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Dpto. de Matemáticas, Universidad de Oviedo, Campus de Gijón, 33203 Gijón, Spain

ARTICLE HISTORY

Compiled October 19, 2018

ABSTRACT
We discuss several optimization procedures to solve finite element approximations
of linear-quadratic Dirichlet optimal control problems governed by an elliptic par-
tial differential equation posed on a 2D or 3D Lipschitz domain. The control is
discretized explicitely using continuous piecewise linear approximations. Uncon-
strained, control-constrained, state-constrained and control-and-state constrained
problems are analyzed. A preconditioned conjugate method for a reduced prob-
lem in the control variable is proposed to solve the unconstrained problem, whereas
semismooth Newton methods are discussed for the solution of constrained problems.
State constraints are treated via a Moreau-Yosida penalization. Convergence is stud-
ied for both the continuous problems and the finite dimensional approximations. In
the finite dimensional case, we are able to show convergence of the optimization pro-
cedures even in the absence of Tikhonov regularization parameter. Computational
aspects are also treated and several numerical examples are included to illustrate
the theoretical results.
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1. Introduction

Only in the last ten years it has been possible to develop a systematic study of Dirichlet
optimal control problems governed by elliptic equations, which started with the seminal
paper [1]. In that work a 2D control-constrained problem governed by a semilinear
equation posed on a convex polygonal domain is studied. Several other works have
been published about numerical error estimates; see [2] or [3, Ch 2.1] for a variational
approach to control-constrained problems posed on smooth 2D or 3D domains, [4] for
a superconvergence result on the state approximation for unconstrained 2D problems,
[5] for control-and-state constrained problems posed on convex polygonal domains. In
[6] the authors study the control-constrained problem in a 2D smooth convex domain
taking into account the problems derived by the boundary approximation and in [7]
an apparent paradox between [2] and [6] is explained. The regularity of the solution in
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possibly nonconvex polygonal plane domains is studied in [8]; see also the introduction
of that paper for further references about related problems. In the recent publication
[9], error estimates for a Dirichlet control problem governed by a parabolic equation
are obtained. In this work, the spatial discretization of the control is studied in both
the cases of continuous piecewise linear finite elements and variational approach.

Just before that, several works dealing with efficient optimization methods for con-
trol or state constrained problems had appeared; in [10–16] the semismooth Newton
method is thoroughly studied. Since all these papers about optimization are previous
to the papers about the numerical analysis of Dirichlet control problems, very little
or no reference is made in them to their applicability to the problems we are going
to deal with. Only in [16] two different Dirichlet control problems with more regular
solutions than the ones we treat here are studied in the infinite-dimensional case. Let
us also mention that in [17] the Dirichlet boundary condition is replaced by a Robin
penalization. For this kind of penalization the methods developed in the aforemen-
tioned references are directly applicable. In [18], the semismooth Newton method is
studied in the context of the variational approach of the control. Although the authors
only exemplify their results through distributed and Robin boundary control, a com-
bination of their results and some of the results we present in Section 4 can be applied
to Dirichlet control. See Remark 3 below.

In this work we describe optimization methods for Dirichlet control problems in both
the infinite and finite dimensional cases. Convergence proofs, examples and practical
implementation details are discussed for all the algorithms through the paper.

In Section 2 we state the problem and prove that it is well posed in Lipschitz
domains; see Lemma 2.1. So far, only smooth, convex, polygonal or polyhedral domains
had been studied.

Next, we discretize the problem. As is usual in control problems, we have three
choices to discretize the control: the first option is not to discretize the control, using
a variational discretization as introduced in [19] for distributed problems; as a second
option we may use piecewise constant functions; and finally we can use continuous
piecewise linear functions.

The choice is not trivial because first order optimality conditions for Dirichlet control
problems involve the normal derivative of the adjoint state.

If we discretize directly the optimality system using e.g. continuous piecewise linear
finite elements, we would obtain two different approximations of the control: the trace
of the discrete state would be continuous piecewise linear and the normal derivative
of the discrete adjoint state would be piecewise constant. In [20, Ch. 3.2.7.3] and in
[3, Example 2.1.11] this difficulty is solved using a mixed formulation of the state
equation which is discretized with the lowest order Raviart-Thomas element. In [21] a
convergence proof for this kind of discretization is given. In this way, both the trace of
the discrete state and the normal derivative of the discrete adjoint state are piecewise
constant functions, so the identification of both with the discrete control is meaningful.
The discretization of the control in the presence of control constraints is carried out
in these papers using a variational discretization. This kind of approximation may be
convenient when the gradient of the state is the variable of interest, since this quantity
is treated as one of the variables of the problem.

