ACTAS

DE LAS

VXXXVIII Jornadas de Automática

Gijón · Palacio de Congresos · 6, 7 y 8 de Septiembre de 2017

Actas de

XXXVIII Jornadas de Automática

© 2017 Universidad de Oviedo © Los autores

Servicio de Publicaciones de la Universidad de Oviedo Campus de Humanidades. Edificio de Servicios. 33011 Oviedo (Asturias) Tel. 985 10 95 03 Fax 985 10 95 07 http: www.uniovi.es/publicaciones servipub@uniovi.es

DL AS 2749-2017

ISBN: 978-84-16664-74-0

Todos los derechos reservados. De conformidad con lo dispuesto en la legislación vigente, podrán ser castigados con penas de multa y privación de libertad quienes reproduzcan o plagien, en todo o en parte, una obra literaria, artística o científica, fijada en cualquier tipo y soporte, sin la preceptiva autorización.

JA2017 Prefacio

Prefacio

Las Jornadas de Automática se celebran desde hace 40 años en una universidad nacional facilitando el encuentro entre expertos en esta área en un foro que permite la puesta en común de las nuevas ideas y proyectos en desarrollo. Al mismo tiempo, propician la siempre necesaria colaboración entre investigadores del ámbito de la Ingeniería de Control y Automática, así como de campos afines, a la hora de abordar complejos proyectos de investigación multidisciplinares.

En esta ocasión, las Jornadas estarán organizadas por la Universidad de Oviedo y se han celebrado del 6 al 8 de septiembre de 2017 en el Palacio de Congresos de Gijón, colaborando tanto la Escuela Politécnica de Ingeniería de Gijón (EPI) como el Departamento de Ingeniería Eléctrica, Electrónica de Computadores y de Sistemas del que depende el Área de Ingeniería de Sistemas y Automática.

Además de las habituales actividades científicas y culturales, esta edición es muy especial al celebrarse el **50 aniversario de la creación de CEA**, Comité Español de Automática. Igualmente este año se conmemora el 60 aniversario de la Federación Internacional del Control Automático de la que depende CEA. Así se ha llevado a cabo la presentación del libro que se ha realizado bajo la coordinación de D. Sebastián Dormido, sobre la historia de la Automática en España en una sesión en la que han participado todos los ex-presidentes de CEA conjuntamente con el actual, D. Joseba Quevedo.

Igualmente hemos contado con la presencia de conferenciantes de prestigio para las sesiones plenarias, comunicaciones y ponencias orales en las reuniones de los 9 grupos temáticos, contribuciones en formato póster. Se ha celebrado también el concurso de CEABOT, así como una nueva Competición de Drones, con el ánimo de involucrar a más estudiantes de últimos cursos de Grado/Máster.

En el marco de las actividades culturales programadas se ha podido efectuar un recorrido en el casco antiguo situado en torno al Cerro de Santa Catalina y visitar la Laboral.

Gijn, septiembre de 2017

Hilario López Presidente del Comité Organizador

JA2017 Program Committee

Program Committee

Antonio Agudo Institut de Robòtica i Informàtica Industrial

Rosa M Aguilar University of La Laguna. Luciano Alonso University of Cantabria Ignacio Álvarez García Universidad de Oviedo

Antonio Javier Artuñedo García Centre for Automation and Robotics (CSIC-UPM)

José M. Azorín Miguel Hernandez University of Elche

Pedro Balaguer Universitat Jaume I Antonio Javier Barragán Piña Universidad de Huelva Alfonso Baños Universidad de Murcia Guillermo Bejarano University of Seville

Gerardo Beruvides Centro de Automática y Robótica

Carlos Bordons University of Seville
Jose Manuel Bravo University of Huelva
Jose Luis Calvo-Rolle University of A Coruña

Fernando Castaño Romero Centro de Automática y Robótica (UPM -CSIC)

José Luis Casteleiro-Roca University of Coruña

Alvaro Castro-Gonzalez Universidad Carlos III de Madrid Ramon Costa-Castelló Universitat Politècnica de Catalunya

Abel A. Cuadrado University of Oviedo

Arturo De La Escalera Universidad Carlos III de Madrid

Emma Delgado Universidad de Vigo

Jose-Luis Diez Universitat Politecnica de Valencia

Manuel Domínguez Universidad de León Juan Manuel Escaño Universidad de Sevilla Mario Francisco University of Salamanca Maria Jesus Fuente Universidad de Valladolid Juan Garrido University of Cordoba Antonio Giménez Universidad de Almeria Evelio Gonzalez Universidad de La Laguna José-Luis Guzmán Universidad de Almería

Rodolfo Haber Center for Automation and Robotics (UPM-CSIC)

César Ernesto Hernández Universidad de Almería

Eloy Irigoyen UPV/EHU

Agustin Jimenez Universidad PolitAcnica de Madrid

Emilio Jiménez
University of La Rioja
Jesus Lozano
Universidad de Extremadura
Centro de Automática y Robótica
Luis Magdalena
Universidad Politécnica de Madrid
David Martin Gomez
Universidad Carlos III de Madrid
Fernando Matia
Universidad Politecnica de Madrid

Joaquim Melendez

Juan Mendez

Luis Moreno

Universidad de La Laguna

Universidad Carlos III de Madrid

Universidad de Extremadura

Universidad de Sorilla

David Muñoz Universidad de Sevilla Antonio José Muñoz-Ramirez Universidad de Málaga

Jose Luis Navarro Universidad Politecnica de Valencia

Manuel G. Ortega University of Seville

Andrzej Pawlowski UNED

Mercedes Perez de La Parte University of La Rioja

Ignacio Peñarrocha Universitat Jaume I de Castelló, Spain

José Luis Pitarch Universidad de Valladolid

JA2017 Program Committee

Daniel Pérez University of Oviedo
Emilio Pérez Universitat Jaume I
Juan Pérez Oria Universidad de Cantabria
MiguelÁngel Ridao Universidad de Sevilla
Gregorio Sainz-Palmero Universidad de Valladolid

Antonio Sala Universitat Politecnica de Valencia

Ester Sales-Setién Universitat Jaume I

Jose Sanchez UNED

Javier Sanchis Saez Universitat Politecnica de Valencia (UPV)

José Pedro Santos ITEFI-CSIC

Matilde Santos Universidad Complutense de Madrid

Alvaro Serna University of Valladolid

José Enrique Simó Universidad Politécnica de Valencia

José A. Somolinos ETS I Navales. Universidad Politecnica de Madrid

Fernando Tadeo Univ. of Valladolid

Alejandro Tapia Universidad de Loyola Andalucía

David Tena Universitat Jaume I
Jesús Torres Universidad de La Laguna
Pedro M. Vallejo Universidad de Salamanca
Guilherme Vianna Universidad de Sevilla

Alejandro Vignoni AI2 - UPV Ramón Vilanova UAB

Francisco Vázquez Universidad de Cordoba Jesús M. Zamarreño University of Valladolid JA2017 Revisores Adicionales

Revisores Adicionales

Al-Kaff, Abdulla

Balbastre, Patricia Beltrán de La Cita, Jorge Bermudez-Cameo, Jesus Blanco-Claraco, Jose-Luis Blanes, Francisco Bonin-Font, Francisco

Cancela, Brais

Ferraz, Luis

Garita, Cesar Gimenez, Antonio Gruber, Patrick Guindel, Carlos

Hernandez Ruiz, Alejandro Hernandez, Daniel

Jardón Huete, Alberto

López, Amable

Marin, Raul Marín Plaza, Pablo Mañanas, Miguel Angel Morales, Rafael Moreno, Francisco-Angel

