Urban upbringing and childhood respiratory and allergic conditions:

a multi-country holistic study.

Christina Tischer^{a,b,c}, Payam Dadvand^{a,b,c}, Xavier Basagana^{a,b,c}, Elaine Fuertes^{a,b,c}, Anna Bergström^{d,e}, Olena Gruzieva^{d,e}, Erik Melen^{d,e,f}, Dietrich Berdel^g, Joachim Heinrich^{h,i}, Sibylle Koletzkoⁱ, Iana Markevych^{h,i}, Marie Standlⁱ, Dorothea Sugiri^k, Lourdes Cirugeda^{a,b,c}, Marisa Estarlich^{c,I}, Ana Fernández-Somoano^{c,m}, Amparo Ferrero^{c,I}, Jesus Ibarlueza^{c,n,o,p}, Aitana Lertxundi^{n,p}, Adonina Tardón^{c,m}, Jordi Sunyer^{a,b,c,q}, and Josep M Anto^{a,b,c,q}

Affiliations

- ^aISGlobal, Barcelona Institute for Global Health Campus MAR, Barcelona, Spain
- ^bUniversitat Pompeu Fabra (UPF), Barcelona, Spain
- °CIBER Epidemiología v Salud Pública (CIBERESP), Madrid, Spain
- ^dInstitute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
- ^eCentre for Occupational and Environmental Medicine, Stockholm County Council,
- Sweden
- ^fSachs' Children's Hospital, Södersjukhuset, Stockholm, Sweden
- ⁹Research Institute, Department of Pediatrics, Marien-Hospital Wesel, Wesel, Germany
- ^hInstitute and Outpatient Clinic for Occupational, Social and Environmental Medicine,
- Inner City Clinic, University Hospital of Munich (LMU), Munich, Germany
- Institute of Epidemiology I, Helmholtz Zentrum München German Research Center for
- Environmental Health, Neuherberg, Germany
- Division of Paediatric Gastroenterology and Hepatology, Dr. von Hauner Children's
- Hospital Munich, Ludwig-Maximilians-University of Munich, Germany
- ^kIUF – Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
- FISABIO–Universitat de València–Universitat Jaume I Joint Research Unit, Valencia,
 - Spain

60 61		
62 63	28	^m IUOPA-Preventive Medicine and Public Health Area, Department of Medicine,
64 65	29	University of Oviedo, Asturias, Spain
66 67	30	ⁿ Health Research Institute, BIODONOSTIA, San Sebastian, Spain
68 69	31	°Subdireccion de Salud Publica de Gipuzkoa, San Sebastian, Spain
70 71	32	^p University of Basque Country, UPV/EH, Leioa, Spain
72	33	qIMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
73 74 75	34	
76 77	35	
77 78	36	ISGlobal is a member of the CERCA Programme, Generalitat de Catalunya.
79 80	37	
81 82	38	
83 84	39	Name and contact of the corresponding author
85 86	40	Christina Tischer
87 88	41	ISGlobal, Centre Barcelona Institute for Global Health - Campus MAR
89 90	42	Doctor Aiguader, 88 08003 Barcelona, Catalonia, Spain
91 92	43	Phone: 0034 932147365 Fax: 0034 932045904
93 94	44	email: christina.tischer@isglobal.org
95 96	45	
97 98	46	Words: 4025
99 100	47	
101 102	48	
103 104	49	
105 106	50	Funding:
107 108	51	INMA Asturias:
109 110	52	This study was funded by grants from Instituto de Salud Carlos III (Red INMA G03/176
111	53	and CB06/02/0041), the Spanish Ministry of Health (FIS-FEDER PI042018, PI09/02311,
113 114	54	PI13/02429), Obra Social Cajastur/Fundación Liberbank and University of Oviedo.
115 116	55	
117		2
110		

56 INMA Gipuzkoa:

57 This study was funded by grants from Instituto de Salud Carlos III (FIS-PI06/0867, FIS-58 PS09/00090 and FIS-PI13/02187), Department of Health of the Basque Government 59 (2005111093, 2009111069 and 2013111089), and the Provincial Government of 60 Gipuzkoa (DFG06/004 and DFG08/001). Convenios anuales con los ayuntamientos de 61 la zona del estudio (Zumarraga, Urretxu, Legazpi, Azkoitia y Azpeitia y Beasain).

63 INMA Sabadell:

This study was funded by grants from Instituto de Salud Carlos III (Red INMA G03/176),
Generalitat de Catalunya-CIRIT 1999SGR 00241. For the 4-5 year follow-up, it was
funded by grants from Instituto de Salud Carlos III (Red INMA G03/176; CB06/02/0041;
PI041436; PI081151 incl. FEDER funds), Generalitat de Catalunya-CIRIT 1999SGR
00241, and Fundació La marató de TV3 (090430).

70 INMA Valencia:

This study was funded by Grants from UE (FP7-ENV-2011 cod 282957 and HEALTH.2010.2.4.5-1), and from Spain: Instituto de Salud Carlos III (Red INMA G03/176, CB06/02/0041, FIS-FEDER 03/1615, 04/1509, 04/1112, 04/1931, 05/1079, 05/1052, 06/1213, 07/0314, 09/02647, 11/0178, 11/01007, 11/02591, 11/02038, 13/1944, 13/2032, 14/0891, and 14/1687) and the Conselleria de Sanitat, Generalitat Valenciana.

78 GINIplus:

The GINIplus study was mainly supported for the first 3 years of the Federal Ministry for Education, Science, Research and Technology (interventional arm) and Helmholtz Zentrum Munich (former GSF) (observational arm). The 4 year, 6 year, 10 year and 15 year follow-up examinations of the GINIplus study were covered from the respective budgets of the 5 study centres (Helmholtz Zentrum Munich (former GSF), Research

Institute at Marien-Hospital Wesel, LMU Munich, TU Munich and from 6 years onwards
also from IUF - Leibniz Research-Institute for Environmental Medicine at the University
of Düsseldorf) and a grant from the Federal Ministry for Environment (IUF Düsseldorf,
FKZ 20462296). The 15 year follow-up examination of the GINIplus study was supported
by the Commission of the European Communities, the 7th Framework Program:
MeDALL project, and as well by the companies Mead Johnson and Nestlé.

91 LISAplus:

The LISAplus study was mainly supported by grants from the Federal Ministry for Education, Science, Research and Technology and in addition from Helmholtz Zentrum Munich (former GSF), Helmholtz Centre for Environmental Research—UFZ, Leipzig, Marien-Hospital Wesel, Pediatric Practice, Bad Honnef for the first 2 years. The 4 year, 6 year and 10year follow-up examinations of the LISAplus study were covered from the respective budgets of the involved partners (Helmholtz Zentrum Munich (former GSF), Helmholtz Centre for Environmental Research—UFZ, Leipzig, Marien-Hospital Wesel, Pediatric Practice, Bad Honnef, IUF-Leibniz-Research Institute for Environmental Medicine) and in addition by a grant from the Federal Ministry for Environment (IUF, FKZ 20462296). The 15 year follow-up examination of the LISAplus study was supported by the Commission of the European Communities, the 7th Framework Program (MeDALL project).

BAMSE: The BAMSE study has been supported by the Swedish Research Council, the Swedish Heart-Lung Foundation, the Swedish Research Council Formas, the Swedish Environment Protection Agency, the European Community's Seventh Framework Program (FP7/2007-2011 under grant agreement no. 211250), the Swedish Asthma and Allergy Association Research Foundation, and the Stockholm County Council.