Another approach, in finite dimension, is to use the variational discrete normal
derivative of the discrete adjoint state introduced in [1], which is a continuous piece-
wise linear function. Doing so, both the trace of the discrete state and the normal
derivative of the discrete adjoint state are continuous piecewise linear functions, so
the identification of both with the discrete control is meaningful. Following this idea,
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in [2] the control is not discretized for the control-constrained case, but a variational
approach is followed.

In this work we investigate optimization methods for the case of discretizing the
control explicitely using continuous piecewise linear functions.

The end of Section 2 is devoted to describe with some detail some computational
aspects that will be important in the rest of the work.

We next provide in Section 3 an efficient method to solve the unconstrained problem.
We propose in Subsection 3.2 a preconditioned conjugate gradient method (pcg in the
rest of the work) for a reduced problem in the spirit of [22, Section 5]. We are able
to prove convergence of the conjugate gradient even for the case where the Tikhonov
regularization parameter ν vanishes.

In sections 4, 5 and 6 we study the convergence of the semismooth Newton method
for the constrained problems and write practical algorithms for the solution of the finite
dimensional approximations. In Section 4 we deal with the control-constrained prob-
lem. In many of the aforementioned references about the semismooth Newton method
for control-constrained problems the authors study convergence of an abstract problem
or an infinite dimensional problem. For distributed and Neumann control problems the
results are immediately applicable to the finite dimensional approximations because
the controls can be discretized using piecewise constant functions, and therefore the
variational inequality arising from first order necessary optimality conditions can be
written in an element-wise form. The same idea applies when we are dealing with a
variational approach as proposed in [2, 3, 19] or a mixed formulation, as studied in
[3, 20, 21]. When we use continuous piecewise linear elements,the variational inequal-
ity cannot be written in a point-wise or elementwise form; see (36d) and Remark 4.
We include the analysis of Newton methods for both the original problem and the
discretized one. Local convergence results are provided in Theorems 4.2, 4.3 and 4.5.

In Section 5 we study the state-constrained problem using a Moreau-Yosida penal-
ization. Since there are no control constraints, the analysis of the semismooth Newton
method for the infinite dimensional problem is applicable to the finite dimensional
one, so we do not need to repeat it. We prove that the finite-element approximation of
the penalized problems converge to the solution of the penalized problem. This result
cannot be deduced straightforward from the ones in the literature since the penalized
functional is not of class C2. A continuation strategy as proposed in [16] is developed.
Finally, in Section 6 we discuss the problem with both control and state constraints.

It is well known that the main difficulty with Dirichlet control problems is the low
regularity of the solutions. This regularity and related error estimates are, so far, well
established in 2D polygonal domains [1, 5, 8] and 2D or 3D smooth domains [2] but
there is not, up to our best knowledge, a general study in 3D polyhedral domains.
Although the main focus of this work is on optimization methods, we also study the
regularity of the solution and error estimates of the approximations in one example
case in a polyhedron; see Example 3.6.

2. Statement of the problem and first properties

Let Ω ⊂ Rd, d = 2 or d = 3, be a bounded domain with Lipschitz boundary Γ and in
this domain consider a target state yΩ ∈ L2(Ω). Consider also the continuous linear
operator S : L2(Γ) → L2(Ω) such that y = Su if and only if y is the solution in the
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transposition sense (see Definition 2.2 below) of

−∆y = 0 in Ω, y = u on Γ. (1)

Let ω ⊂ Ω be a domain such that ω̄ ⊂ Ω and define two pairs of functions α, β ∈ C(Γ)
and a, b ∈ C(ω̄) such that α(x) < β(x) for all x ∈ Γ and a(x) < b(x) for all x ∈ ω̄.
For some fixed regularization parameter ν ≥ 0, define

J(u) =
1

2
‖Su− yΩ‖2L2(Ω) +

ν

2
‖u‖2L2(Γ)

and consider the sets

Uα,β = {u ∈ L2(Γ) : α(x) ≤ u(x) ≤ β(x) for a.e. x ∈ Γ},

and

Ka,b = {y ∈ L2(Ω) ∩ C(ω̄) : a(x) ≤ y(x) ≤ β(x) for a.e. x ∈ ω̄}.