Nuñez, Luis Ramón

Ponz Vila, Aurelio Posadas-Yague, Juan-Luis Poza-Luján, Jose-Luis Pumarola, Albert

Raya, Rafael Revestido Herrero, Elías Rocon, Eduardo Ruiz Sarmiento, José Raúl Ruiz, Adria

Torres, Jose Luis

Vaquero, Victor

Table of Contents

Ingeniería de Control	
TÚNEL DE AGUA PARA PRUEBAS Y CARACTERIZACIÓN DE DISEÑOS EXPERIMENTALES DE TURBINAS HIDROCINÉTICAS Eduardo Alvarez, Manuel Rico-Secades, Antonio Javier Calleja Rodríguez, Joaquín Fernández Francos, Aitor Fernández Jiménez, Mario Alvarez Fernández and Samuel Camba Fernández	1
Reduction of population variability in protein expression: A control engineering approach. Yadira Boada, Alejandro Vignoni and Jesús Picó	8
CONTROL ROBUSTO DEL PH EN FOTOBIORREACTORES MEDIANTE RECHAZO ACTIVO DE PERTURBACIONES	16
Control reset para maniobra de cambio de carril y validación con CarSim	23
Maniobra de aterrizaje autom atica de una Cessna 172P modelada en FlightGear y controlada desde un programa en C	31
Alternativas para el control de la red eléctrica aislada en parques eólicos marinos Carlos Díaz-Sanahuja, Ignacio Peñarrocha, Ricardo Vidal-Albalate and Ester Sales-Setién	38
CONTROL PREDICTIVO DISTRIBUIDO UTILIZANDO MODELOS DIFUSOS PARA LA NEGOCIACIÓN ENTRE AGENTES	46
Control Predictivo en el espacio de estados de un captador solar tipo Fresnel	54
Control predictivo para la operación eficiente de una planta formada por un sistema de desalación solar y un invernadero	62
Depuración de Aguas Residuales en la Industria 4.0	70
Control robusto con QFT del pH en un fotobioreactor raceway	77
Ángeles Hoyo Sánchez, Jose Luis Guzman, Jose Carlos Moreno and Manuel Berenguel	
Revisión sistemática de la literatura en ingeniería de sistemas. Caso práctico: técnicas de estimación distribuida de sistemas ciberfísicos	84
Carmelina Ierardi, Luis Orihuela Espina, Isabel Jurado Flores, Álvaro Rodriguéz Del Nozal and Alejandro Tapia Córdoba	
Desarrollo de un Controlador Predictivo para Autómatas programables basado en la normativa IEC 61131-3	92
Diseño de un emulador de aerogenerador de velocidad variable DFIG y control de pitch1 Manuel Lara Ortiz, Juan Garrido Jurado and Francisco Vázquez Serrano	100

abierto
Julio Luna and Ramon Costa-Castelló
Control Predictivo Basado en Datos
José María Manzano, Daniel Limón, Teodoro Álamo and Jan Peter Calliess
Control MPC basado en un modelo LTV para seguimiento de trayectoria con estabilidad garantizada
Sara Mata, Asier Zubizarreta, Ione Nieva, Itziar Cabanes and Charles Pinto
Implementación y evaluación de controladores basados en eventos en la norma IEC-61499.136 Oscar Miguel-Escrig, Julio-Ariel Romero-Pérez and Esteban Querol-Dolz
AUTOMATIZACIÓN Y MONITORIZACIÓN DE UNA INSTALACIÓN DE ENSAYO DE MOTORES
Alfonso Poncela Méndez, Miguel Ochoa Vega, Eduardo J. Moya de La Torre and F. Javier García Ruíz
OPTIMIZACIÓN Y CONTROL EN CASCADA DE TEMPERATURA DE RECINTO
MEDIANTE SISTEMAS DE REFRIGERACIÓN
Diseño LQ e implementación distribuida para la estimación de estado
Álvaro Rodríguez Del Nozal, Luis Orihuela, Pablo Millán Gata, Carmelina Ierardi and Alejandro Tapia Córdoba
Estimación de fugas en un sistema industrial real mediante modelado por señales aditivas. 160 Ester Sales-Setién, Ignacio Peñarrocha and David Tena
Advanced control based on MPC ideas for offshore hydrogen production
Transfer function parameters estimation by symmetric send-on-delta sampling
An Estimation Approach for Process Control based on Asymmetric Oscillations
Robust PI controller for disturbance attenuation and its application for voltage regulation in islanded microgrid
Infraestructura para explotación de datos de un simulador azucarero
Automar
INFRAESTRUCTURA PARA ESTUDIAR ADAPTABILIDAD Y TRANSPARENCIA EN EL CENTRO DE CONTROL VERSÁTIL
Juan Antonio Bonache Seco, José Antonio Lopez Orozco, Eva Besada Portas and Jesús Manuel de La Cruz
ARQUITECTURA DE CONTROL HÍBRIDA PARA LA NAVEGACI ÓN DE
VEHÏCULOS SUBMARINOS NO TRIPULADOS

Acústicos
Oscar L. Manrique Garcia, Mario Andrei Garzon Oviedo and Antonio Barrientos
AUTOMATIZACIÓN DE MANIOBRAS PARA UN TEC DE 2GdL 220
Marina Pérez de La Portilla, José Andrés Somolinos Sánchez, Amable López Piñeiro, Rafael Morales Herrera and Eva Segura
MERBOTS PROJECT: OVERALL DESCRIPTION, MULTISENSORY AUTONOMOUS PERCEPTION AND GRASPING FOR UNDERWATER ROBOTICS INTERVENTIONS
Pedro J. Sanz, Raul Marin, Antonio Peñalver, David Fornas and Diego Centelles
Bioingeniería
MARCADORES CUADRADOS Y DEFORMACIÓN DE OBJETOS EN NAVEGACIÓN QUIRÚRGICA CON REALIDAD AUMENTADA
Eliana Aguilar, Oscar Andres Vivas and Jose Maria Sabater-Navarro
Entrenamiento robótico de la marcha en pacientes con Parálisis Cerebral: definición de objetivos, propuesta de tratamiento e implementación clínica preliminar
Cristina Bayón, Teresa Martín-Lorenzo, Beatriz Moral-Saiz, Óscar Ramírez, Álvaro Pérez-Somarriba, Sergio Lerma-Lara, Ignacio Martínez and Eduardo Rocon
PREDICCIÓN DE ACTIVIDADES DE LA VIDA DIARIA EN ENTORNOS INTELIGENTES PARA PERSONAS CON MOVILIDAD REDUCIDA
Francisco Javier Badesa and Nicolas Garcia-Aracil
Sistema de Visión Estereoscópico para el guiado de un Robot Quirúrgico en Operaciones de Cirugía Laparoscópica HALS
Lidia Santos Del Blanco
Head movement assessment of cerebral palsy users with severe motor disorders when they control a computer thought eye movements
Alejandro Clemotte, Miguel A. Velasco and Eduardo Rocon
Diseño de un sensor óptico de fuerza para exoesqueletos de mano
POSIBILIDADES DEL USO DE TRAMAS ARTIFICIALES DE IMAGEN MOTORA PARA UN BCI BASADO EN EEG
Josep Dinarès-Ferran, Christoph Guger and Jordi Solé-Casals
EFECTOS SOBRE LA ERD EN TAREAS DE CONTROL DE EXOESQUELETO DE MANO EMPLEANDO BCI
Santiago Ezquerro, Juan Antonio Barios, Arturo Bertomeu-Motos, Luisa Lorente, Nuria Requena, Irene Delegido, Francisco Javier Badesa and Nicolas Garcia-Aracil
Formulación Topológica Adaptada para la Simulación y Control de Exoesqueletos Accionados con Transmisiones Harmonic Drive