 111 Christina Tischer is a recipient of a European Respiratory Society Fellowship 112 (RESPIRE2 - 2015- 7251). Payam Dadvand is funded by a Ramón y Cajal fellowship 113 (RYC-2012-10995) awarded by the Spanish Ministry of Economy and Competitiveness. 114 Elaine Fuertes is supported by a Marie Skłodowska-Curie Individual Fellowship (H2020- 115 MSCA-IF-2015; proposal number 704268). 116 	237		
112 (RESPIRE2 - 2015- 7251). Payam Dadvand is funded by a Ramón y Cajal fellowship 113 (RYC-2012-10995) awarded by the Spanish Ministry of Economy and Competitiveness. 114 Elaine Fuertes is supported by a Marie Skłodowska-Curie Individual Fellowship (H2020- 115 MSCA-IF-2015; proposal number 704268). 116 116 117 Intervention 118 Intervention 119 Intervention 110 Intervention 111 Intervention 112 Intervention 113 MSCA-IF-2015; proposal number 704268). 116 Intervention 116 Intervention 116 Intervention 116 Intervention 116 Intervention 117 Intervention 118 Intervention 119 Intervention 110 Intervention 111 Intervention 112 Intervention 113 Intervention 114 Intervention 115 Intervention 116 Intervention	230 239 240	111	Christina Tischer is a recipient of a European Respiratory Society Fellowship
113 (RYC-2012-10995) awarded by the Spanish Ministry of Economy and Competitiveness. 114 Elaine Fuertes is supported by a Marie Sklodowska-Curie Individual Fellowship (H2020- 115 MSCA-IF-2015; proposal number 704268). 116 116 117 Inscription (Recompetitiveness). 118 Inscription (Recompetitiveness). 119 Inscription (Recompetitiveness). 110 Inscription (Recompetitiveness). 111 Inscription (Recompetitiveness). 116 Inscription (Recompetitiveness). 118 Inscription (Recompetitiveness). 119 Inscription (Recompetitiveness). 119 Inscription (Recompetitiveness). 110 Inscription (Recompetitiveness). 111 Inscription (Recompetitiveness). 112 Inscription (Recompetitiveness). 113 Inscription (Recompetitiveness). 114 Inscription (Recompetitiveness). 115 Inscription (Recompetitiveness). 119 Inscription (Recompetitiveness). 111 Inscription (Recompetitiveness). 112 Inscription (Recompetitiveness). 113 Inscription (Recompetitive	240 241 242	112	(RESPIRE2 – 2015– 7251). Payam Dadvand is funded by a Ramón y Cajal fellowship
114 Elaine Fuertes is supported by a Marie Skłodowska-Curie Individual Fellowship (H2020- 115 MSCA-IF-2015; proposal number 704268). 116 116 118 MSCA-IF-2015; proposal number 704268). 119 116 110 116 111 116 112 116 113 116 114 Elaine Fuertes is supported by a Marie Skłodowska-Curie Individual Fellowship (H2020- 115 MSCA-IF-2015; proposal number 704268). 119 116 110 116 111 116 112 116 113 MSCA-IF-2015; proposal number 704268). 114 116 115 116 116 116 117 117 118 118 119 118 119 118 119 118 111 118 111 118 111 118 111 118 111 118 1118 118	242	113	(RYC-2012-10995) awarded by the Spanish Ministry of Economy and Competitiveness.
115 MSCA-IF-2015; proposal number 704268). 116 116 116 117 118 118 119 119 110 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111	245	114	Elaine Fuertes is supported by a Marie Skłodowska-Curie Individual Fellowship (H2020-
249 116 250	247 248	115	MSCA-IF-2015; proposal number 704268).
251 252 255 256 259 259 260 270 271 272 273 274 277 273 274 275 276 277 273 279 270 270 270 270 270 270 270 270 270 270	249 250	116	
252 253 255 257 258 259 260 261 262 263 264 265 266 266 267 270 271 271 273 274 273 274 275 275 276 277 278 279 280 299 200 291 299 200 291 299 200 291 270 271 273 274 275 275 276 277 278 279 280 299 200 291 290 200 291 291 292 202 293 203 294 293 294 294 295 294 295 295 295 295 295 295 295 295 295 295	251		
233 254 255 256 259 259 260 261 262 263 264 265 266 267 276 277 270 270 270 271 272 273 274 275 276 277 278 279 288 289 299 200 291 200 291 200 291 200 291 200 291 200 291 200 291 200 291 200 291 200 291 200 291 200 291 200 291 200 201 201 201 201 201 201 201 201 20	252		
244 255 256 257 258 259 260 261 262 263 264 265 266 267 269 270 270 271 272 273 274 275 276 277 275 276 277 278 279 280 290 291 292 293 294 295 204 295 205 205 205 205 205 205 205 20	253		
256 257 258 260 261 252 263 264 255 266 267 268 269 270 271 272 273 274 275 276 277 278 279 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 295	204 255		
257 259 260 261 262 263 264 266 266 267 268 269 270 270 270 271 272 273 274 275 276 277 278 278 279 200 281 283 284 283 284 283 284 283 284 283 284 283 284 285	256		
258 259 260 261 262 263 264 265 266 277 278 270 271 273 274 275 276 277 278 279 280 281 280 281 282 283 284 283 284 283 284 283 284 283 284 283 284 283 284 283 284 283 284 283 284 283 284 283 284 283 284 283 284 283 284 285	257		
259 260 261 262 263 264 265 266 267 270 271 272 273 274 275 276 277 278 279 279 280 281 282 283 284 283 284 283 284 283 284 283 284 285	258		
240 242 253 264 265 266 267 268 269 270 270 271 272 273 273 274 275 276 277 278 279 280 281 282 283 284 282 283 284 285 286 287 289 290 201 202 203 204 205 205 205 205 205 205 205 205	259		
221 223 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295	260		
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294	262		
264 265 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293	263		
266 267 268 269 270 270 271 272 273 274 275 276 277 278 279 280 281 283 284 283 284 283 284 283 284 283 284 283 284 283 284 283 284 283 284 283 284 283 284 283 284 283 284 283 284 283 284 283 284 283 284 285 283 284 285 285 286 287 287 288 289 290 291 292 293 294 294 295 295 295 295 295 295 295 295 295 295	264		
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 283 284 283 284 285 288 289 290 290 290 291 292 293	265		
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 283 284 285 284 285 286 287 288 289 290 291 292 293 294 295 295 295 295 205 205 205 205 205 205 205 20	266		
200 270 271 272 273 274 275 276 277 278 280 281 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 20 29 295 20 29 29 29 29 29 29 29 29 29 29	267		
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295	269		
271 272 273 274 275 276 277 278 279 280 281 282 283 284 283 284 285 286 287 288 289 290 291 292 293	270		
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 25	271		
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 255 25	272		
2/4 275 276 277 278 280 281 282 283 284 285 286 287 288 289 290 291 292 293	273		
273 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295	274		
277 278 279 280 281 282 283 284 285 286 287 288 289 291 292 293 294 5	275		
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 25	277		
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 293 294 295	278		
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 5	279		
281 282 283 284 285 286 287 288 289 290 291 292 293 293 294 295	280		
282 283 284 285 286 287 288 289 290 290 291 292 293 293 294 295	281		
284 285 286 287 288 289 290 290 291 292 293 293 294 5	283		
285 286 287 288 289 290 291 292 293 293 294 5	284		
286 287 288 289 290 291 292 293 293 294 5	285		
287 288 289 290 291 292 293 294 5 295	286		
280 290 291 292 293 294 295	287		
290 291 292 293 294 295	289		
291 292 293 294 5 295	290		
292 293 294 5 295	291		
293 294 5 295	292		
294 5 295	293		
	∠94 295		c

117 Abstract

300
301118**Objective:** We integratively assessed the effect of different indoor and outdoor302
303119environmental exposures early in life on respiratory and allergic health conditions among304
305120children from (sub-) urban areas.

Methods: This study included children participating in four ongoing European birth cohorts located in three different geographical regions: INMA (Spain), LISAplus (Germany), GINIplus (Germany) and BAMSE (Sweden). Wheezing, bronchitis, asthma and allergic rhinitis throughout childhood were assessed using parental-completed questionnaires. We designed "environmental scores" corresponding to different indoor, green- and grey-related exposures (main analysis, a-priori-approach). Cohort-specific associations between these environmental scores and the respiratory health outcomes were assessed using random-effects meta-analyses. In addition, a factor analysis was performed based on the same exposure information used to develop the environmental scores (confirmatory analysis, data-driven-approach).

Results: A higher early exposure to the indoor environmental score increased the risk for wheezing and bronchitis within the first year of life (combined adjusted odds ratio: 1.20 [95% confidence interval: 1.13-1.27] and 1.28 [1.18-1.39], respectively). In contrast, there was an inverse association with allergic rhinitis between 6 and 8 years (0.85 [0.79-0.92]). There were no statistically significant associations for the outdoor related environmental scores in relation to any of the health outcomes tested. The factor analysis conducted confirmed these trends.

Conclusion: Although a higher exposure to indoor related exposure through occupants was associated with an increased risk for wheezing and bronchitis within the 1st year, it might serve as a preventive mechanism against later childhood allergic respiratory outcomes in urbanized environments through enhanced shared contact with microbial agents.

Words: 250

355		
356		
357	144	
358		
359	145	
300		
301	146	Key words
30Z 262		
264	147	Indoor exposure; microbial load; green space; grey space; asthma; allergic rhinitis
365	4.40	
366	148	
367	1/0	Abbroviations
368	147	
369	150	BAMSE (Barn/Child Allergy Milieu Stockholm Epidemiology) GINIplus (German Infant
370	100	
371	151	Nutritional Intervention plus environmental and genetic influences on allergy
372		
373	152	development), INMA (INfancia y Medio Ambiente; Environment and Childhood),
374		
375	153	LISAplus (The Influence of Life-Style Factors on the Development of the Immune System
376		
377	154	and Allergies in East and West Germany plus the Influence of Traffic Emissions and
378		
379	155	Genetics Study), aOR, 95%CI (adjusted Odds Ratios, 95% Confidence Intervals), NO ₂
380	. – .	
381	156	(Nitrogen dioxide), FA (Factor Analysis),
382	457	
383	157	
384	150	
385	100	
386	159	
387	157	
388		
389		
390		
391		
392		
393		
394 205		
306		
307		
398		
399		
400		
401		
402		
403		
404		
405		
406		
407		
408		
409		
410		
411		
412		7
413		

160 INTRODUCTION

The prevalence of asthma and allergic conditions is increasing worldwide (1) and has coincided with the rapid and ongoing increase in the percentage of the population residing in urban areas (2). The higher prevalence of asthma and allergic conditions in urban areas compared to the rural areas suggests that urban-related environmental factors may contribute to the pathogenesis of these conditions (3). Previous efforts to evaluate such contributions have mainly focused on a single indoor or outdoor environmental factor (while adjusting for other exposures). In general, there is a plethora of evidence to suggest both positive and negative associations with various indoor and outdoor factors and respiratory health outcomes. Some environmental factors are of particular interest as they demonstrate strong associations with respiratory outcomes (4). For instance, growing up on a farm and thereby having a higher exposure to farm animals, animal feed or unprocessed cow's milk has been shown to protect children from asthma, hay fever and allergic sensitization (5). These associations have been explained by the 'hygiene hypothesis' (6); an early, more intense contact to microbial agents might modulate and program the developing of an immune system towards a non-allergic response (7,8). Much less is known regarding 'beneficial' exposure conditions in urban areas. Nevertheless, previous literature in populations from affluent countries suggests the existence of an inverse association between number of siblings and reported prevalence of allergy-prone diseases, such as hay fever in later childhood due to increased exposure to infections early in life as well as shedding and sharing microbial exposures through more frequent contact (9,10). Further, a recent study among adults observed that a higher proxy for microbial biodiversity in inner city environments, represented by early childhood exposure to pets, day care, bedroom sharing and older siblings, was related to less allergic sensitization (11). Moreover, early exposure to pets, in particular dogs, has been repeatedly suggested to be associated with a reduced risk of (non-atopic) asthma outcomes (12), although overall, associations are inconsistent (13,14). In contrast, associations are rather consistent for exposure to moisture and

mould damage at home in relation to increased risk for asthma and respiratory conditions
among children worldwide. Harmful effects of early secondhand tobacco smoke (SHS)
exposure in relation to these outcomes have also been documented among children
(15,16).

In terms of the outdoor environment, it has been speculated that urbanization leads to a loss of beneficial natural environments which may promote a weakened tolerance against harmful allergens ubiquitous in natural surroundings among children growing up in cities (17,18) as compared to bringing up in rural environments (5,19). Moreover, urban environments are known to vary in their 'grey' surfaces, which comprise industrial, transport and urban-fabric characteristics, often accompanied by an increased exposure to traffic-related air pollution (20,21).

Focusing on only one or very few exposures inadequately captures the complex nature of interrelated environmental factors in real-life and their potentially synergistic/antagonistic impacts on asthma and allergic conditions. To our knowledge, no study has evaluated how a combination of indoor and outdoor environmental factors experienced in early life may affect later respiratory health. Such an approach is certainly needed in order to obtain a holistic perspective of the role of urban upbringing in the pathogenesis of asthma and allergic conditions in different geographic regions. As such, the aim of the present study was to disentangle and prospectively evaluate the association between indicators of urban-related indoor and outdoor environmental exposure characteristics, using a holistic concept, with respiratory and allergic health outcomes in young children from four different birth cohorts established in diverse bio-geographical regions in Europe. Towards this aim, we were particularly interested as to whether we could identify beneficial environmental conditions in urbanized environments.

528 215

MATERIALS AND METHODS Study population and study area The study population comprises four ongoing birth cohorts of different bio-geographical regions across southern, central, and northern Europe: INMA (Spain, N=2472), GINIplus (Germany, N=5991), LISAplus (Germany, N=3094), and BAMSE (Sweden, N=4089). For the included studies, approval by the local ethics committees and written consent from participants' families were obtained. A detailed description of these prospective population-based birth cohorts is provided in the **Supplementary Information 1**. Exposure assessment We used three different environmental domains that describe the home as well as the surrounding built environment, identically defined and available in each of the participating birth cohorts. For the (1) *a-priori* approach (main analysis), exposure was defined as the Indoor, Grey and Green environmental score (hereafter referred to as "environmental scores"). For the (2) data driven approach (confirmatory analysis), the same exposure data was used in a factor analysis (FA) in order to confirm or falsify the subjectively built environmental scores.