In this work we will study optimization procedures for the following four Dirichlet
control problems:

(PU) min
u∈L2(Γ)

J(u), (PC) min
u∈Uα,β

J(u), (P S) min
Su∈Ka,b

J(u), (PCS) min
u∈Uα,β
Su∈Ka,b

J(u),

namely the unconstrained, control-constrained, state-constrained and control-and-
state constrained problems.

Remark 1. Almost all the literature related to these problems is written using the
state equation (1). There would be no problem in taking into account an equation of
the form

Ay := −
d∑
i=1

∂i(ai,j∂jy) + a0y = F in Ω, y = u+G on Γ

with regular enough F , G, a0 ≥ 0 and ai,j = aj,i satysfing an uniform ellipticity
condition.

Let us state precisely what we mean by solution in the transposition sense. Consider
the space

Φ = {φ : φ ∈ H1
0 (Ω) and ∆φ ∈ L2(Ω)}.

This is a Banach space with the graph norm ‖φ‖Φ = ‖φ‖H1(Ω) + ‖∆φ‖L2(Ω). Further,

the functions in this space satisfy ∂nφ ∈ L2(Γ). This is known to be true for smooth
domains; convex domains, see [17, Lemma A.1]; plane polygonal domains, see [8, Corol-
lary 2.3]; or polyhedral domains, see [23, Theorem 2.6.7] and the usual trace theorem.
We have not been able to find a proof of this fact for general Lipschitz domains. In
[24, Theorem B.2] the regularity φ ∈ H3/2(Ω) is proved. Nevertheless, as the authors



Optimization for Dirichlet Control Problems 5

notice in page 165 of this reference, the trace theorem is not valid neither in H3/2(Ω)
nor in H1/2(Ω), so we cannot deduce immediately that ∂nφ ∈ L2(Γ). The results in
[24, 25] imply that the usual trace result can be extended to harmonic functions in the
limit cases. We show next how to take advantage of this to prove that ∂nφ ∈ L2(Γ)
in Lipschitz domains. Regarding the analysis of semismooth Newton methods –see
Lemma 4.1 below– we also prove Lq(Γ) regularity for some q > 2. Sobolev spaces
on the boundary are defined following [26, Definition 1.3.3.2]; cf. also the equivalent
definition of W 1,q(Γ) given before Theorem 5.6 in [24]. With this definition, it is clear
that Ht(Γ) = trH1/2+t(Ω) for 0 < t < 1; see [26, Theorem 1.5.12].

Lemma 2.1. Let Ω ⊂ Rd, d = 2 or d = 3, be a bounded domain with Lipschitz
boundary Γ and consider φ ∈ Φ. Then, there exists q0 > 2 depending on the domain
such that, for 2 ≤ q < q0, we have ∂nφ ∈ Lq(Γ) and

‖∂nφ‖Lq(Γ) ≤ C‖∆φ‖L2(Ω). (2)

If, further, Ω is smooth or convex or polygonal or polyhedral, then there exists t > 0
such that ∂nφ ∈ Ht(Γ) and

‖∂nφ‖Ht(Γ) ≤ C‖∆φ‖L2(Ω). (3)

Proof. Denote z = −∆φ, extend z by zero to Rd, consider the Newtonian potential
centered at the origin N(x) and define w = z ∗N , the convolution product of z and N .
Then w ∈ H2(Ω) and ∇w ∈ H1(Ω)d, so it is clear that Tr(∇w) ∈ H1/2(Γ)d ↪→ Lq(Γ)d

for all q < ∞ if d = 2 and all q ≤ 4 if d = 3, since the dimension of Γ is d − 1. This
implies that:

(a) ∂nw = ∇w · n ∈ Lq(Γ) because the boundary Γ is Lipschitz and therefore it has
a unit normal vector defined almost everywhere; and there exists C > 0 such that

‖∂nw‖Lq(Γ) ≤ C‖∆φ‖L2(Ω); (4)

(b) g = Tr(w) ∈W 1,q(Γ) due precisely to the definition of W 1,q(Γ), and there exists
C > 0 such that

‖g‖W 1,q(Γ) ≤ C‖∆φ‖L2(Ω). (5)

Define now v ∈ H1(Ω) the unique solution of −∆v = 0 in Ω, v = g on Γ.
Following [27], for s ∈ Γ and α > 0, we define the nontangential cone Tα(s) =

{x ∈ Ω, |x− s| < (1 + α)dist(x,Γ)}, and the nontangential maximal function of some
function w as M(w)(s) = sup{|w(x)| : x ∈ T1(s)}. Existence of nontangential limit
means that limx→s, x∈Tα(s)w(x) exists and is finite for all α > 0.