Identificación de contracciones isométricas de la extremidad superior en pacientes con lesión medular incompleta mediante características espectrales de la electromiografía de alta densidad (HD-EMG)
Diseño de una plataforma para analizar el efecto de la estimulación mecánica aferente en el temblor de pacientes con temblor esencial
DEFINICIÓN DE UN PROTOCOLO PARA LA MEDIDA PRECISA DEL RANGO CERVICAL EMPLEANDO TECNOLOGÍA INERCIAL
SISTEMA BRAIN-COMPUTER INTEFACE DE NAVEGACIÓN WEB ORIENTADO A PERSONAS CON GRAVE DISCAPACIDAD
ESTRATEGIAS DE NEUROESTIMULACIÓN TRANSCRANEAL POR CORRIENTE DIRECTA PARA MEJORA COGNITIVA
COMPARATIVA DE ALGORITMOS PARA LA DETECCIÓN ONLINE DE IMAGINACIÓN MOTORA DE LA MARCHA BASADO EN SEÑALES DE EEG 328 Marisol Rodriguez-Ugarte, Irma Nayeli Angulo Sherman, Eduardo Iáñez and Jose M. Azorin
DETECCIÓN, MEDIANTE UN GUANTE SENSORIZADO, DE MOVIMIENTOS SELECCIONADOS EN UN SISTEMA ROBOTIZADO COLABORATIVO PARA HALS 334 Lidia Santos, José Luis González, Eusebio de La Fuente, Juan Carlos Fraile and Javier Pérez Turiel
BIOSENSORES PARA CONTROL Y SEGUIMIENTO PATOLOGÍAS REUMATOIDES
Amparo Tirado, Raúl Marín, José V Martí, Miguel Belmonte and Pedro Sanz
Assessment of tremor severity in patients with essential tremor using smartwatches 347 Miguel A. Velasco, Roberto López-Blanco, Juan P. Romero, M. Dolores Del Castillo, J. Ignacio Serrano, Julián Benito-León and Eduardo Rocon
INTERFAZ CEREBRO-ORDENADOR PARA EL CONTROL DE UNA SILLA DE RUEDAS A TRAVÉS DE DOS PARADIGMAS DE NAVEGACIÓN
$Fern\'andez-Rodr\'iguez \'Alvaro, \ Velasco-\'Alvarez \ Francisco \ and \ Ricardo \ Ron-Angevin$
Control Inteligente
Aprendizaje por Refuerzo para sistemas lineales discretos con dinámica desconocida: Simulación y Aplicación a un Sistema Electromecánico
Diseño de sistemas de control en cascada clásico y borroso para el seguimiento de
trayectorias

ANALISIS FORMAL DE LA DINAMICA DE SISTEMAS NO LINEALES MEDIANTE REDES NEURONALES
Eloy Irigoyen, Mikel Larrea, A. Javier Barragán, Miguel Ángel Martínez and José Manuel Andújar
Predicción de la energía renovable proveniente del oleaje en las islas de Fuerteventura y Lanzarote
G.Nicolás Marichal, Deivis Avila, Ángela Hernández, Isidro Padrón and José Ángel Rodríguez
Aplicación de Redes Neuronales para la Estimación de la Resistencia al Avance en Buques 393 Daniel Marón Blanco and Matilde Santos
Novel Fuzzy Torque Vectoring Controller for Electric Vehicles with per-wheel Motors 401 Alberto Parra, Martín Dendaluce, Asier Zubizarreta and Joshué Pérez
REPOSTAJE EN TIERRA DE UN AVIÓN MEDIANTE ALGORITMOS GENÉTICOS . 408 Elías Plaza and Matilde Santos
VISUALIZACIÓN WEB INTERACTIVA PARA EL ANÁLISIS DEL CHATTER EN
LAMINACIÓN EN FRÍO
BANCADA PARA ANÁLISIS INTELIGENTE DE DATOS EN MONITORIZACIÓN DE SALUD ESTRUCTURAL
Daniel Pérez López, Diego García Pérez, Ignacio Díaz Blanco and Abel Alberto Cuadrado Vega
CONTROL DE UN VEHÍCULO CUATRIRROTOR BASADO EN REDES NEURONALES
Jesus Enrique Sierra and Matilde Santos
CONTROL PREDICTIVO FUZZY CON APLICACIÓN A LA DEPURACIÓN BIOLÓGICA DE FANGOS ACTIVADOS
Educación en Automática
REFLEXIONES SOBRE EL VALOR DOCENTE DE UNA COMPETICION DE DRONES EN LA EDUCACIÓN PARA EL CONTROL
Uso del Haptic Paddle con aprendizaje basado en proyectos
Juan M. Gandarias, Antonio José Muñoz-Ramírez and Jesus Manuel Gomez-De-Gabriel PERPESENTACION INTEGRADA DE ACCIONAMIENTOS MECANICOS V
REPRESENTACION INTEGRADA DE ACCIONAMIENTOS MECANICOS Y CONTROL DE EJES ORIENTADA A LA COMUNICACIÓN Y DOCENCIA EN MECATRONICA
Julio Garrido Campos, David Santos Esterán, Juan Sáez López and José Ignacio Armesto Quiroga
Construcción y modelado de un prototipo fan & plate para prácticas de control automático 465 Cristina Lampon, Javier Martin, Ramon Costa-Castelló and Muppaneni Lokesh Chowdary

EDUCACION EN AUTOMATICA E INDUSTRIA 4.0 MEDIANTE LA APLICACIÓN DE TECNOLOGÍAS 3D
Jose Ramon Llata, Esther Gonzalez-Sarabia, Carlos Torre-Ferrero and Ramon Sancibrian
Desarrollo e implementación de un sistema de control en una planta piloto hibrida47 Maria P. Marcos, Cesar de Prada and Jose Luis Pitarch
LA INFORMÁTICA INDUSTRIAL EN LAS INGENIERÍAS INDUSTRIALES
Ventajas docentes de un flotador magnético para la experimentación de técnicas control 49 Eduardo Montijano, Carlos Bernal, Carlos Sagües, Antonio Bono and Jesús Sergio Artal
PROGRAMACIÓN ATRACTIVA DE PLC
MODERNIZACIÓN DE EQUIPO FEEDBACK MS-150 PARA EL APRENDIZAJE ACTIVO EN INGENIERÍA DE CONTROL
INNOVACIÓN PEDAGÓGICA EN LA FORMACIÓN DEL PERFIL PROFESIONAL PARA EL DESARROLLLO DE PROYECTOS DE AUTOMATIZACIÓN INDUSTRIAL A TRAVÉS DE UNA APROXIMACIÓN HOLÍSTICA
Aprendiendo Simulación de Eventos Discretos con JaamSim
RED NEURONAL AUTORREGRESIVA NO LINEAL CON ENTRADAS EXÓGENAS PARA LA PREDICCIÓN DEL ELECTROENCEFALOGRAMA FETAL52 Rosa M Aguilar, Jesús Torres and Carlos Martín
ANÁLISIS DEL COEFICIENTE DE TRANSFERENCIA DE MATERIA EN REACTORES RACEWAYS
MODELADO DINÁMICO DE UN SISTEMA DE ALMACENAMIENTO DE FRÍO VINCULADO A UN CICLO DE REFRIGERACIÓN
Predictor Intervalar basado en hiperplano soporte
Dynamic simulation applied to refinery hydrogen networks

