fuzzy clustering for non-fuzzy/standard data, like
— possibilistic clustering (see, for instance, Krishnapuram and Keller [96]),
— shadowed clustering (see, for instance, Pedrycz [121]),

— rough sets-based clustering (see, for instance, Lingras and West [105]),
— intuitionistic fuzzy clustering (see, for instance, Hung et al. [90]),
— evidential clustering, credal clustering or belief clustering (see, for instance,

Denoeux and Masson [55]),

— credibilistic clustering (see, for instance, Zhou et al. [162]),

— type-2 fuzzy clustering (see, for instance, Hwang and Rhee [91]),
— mneutrosophic clustering (see, for instance, Shan et al. [134]),

— hesitant fuzzy clustering (see, for instance, Chen et al. [20]),

— interval-based fuzzy clustering (see, for instance, Silva et al. [135]),
— picture fuzzy clustering (see, for instance, Son [139]).

Fuzzy approaches to analyze crisp/standard data, have been not been car-
ried out as exhaustively as fuzzy clustering ones for the same data. And they
were developed several years after fuzzy sets were introduced. Among them,
one can highlight
— the fuzzy linear regression ideas between non-fuzzy input and output data,

by considering the problem as a linear programming one (see, for instance,

the first formulation by Tanaka et al. [143] and Tanaka and Watada [144]),
— hypothesis fuzzy testing, testing of fuzzy hypotheses, and fuzzy estimation

regarding non-fuzzy parameters on the basis of non-fuzzy data (see, for in-

stance, Watanabe and Imaizumi [149], Arnold [2], Buckley [16],

Hryniewicz [88], Parchami et al. [120]),

— fuzzy statistical quality control (see, for instance, Grzegorzewski and

Hryniewicz [82]),

— statistical decision problems with fuzzy utilites/losses (see, for instance,

Gil and Jain [71], Gil and Lépez-Diaz [72]).

3 On the analysis and classification of fuzzy data

On the other hand, approaches to classify fuzzy-valued data are becoming a
challenging topic. Among the first published approaches one should mention
those by Esogbue [61], Hathaway et al. [85], and Pedrycz et al. [122] and,
among the recent ones, see those by Coppi et al. [26], D’Urso and De Gio-
vanni [35], D’Urso et al. [37], Ansari et al. [1] and Ferraro and Giordani [64].
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The analysis of fuzzy-valued data is also a topic receiving an increasing
attention along the years. Some of the developed methodologies aiming to
analyze fuzzy data consider a descriptive view and do not refer to models as-
sociated with the probabilistic framework. Nevertheless, most of the method-
ologies are based on the modeling of the random mechanisms generating fuzzy
data within a probabilistic setting. In this respect, we can mention, among
some of these methodologies the following:

e The methodologies based on the notion of fuzzy information system, intro-
duced by Okuda et al. [119], who consider the available information from a
classical random experiment associated with a real-valued random variable
to be fuzzy (i.e., they consider an epistemic viewpoint in accordance with
the distinction made by Couso and Dubois [28]) and assume that this avail-
able information constitutes a fuzzy partition (in Ruspini’s sense [133]) of
the sample space of the variable, and probabilities are based on Zadeh’s
probabilistic definition of fuzzy events [157]. Some data analysis develop-
ments using this model can be seen, for instance, in Gil et al. [70], Gil [69]
and, more recently, Denoeux [53].