Using [24, Theorem 5.6], we have that there exists q0 > 2 such that if 2 ≤ q < q0,
then the nontangential maximal function of the gradient of v satisfies M(∇v) ∈ Lq(Γ)
and there exists C > 0 such that

‖M(∇v)‖Lq(Γ) ≤ C‖g‖W 1,q(Γ). (6)

As is pointed out in [27, p. 438], this implies that ∇v has nontangential limit a.e. on
Γ and we can define the normal derivative of v at a point s ∈ Γ as the nontangential
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limit as x→ s of ∇v(x) · n(s). This, together with inequalities (6) and (5) imply that
∂nv ∈ Lq(Ω) and

‖∂nv‖Lq(Γ) ≤ C‖∆φ‖L2(Ω). (7)

So we have that φ = v −w and we can define in a natural way ∂nφ = ∂nv − ∂nw ∈
Lq(Γ). The estimate (2) follows from (4) and (7).

For smooth, convex, polygonal or polyhedral domains, the second result follows from
the regularity φ ∈ H3/2+t(Ω) and the usual trace theorem for ∇φ. See [17, Lemma A.1]
for convex domains, [8, Corollary 2.3] for plane polygonal domains and [23, Theorem
2.6.7] for polyhedral domains.

Definition 2.2. We will say that y ∈ L2(Ω) is the solution in the transposition sense
of (1) if

(y,−∆φ)Ω = −(u, ∂nφ)Γ for all φ ∈ Φ. (8)

Here and in the rest of the work (·, ·)X stands for the standard inner product in
L2(X).

The adjoint operator of S is S∗ : L2(Ω)→ L2(Γ) defined by S∗z = −∂nφ, where φ
is the unique weak solution of

−∆φ = z in Ω, φ = 0 on Γ. (9)

We can write now

J(u) =
1

2
(Su− yΩ, Su− yΩ)Ω +

ν

2
(u, u)Γ =

1

2
(S∗Su+ νu, u)Γ − (S∗yΩ, u)Γ + cΩ

where cΩ = 0.5‖yΩ‖2L2(Ω) is a constant.

From this expression, we can easily compute the derivative of J at a point u ∈ L2(Γ)
in the direction v ∈ L2(Γ):

J ′(u)v = (S∗Su+ νu, v)Γ − (S∗yΩ, v)Γ.

For later use, we will define now for every u ∈ L2(Γ), yu = Su ∈ H1/2(Γ) and
ϕu ∈ H1

0 (Ω) the unique solution of

−∆ϕu = yu − yΩ in Ω, ϕu = 0 on Γ.

Discretization.

To discretize the problems, consider {Th}h a regular family of triangulations of Ω̄. To
simplify the notation, we will suppose that Γ is polygonal or polyhedral. Related to the
mesh, we will call N the number of nodes and {xj}Nj=1 the nodes of the mesh. We define
the sets of interior indexes, boundary indexes and indexes in ω̄ as I = {j : xj ∈ Ω},
B = {j : xj ∈ Γ} and J = {j : xj ∈ ω̄}. For the discretization of the state and the
adjoint state we use the space of linear finite elements Yh ⊂ H1(Ω),

Yh = {yh ∈ C(Ω̄) : yh ∈ P 1(T ) ∀T ∈ Th}.



Optimization for Dirichlet Control Problems 7

As usual, we will abbreviate Yh0 = Yh ∩H1
0 (Ω). For the control we use the space Uh

of continuous piecewise linear functions on Γ

Uh = {uh ∈ C(Γ) : uh ∈ P 1(T ∩ Γ) ∀T ∈ Th}.

Notice that the elements of Uh are the traces of the elements of Yh. We will denote
Ih : C(Ω̄) → Yh or Ih : C(Γ) → Uh the interpolation operator related to these spaces
and Πh : L2(Ω) → Yh or Πh : L2(Γ) → Uh the projection onto this spaces in the L2

sense. For all y ∈ L2(Ω) and all u ∈ L2(Γ):

(Πhy, yh)Ω = (y, yh)Ω ∀yh ∈ Yh and (Πhu, uh)Γ = (u, uh)Γ ∀uh ∈ Uh.