3
9
5
2
9
6
1
1
3
6
3
1
9
7

DISEÑO DE UNA PRÓTESIS DE MANO ADAPTABLE AL CRECIMIENTO 664 Marta Ayats and Raul Suarez
COOPERATIVISMO BIOINSPIRADO BASADO EN EL COMPORTAMIENTO DE LAS HORMIGAS
Brayan Bermudez, Kristel Novoa and Miguel Valbuena
PROCEDIMIENTO DE DISEÑO DE UN EXOESQUELETO DE MIEMBRO SUPERIOR PARA SOPORTE DE CARGAS
Badesa Clemente, Miguel Ignacio Sanchez and Nicolas Garcia Aracil
Estructura de control en ROS y modos de marcha basados en máquinas de estados de un robot hexápodo
USING AN UAV TO GUIDE THE TELEOPERATION OF A MOBILE MANIPULATOR
Estudio de los patrones de marcha para un robot hexápodo en tareas de búsqueda y rescate
SISTEMA DE INTERACCIÓN VISUAL PARA UN ROBOT SOCIAL
Mejora del Comportamiento Proxémico de un Robot Autónomo mediante Motores de Inteligencia Artificial Desarrollados para Plataformas de Videojuegos
Micrófonos de contacto: una alternativa para sensado tactil en robots sociales
Clasificación de información táctil para la detección de personas
Planificación para interceptación de objetivos: Integración del Método Fast Marching y Risk-RRT738
David Alfredo Garzon Ramos, Mario Andrei Garzon Oviedo and Antonio Barrientos
ESTABILIZACIÓN DE UNA BOLA SOBRE UN PLANO UTILIZANDO UN ROBOT PARALELO 6-RSS
TELEOPERACIÓN DE INSTRUMENTOS QUIRÚRGICOS ARTICULADOS
CONTROL OF A ROBOTIC ARM FOR TRANSPORTING OBJECTS BASED ON NEURO-FUZZY LEARNING VISUAL INFORMATION
Juan Hernández Vicén, Santiago Martínez de La Casa Díaz and Carlos Balaguer
PLATAFORMA BASADA EN LA INTEGRACIÓN DE MATLAB Y ROS PARA LA DOCENCIA DE ROBÓTICA DE SERVICIO

Estimadores de fuerza y movimiento para el control de un robot de rehabilitación de extremidad superior
Aitziber Mancisidor, Asier Zubizarreta, Itziar Cabanes, Pablo Bengoa and Asier Brull
Definiendo los elementos que constituyen un robot social portable de bajo coste
Interfaces táctiles para Interacción Humano-Robot
HERRAMIENTAS DE ENTRENAMIENTO Y MONITORIZACIÓN PARA EL DESMINADO HUMANITARIO
Control a Baja Velocidad de una Rueda con Motor de Accionamiento Directo mediante Ingeniería Basada en Modelos
SIMULACIÓN DE VEHÍCULOS AUTÓNOMOS USANDO V-REP BAJO ROS
Cinemática y prototipado de un manipulador paralelo con centro de rotación remoto para robótica quirúrgica
ANÁLISIS DE ESTABILIDAD DE SINGULARIDADES AISLADAS EN ROBOTS PARALELOS MEDIANTE DESARROLLOS DE TAYLOR DE SEGUNDO ORDEN821
Adrián Peidró Vidal, Óscar Reinoso, Arturo Gil, José María Marín and Luis Payá
INTERFAZ DE CONTROL PARA UN ROBOT MANIPULADOR MEDIANTE REALIDAD VIRTUAL
Evolución de la robótica social y nuevas tendencias
Carlos Castillo Montoya and Miguel A. Salichs DISEÑO MECÁNICO DE UN ASISTENTE ROBÓTICO CAMARÓGRAFO CON APRENDIZAJE COGNITIVO
CÁLCULO DE FUERZAS DE CONTACTO PARA PRENSIONES BIMANUALES852 Francisco Abiud Rojas-De-Silva and Raul Suarez
Modelado del Contexto Geométrico para el Reconocimiento de Objetos
Estimación Probabilística de Áreas de Emisión de Gases con un Robot Móvil Mediante la Integración Temporal de Observaciones de Gas y Viento

MANIPULADOR AEREO CON BRAZOS ANTROPOMORFICOS DE ARTICULACIONES FLEXIBLES		
Alejandro Suarez, Guillermo Heredia and Anibal Ollero		
EVALUACIÓN DE UN ENTORNO DE TELEOPERACIÓN CON ROS		
Sistemas de Tiempo Real		
GENERACIÓN DE CÓDIGO IEC 61131-3 A PARTIR DE DISEÑOS EN GRAFCET892 Maria Luz Alvarez Gutierrez, Isabel Sarachaga Gonzalez, Arantzazu Burgos Fernandez, Nagore Iriondo Urbistazu and Marga Marcos Muñoz		
CONTROL EN TIEMPO REAL Y SUPERVISIÓN DE PROCESOS MEDIANTE SERVIDORES OPC-UA		
Francico Blanes Noguera and Andrés Benlloch Faus		
Control de la Ejecución en Sistemas de Criticidad Mixta		
GENERACIÓN AUTOMÁTICA DEL PROYECTO DE AUTOMATIZACIÓN TIA PORTAL PARA MÁQUINAS MODULARES		
DDS en el desarrollo de sistemas distribuidos heterogéneos con soporte para criticidad mixta		
Hector Perez and J. Javier Gutiérrez		
ARQUITECTURA DISTRIBUIDA PARA EL CONTROL AUTÓNOMO DE DRONES EN INTERIOR		
Ingeniería Conducida por Modelos en Sistemas de Automatización Flexibles		
Estudio e implementación de Middleware para aplicaciones de control distribuido		
Visión por Computador		
Real-Time Image Mosaicking for Mapping and Exploration Purposes		
ALGORITMO DE SLAM UTILIZANDO APARIENCIA GLOBAL DE IMÁGENES OMNIDIRECCIONALES		
Medición de Oximetría de Pulso mediante Imagen fotopletismográfica		
Algoritmo de captura de movimiento basado en visión por computador para la teleoperación de robots humanoides		

COMPARACIÓN DE MÉTODOS DE DETECCIÓN DE ROSTROS EN IMÁGENES DIGITALES
Natalia García Del Prado, Victor Gonzalez Castro, Enrique Alegre and Eduardo Fidalgo Fernández
LOCALIZACIÓN DEL PUNTO DE FUGA PARA SISTEMA DE DETECCIÓN DE LÍNEAS DE CARRIL
Oculus-Crawl, a Software Tool for Building Datasets for Computer Vision Tasks
Clasificación automática de obstáculos empleando escáner láser y visión por computador999 Aurelio Ponz, Fernando Garcia, David Martin, Arturo de La Escalera and Jose Maria Armingol
T-SCAN: OBTENCIÓN DE NUBES DE PUNTOS CON COLOR Y TEMPERATURA EN INTERIOR DE EDIFICIOS
EVALUACIÓN DE MÉTODOS PARA REALIZAR RESÚMENES AUTOMÁTICOS DE VÍDEOS1015
Pablo Rubio, Eduardo Fidalgo, Enrique Alegre and Víctor González
SIMULADOR PARA LA CREACIÓN DE MUNDOS VIRTUALES PARA LA ASISTENCIA A PERSONAS CON MOVILIDAD REDUCIDA EN SILLA DE RUEDAS. 1023 Carlos Sánchez Sánchez, María Cidoncha Jiménez, Emiliano Pérez, Ines Tejado and Blas M. Vinagre
Calibración Extrínseca de un Conjunto de Cámaras RGB-D sobre un Robot Móvil 1031 David Zúñiga-Nöel, Rubén Gómez Ojeda, Francisco-Ángel Moreno and Javier González Jiménez