570 234

571 235 1) A-priori approach (main analysis)572

573574236 INDOOR environmental score

Based on Campbell and colleagues (11), the "indoor score" was composed of environmental characteristics associated with suggested higher microbial load ("biodiversity proxy"). These included family size, number of children, sharing bedroom, and pets at home (11) all of which are suggested to be associated with higher exposure to various microbial agents. The indoor score was calculated from answers to the following four survey questions in the time interval between birth and one year: (1) "Are there currently pets at home?" (1 if yes, 0 if no), (2) "How many (older) children are at

home (excluding the study child)?" (=1 if \geq 1, =0 if =0), (3) "How many persons sleeping" in one room together with the study child?" (=1 if \geq 1, =0 if =0), and (4) "How many people" live permanently in the household together with the study child (excluding the study child for INMA (=1 if > 2, =0 if \leq 2), including the study child for GINIplus, LISAplus, and BAMSE)?" (=1 if > 3, =0 if \leq 3). The combined effect (sum of these scores) was examined together as the cumulative "indoor score" (ranged from 0 to 4).

607 251 OUTDOOR-GREEN and OUTDOOR-GREY environmental scores

609 252 Outdoor-green environmental score

We used (i) residential surrounding greenness and (ii) neighbourhood green land use to construct our outdoor-green environmental score. The assessment of residential surrounding greenness was based on the satellite-derived Normalized Difference Vegetation Index (NDVI). The NDVI is an indicator of greenness based on land surface reflectance of visible red and near-infrared parts of the spectrum (22). Its values range between -1 and 1, with higher positive numbers indicating more greenness (i.e. photosynthetically-active vegetation). To characterise neighborhood green land use pattern, the CORINE land-cover classes were applied. The CORINE framework, developed by the European Environmental Agency, is a Europe-wide satellite-based inventory of land-cover categorized into 44 classes at a scale of 1:100000 (23) at different levels, last updated in 2011. To define the neighborhood green land use patterns (m²), the surface area of Level 2 land cover (arable land, forests, heterogeneous agricultural land use types, open spaces with little or no vegetation, pastures, permanent crops, green urban area, sport and leisure facilities and shrub or herbaceous vegetation) within a 300 m buffer around the home address was summed.

For each of the two aspects, a 3-level dummy variable (1 = low, 2 = medium and 3 =
high) was created based on tertile values. For GINI/LISA South and BAMSE, the
categorization of residential green land use patterns into tertiles was not applicable

because the cut-offs were the same for the first 2 tertiles. Therefore, the median was used as the cut-off (1=lower residential green land use, 2=higher residential green land use). The "outdoor-green environmental score" was then abstracted by adding the scores for residential surrounding greenness and neighbourhood green land use (ranging from 2 to 5 for GINI/LISA South and BAMSE and 2 to 6 for INMA and GINI/LISA North).

664 278

666 279 Outdoor-grey environmental score

We applied (i) residential surrounding urban land use, (ii) NO2 levels, and (iii) distance to major road to create outdoor-grey environmental score for each participant. To define residential surrounding urban land use patterns (m²), the surface area of Level 2 CORINE land cover (includes industrial, commercial units, transport units, and mines) within a 300 m buffer around the home address was summed. Further, within all cohorts we had information on exposure to NO₂ based on existing area-specific land use regression models and applied to the residence around birth. Finally, available harmonized data on distance to major road with constant traffic (in meters) was used (see Supplementary Table 1).

289

As for the outdoor-green score, a 3-level dummy variable (1 = low, 2 = medium and 3 = high) was created based on tertiles of each exposure characteristic. For BAMSE, it was not possible to use tertiles due to the reasons already mentioned above. Thus, two categories were generated based on the median surface area (1=lower residential urban land use, 2=higher residential urban land use). Ultimately, the outdoor-grey environmental score was constructed adding the aforementioned three indicators, which ranged from 3 to 8 for BAMSE and 3 to 9 for the remaining cohorts.

298 2) Data-driven approach (confirmatory analysis)

The second data-driven approach ("confirmatory analysis") was performed to evaluate the assessment of the environmental scores as well as their associations with the health outcomes. Specifically, the same environmental exposure data as used for building the environmental scores was applied in a factor analysis.

According to the results of the cohort-specific FA, the three selected dimensions explained nearly two-third of the variation (see Supplementary Table 2). With respect to all participating birth cohorts, the first dimension was associated with residential surrounding greenness as well as air pollution from traffic ("Greenness/Air pollution"). The second dimension showed high loadings on number of people in the home as well as on whether there are (older) children which we defined as "Crowding". This is comparable to the Indoor Environmental Score, however, it does not include microbial exposure associated with pets. Finally, the third dimension was in particular associated with exposure to pets. For the confirmatory regression analyses, only dimension 1 ("Greenness/Air pollution") and dimension 2 ("Crowding") were considered as comparable to the subjectively built Environmental scores. We nonetheless performed regression analyses with the third dimension ("Pets") as an exposure, but found no significant results with any of the health outcomes tested (data not shown).

747 317

748749318 Health outcome assessment

We focused on parental completed questionnaire information on (presumably infectious) respiratory outcomes including *wheezing* and *bronchitis* within the first year, as well as on current allergy-prone respiratory outcomes asthma and allergic rhinitis / hay fever in later childhood (INMA: 7y, GINI/LISA south and north: 6y, BAMSE: 8y). For all cohorts except for INMA, there were further data available on atopic status (specific immunoglobulin E (IgE) > 0.35 kU/l) at 6 and 8 years, respectively. Detailed information of the health outcome assessment in the birth cohorts is provided in the **Supplementary** Table 3.

328 Statistical analysis

Cohort-specific logistic regression models (24) were applied to analyze the associations between (1) the environmental scores (main analysis) as well as the (2) identified dimensions of the FA (confirmatory analysis, Supplementary Information 3 and Supplementary Table 2) with each of the respiratory and allergic health outcomes at age 1 and between 6-8 years, respectively. Random-effects meta-analysis (25) was used to calculate combined estimates to allow for potential between-cohort heterogeneity. Based on previous literature, the regression models of the main analysis (environmental scores) were adjusted for sex, maternal education, maternal allergy, maternal smoking during pregnancy, breastfeeding, exposure to environmental tobacco smoke at home (first year), dampness at home (first year) and cohort (INMA: Asturias, Gipuzkoa, Sabadell, Valencia, child belongs to either GINIplus or LISAplus). The regression models of the confirmatory analysis were mutually adjusted for the identified dimensions in addition to the variables mentioned above for the main analysis. All results are presented as odds ratios (OR) with corresponding 95% confidence intervals (95%-CI).

804 344

805
805
806
345 Sensitivity and stratified analyses

With respect to the main analyses, we first evaluated whether the effects were more pronounced among atopic children with asthma or allergic rhinitis/hay fever. This was only possible in GINI/LISA South, GINI/LISA North and BAMSE. In addition, we added "dampness" (1=yes, 0=no, all birth cohorts) and "attending daycare" before the second birthday (1=yes, 0=no, INMA and BAMSE), a further source of possible microbial exposure to the indoor score for all cohorts. Lastly, we performed another FA and additionally included "dampness" as well as "passive smoke" exposure during the first year of life.

823 354

All statistical analyses were performed using the statistical software R, version 3.4.0 (26) (R Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/), using FAmix within the "PCAmixdata" package for factor analysis (27). RESULTS Study population and environmental scores The study population and exposure characteristics are displayed in **Table 1**. The cohort-specific distribution of the environmental scores can be found in **Supplementary figure** 1. Main analysis: Associations between environmental scores and health outcomes Overall, as displayed in Table 2, a higher indoor environmental score, was found to increase the risk for wheezing and bronchitis outcomes within the first year of life in adjusted random-effects meta-analyses (aOR 1.20 [1.13-1.27] and 1.28 [1.18-1.39], respectively). In contrast, we observed statistically significant inverse associations between a higher indoor environmental score with allergic rhinitis in later childhood (0.93 [0.85-1.02] and 0.85 [0.79-0.92], respectively). For the remaining environmental scores, no statistically significant associations were obtained. There were no major differences in the results when the analyses were stratified by atopic status, except that there was a slightly more pronounced inverse effect between exposure to the indoor score and allergic rhinitis among atopic children (0.85 [0.76-0.95]) compared to the non-atopic children (0.83 [0.64-1.06], Supplementary Table 4). Further, including "dampness" and "daycare before the second birthday" as additional

381 sources of microbial exposure to the indoor score did not change the magnitude or
382 direction of the effect estimates for any of the outcomes tested (data not shown).

- °°° 383

384 Confirmatory analysis (Factor analysis)

The procedure as well as the cohort-specific results of the FA are presented in the Supplementary Information 3 and Supplementary Table 2. The FA identified three environmental dimensions: 1. "Outdoor exposure", 2. "Crowding", and 3. "Pets". For the dimension "Crowding" (high factor loadings for "number of people at home" and "number of (older) children"), we found similar associations in relation to the health outcomes as it was observed with the indoor environmental score in mutually adjusted regression analyses (Table 3). "Crowding" at home significantly increased the risk for wheezing and bronchitis within the first year (1.20 [1.15-1.26] and 1.27 [1.19-1.36], respectively) but was inversely associated with childhood asthma and allergic rhinitis (0.91 [0.85-0.98] and 0.87 [0.81-0.93], respectively). In contrast, the factor described by "outdoor exposure" significantly increased the risk for bronchitis within the first year (1.04 [1.00-1.07]), but there was no significant associations with asthma and allergic rhinitis in later childhood. Lastly, we further included "dampness within the first year" and "passive smoke exposure within the first year" in the FA, but all results were unchanged. There were no statistically significant associations between the third dimension identified in the FA (related to pets) with any of the health outcomes tested (data not shown).

403 DISCUSSION

To the best of our knowledge, this study is the first to specifically consider early life environmental exposures in relation to respiratory and allergic outcomes using a holistic approach that integrates several relevant indoor and outdoor exposure characteristics across different geographical regions. We observed that a higher suggested microbial load indoors was associated with increased risk for infection prone wheezing and bronchitis within the first year of life. This exposure, on the other hand, was associated with a decreased risk of allergic rhinitis in later childhood, which highlights the importance

of longitudinal studies for assessing health effects from certain exposures. No consistent
results were observed for the outdoor-related green and grey environmental scores. The
results of the a-priori based indoor environmental score were confirmed by a data-driven
approach, in which a "crowding" dimension was identified. For the outdoor grey and
green environmental scores, the results of the FA indicated that the outdoor environment
cannot be easily considered as isolated environmental dimensions in relation to health,
but are rather highly interrelated.

Studies have suggested that lifestyles associated with early exposures to farm and rural environments may be associated with higher and diverse microbial exposures, and that this might in turn lower the risk of allergic immune responses later in childhood and adulthood (28,29). The indoor and outdoor related microbial profile in *urban* environments might differ considerably from those in rural areas, in terms of levels, composition, and diversity (30), and therefore might also have different effects on allergic outcomes.