e The methodologies based on the notion of fuzzy random wvariable, intro-
duced by Kwakernaak [101] and later formalized by Kruse and Meyer [100].
As Kruse et al. pointed out in [99], this deep and wide data analysis with
vague data was a fruit of the encouragement by Professors Lotfi Zadeh and
Heinz Skala (editor of the Series Theory and Decision Library of the D.
Reidel Publishing Co., see, e.g., [137]), which was mostly prompted by the
development by Kruse and Meyer of useful fuzzy methods and a software
tool for statistical applications for the Siemens AG. The model refers to the
epistemic perspective and fuzzy random variable is viewed as the fuzzy per-
ception of an original non-fuzzy random variable. Statistical developments
with fuzzy data coming from the fuzzy perception of real-valued ones will
be mainly based on propagating the associated imprecision to the distribu-
tion function, parameters, etc., through Zadeh’s extension principle [158].
It should be remarked that, albeit based on fuzzy information, statistical
conclusions with Kruse and Meyer’s fuzzy random variables always concern
the original random variable and its parameters. Among the studies based
on Kruse and Meyer’s fuzzy random variables one can refer, for instance,
to Kruse [97,98], Grzegorzewski [81], Wang [148], and Wu [150].

e The methodologies based on the notion of random fuzzy sets, introduced
by Féron [62], and to some extent anticipated by Fréchet [66], and later
formalized by Puri and Ralescu [124,125]. The model, which was initially
coined as fuzzy random variables, refers to a kind of ontic perspective, since
a random fuzzy set (or random fuzzy number if values are fuzzy numbers) is
viewed as a mapping associating experimental outcomes with fuzzy values
in a Borel-measurable way, so that the induced distribution associated with
the random fuzzy set is immediate, the stochastic independence between
random fuzzy sets is also trivially induced, and so on. It should be remarked
that, in contrast to the Kruse and Meyer’s approach, statistical conclusions
with Puri and Ralescu random fuzzy sets always concern the fuzzy-valued
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random element and the parameters associated with its induced distribu-
tion. An interesting distinctive feature of the statistical methodology based
on this approach to generate fuzzy data is that most of the classical ideas
in data analysis can be immediately preserved without needing to either
define or adapt them expressly. Among the statistical developments involv-
ing this approach one can refer, for instance, to Bandemer and Néther [5]
and Néther [115,116] and, more recently, Blanco-Fernandez et al. [14,15].

Other developments and approaches can be found in the literature (for
instance, those by Viertl [147], Grzegorzewski and Szymanowiski [83], etc.).
Among the scientific journals publishing papers on the topic, one can mention
those indicated in Section 2 for the fuzzy clustering and analysis of standard
data.

4 Additional related literature
It is pertinent to state at this point that some other procedures have been

suggested in the literature to categorize non-standard data in a fuzzy manner,
and some of them have been gathered in Table 1 (see also, D’Urso [32]).

Table 1 Some relevant references on fuzzy clustering of non-standard data

Typology of data | See, for instance,...

fuzzy data, symbolic data, | Section 3 and Table 2 of this editorial
interval-valued data

categorical data Huang and Ng [89], Lee and Pedrycz [103]

functional data Tokushige et al. [146], Tan et al. [142]

textual data (text data) Runkler and Bezdek [131]

time data Coppi and D’Urso [22-24], D’Urso [30],
Maharaj and D’Urso [112], D’Urso et al. [46,39,45]

spatial data Pham [123]

spatial-time data Coppi et al. [25], Disegna et al. [58]

three-way data Giordani [76], Rocci and Vichi [128]

sequence data D’Urso and Massari [47]

network data Liu [106]

directional data Yang and Pan [155], Kesemen et al. [94]

distributional data Irpino et al. [92]

mixed data Yang et al. [153]

outlier data Davé [50], Krishnapuram and Keller [96],

Frigui and Krishnapuram [67], Wu and Yang [151],
D’Urso and Giordani [42], Fritz et al. [68],

Ferraro and Vichi [65], Ferraro and Giordani [64],
D’Urso et al. [37-40], D’Urso and Leski [44],

Yang and Nataliani [154]

incomplete data Hathaway and Bezdek [84]

data streams Berlinger and Hiillermeier [8]
big data Havens et al. [86]
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In a similar way, Table 2 collects some of the most relevant references on
the methodological statistical studies on the analysis of fuzzy data (see also
D’Urso [34]).