VISUALIZACIÓN WEB INTERACTIVA PARA EL ANÁLISIS DEL CHATTER EN LAMINACIÓN EN FRÍO

Daniel Pérez López, Abel Alberto Cuadrado Vega, Ignacio Díaz Blanco Área de Ingeniería de Sistemas y Automática. Universidad de Oviedo Campus Universitario de Gijón, s/n. {dperez, cuadrado}@isa.uniovi.es, idiaz@uniovi.es

Resumen

La laminación de productos de acero es un proceso dentro del campo de la metalurgia donde dos o más pares de rodillos reducen el espesor de una banda de acero para producir un material de espesor uniforme. A pesar de que se ha estudiado ampliamente durante muchos años, hay problemas impredecibles que pueden aparecer y afectar a la calidad del producto final. Uno de ellos es el denominado chatter, una potente vibración autoexcitada que aparece súbitamente y limita la productividad. En este artículo se considera un enfoque de analítica visual para el análisis del chatter que ayude a descubrir y entender los factores y condiciones en las cuales aparece el chatter. Se presenta una interfaz web interactiva que permite explorar una proyección de las condiciones dinámicas y visualizar detalles correspondientes a cada episodio de chatter. Se expone finalmente un caso de validación para probar la herramienta con datos reales, donde estados normales y de chatter se identificaron autom'aticamente.

Palabras clave: Modelos de datos, sistemas de soporte a la decisión, sistemas expertos.

1. INTRODUCCIÓN

El proceso de laminación transforma la forma de un material de acero por medio de una reducción del espesor haciéndolo pasar entre dos o más pares de rodillos alojados en una caja que les sirve de soporte. Este proceso es diferente dependiendo de la temperatura del material laminado. Precisamente, un tren de laminación en frío [12] produce productos acabados más finos con un grosor de salida uniforme, llevado a cabo comúnmente de manera continua a través de varias cajas en los trenes de laminación en frío de tipo tándem. A pesar de que éste es un proceso universal en la elaboración de metales, todavía existen problemas que causan pérdidas económicas en los trenes modernos de laminación en frío. Además, las condiciones bajo las cuales surgen estos problemas no se comprenden completamente, lo que dificulta su prevención.

Uno de los principales problemas que presentan es una vibración autoexcitada denominada chatter, que aparece en los procesos de laminación, provocando variaciones de espesor inadmisibles en la superficie final de la banda, tal como se explica en [16]. La disminución de la velocidad de laminación para mitigar este efecto implica una pérdida de productividad que hace que el chatter no solo sea un problema industrial, sino también un problema económico. El análisis de chatter requiere la comprensión de las condiciones que conducen a la inestabilidad del proceso. Las interacciones dinámicas entre los fenómenos estructurales en el tren y el propio proceso de deformación de la banda se han estudiado utilizando modelos teóricos [9, 1, 21, 10, 23]. Estos modelos pueden llegar a ser complejos de implementar, o bien basarse en ciertos supuestos que simplifican el problema real.

Las tecnologías recientes facilitan la adquisición de datos de cualquier proceso y su almacenamiento masivo en bases de datos. Un análisis apropiado puede revelar cierta intuición acerca de problemas complejos y servir de apoyo al analista en la adopción de estrategias de actuación. Los algoritmos de análisis inteligente de datos (IDA) extraen información automáticamente de los datos permitiendo descubrir conocimiento nuevo. Un enfoque particularmente interesante es la reducción de la dimensionalidad (DR). Las técnicas DR permiten encontrar estructuras latentes de baja dimensionalidad en espacios de datos de alta dimensión, definiendo un mapeo que permite proyectar puntos de alta dimensión en un espacio latente de baja dimensión -típicamente 2D o 3D- que puede visualizarse y permite la implementación de mecanismos de interacción. Se puede encontrar una revisión detallada de las técnicas DR en el libro [8].

La presentación visual de los resultados de estos algoritmos es una excelente forma de comunicación [19] que puede mejorar la comprensión del problema y sugerir una actuación más rápida. Los mecanismos de interacción introducen al humano en el proceso de análisis, permitiéndole incorporar conocimiento de dominio del problema durante la exploración de datos, en lugar de usar representa-

ciones estáticas. Los métodos de analítica visual (VA) permiten explotar la sinergia entre los algoritmos de análisis de datos inteligente, las técnicas de visualización y la interacción para apoyar al usuario en la consecución de un análisis eficiente. El enfoque VA se basa en el razonamiento analítico a través de interfaces interactivas, como se explica en [15] y [6].

En este artículo se propone un análisis del chatter utilizando el enfoque VA, permitiendo al usuario explorar las diferentes condiciones dinámicas del proceso. Esto se realiza a través de una interfaz web que permite el análisis de datos reales resultantes de algoritmos que separan comportamientos dinámicos de condiciones normales y de fallo (chatter). Los comportamientos dinámicos, caracterizados por vectores de características de alta dimensión son proyectados en un espacio latente 2D usando un algoritmo DR, y representados en una interfaz web interactiva sobre la que el usuario puede explorarlos y obtener detalles bajo demanda, como el espectrograma. El artículo está organizado como sigue: en la sección 2 se revisan trabajos previos que analizan el proceso de laminación; en la sección 3 se explica el análisis de datos para tratar el fallo del chatter; en la sección 4 se describe un caso de estudio real como método de validación; finalmente, en la sección 5 se exponen las conclusiones y se sugieren las líneas para el trabajo futuro.

2. TRABAJO RELACIONADO

Los fenómenos de vibración aparecen en procesos de laminación como resultado de las interacciones dinámicas producidas [16]. Hay dos modos principales de vibración vertical: el modo de tercera octava (120-250 Hz) y el modo de quinta octava (500-700 Hz), siendo el primero de ellos el más dañino, que ocurre de forma repentina acumulando una gran cantidad de energía en pocos segundos. Identificamos aquí al chatter con este modo de vibración de tercera octava.

Varios trabajos han estudiado este fenómeno previamente. Los primeros estudios sobre el tema [21, 10, 14] definen el chatter como un modo auto-excitado de vibración, y estudian las posibles causas a través de modelos. En [23], se recogen varios modelos para la estructura del tren y el proceso de laminación, los cuales se combinan para obtener modelos de chatter.

Los modelos estructurales clásicos están basados en un sistema masa-muelle, donde las fuerzas se representan en términos de rigidez y amortiguamiento. Dado que algunos de estos modelos asumen simetría respecto al hueco de los rodillos, so-

lo la parte superior se considera para el análisis. Los modelos del proceso de laminación son expresiones matemáticas relacionadas con los parámetros de laminación que ayudan a determinar, por ejemplo, la fuerza de laminación, el par, el punto neutro, la tensión, etc. Todas implican coeficientes tales como el límite elástico y la fricción.

Matemáticamente, puede representarse un modelo simplificado mediante una ecuación diferencial que contiene las dependencias entre variables expresadas en la ecuación 1 (omitiendo referencia explícita a las derivadas de diversos órdenes que puedan aparecer), donde el espesor de salida (h_s) depende de la fuerza de laminación (F), las tensiones de entrada y salida $(\sigma_e \ y \ \sigma_s)$, las velocidades $(v_e \ y \ v_s)$ y el espesor de entrada (h_e) . El principal objetivo es el estudio de la función f y las variables que afectan internamente al sistema:

$$h_s = f(F, \sigma_e, \sigma_s, v_e, v_s, h_e) \tag{1}$$

Hay más elementos en el proceso que intervienen en el funcionamiento del sistema completo. En [20] se propone un modelo de caja única en espacio de estados, acoplando modelos del proceso dinámico de laminación, la estructura de la caja y el sistema servo hidráulico. Este sistema se simplifica para llevar a cabo un control robusto del espesor. También, el estudio de la estabilidad con respecto a los parámetros de laminación en [4] o el uso de modelos de múltiples cajas en trenes de laminación tipo tándem, como se explica en [24] o en [5], incrementan la complejidad del estudio. Por tanto, aún existen dificultades para una comprensión completa de las condiciones que conducen a la inestabilidad del sistema.