977 426

Lower prevalences of hay fever and allergic sensitization have also been consistently observed with a higher number of (older) siblings in urban areas (9,10). Family size or more frequent human contact in general is suggested to be a source of higher microbial and viral exposure through shedding and sharing (6,31). According to the "hygiene hypothesis" (6), this might have the potential to attenuate the harmful effects of increased hygienic conditions and lower xenogeneic pressure associated with a "Westernized" life style on the maturating immune system, resulting in increased risks for allergy prone diseases in urban environments. In fact, although we here consistently observed that a higher suggested microbial and viral load indoors (through occupants) around birth was strongly associated with a higher risk of infections during the first year of life, this association was reversed for asthma and allergic rhinitis later in childhood. Further, for two out of four participating birth cohorts, sizeable inverse associations with allergic

rhinitis were also found when we additionally included daycare attendance before the second birthday in the calculation of the indoor score. A recent urban birth cohort study in the U.S. observed a bi-directional relationship between cumulative early day care attendance with asthma, pointing out a reduced risk for asthma with increased duration of daycare attendance (> 1800 hours) (32). Further, previous studies looking at the health effects of early higher exposure to microbial components in *urban* settled house dust (most prominently, floor and mattress dust) are also partly in line with our findings for asthma and allergic rhinitis.

According to the available literature, higher and more diverse microbial loads indoors have been associated with lower risks for allergic outcomes in a few small-scale studies (33-35). Lastly, the combination of a large family size and exposure to farming was especially associated with a remarkable decrease in hay fever (36). However, it was not possible to disentangle the effects of both protective factors, suggesting two different biological mechanisms and pointing out the magnitude of both environmental determinants in relation to allergy prone diseases.

1038 455

Our results indicate an important signal of human derived and transferred microbial and viral exposure in homes in relation to early respiratory infections and childhood allergic rhinitis. These effects appeared more important that those related to outdoor characteristics. Though "crowding" has been also suggested to be a risk factor for hospitalization in childhood and viral infections are the major cause of acute wheezing exacerbation in early life (37), viral respiratory infections are very common. For most children, no negative impact in later life is expected – unless they are impaired by host factors or deficiencies in the innate immune response to these agents (38). We also included "exposure to pets" in the indoor environmental score, however, "crowding", as identified by the factor analysis, was exclusively based on person associated factors.

Previous dust microbiome studies suggested that bacterial exposure in urban settings is generally largely dominated by occupants and to a lesser extent by pets, and not by outdoor sources (39-41). A study in over 500 children living in the inner city environments of Baltimore, Boston, New York, and St Louis, United States, observed that a concomitant high exposure to bacteria in dust (Firmicutes and Bacteriodetes) and allergens might reduce the risk for atopy and recurrent wheezing (35). On the other hand, a recent investigation among 189 children from the German LISAplus study was not able to confirm protective findings of bacterial exposure in relation to atopy and wheezing. Rather, associations were found with a higher and more diverse fungal exposure assessed in living-room floor dust samples (34). Unfortunately, at present, current knowledge remains limited as to which microbial markers in dust may be associated with a decreased risk for asthma and allergic outcomes via a mechanism that involves greater family size or more frequent human contact.

1091 480

It is assumed that indoor microbial communities are part of the closer neighborhood and built environment (42). Therefore, the simultaneous exposure to indoor and outdoor environmental exposures might play even a more important role for metropolitan areas compared to rural areas due to a presumably more heterogeneous exposure profile of coincident hazardous and protective factors (18.43). While there remained a consistent strong inverse association between exposure to suggested higher microbial load indoors, as determined by the indoor score and "crowding", on later asthma and allergic rhinitis outcomes in all sensitivity analyses, the associations were less coherent for the remaining environmental exposure constructs.

490

In general, compared to natural surroundings, artificial green urban areas can also be potential sources of harmful allergen exposure (44,45). Fundamentally, it is likely that associations with respiratory and allergic health will depend on the allergenicity of the respective green exposure surrounding the participants (19,46,47). Moreover, the

contextual factors describing the outdoor environment are highly area-specific and a more detailed exposure characterization would be desirable. Unfortunately, this was not possible for the current publication as the aim was to capture a wide geographical region and the exposure characteristics were restricted to those commonly available.

Future studies which consider region-specific outdoor characteristics at a finer scale are therefore recommended (48). In summary, the results of our study underline the importance of early exposure to indoor related characteristics in comparison to outdoor related characteristics with respect to respiratory and allergic health outcomes in urbanized residential surroundings.

A key strength of this study is its comprehensive approach, integrating indoor as well as outdoor environmental exposures in relation to respiratory and allergic health outcomes. Other advantages were the large sample size of the birth cohorts, the harmonized exposure and health outcome assessments, information on several important confounders and the inclusion of regions across the north, center, and south of Europe.

511

Limitations of the study include the fact that we could not consider further potentially relevant (built) environment factors such as the school environment, which may act as additional source of regular microbial exposure. In addition, although we had in a large part harmonized exposure and health outcome information across all birth cohorts, we only included exposures which were available and identically assessed in all study populations which might have led to an unknown amount of information loss. Unfortunately, an identical health outcome assessment was not possible due to regional differences within the populations. In this context, we also did not have data on the actual microbial exposure, e.g. as determined in dust samples, associated with the respective environmental exposure domains. For the indoor environmental domain in the main analyses, we only focused on suggested higher microbial load exposure and excluded

potential harmful exposures such as dampness and passive smoke exposure. Nevertheless, all statistical models were adjusted for dampness as well as passive and in utero tobacco smoke exposure. Apart from that, including more sources related to hazardous exposure characteristics in the FA did neither change the "dimensions" assignment, nor result in a coherent third exposure dimension. Lastly, although infections are crucial in the pathogenesis of allergic diseases and a more accurate information by serology or culture would be desirable, we have to rely on parental reported diseases.

1199 531 **Conclusion**

Our study indicates that, in particular early exposure to a suggested higher microbial load indoors is associated with an increased risk of presumably infection-prone wheezing and bronchitis in early childhood but with a decreased risk for asthma and allergic rhinitis later in childhood. There were no coherent findings for exposure to outdoor related environmental factors, which highlights the importance of indoor related factors in early life over outdoor related sources in adjusted analyses. The assumed biological mechanism might be an early and more intense encounter with viruses and higher microbial load associated with greater family size. If specific exposure can be identified, e.g. obtained through dust samples in homes with greater family size or daycare centers, this might serve substantial preventive capability.

1224 544 **Acknowledgement**

> 545 We thank the participating children, their families and the fieldworkers of the included 546 birth cohorts BAMSE, GINIplus, INMA, and LISAplus.

- 1232 548 **Contributions**
- 1234 549 Conception and design: CT, PD, JS, XB, JMA
- 1236 550 Analysis and interpretation: CT, XB, PD, JS

1240 1241		
1242	551	Critical revising the manuscript and allocation of data: CT, JS, LC, EF, AB, OG, EM,
1243 1244 1245	552	DB, JH, SK, IM, MS, DS, LC, ME, AFS, AF, JI, AL, AT
1246 1247	553	
1248 1249	554	Conflict(s) of Interest
1250 1251	555	None.
1252 1253	556	
1254 1255	557	Ethics committee approval
1256	558	For the included studies, approval by the local ethics committees and written consent
1258	559	from participants' families were obtained.
1260	560	
1261		
1263 1264		
1265		
1266		
1267		
1269		
1270		
1271		
1272		
1273		
1274		
1275		
1270		
1278		
1279		
1280		
1281		
1282		
1283		
1204		
1286		
1287		
1288		
1289		
1290		
1291		
1292		
1293		
1294		
1296		
1297		22
1298		

1299			
1300			
1301 1302	561	REFE	RENCES
1303 1304	562	1.	Asher MI. Urbanisation , asthma and allergies. Thorax. 2011;66(12):1025–6.
1305 1306	563	2.	Gern J. The Urban Environment and Childhood Asthma Study. J Allergy Clin Immunol.
1307 1308	564		2010;125(3):545-9.
1309 1310	565	3.	Brasier AR. Heterogeneity in Asthma. Brasier AR, editor. Texas: Springer; 2014.
1311 1312	566	4.	Heinrich J. Influence of indoor factors in dwellings on the development of childhood
1313 1314	567		asthma. Int J Hyg Env Heal [Internet]. 2010/09/21. 214(1):1–25. Available from:
1315	568		http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Cit
1317 1318 1319	569		ation&list_uids=20851050
1320 1321	570	5.	von Mutius E, Vercelli D. Farm living: effects on childhood asthma and allergy. Nat Rev
1322 1323	571		Immunol [Internet]. 2010/11/10. 2010;10(12):861-8. Available from:
1324 1325	572		http://dx.doi.org/10.1038/nri2871
1326 1327	573	6.	Strachan DP. Hay fever, hygiene, and household size. BMJ [Internet]. 1989/11/18.
1328 1329	574		1989;299(6710):1259-60. Available from:
1330 1331	575		http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Cit
1332 1333	576		ation&list_uids=2513902
1334 1335	577	7.	Braun-Fahrlander C, Lauener R. Farming and protective agents against allergy and
1336 1337	578		asthma. ClinExpAllergy. 2003;33(4):409–11.
1338 1339	579	8.	Lauener RP, Birchler T, Adamski J, Braun-Fahrlander C, Bufe A, Herz U, et al. Expression
1340 1341 1342	580		of CD14 and Toll-like receptor 2 in farmers' and non-farmers' children. Lancet.
1342 1343 1344	581		2002;360(9331):465-6.
1345 1346	582	9.	D. P. Strachan, D.P., A€ıt-Khaled, N., Foliaki, S, Mallol, J., Odhiambo, J., Pearce, N.,
1347 1348	583		Williams HC and the IPTS group. Siblings, asthma, rhinoconjunctivitis and eczema: a
1349 1350	584		worldwide perspective from the International Study of Asthma and Allergies in
1351 1352	585		Childhood. Clin Exp Allergy. 2014;45:126-36.
1353 1354	586	10.	Krämer U, Schmitz R, Ring J, Behrendt H. What can reunification of East and West
1355 1356 1357			23