Table 2 Some relevant references on the analysis of fuzzy data

Typology of the analysis | See, for instance,...

one-sample, two-sample, ANOVA Korner [95], Montenegro et al. [114],
tests about means and variances Gonzdlez-Rodriguez et al. [80],
of random fuzzy sets Ramos-Guajardo et al. [126],

Ramos-Guajardo and Lubiano [127],
Lubiano et al. [110]

fuzzy estimates of location Lubiano and Gil [109],

of random fuzzy numbers; robustness | Sinova et al. [136]

statistical comparison of fuzzy scale De la Rosa de Sda et al. [51],

with other imprecise-valued scales Gil et al. [74], Lubiano et al. [108,111]
fuzzy inequality Gil et al. [73]

discriminant analysis Colubi et al. [21]

cluster analysis Hathaway et al. [85], Pedrycz et al. [122],

Auephanwiriyakul and Keller [4],

D’Urso [31], Coppi et al. [26]

regression analysis Celmins [19], Diamond [57],

Nather and Albrecht [117], Coppi et al. [27],
D’Urso and Gastaldi [43], D’Urso [29],
Gonzalez-Rodriguez et al. [79],

D’Urso et al. [48]

principal component analysis Denoeux and Masson [56],
D’Urso and Giordani [41],
Giordani and Kiers [77], Calcagni et al. [17]

multidimensional scaling Denoeux and Masson [54], Hébert et al. [87]
self-organizing maps D’Urso et al [36]

clusterwise regression analysis D’Urso and Santoro [49]

correspondence analysis Theodorou et al. [145],

Asan and Greenacre [3]

regression trees Cappelli et al. [18],
Lertworaprachaya et al. [104]

three-way analysis Coppi and D’Urso [23], Giordani [76]

5 On this special issue

The papers in this special issue are to be considered as a sample of recent
advances in data analysis and classification involving fuzziness, illustrating
the need of taking advantage of other topics like Fuzzy Logic to enrich and
to widen statistical methodologies. Although small samples are not usually
informative enough from a statistical perspective, and this special issue is
certainly a very small sample, we trust that readers can get a flavour of some
of the current trends about.
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The first four papers in the issue concern fuzzy data analysis or classifica-
tion:

— The paper “A fuzzy approach to robust regression clustering”, by Dotto,
Farcomeni, Garcia-Escudero and Mayo-Iscar, proposes a fuzzy regression
clustering method based on a maximum likelihood approach but in such a
way that the method resists well to data contamination.

— The paper “A novel method for forecasting time series based on fuzzy
logic and visibility graph”, by Zhang, Ashuri and Deng, relates to a new
suggestion to forecast time series, which is based on fuzzy logic, visibility
graph and link prediction.

— The paper “Fuzzy rule based classification systems for big data with MapRe-
duce: granularity analysis”, by Fernandez, del Rio, Bawakid and Herrera,
aims to discuss the effect of the granularity level and the number of selected
Maps on the performance of the Chi-Fuzzy Rule Based Classification Sys-
tems with a MapReduce approach for big data.

— The paper “On ill-conceived initialization in archetypal analysis”, by Sule-
man, addresses the problem of initialization and the performance of fuzzy
clustering by means of an archetypal analysis.

The last two papers in the issue concern fuzzy data analysis or classification:

— The paper “Robust scale estimators for fuzzy data”, by de la Rosa de Saa,
Lubiano, Sinova and Filzmoser, regards the introduction of some robust
location-based scale measures/estimates for random fuzzy numbers, along
with the analysis of their robustness.

— The paper “Parametric classification with soft labels using the evidential
EM algorithm. Linear discriminant analysis vs logistic regression”, by De-
noeux, Quost and Li, analyzes the problem of partially supervised classi-
fication when learning instances are labeled by means of Dempster-Shafer
mass functions (which include fuzzy sets as a particular case).

Acknowledgements We are deeply indebted to the ADAC Co-Editor Professor Maurizio
Vichi because of having kindly and patiently supported this initiative, which is dedicated
to Professor Lotfi A. Zadeh, the father of Fuzzy Logic.
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