Los algoritmos de análisis de datos pueden utilizarse para estudiar las condiciones dinámicas. Por ejemplo, los mapas topológicos autoorganizados se han utilizado para explorar el comportamiento dinámico de procesos industriales, incluido el análisis de trenes de laminación [3]. También se ha descrito el uso de técnicas de manifold learning para generar mapas visuales de estados de vibración en máquinas rotativas [2] o comportamientos dinámicos de trenes de laminación en frío, proyectados en una visualización estática [11], que puede utilizarse como un mapa de estados de vibración del proceso. En [7] y en [17] se pueden encontrar referencias acerca de cómo los beneficios cognitivos de la visualización pueden ayudar a interpretar de forma eficiente la información.

Aunque estos trabajos aportan mapas para analizar comportamientos dinámicos, carecen de mecanismos de interacción que podrían mejorar drásticamente la exploración de datos. La interacción es

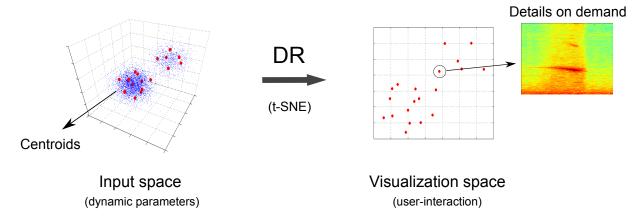


Figura 1: Esquema donde características dinámicas de los datos se proyectan en un espacio de visualización.

una parte clave en los interfaces visuales, porque permite la manipulación y el enfoque selectivo en la representación. Trabajos previos, como [13] o [22], describen taxonomías de los mecanismos de interacción. La combinación entre los algoritmos y los beneficios de la visualización sugieren soluciones basadas en el paradigma de analítica visual para abordar problemas complejos [6].

3. DESCRIPCIÓN DEL ANÁLISIS

En esta sección se describe un procedimiento para el análisis de datos del chatter que permite aportar intuición al problema. Aquí se expone un método automático de identificación de condiciones de funcionamiento, una extracción de características y un método para obtener la proyección. En la Fig. 1 se muestra un esquema del enfoque propuesto.

3.1. IDENTIFICACIÓN DE CONDICIONES DE FUNCIONAMIENTO

En primer lugar, se llevó una extracción de estados de funcionamiento para identificar condiciones normales y de chatter mediante algoritmos automáticos. Este proceso se lleva a cabo en dos fases:

3.1.1. Condiciones de chatter

El algoritmo de identificación de episodios de chatter se basa en el seguimiento del armónico de máxima amplitud de una señal A(t), que puede ser la desviación de espesor de salida o la vibración de una caja, dentro de la banda de chatter usando "Short-Time Fourier Transform" (STFT) o espectrograma. Se considera la posibilidad de existencia de chatter cuando dicho armónico su-

pera cierto umbral A_c . Para confirmar la presencia de un episodio de chatter el algoritmo también se apoya en la identificación de bajadas de velocidad de laminación v(t) presumiblemente realizadas por el sistema de detección de chatter existente en el tren. El funcionamiento del algoritmo depende del ajuste de un cierto número de parámetros, como por ejemplo los límites de la banda de chatter, el umbral para el armónico de máxima amplitud, y otros, hasta completar un número de alrededor de 16. La mayoría de esos parámetros se han ajustado de manera heurística. Una de las razones de hacerlo así es la falta de conocimiento exacto de los detalles del funcionamiento del propio sistema de detección de chatter instalado en el tren. Por tanto es de interés disponer de una herramienta que permita evaluar los resultados del algoritmo y ayudar a la selección de sus parámetros, como se verá más adelante.

En la Fig. 2 se muestra un esquema de este sistema de identificación automático. En el caso de detectarse una condición de chatter, se calcula un coeficiente α ajustando la evolución temporal del armónico analizado a la ecuación $A(t) = Ke^{\alpha t}$. Este parámetro puede utilizarse como una medida de la severidad de la inestabilidad producida por el fallo.

3.1.2. Condiciones normales

A partir de las bobinas que no contenían episodios de chatter, se implementó una identificación de condiciones normales detectando tramos constantes en la velocidad de laminación de la última caja, descartando todas las variaciones que pueden suceder tales como el aumento y descenso que suceden en inicio y el final del proceso de laminación respectivamente.

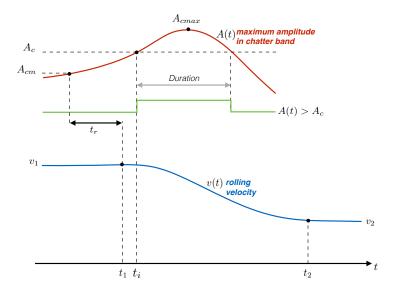


Figura 2: Esquema del método de identificación de chatter.

3.1.3. Extracción de características

Finalmente, una vez que ambos tipos de funcionamiento han sido detectados, se tomaron segmentos de 1 segundo para calcular ciertas características en cada condición, para varias variables.

3.2. MÉTODO DE PROYECCIÓN DE DATOS

Se implementó un sencillo método para obtener un conjunto manejable para calcular su proyección. En la Fig. 3 se muestra un diagrama de bloques del método implementado.

Dado que existen una gran cantidad de condiciones normales que pueden identificarse, se llevó a cabo un submuestreo, seguido de una etapa de cuantificación vectorial usando el método kmeans, con el objeto de reducir el conjunto de datos para este tipo de condición. Los centroides resultantes son prototipos representativos de este tipo de funcionamiento del proceso, pero no describen puntos reales del proceso. Con el objeto de trabajar con situaciones reales, se consideraron, por tanto, los puntos más cercanos a los prototipos.

Reuniendo todos los vectores de condiciones normales y de chatter, se construyó una matriz de datos y se normalizó eliminando la media y escalándola de forma que tenga varianza unidad para cada variable.

Se obtuvo una proyección para visualizar las similitudes usando el algoritmo t-SNE [18]. Esta técnica es muy superior a las anteriores basadas en esquemas básicos de preservación de distancias. El t-SNE, por el contrario, considera la vecindad de

los puntos de entrada $\{\mathbf{x}_i\}_{i=1,\dots,N}$ siendo $\mathbf{x}_i \in \mathbb{R}^D$, por medio de una matriz de probabilidad P, donde:

$$p_{j|i} = \frac{\exp(-\|\mathbf{x}_i - \mathbf{x}_j\|^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|\mathbf{x}_i - \mathbf{x}_k\|^2 / 2\sigma_i^2)}$$
(2)

El algoritmo utiliza una transformación simétrica de dicha matriz. En paralelo, las probabilidades de los puntos de baja dimensión, $\{\mathbf{y}_i\}_{i=1,\dots,N} \in \mathbb{R}^d$ con d < D son modelados mediante una distribución t-Student de un grado de libertad, definiéndose Q como:

$$q_{ij} = \frac{(1 + \|\mathbf{y}_i - \mathbf{y}_j\|^2)^{-1}}{\sum_{k \neq l} (1 + \|\mathbf{y}_k - \mathbf{y}_l\|^2)^{-1}}$$
(3)

Las diferencias entre las distribuciones de probabilidad P y Q son evaluadas utilizando la divergencia de Kullback-Leibler:

$$D_{KL}(P||Q) = \sum_{j} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$
 (4)

El cálculo de los puntos \mathbf{y}_i que minimizan esta divergencia permite obtener la proyección resultante.