1358			
1359			
1360 1361	587		Germany tell us about the cause of the allergy epidemic? Clin Exp Allergy.
1362 1363	588		2015;45(1):94–107.
1364 1365	589	11.	B Campbell, B, Raherison, C, Lodge, C, Lowe, A, Gislason, T, Heinrich, J, Sunyer, J, Gomez
1366 1367	590		Real, F, Norbäck, D, Matheson, M, Wjst, M, Dratva, J, de Marco, R, Jarvis, D, Schlünssen,
1368 1369	591		V, Janson, C, Leynaert, B, Svanes, C, Dharmage S. The effects of growing up on a farm
1370 1371	592		on adult lung function and allergic phenotypes: an international population-based
1372	593		study. Thorac Cardiovasc Surg. 2016;
1374 1375 1376	594	12.	Collin, S M, Granell, R, Westgarth, C, Murray J, Paul E, Sterne, JA, Henderson J. Pet
1377 1378	595		ownership is associated with increased risk of non-atopic asthma and reduced risk of
1379 1380	596		atopy in childhood: findings from a UK birth cohort. Clin Exp Allergy. 2015;45(1):200–
1381 1382	597		10.
1383 1384	598	13.	Chen CM, Tischer C, Schnappinger M, Heinrich J. The role of cats and dogs in asthma
1385 1386	599		and allergya systematic review. Int J Hyg Env Heal [Internet]. 2010/01/08.
1387 1388	600		2010;213(1):1–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20053584
1389 1390	601	14.	Lodrup Carlsen KC, Roll S, Carlsen KH, Mowinckel P, Wijga AH, Brunekreef B, et al. Does
1391 1392	602		pet ownership in infancy lead to asthma or allergy at school age? Pooled analysis of
1393 1394	603		individual participant data from 11 European birth cohorts. PLoS One [Internet].
1395 1396	604		2012/09/07. 2012;7(8):e43214. Available from:
1397 1398	605		http://www.ncbi.nlm.nih.gov/pubmed/22952649
1399 1400 1401	606	15.	Thacher JD, Gruzieva O, Pershagen G, Neuman A, Hage M Van, Wickman M, et al.
1401	607		Parental smoking and development of allergic sensitization from birth to adolescence.
1404	608		Allergy. 2016;71:239-48.
1406 1407	609	16.	Mendell, M.J., Kumagai K. Observation-based metrics for residential dampness and
1408 1409	610		mold with dose-response relationships to health: A review. 2016;(July):1-12.
1410 1411	611	17.	Haahtela T, Holgate S, Pawankar R, Akdis CA, Benjaponpitak S, Caraballo L, et al. The
1412 1413	612		biodiversity hypothesis and allergic disease: world allergy organization position
1414 1415			24
1416			

1417			
1418 1419 1420	613		statement. World Allergy Organ J [Internet]. 2013;6(1):3. Available from:
1421 1422	614		http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Cit
1423 1424	615		ation&list_uids=23663440
1425 1426	616	18.	Pilat MA, McFarland A, Snelgrove A, Collins K, Waliczek TM, Zajicek J. The effect of tree
1427 1428	617		cover and vegetation on incidence of childhood asthma in metropolitan statistical area
1429 1430 1431	618		of Texas. Horttechnology. 2012;22(5):631–7.
1432 1433	619	19.	Ruokolainen L, von Hertzen L, Fyhrquist N, Laatikainen T, Lehtomäki J, Auvinen P, et al.
1434 1435	620		Green areas around homes reduce atopic sensitization in children. Allergy [Internet].
1436 1437	621		2015;70(2):195-202. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25388016
1438 1439	622	20.	Gehring U, Wijga AH, Hoek G, Bellander T, Berdel D, Brüske I, et al. Exposure to air
1440 1441	623		pollution and development of asthma and rhinoconjunctivitis throughout childhood
1442 1443	624		and adolescence : a population-based birth cohort study. Lancet Respir. 2015;933–42.
1444 1445	625	21.	Molter A, Simpson A, Berdel D, Brunekreef B, Custovic A, Cyrys J, et al. A multicentre
1446 1447	626		study of air pollution exposure and childhood asthma prevalence: the ESCAPE project.
1448 1449	627		Eur Respir J [Internet]. 2014/10/18. 2014; Available from:
1450 1451	628		http://www.ncbi.nlm.nih.gov/pubmed/25323237
1452	629	22.	Weier J HD. Measuring Vegetation (NDVI & EVI). [Internet]. 2011. Available from:
1454 1455 1456	630		http://earthobservatory.nasa.gov/Features/MeasuringVegetation/
1450 1457 1458	631	23.	Eea. CORINE land cover - contents. Methodology [Internet]. 1994;1–163. Available
1459 1460	632		from: http://www.eea.europa.eu/publications/COR0-landcover/page001.html
1461 1462	633	24.	Brian S. Everitt and Torsten Hothorn. Logistic Regression and Generalised Linear
1463 1464	634		Models: Blood Screening, Women's Role in Society, and Colonic Polyps. 2015.
1465 1466	635	25.	R, DerSimonian LN. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177-88.
1467 1468	636	26.	R Core Team. Statistical Analysis with R [Internet]. Vienna: The R Foundation for
1469 1470	637		Statistical Computing; 2015. Available from: https://www.r-project.org/
1471 1472	638	27.	Marie Chavent, Vanessa Kuentz, Amaury Labenne BL and JS. PCAmixdata: Multivariate
1473 1474			2
1475			

1476			
1477			
1478 1479	639		Analysis of Mixed Data. [Internet]. 2014 [cited 2017 Jun 18]. Available from:
1480 1481	640		https://cran.r-project.org/package=PCAmixdata
1482 1483	641	28.	von Mutius E. The microbial environment and its influence on asthma prevention in
1484 1485	642		early life. J Allergy Clin Immunol [Internet]. 2015;137(3):680–9. Available from:
1486 1487	643		http://dx.doi.org/10.1016/j.jaci.2015.12.1301
1488 1489 1490	644	29.	Ege MJ, Mayer M, Normand A-C, Genuneit J, Cookson WOCM, Braun-Fahrländer C, et
1490 1491 1492	645		al. Exposure to environmental microorganisms and childhood asthma. N Engl J Med
1493 1494	646		[Internet]. 2011/02/25. 2011;364(8):701-9. Available from:
1495 1496	647		http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Cit
1497 1498	648		ation&list_uids=21345099
1499 1500	649	30.	Pakarinen J, Hyvärinen A, Salkinoja-Salonen M, Laitinen S, Nevalainen A, Mäkelä MJ, et
1501 1502	650		al. Predominance of Gram-positive bacteria in house dust in the low-allergy risk Russian
1503 1504	651		Karelia. Environ Microbiol. 2008;10(12):3317–25.
1505 1506	652	31.	von Mutius E. Allergies, infections and the hygiene hypothesisthe epidemiological
1507 1508 1509	653		evidence. Immunobiology [Internet]. 2007/06/05. 2007;212(6):433-9. Available from:
1510 1511	654		http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Cit
1512 1513	655		ation&list_uids=17544828
1514 1515	656	32.	Cheng G, Smith AM, Levin L, Epstein T, Ryan PH, Lemasters GK, et al. Duration of day
1516 1517	657		care attendance during infancy predicts asthma at the age of seven : the Cincinnati
1518 1519	658		Childhood Allergy and Air Pollution Study Experimental Allergy. 2014;1274–81.
1520 1521	659	33.	Dannemiller KC, Mendell MJ, Macher JM, Kumagai K, Bradman a., Holland N, et al.
1522 1523	660		Next-generation DNA sequencing reveals that low fungal diversity in house dust is
1524 1525	661		associated with childhood asthma development. Indoor Air [Internet]. 2014;24(3):236-
1526 1527	662		47. Available from:
1528 1529	003		nup://www.ncpi.nim.nin.gov/entrez/query.rcgi?cmd=Retrieve&db=PubMed&dopt=Cit
1530	664		ation&iist_uius=24883433
1532 1533			26
1534			

1535			
1536			
1537 1538	665	34.	Tischer C, Weikl F, Probst AJ, Standl M, Heinrich J, Pritsch K. Urban dust microbiome:
1539 1540	666		Impact on later atopy and wheezing. Environ Health Perspect. 2016;124(12):1919–23.
1541 1542	667	35.	Lynch S V, Wood RA, Boushey H, Bacharier LB, Bloomberg GR, Kattan M, et al. Effects of
1543 1544	668		early-life exposure to allergens and bacteria on recurrent wheeze and atopy in urban
1545 1546	669		children. J Allergy Clin Immunol [Internet]. 2014/06/09. 2014;134(3):593-601 e12.
1547 1548	670		Available from: http://www.ncbi.nlm.nih.gov/pubmed/24908147
1549 1550	671	36.	Genuneit J, Strachan DP, Bu G, Weber J, Loss G, Boznanski A, et al. The combined
1551 1552 1553	672		effects of family size and farm exposure on childhood hay fever and atopy.
1555 1555	673		2013;24(4):293-8.
1556 1557	674	37.	Colosia AD, Masaquel A, Hall CB, Barrett AM, Mahadevia PJ, Yogev R. Residential
1558 1559	675		crowding and severe respiratory syncytial virus disease among infants and young
1560 1561	676		children: A systematic literature review. BMC Infect Dis [Internet]. 2012;12(1):95.
1562 1563	677		Available from: http://bmcinfectdis.biomedcentral.com/articles/10.1186/1471-2334-
1564 1565	678		12-95
1566 1567	679	38.	Von Mutius E. Epidemiology of Allergic Diseases. In: Leung Sampsom, H.A., Geha, R.,
1568 1569	680		Szeffler, S.J. DY, editor. Pediatric Allergy: Principles and Practice. Mosby; 2010.
1570 1571	681	39.	Adams RI, Miletto M, Taylor JW, Bruns TD. Dispersal in microbes: fungi in indoor air are
1572 1573	682		dominated by outdoor air and show dispersal limitation at short distances. ISME J
1574 1575 1576	683		[Internet]. 2013/06/26. 2013;7(7):1460. Available from:
1570 1577 1578	684		http://www.ncbi.nlm.nih.gov/pubmed/23797294
1579 1580	685	40.	Adams RI, Miletto M, Lindow SE, Taylor JW, Bruns TD. Airborne bacterial communities
1581 1582	686		in residences: similarities and differences with fungi. PLoS One [Internet].
1583 1584	687		2014;9(3):e91283. Available from:
1585 1586	688		http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Cit
1587 1588	689		ation&list_uids=24603548
1589 1590	690	41.	Barberán A, Dunn RR, Reich BJ, Pacifici K, Laber EB, Menninger HL, et al. The ecology of
1591 1592 1593			27

1594				
1595				
1596 1597	691		microscopic life in household dust. Proc R Soc B Biol Sci [Internet].	
1598 1599	692		2015;282(1814):20151139. Available from:	
1600 1601	693		http://rspb.royalsocietypublishing.org/content/282/1814/20151139	
1602 1603	694	42.	Weikl F, Tischer C, Probst AJ, Heinrich J, Markevych I, Jochner S, et al. Fungal and	
1604 1605	695		Bacterial Communities in Indoor Dust Follow Different Environmental Determinants.	
1606 1607	696		2016;1–15.	
1608 1609	697	43.	Casas L, Tischer C, Täubel M. Pediatric Asthma and the Indoor Microbial Environment.	
1610 1611	698		Curr Environ Heal Reports [Internet]. 2016; Available from:	
1612 1613	699		http://link.springer.com/10.1007/s40572-016-0095-y	
1615 1616	700	44.	Lovasi GS, O'Neil-Dunne JP, Lu JW, Sheehan D, Perzanowski MS, Macfaden SW, et al.	
1617 1618	701		Urban tree canopy and asthma, wheeze, rhinitis, and allergic sensitization to tree polle	n
1619 1620	702		in a New York City birth cohort. Environ Health Perspect [Internet]. 121(4):494–500.	
1621 1622	703		Available from:	
1623 1624	704		http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Cir	t
1625 1626	705		ation&list_uids=23322788	
1627 1628	706	45.	DellaValle CT, Triche EW, Leaderer BP, Bell ML. Effects of ambient pollen concentration	าร
1629 1630	707		on frequency and severity of asthma symptoms among asthmatic children.	
1631 1632	708		Epidemiology [Internet]. 2012;23(1):55–63. Available from:	
1633 1634	709		http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3246281&tool=pmcentre	۶Z
1635 1636	710		&rendertype=abstract	
1637 1638	711	46.	Cariñanos P C-PM. Urban green zones and related pollen allergy: a review. Some	
1639 1640	712		guidelines for designing spaces with low allergy impact. Landsc Urban Plan.	
1642 1642	713		2011;101:205-14.	
1643 1644 1645	714	47.	Fuertes E, Markevych I, Bowatte G, Gruzieva O, Gehring U, Becker A, et al. Residential	
1646 1647	715		greenness is differentially associated with childhood allergic rhinitis and aeroallergen	
1648 1649	716		sensitization in seven birth cohorts. Allergy [Internet]. 2016; Available from:	
1650 1651			2	28
1652				