4. CASO DE ESTUDIO

4.1. Análisis de datos reales

Para validar el análisis se utilizan datos reales de un tren tándem procedentes de un proceso de laminación en frío. Los algoritmos descritos en la sección 3 se desarrollaron en lenguaje Python utilizando paquetes como pandas, scipy o scikit-learn.

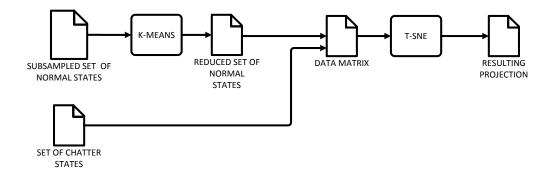


Figura 3: Flujograma para la obtención de la proyección.

Los datos recogidos de un tren tándem de laminación en frío corresponden a una producción de 4102 bobinas. Las variables seleccionadas para caracterizar las condiciones dinámicas incluyen magnitudes como fuerzas, tensiones, velocidades de laminación o reducciones estimadas $(r_i = 1 - \frac{v_{ie}}{v_{is}}),$ siendo v_{ie} y v_{is} las velocidades de entrada y salida respectivamente en la caja i. Estas variables se describen de manera detallada en la Tabla 1. Para obtener la provección, se consideran todas las variables de la tabla, excepto el número de identificación (1) y el tipo de material (2). Las características utilizadas son los valores medios de segmentos de la señal (de un segundo de duración), excepto en el caso de las vibraciones, para las que se calcularon los valores eficaces (RMS).

Tabla 1: Descripción de las variables.

#	Descripción	Unidades
1	Número de identificación	-
2	Tipo de material	-
3	Espesor objetivo de entrada	$ m \mu m$
4	Espesor objetivo de salida	$ m \mu m$
5	Ancho de la bobina	mm
6	Suma de fuerzas en caja 4	\mathbf{t}
7	Suma de fuerzas en caja 5	t
8	Tensión entre cajas 3-4	t
9	Tensión entre cajas 4-5	t
10	Velocidad laminación caja 3	m/min
11	Velocidad laminación caja 4	m/min
12	Velocidad laminación caja 5	m/min
13	Vibración caja 4 (RMS)	g
14	Vibración caja 5 (RMS)	g
15	Desviación espesor de salida	%
16	Reducción caja 4	-
17	Reducción caja 5	-

A pesar de no utilizar en este caso características dinámicas realmente, las características escogidas pretenden discriminar entre diferentes puntos de

funcionamiento que, al tratarse de un sistema no lineal y variante, corresponderán a diferentes comportamientos dinámicos.

Se aplicó el método explicado en la Sección 3.2 a un conjunto de entrenamiento de condiciones normales con un tamaño de más de 1 millón de observaciones. La operación de submuestreo redujo el conjunto a 10000 muestras y con el algoritmo k-means resultan finalmente 1000 centroides, con los que se calculan sus puntos más cercanos. Por otra parte, las condiciones de chatter identificadas fueron 519 episodios, por lo que la matriz de datos resultante tiene unas dimensiones de 1519×15 . Para realizar la reducción de la dimensionalidad, se utilizó el algoritmo t-SNE de la librería scikitlearn, con una inicialización PCA, una velocidad de aprendizaje (learning rate) de 900 y una perplejidad (perplexity) de 30, ambas determinadas experimentalmente.

Para calcular los espectrogramas se utilizó la señal de la desviación de espesor de salida, con un segmento de tamaño 1024 y ventana Tukey. Para facilitar su comparación, todos los espectrogramas se calcularon en la misma banda de frecuencias, comprendida entre 0 y 400 Hz y con la misma escala de color para las amplitudes. Asimismo, se calculó la mayor duración de un episodio de chatter (que resultó ser de 10 segundos) para establecer un rango de tiempos común para todos los espectrogramas.

4.2. Aplicación web

La aplicación debería permitir al usuario identificar estados dinámicos similares rápidamente en una vista general donde se puedan identificar las condiciones de fallo fácilmente. Esto se obtiene por medio de la proyección t-SNE de los vectores dinámicos, la cual proporciona un mapa de los estados dinámicos donde puntos cercanos representan condiciones dinámicas similares. La evaluación de estos episodios se puede realizar fácilmente

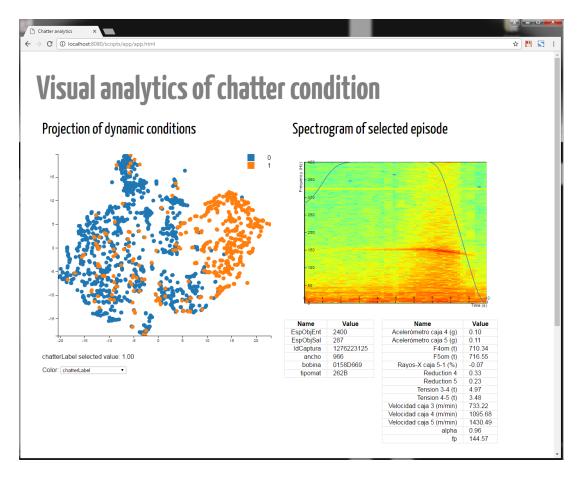


Figura 4: Captura de pantalla de la aplicación mostrando la proyección de los estados dinámicos (izda.), el espectrograma (dcha.) y las tablas.

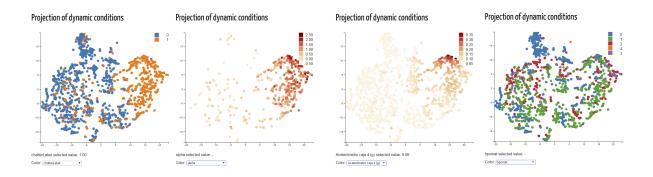


Figura 5: Proyección usando varias escalas de color (de izda. a dcha.): estado normal/chatter, parámetro α , vibración en la 4^a caja y tipo de material.

a través de los espectrogramas, que aportan una representación tiempo-frecuencia detallada de cada episodio. Esto se puede hacer bajo demanda, estableciendo conexiones entre ambas vistas.

En la Fig. 4 se muestra una captura de pantalla del prototipo web diseñado. La representación de puntos muestra la proyección t-SNE de los estados dinámicos donde el color de los puntos muestra el valor de una determinada variable, con una escala de color predefinida. El usuario puede cambiar esa variable por medio de un selector. Mecanismos de interacción adicionales, como zoom o pan, están disponibles para facilitar la exploración en la proyección.

Gracias al principio de espacialización proporcionado por el algoritmo t-SNE (cercano similar), los estados de chatter parecen estar más aislados que el resto de las condiciones normales de operación, haciéndolos visualmente identificables por el usuario. Sin embargo, algunas excepciones de episodios que fueron etiquetados como chatter en etapas previas, se situaron en el área del mapa de condición normal, donde evaluaciones más detalladas pueden llevarse a cabo utilizando esta aplicación.

Moviendo el puntero del ratón sobre los puntos de la proyección, se resalta el punto seleccionado y el valor exacto de la variable del color se muestra en un texto debajo. Además, si es un episodio de chatter, el espectrograma calculado se muestra a la derecha. La línea azul sobre el espectrograma indica la velocidad de laminación de la última caja. Todos los espectrogramas, se calcularon con las mismas especificaciones, entre 0 y 400 Hz y un rango de tiempo de 10 segundos, como se indicó previamente. Los mismos mecanismos de zoom y pan se pueden aplicar al espectrograma, permitiendo al usuario navegar en los detalles de la imagen. Esto ayuda al usuario a confirmar, de manera visual, la existencia de un episodio de chatter identificado de manera automática previamente.