1653 1654				
1655 1656	717		http://www.ncbi.nlm.nih.gov/pubmed/27087129	
1657 1658	718	48.	Tischer, C; Gascon, M, Fernandez-Somoano, A; Tardon, A; Lertxundi Materola, A;	
1659 1660	719		Ibarlueza, J; Ferrero, A; Estarlich, M; Cirach, M; Vrijheid, M; Fuertes, E; Dalmau-Buend	ο,
1661 1662	720		A; Nieuwenhuijsen, M; Anto, JM; Sunyer, J; Dadvand P. In Press: Urban green and gre	ey.
1663 1664	721		space in relation to respiratory health in children. ERJ. 2017;	
1665 1666				
1667				
1660				
1670				
1671				
1672				
1673				
1674				
1675				
1676				
1077				
1679				
1680				
1681				
1682				
1683				
1684				
1685				
1687				
1688				
1689				
1690				
1691				
1692				
1693				
1694				
1695				
1697				
1698				
1699				
1700				
1701				
1702				
1703				
1705				
1706				
1707				
1708				
1709				
1710				29
1711				

Table 1: Study population characteristics, exposure and health outcome information by birth

cohort

	INMA (N=2472)	GINI/LISA South (N=4413)	GINI/LISA North (N=3390)	BAN (N=4
HEALTH OUTCOMES				
Wheezing 1 st year	36%	15%	17%	15
Bronchitis 1 st year	18%	15%	19%	8
Asthma (6-8 years)	7y: 6%	6y: 3%	6y: 3%	8y:
Asthma/IgE+	-	46%	38%	50
Asthma/IgE-	-	19%	30%	32
Asthma/wheeze 1 st year	7%	5%	3%	1(
Asthma/no wheeze 1 st year	3%	2%	2%	4
Asthma/bronchitis 1 st year	7%	4%	4%	7
Asthma/no bronchitis 1 st year	5%	2%	2%	5
Allergic rhinitis (6-8 years)	7v: 4%	6v: 7%	6v: 6%	8v:
Allergic rhinitis/IgE+	-	53%	38%	74
Allergic rhinitis/IgE-	-	9%	20%	9
Allergic rhinitis /wheeze 1 st year	4%	7%	7%	6
Allergic rhinitis /no wheeze 1 st year	3%	5%	3%	5
Allergic rhinitis /hronchitis 1 st vear	5%	6%	7%	5
Allergic rhinitis /po bronchitis 1 st year	3%	5%	3%	5
InF aero-allergens (6-8 years)	570	6v: 31%	6v: 26%	8.7.
		09.0170	09.2070	<u> </u>
EXPOSURE INDOOR			/	
Pets at home	32%	21%	26%	19
(Older) children at home	42%	44%	56%	44
Number of people at home:	47%	44%	56%	44
\geq 3 people (including child)	47.70	70	5070	
Sharing bedroom	45%	72%	51%	93
Dampness at birth	10%	7%	4%	24
Daycare before 2 nd birthday	35%	-	-	72
OUTDOOR grey and green (median)				
NDVI 100m buffer	0.25	0.30	0.30	0
Green index 300m buffer (m^2)	60330	3665	84530	0.
Growindox 300m buffer (m^2)	102000	278800	102000	202
	193000	210000	190000	202
$NO_2 (\mu g/II^2)$	20.95	21.04	23.23	12
Distance to major road with	50	177	338	1
permanent trainc (m)				
CO-VARIATES				
Female sex	49%	48%	49%	49
Maternal education:				
Low	23%	13%	22%	9
Medium	42%	29%	48%	50
High	36%	59%	30%	4
Maternal allergy	26%	40%	28%	4
Maternal smoking during	400/	001	4001	
pregnancy	18%	9%	13%	13
Any breastfeeding	85%	69%	41%	98
Dampness 1 st year	10%	7%	4%	24
Passive smoke 1 st vear	47%	16%	30%	10
Cohort	Acturize: 20%	1070	0070	13
CONDIT	Ginuzkoz 25%	GINI: 67%	GINI: 00%	
	Sahadall. 210/	LISA:		
	Valancia: 240/	33%	LIGA. 10%	

1774 1775	total effect (Rar	total effect (Random effects model)*		
1776				
1777				
1778	Indoor Score	INMA		
1779		GINI/LISA South		
1780		BAMSE		
1781		Total		
1782		Total		
1783	0			
1784	Grey Score	INIVIA CINIVI ISA South		
1785		GINI/LISA South		
1786		BAMSE		
1787		Total		
1788				
1789	Green Score	ΙΝΙΜΔ		
1790		GINI/LISA South		
1791		GINI/LISA North		
1792		BAMSE		
1793		Total		
1794				
1795	*Adjusted for s	sex cohort maternal		
1796	exposure to pa	ssive smoke 1 st vear.		
4 7 0 7				

Table 2: Exposure to environmental scores (indoor, grey ad green) and early wheezing and bronchitis within the 1st year, stratified by cohort and ts model)*.

Bronchitis 1st year

1.14 (1.04-1.25)

1.38 (1.26-1.52)

1.31 (1.20-1.43)

1.29 (1.14-1.46)

1.28 (1.18-1.39)

1.00 (0.92-1.09)

0.98 (0.93-1.04)

1.00 (0.95-1.06)

1.00 (0.93-1.08)

1.00 (0.96-1.03)

1.03 (0.93-1.15)

0.98 (0.89-1.09)

1.02 (0.94-1.09)

0.96 (0.85-1.09)

1.00 (0.96-1.05)

maternal allergy, maternal smoking during pregnancy, maternal education, breastfeeding, dampness at home 1st year,

Asthma 6-8 years

7y: 0.89 (0.76-1.05)

6y: 0.89 (0.73-1.09)

6y: 0.89 (0.70-1.13)

8y: 1.01 (0.87-1.17)

0.93 (0.85-1.02)

7y: 1.07 (0.93-1.24)

6y: 0.96 (0.85-1.09)

6y: 0.98 (0.85-1.14)

8y: 0.86 (0.78-0.94)

0.96 (0.87-1.06)

7y: 0.84 (0.70-1.00)

6y: 0.96 (0.76-1.21)

6y: 1.01 (0.83-1.22)

8y: 1.22 (1.05-1.43)

1.00 (0.84-1.19)

Allergic Rhinitis 6-8 years

7y: 0.83 (0.68-1.01)

6y: 0.83 (0.73-0.95)

6y: 0.93 (0.79-1.10)

8y: 0.83 (0.71-0.97)

0.85 (0.79-0.92)

7y: 1.17 (0.98-1.39)

6y: 0.93 (0.86-1.01)

6y: 1.01 (0.91-1.13)

8y: 0.88 (0.80-0.97)

0.97 (0.89-1.07)

7y: 0.81 (0.65-1.00)

6y: 1.07 (0.92-1.25)

6y: 1.00 (0.87-1.16)

8y: 1.14 (0.98-1.34)

1.01 (0.89-1.15)

Wheezing 1st year

1.14 (1.06-1.22)

1.26 (1.15-1.38)

1.26 (1.16-1.40)

1.14 (1.04-1.25)

1.20 (1.13-1.27)

1.07 (1.00-1.14)

0.99 (0.94-1.05)

1.03 (0.97-1.09)

1.00 (0.95-1.06)

1.02 (0.99-1.05)

0.98 (0.90-1.06)

1.03 (0.93-1.14)

1.01 (0.93-1.09)

1.00 (0.91-1.10)

1.00 (0.96-1.05)

· ·
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810

1811

3	Table 3: Exposure to environmental dimensions ("Outdoor exposure" and "Crowding") as identified by factor analysis and health outcomes,
4	stratified by cohort and total effect (Random effects model)*.

		Wheezing 1st year	Bronchitis 1st year	Asthma 6-8 years	Allergic Rhinitis 6-8 years
DIM 1	INMA	0.98 (0.92-1.05)	1.07 (0.96-1.17)	7y: 0.93 (0.80-1.07)	7y: 0.83 (0.70-1.00)
"Outdoor exposure"	GINI/LISA South	1.02 (0.96-1.09)	1.04 (0.98-1.11)	6y: 1.05 (0.93-1.18)	6y: 1.03 (0.94-1.11)
	GINI/LISA North	1.02 (0.96-1.08)	1.03 (0.97-1.09)	6y: 1.00 (0.87-1.15)	6y: 0.94 (0.85-1.05)
	BAMSE	1.03 (0.97-1.10)	1.02 (0.94-1.11)	8y: 1.13 (1.03-1.23)	8y: 1.07 (0.97-1.17)
	Total	1.01 (0.98-1.05)	1.04 (1.00-1.07)	1.04 (0.96-1.13)	0.99 (0.91-1.07)
		1 15 (1 08-1 23)	1 16 (1 07-1 25)	71: 0.91 (0.79-1.05)	7): 0.85 (0.71-1.01)
"Crowding"	GINI/LISA South	1.23 (1.15-1.32)	1.33 (1.24-1.42)	6y: 0.85 (0.72-1.00)	6y: 0.84 (0.75-0.93)
	GINI/LISA North	1.27 (1.17-1.37)	1.34 (1.24-1.44)	6y: 0.89 (0.74-1.07)	6y: 0.95 (0.83-1.08)
	BAMSE	1.16 (1.08-1.25)	1.28 (1.16-1.41)	8y: 0.96 (0.86-1.09)	8y: 0.85 (0.75-0.96)
	Total	1.20 (1.15-1.26)	1.27 (1.19-1.36)	0.91 (0.85-0.98)	0.87 (0.81-0.93)

*Adjusted for: sex, cohort, maternal allergy, maternal smoking during pregnancy, maternal education, breastfeeding, dampness at home 1st year, exposure to passive smoke 1st year, and environmental dimensions.

Supplementary Data

1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1007
1000
1009
1004
1091
1092
1093

Supplementary Information 1: Description of the study population

The *INMA* (INfancia y Medio Ambiente; Environment and Childhood) birth cohort is a network of population-based birth cohorts across Spain, which aims to study the impact of environmental factors on pregnancy outcomes, child growth and development. Our study used data from four INMA study centers, Asturias (recruited from May 2004 to July 2007, N=485), Gipuzkoa (recruited from April 2006 to January 2008, N=623), Sabadell (recruited from July 2004 to July 2006, N=771) and Valencia (recruited from November 2003 to June 2005, N=593). Detailed information on the cohorts and data collection processes have been published elsewhere (www.proyectoinma.org) (1).