Debajo de la imagen del espectrograma hay dos tablas que muestran los detalles del punto elegido. La tabla de la izquierda incluye parámetros característicos de la bobina, como el ancho, tipo de material, o espesor objetivo. La tabla de la derecha muestra valores de la condición dinámica como los valores medios.

Mientras el usuario navega por los puntos proyectados, el espectrograma y los valores de las tablas se actualizan de manera instantánea. Esto permite una rápida exploración de las condiciones dinámicas y la evaluación de los detalles de cada episodio de chatter, previamente identificado, que el usuario seleccione.

En la Fig. 5 se muestra la proyección con diferentes

escalas de color representando varias variables (de izquierda a derecha): el estado de normal/chatter, parámetro α , vibración en caja 4 y tipo de material. La comparación entre las distintas representaciones permite encontrar relaciones entre variables. Por ejemplo, puede apreciarse cómo la figura muestra al usuario visualmente que el parámetro α tiene valores más altos para los estados de chatter dentro del área de chatter o que la mayor vibración de la caja 4 corresponde a parte de los estados de chatter.

5. CONCLUSIONES

En este artículo se propone un enfoque basado en el paradigma de analítica visual para un análisis exploratorio de condiciones de chatter. Se procesaron datos reales procedentes de un proceso de laminación en frío para identificar condiciones de funcionamiento normales y de chatter de forma automática. Se calcularon vectores compuestos por 15 descriptores del proceso para caracterizar ambos tipos de estados dinámicos. A partir de estos vectores se realizó una proyección 2D utilizando el algoritmo t-SNE, que aporta una visualización eficaz de los estados y a la vez permite mostrar de forma rápida los espectrogramas correspondientes a los estados de chatter, mediante eventos tipo hover.

Se desarrolló una aplicación web para exploración interactiva de datos que ayuda al usuario a obtener una vista general de las condiciones normales y de chatter en el proceso, que al mismo tiempo aporta detalles bajo demanda de cualquier episodio de chatter identificado. De esta manera, se han revisado visualmente episodios previamente detectados como chatter de manera automática que resultan dudosos, pudiéndose evaluar el grado de severidad del episodio. Por tanto, esto puede ser utilizado como herramienta para una validación visual del fallo del chatter, así como método de apoyo para el refinado experimental de los parámetros involucrados en el algoritmo de detección automática de chatter.

Las líneas de trabajo futuro incluyen el desarrollo de vistas coordinadas, dotadas de nuevos mecanismos de interacción como el filtrado, que permitan al usuario seleccionar las partes interesantes de los datos para descubrir conocimiento nuevo acerca de los fallos.

Agradecimientos

Este trabajo ha sido financiado por el Ministerio de Economía y Competitividad (MINECO), Programa Estatal de I+D+i Orientada a los Retos de la Sociedad y por el Fondo Europeo de Desarrollo Regional (FEDER) "Una manera de hacer

Europa", bajo el proyecto de referencia DPI2015-69891-C2-2-R.

Referencias

- [1] J. Alexander. On the theory of rolling. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, volume 326, pages 535–563. The Royal Society, 1972.
- [2] I. Díaz, A. A. Cuadrado, A. B. Diez, and M. Domínguez. Manifold learning for visualization of vibrational states of a rotating machine. In ICANN (2), pages 285–292, 2011.
- [3] I. Díaz, M. Domínguez, A. A. Cuadrado, and J. J. Fuertes. A new approach to exploratory analysis of system dynamics using som. applications to industrial processes. *Expert* Systems with Applications, 34(4):2953–2965, 2008.
- [4] A. Heidari and M. R. Forouzan. Optimization of cold rolling process parameters in order to increasing rolling speed limited by chatter vibrations. *Journal of Advanced Research*, 4(1):27–34, Jan. 2013.
- [5] P.-H. Hu and K. F. Ehmann. Stability analysis of chatter on a tandem rolling mill. *Journal of Manufacturing Processes*, 2(4):217–224, 2000.
- [6] D. A. Keim, F. Mansmann, J. Schneidewind, J. Thomas, and H. Ziegler. Visual analytics: Scope and challenges. Springer, 2008.
- [7] J. H. Larkin and H. A. Simon. Why a diagram is (sometimes) worth ten thousand words. *Cognitive science*, 11(1):65–100, 1987.
- [8] J. A. Lee and M. Verleysen. Nonlinear dimensionality reduction. Springer, New York; London, 2007.
- [9] E. Orowan. The calculation of roll pressure in hot and cold flat rolling. *Proceedings* of the Institution of Mechanical Engineers, 150(1):140–167, 1943.
- [10] D. L. Paton and S. Critchley. Tandem mill vibration: Its cause and control. In Mechanical Working; Steel Processing XXII, Proceedings of the 26th Mechanical Working; Steel Processing Conference., pages 247–255, Chicago, IL, USA, 1985. Iron and Steel Soc Inc.
- [11] D. Pérez, F. García-Fernández, I. Díaz, A. Cuadrado, D. Ordonez, A. Díez, and M. Domínguez. Visual analysis of a cold rolling process using a dimensionality reduction

- approach. Engineering Applications of Artificial Intelligence, 26(8):1865–1871, 2013.
- [12] W. L. Roberts. Cold rolling of steel. Marcel Dekker, Inc., New York, 1978.
- [13] B. Shneiderman. The eyes have it: A task by data type taxonomy for information visualizations. In Visual Languages, 1996. Proceedings., IEEE Symposium on, pages 336–343. IEEE, 1996.
- [14] T. Tamiya, K. Furui, and H. Iida. Analysis of chattering phenomenon in cold rolling. In *International Conference on Steel Rolling*, volume 2, pages 1191–1202, 1980.
- [15] J. J. Thomas and K. A. Cook. Illuminating the path: The research and development agenda for visual analytics. IEEE Computer Society Press, 2005.
- [16] J. Tlusty, G. Chandra, S. Critchley, and D. Paton. Chatter in cold rolling. CIRP Annals-Manufacturing Technology, 31(1):195–199, 1982.
- [17] E. R. Tufte and P. Graves-Morris. The visual display of quantitative information, volume 2. Graphics press Cheshire, CT, 1983.
- [18] L. Van der Maaten and G. Hinton. Visualizing data using t-SNE. Journal of Machine Learning Research, 9:2579–2605, 2008.
- [19] C. Ware. Information visualization: perception for design. Elsevier, 2012.
- [20] X. Yang and C.-n. Tong. Coupling dynamic model and control of chatter in cold rolling. Journal of Dynamic Systems, Measurement, and Control, 134(4):041001, 2012.
- [21] I. Yarita. Analysis of chattering in cold rolling for ultra-thin gauge steel strip. *Trans. Iron Steel Inst. Jpn.*, 18(1):1–10, 1978.
- [22] J. S. Yi, Y. ah Kang, J. T. Stasko, and J. A. Jacko. Toward a deeper understanding of the role of interaction in information visualization. Visualization and Computer Graphics, IEEE Transactions on, 13(6):1224– 1231, 2007.
- [23] I. S. Yun, W. R. D. Wilson, and K. F. Ehmann. Review of chatter studies in cold rolling. *International Journal of Machine Tools* and Manufacture, 38(12):1499–1530, 1998.
- [24] H. Zhao and K. F. Ehmann. Stability analysis of chatter in tandem rolling mills?part 1: single-and multi-stand negative damping effect. Journal of Manufacturing Science and Engineering, 135(3):031001, 2013.