GINIplus (German Infant Nutritional Intervention plus environmental and genetic influences on allergy development) (2) and *LISAplus* (The Influence of Life-Style Factors on the Development of the Immune System and Allergies in East and West Germany plus the Influence of Traffic Emissions and Genetics Study) (3,4) are two ongoing population-based birth cohorts in Germany. Briefly, healthy full-term neonates with a normal birth weight were recruited at selected maternity hospitals. For the current investigation, only LISAplus children from Munich and Wesel were included as the complete environmental exposure information was only available for these study areas (n = 1812). The GINIplus cohort (n = 5991) was recruited in Munich and Wesel between 1995 and 1998, while the LISAplus cohort (n = 3094) was recruited in Munich, Leipzig, Wesel and Bad Honnef between 1997 and 1999. GINIplus consists of two study groups: one is an observation group and the second is an intervention group who received a nutritional intervention during the first 4 months of life. In the intervention group, a double-blind controlled trial compared the effect of three hydrolysed formulas vs. cow's milk on allergy development. Newborns with a family history of allergy were invited for the intervention

group. Participants with a negative family history or a positive family history but who declined to participate in the intervention trial were included in the observation group. As the GINIplus and LISAplus birth cohorts have similar study designs, data were pooled and are presented per study area (GINI/LISA South for the Munich area, n = 4413 and GINI/LISA North for the Wesel area, n = 3390).

The *BAMSE* (Barn/Child, Allergy, Milieu, Stockholm, Epidemiology) study is a longitudinal population-based birth cohort in which infants were recruited at birth and prospectively followed during childhood and adolescence. A total of 4089 infants born in Stockholm, Sweden, between 1994 and 1996 were included. At a median infant age of 2 months, parents completed the baseline questionnaire which assessed environmental exposures, parental smoking habits, residential characteristics, lifestyle, and parental allergies (5). Repeated follow-ups were carried out at 1, 2, 4, and 8 years, and parents filled in similar questionnaires with a main focus on the children's symptoms related to wheezing and allergic diseases, but information on various exposures was collected as well. The response rates were 96%, 94%, 91%, and 84%, respectively. Blood was obtained from 2614 (64%) and 2480 (61%) of the children at the age of 4 and 8 years, respectively. The study was approved by the ethical committee of Karolinska Institutet.

Supplementary Table 1: Cohort-specific questions used for defining the environmental scores

INMA	
Indoor	1. 1 st year: Do you or did you have animals at home since the birth of the child? (yes/no)
	2. 1 st year: The child sleeps currently: alone / together with other persons
	3. 3 rd trimester: Are there children younger than 12 year living in your home? (yes/no)
	4. 1 st year: How many people live together with your child? (numeric)
	5. 1 st year: Is your child visiting daycare? (no, yes-some hours, yes=full time)
	6. 3 rd trimester: In your home, are there any signs of dampness? (combined: yes/no living-room / bedroom)
Outdoor-green	1. Residential surrounding greenness (NDVI) 100m buffer:
_	Landsat 4–5 Thematic Mapper (TM) data at 30 m × 30 m resolution (6,7) were used, obtained from the Global Visualization Viewer of the
	U.S. Geological Survey (2011). The Landsat TM data for INMA were acquired for the year 2007, which corresponds to the middle of the data
	conection period of the conort (5) (2004–2006). For each participant, mean NDVI values in 100 m buners around the place of residence at the time of birth were calculated (8.9).
	2. Green Index 300m buffer around the residential address
Outdoor-arev	1. Grev Index 300m buffer around the residential address (numeric)
· · · · · · · · · · · · · · · · · · ·	2. NO ₂ exposure around birth (numeric)
	Existing area-specific land use regression (LUR) models, applied to the residence during the first year of life in INMA (10).
	3. Distance to nearest major road with permanent traffic (numeric)
GINIplus	
Indoor	1. 1 st year: Do you currently have pets in the home (first 4 months since birth)? (yes/no)
	2. 1 st year: In the first 4 months since birth, how many persons slept together in a room with the child? (numeric)
	3. 1 st year: How many persons belong to your household? (numeric), including the study child
	4. 1 st year: How many persons (children) belong to your household? (numeric), including the study child
	5. 1 st year: In the first 4 months since birth, who took care of the child? (at home / at the grand parents / daycare)
	(not applicable, only a few children in daycare)
	6. 1 st year: Would you consider your flat as damp? (yes/no)
Outdoor-green	1. Residential surrounding greenness (NDVI) 100m buffer:
	Landsat 4-5 Thematic Mapper (TM) data at 30 m × 30 m resolution were used, obtained from the Global Visualization Viewer of the U.S.
	Geological Survey (2011). The Landsat I M data for Ginkipus were acquired for the year 1996, which corresponds to the time of the recruitment of the cohort (1995–1998). For each participant mean NDVI values in 100 m buffers around the place of residence at the time of
	birth were calculated (11).
	2. Green Index 300m buffer around the residential address
Outdoor-grey	1. Grey Index 300m buffer around the residential address (numeric)
0.1	

	 INO2 EXPOSULE AL DITUTI (INTITIENC) Existing area-specific land use regression (LUR) models, applied to the residence at the time of birth (12). Distance to nearest major road with permanent traffic (numeric)
SAplus	
Indoor	 3 months: Do you currently have pets at home? (yes/no) 3 months: In the first 3 months since birth, how many persons slept together in a room with the child? (numeric, 3. 3 months: How many persons belong to the household (including the study child)? (numeric) 4. 3 months: Number of children in the household (including the study child) (numeric) 5. 3 months: Would you consider your flat as damp? (yes/no)
Outdoor-green	 Residential surrounding greenness (NDVI) 100m buffer Landsat 4–5 Thematic Mapper (TM) data at 30 m × 30 m resolution were used, obtained from the Global Visualization Viewer of the U.S. Geological Survey (2011). The Landsat TM data for LISAplus were acquired for the year 1998, which corresponds to the time of the recruitment of the cohort (1998–1999). For each participant, mean NDVI values in 100 m buffers around the place of residence at the time birth were calculated (11). Green Index 300m buffer around the residential address
Outdoor-grey	1. Grey Index 300m buffer around the residential address (numeric) 2. NO ₂ exposure at birth (numeric)
	Existing area-specific land use regression (LUR) models, applied to the residence at the time of birth (12). 3. Distance to nearest major road with permanent traffic (numeric)
AMSE	Existing area-specific land use regression (LUR) models, applied to the residence at the time of birth (12). 3. Distance to nearest major road with permanent traffic (numeric)
AMSE Indoor Outdoor-green	 Intro- consistence of the child in the child in the series of the child in the child have? 1 = Day nursery / 2 = Child-minder or other person (e.g. relative, sitter) who cares for the child in the chi

Outdoor-grey	 2. Green Index 300m buffer around the residential address 1. Grey Index 300m buffer around the residential address (numeric) 2. No. exposure at birth (numeric)
	NO2 exposure at bird (indificit) NO2 concentrations were derived from area-specific land-use regression models as part of the European Study of Cohorts for Air Pollution Effects project for the European cohorts (13) (Gruzieva et al. 2013). 3. Distance to nearest major road with permanent traffic (numeric)

Supplementary Information 2: Data driven approach (Factor Analysis)

The second approach ("confirmatory analysis") was performed in order to evaluate the findings based on the environmental scores with a datadriven-approach by using a Factor Analysis (FA). Hence, the same environmental exposure data as it was used for building the environmental scores was applied. The information on indoor and outdoor exposure available within the participating birth cohorts are described by a mixture of categorical and numeric variables. Therefore, we used the Factor Analyses (FA) of mixed data (FAmix) within the "PCAmixdata" R package and a orthogonal rotation (14) which incorporates qualitative and quantitative data. In order to be consistent with the subjectively built Environmental Scores, we a-priori selected three dimensions (dim) which are based on the scores describing the association of the exposure variables with the created dimensions. According to the results of the cohort-specific FA, the three selected dimensions explained nearly two-third of the variation (see **Supplementary Table 2**). With respect to all participating birth cohorts, the first dimension was associated with residential surrounding greenness as well as air pollution from traffic ("Greenness/Air pollution"). The second dimension showed high loadings on number of people in the home as well as on whether there are (older) children which we defined as "Crowding". This is comparable to the Indoor Environmental Score, however, it does not include microbial exposure associated with pets. Finally, the third dimension was in particular associated with exposure to pets. For the confirmatory regression analyses, only dimension 1 ("Greenness/Air pollution") and dimension 2 ("Crowding") were considered as comparable to the subjectively built Environmental scores. We nonetheless performed regression analyses with the third dimension ("Pets") as an exposure, but found no significant results with any of the health outcomes tested (data not shown). **Supplementary Table 2**: Cohort-specific Factor analysis, only factor loadings ≥ 0.3 are shown

INMA (N=1974)

	Dimension 1	Dimension 2	Dimension 3
	("Outdoor exposure")	("Crowding")	("Pets")
	Explained variance: 32%	Explained variance: 21%	Explained variance: 12%
NDVI 100m buffer	0.64		
Green index	0.84		
NO2 birth	0.53		
Grey index	0.82		
Distance to major road			
(Older) children at home		0.81	
Nr of people at home		0.84	
Sharing bedroom		0.30	
Pets at home			0.59

GINI/LISA south (N=3446)

	Dimension 1	Dimension 2	Dimension 3
	("Outdoor exposure")	("Crowding")	("Pets")
	Explained variance: 31%	Explained variance: 21%	Explained variance: 10%
NDVI 100m buffer	0.42		
Green index	0.78		
NO2 birth	0.54		
Grey index	0.79		
Distance to major road	0.33		
(Older) children at home		0.90	
Nr of people at home		0.90	
Sharing bedroom			0.30
Pets at home			0.65

GINI/LISA north (N=2606)

	Dimension 1	Dimension 2	Dimension 3
	("Outdoor exposure")	("Crowding")	("Pets")
	Explained variance: 33%	Explained variance: 21%	Explained variance: 11%
NDVI 100m buffer	0.59		
Green index	0.85		
NO2 birth	0.46		
Grey index	0.86		
Distance to major road	0.32		
(Older) children at home		0.89	
Nr of people at home		0.89	
Sharing bedroom			
Pets at home			0.76

BAMSE (N=3984)

	Dimension 1	Dimension 2	Dimension 3
	("Outdoor exposure")	("Crowding")	("Pets")
	Explained variance: 33%	Explained variance: 21%	Explained variance: 11%
NDVI 100m buffer	0.50		
Green index	0.68		
NO2 birth	0.58		
Grey index	0.67		
Distance to major road			
(Older) children at home		0.80	
Nr of people at home		0.80	
Sharing bedroom			0.41
Pets at home			0.31

Supplementary Table 3: Cohort-specific health outcome assessment at different time points

INMA

Wheezing 1 st y	Asturias (At 18 months): "How many wheezing episodes had your child, apart from cold, since the last 6 months?"
	Gipuzkoa (At 14 months): "How many wheezing episodes had your child, apart from cold?" (to have wheeze is
	defined by having 1 episode or more) Sabadell (At 14 months): "How many wheezing episodes had your child, apart from cold since the last 6 months?"
	(to have wheeze is defined by having 1 episode or more)
	Valencia (At 12 months): "How many wheezing episodes had your child, apart from cold in the last 12 months?" (to
Bronchitis 1 st y	Asturias (At 18 months): "Has a doctor diagnosed your child with bronchitis since the last 6 months?"
-	Gipuzkoa (At 14 months): "Has a doctor diagnosed your child with bronchitis since birth?"
	Sabadell (At 14 months): "Has a doctor diagnosed your child with bronchitis since the last 6 months?"
A	Valencia (At 12 months): "Has a doctor diagnosed your child with bronchitis in the last 12 months?"
Astnma / y	Has your child ever been diagnosed by a doctor as naving astima?
Allergic Killinus 7 y	has your child ever been diagnosed with naving allergic minitis of hay rever?
GINIplus	
Wheezing 1 st y	In the past 12 months, did your child have wheezing or whistling sounds in the chest while breathing? (yes/no)
Bronchitis 1st y	Doctor diagnosed bronchitis past 12 months
Asthma 6 years	Doctor diagnosed astrima past 12 months
InF aero allergens 6v	Doctor diagnosed allergic minus or hay lever past 12 months SY1 (cat dander dog dander dust mites timothy, use Cladosnorium herberum hirch mugwort): subjects with
ige acro anergeno ey	specific IdE values higher than 0.35 kU/l were regarded as sensitized (Pharmacia CAP System (Pharmacia
	Diagnostics, Freiburg, Germany)
LISAplus	
Whee-ine det v	C manthe and tet years to the next C menthe did years shill be a wheeping a which in the sheet while

breathing without having a cold? (yes/no)

> Bronchitis 1st y Asthma 6 years Allergic Rhinitis 6 y IgE aero allergens 6y

Doctor diagnosed bronchitis past 12 months Doctor diagnosed asthma past 12 months Doctor diagnosed allergic rhinitis or hay fever past 12 months SX1 (cat dander, dog dander, dust mites, timothy, rye, Cladosporium herbarum, birch, mugwort): subjects with specific IgE values higher than 0.35 kU/l were regarded as sensitized (Pharmacia CAP System (Pharmacia Diagnostics, Freiburg, Germany)

BAMSE

 Wheezing 1st y
 Has your child ever had problems involving: Wheezy breathing

 Asthma 8 years
 Has your child been diagnosed with asthma by a doctor since age 4?

 Allergic Rhinitis 8 y
 Has your child been diagnosed with hay fever by a doctor since age 4?

 IgE aero allergens 8y
 Phadiatop® [a mix of common inhalant allergens: birch, timothy, mugwort, cat, dog, horse, mold (Cladosporium herbarum) and house dust mite (Dermatophagoides pteronyssinus)] (ImmunoCAP System, Phadia AB, Uppsala, Sweden). Cut off ≥0.35 kUA/l.

Supplementary Table 4: Exposure to environmental scores on later asthma and allergic rhinitis with and without IgE to aero-allergens (6-8y), stratified by cohort and total effect (Random effects model)*.

		Asthma 6-8 years + IgE	Asthma 6-8 years - IgE	Allergic Rhinitis 6-8 years + IgE	Allergic Rhinitis 6-8 years - IgE
Indoor Score	GINI/LISA South	6y: 0.84 (0.63-1.13)	6y: 1.20 (0.77-1.86)	6y: 0.77 (0.64-0.92)	6y: 0.88 (0.59-1.33)
	GINI/LISA North	6y: 0.83 (0.57-1.20)	6y: 0.83 (0.52-1.31)	6y: 0.92 (0.71-1.18)	6y: 0.90 (0.61-1.32)
	BAMSE	8y: 0.98 (0.80-1.21)	8y: 1.14 (0.88-1.46)	8y: 0.89 (0.74-1.06)	8y: 0.61 (0.35-1.07)
	Total	0.91 (0.78-1.07)	1.08 (0.89-1.32)	0.85 (0.76-0.95)	0.83 (0.64-1.06)
Grey Score	GINI/LISA South	6y: 0.89 (0.74-1.07)	6y: 0.86 (0.65-1.14)	6y: 0.95 (0.85-1.05)	6y: 0.89 (0.69-1.16)
	GINI/LISA North	6y: 1.06 (0.84-1.34)	6y: 1.10 (0.83-1.46)	8y: 1.04 (0.88-1.23)	6y: 0.95 (0.75-1.21)
	BAMSE	8y: 0.83 (0.73-0.95)	8y: 0.86 (0.73-1.01)	8y: 0.89 (0.79-0.99)	8y: 0.82 (0.59-1.13)
	Total	0.90 (0.79-1.03)	0.91 (0.79-1.05)	0.94 (0.87-1.02)	0.90 (0.77-1.05)
Green Score	GINI/LISA South	6y: 1.14 (0.81-1.60)	6y: 0.80 (0.48-1.33)	6y: 1.06 (0.86-1.29)	6y: 0.92 (0.58-1.48)
	GINI/LISA North	6y: 0.89 (0.65-1.21)	6y: 0.89 (0.61-1.29)	6y: 0.95 (0.77-1.19)	6y: 1.08 (0.79-1.49)
	BAMSE	8y: 1.32 (1.06-1.64)	8y: 1.27 (0.98-1.65)	8y: 1.13 (0.95-1.35)	8y: 1.46 (0.85-2.49)
	Total	1.12 (0.88-1.42)	1.02 (0.76-1.37)	1.06 (0.94-1.18)	1.10 (0.87-1.40)

*Adjusted for: sex, cohort, maternal allergy, maternal smoking during pregnancy, maternal education, breastfeeding, dampness at home 1st year, exposure to passive smoke 1st year.

2386 2387 2388 2389					
2390 7 2391 7 2392 7 2393 7 2394 7 2395 7 2396 7 2397 7 2398 7 2398 7 2398 7 2398 7 2398 7 2398 7 2398 7 2400 7 2401 7 2402 7 2407 7 2408 7 2407 7 2408 7 2407 7 2407 7 2407 7 2410 7 2411 7 2412 7 2416 7 2417 7 2418 7 2420 7 2421 7 2422 24	729 730	9 References - SUPPLEMENTARY MATERIAL 0			
	731 732 733	1.	Guxens M, Ballester F, Espada M, Fernandez MF, Grimalt JO, Ibarluzea J, et al. Cohort Profile: The INMAINfancia y Medio Ambiente(Environment and Childhood) Project. Int J Epidemiol [Internet]. 2011/04/08. 2012;41(4):930–40. Available from: http://www.ije.oxfordjournals.org/cgi/doi/10.1093/ije/dyr054		
	734 735 736	2.	von Berg, A., Krämer U., Link, E., Bollrath, C., Heinrich, J., Brockow, I., Koletzko, S., Grübl, A., Filipiak-Pittroff, B., Wichmann, HE., Bauer, CP., Reinhardt, D., Berdel DA the Gini study group. Impact of early feeding on childhood eczema: development after nutritional intervention compared with the natural course – the GINIplus study up to the age of 6 years. Clin Exp Allergy. 2010;		
	737 738 739	3.	Heinrich J, Bolte G, Hölscher B, Douwes J, Lehmann I, Fahlbusch B, et al. Allergens and endotoxin on mothers' mattresses and total immunoglobulin E in cord blood of neonates. Eur Respir J Off J Eur Soc Clin Respir Physiol [Internet]. 2002/10/03. 2002;20(3):617–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12358337		
	740 741 742	4.	Zutavern A, von Klot S, Gehring U, Krauss-Etschmann S, Heinrich J. Pre-natal and post-natal exposure to respiratory infection and atopic diseases development: a historical cohort study. Respir Res [Internet]. 2006/05/25. 2006;7:81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16719901		
	743 744 745	5.	Wickman M, Kull I, Pershagen G, Nordvall SL. The BAMSE project: presentation of a prospective longitudinal birth cohort study. Pediatr Allergy Immunol [Internet]. 2003/04/12. 2002;13 Suppl 1:11–3. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12688617		
	746 747	6.	Dadvand P, Sunyer J, Basagaña X, Ballester F, Lertxundi A, Fernández-Somoano A, et al. Surrounding Greenness and Pregnancy Outcomes in Four Spanish Birth Cohorts. Environ Health Perspect [Internet]. 2012;120(10):1481–7. Available from: http://ehp.niehs.nih.gov/1205244		
	748 749	7.	Dadvand P, de Nazelle A, Figueras F, Basagaña X, Su J, Amoly E, et al. Green space, health inequality and pregnancy. Environ Int [Internet]. 2011/08/10. 2012;40:110-5. Available from: http://dx.doi.org/10.1016/j.envint.2011.07.004		
	750 751	8.	Dadvand P, de Nazelle A, Figueras F, Basagana X, Su J, Amoly E, et al. Green space, health inequality and pregnancy. Env Int [Internet]. 2011/08/10. 2012;40:110-5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21824657		
	752	9.	Donovan GH, Michael YL, Butry DT, Sullivan AD, Chase JM. Urban trees and the risk of poor birth outcomes. Heal Place [Internet]. 2011;17(1):390-3.		
2424 2425 2426			46		

2427 2428 2429			
2430 2431	753		Available from: http://dx.doi.org/10.1016/j.healthplace.2010.11.004
2432 2433 2434	754 755	10.	Estarlich M, Ballester F, Aguilera I, Fernández-Somoano A, Lertxundi A, Llop S, et al. Residential exposure to outdoor air pollution during pregnancy and anthropometric measures at birth in a multicenter cohort in spain. Environ Health Perspect. 2011;119(9):1333–8.
2435 2436 2437 2438	756 757 758	11.	Fuertes E, Markevych I, Bowatte G, Gruzieva O, Gehring U, Becker A, et al. Residential greenness is differentially associated with childhood allergic rhinitis and aeroallergen sensitization in seven birth cohorts. Allergy [Internet]. 2016; Available from: http://www.ncbi.nlm.nih.gov/pubmed/27087129
2439 2440	759 760	12.	Beelen R, Hoek G, Vienneau D, Eeftens M, Dimakopoulou K, Pedeli X, et al. Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe - The ESCAPE project. Atmos Environ. 2013;72(2):10–23.
2441 2442 2443 2444	761 762 763	13.	Gruzieva O, Gehring U, Aalberse R, Agius R, Beelen R, Behrendt H, et al. Meta-analysis of air pollution exposure association with allergic sensitization in European birth cohorts. J Allergy Clin Immunol [Internet]. 2013/10/08. 2014;133(3):767–76 e7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24094547
2445 2446 2447	764 765	14.	Marie Chavent, Vanessa Kuentz, Amaury Labenne BL and JS. PCAmixdata: Multivariate Analysis of Mixed Data. [Internet]. 2014 [cited 2017 Jun 18]. Available from: https://cran.r-project.org/package=PCAmixdata
2448 2449 2450 2451 2452 2453 2454	766 767		
2455 2456 2457 2458 2459 2460			
2460 2461 2462 2463 2464 2465 2466			47
2467			