We discretize the state equation following the work by Berggren [28]: define Sh :
L2(Γ)→ L2(Ω) such that for u ∈ L2(Γ), yh = Shu if and only if yh ∈ Yh is the unique
solution of

a(yh, zh) = 0 ∀zh ∈ Yh0, (yh, vh)Γ = (u, vh)Γ ∀vh ∈ Uh, (10)

where a(·, ·) is the bilinear form associated to the operator in the PDE. This definition
of Sh corresponds to performing a L2-projection of u data to Uh and prescribing the
result as boundary data for the discrete state. In the case of the Laplace operator
a(y, z) =

∫
Ω∇

T y∇zdx. The discrete functional is thus defined as

Jh(u) =
1

2
(Shu− yΩ, Shu− yΩ)Ω +

ν

2
(u, u)Γ.

We define now

Uhα,β = {uh ∈ Uh : α(xj) ≤ uh(xj) ≤ β(xj) ∀j ∈ B},

and

Kh
a,b = {yh ∈ Yh : a(xj) ≤ yh(xj) ≤ b(xj) ∀j ∈ J}.

The discrete problems read thus as

(PU
h ) min

uh∈Uh
Jh(uh), (PC

h ) min
u∈Uhα,β

Jh(uh), (P S
h ) min

Shuh∈Kh
a,b

Jh(uh), (PCS
h ) min

uh∈Uhα,β
Shuh∈Kh

a,b

Jh(uh).

The adjoint operator of Sh is given by the discrete variational normal derivative.
See [1]. S∗h : L2(Ω)→ L2(Γ) and wh = S∗hy if wh ∈ Uh satisfies

(wh, zh)Γ = (y, zh)Ω − a(zh, φh) for all zh ∈ Yh, (11)

where φh ∈ Yh0 is the unique solution of

a(zh, φh) = (y, zh)Ω for all zh ∈ Yh0. (12)
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It is customary to write S∗hy = −∂hnφh. For u ∈ L2(Γ) and y ∈ L2(Ω), we have

(Shu, y)Ω = (u, S∗hy)Γ.

We can then write

Jh(u) =
1

2
(S∗hShu+ νu, u)Γ − (S∗hyΩ, u)Γ + cΩ.

The computation of the derivative of Jh at a point u ∈ L2(Γ) in the direction v ∈ L2(Γ)
is then obtained with

J ′h(u)v = (S∗hShu+ νu, v)Γ − (S∗hyΩ, v)Γ.

Since our final objective is to optimize in Uh, let us see in more detail how to make
the computations in this space.

Consider {ej}N1 the nodal basis in Yh, where N is the dimension of Yh and satisfies
N = NI+NB, the latter being respectively the number of interior and boundary nodes.
With an abuse of notation, we will also denote ej the restriction of ej to Γ. Define the
usual finite element stress, mass and boundary mass matrices by

Ki,j = a(ei, ej), Mi,j = (ei, ej)Ω, Bi,j = (ei, ej)Γ for 1 ≤ i, j ≤ N.

We will also use I ∈ RN×N for the identity matrix, O ∈ RN×N for the zero matrix
and usually refer to submatrices as KI,I or KI,: defined by taking the rows or columns
designed by the sets of indexes in the subscripts, the semicolon meaning “all the
indexes”. For instace, the usual boundary mass matrix is BB,B.

Given uh =
∑

j∈B ujej , we denote u ∈ RNB×1 the vector (u1, . . . , uNB)T and for

yh =
∑N

j=1 yjej we denote y ∈ RN×1 the vector (y1, . . . , yN )T . Using (10), we have
that yh = Shuh iff [

KI,I KI,B
OB,I BB,B

] [
yI
yB

]
=

[
0
BB,Bu

]
. (13)

Since BB,B is nonsingular, we can write this as

KI,IyI = −KI,Bu,
yB = u.

(14)

If we define S ∈ RNB×N as

S =

[
KI,I KI,B
OB,I IB,B

]−1

I:,B

we have that yh = Shuh if and only if y = Su.
Given yh ∈ Yh, let φh =

∑
j∈I φjej be the solution of (12) for y = yh. Denoting

φ ∈ RNI×1 the corresponding vector, it can be computed as the solution of

KI,Iφ =MI,:y. (15)
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Then we could compute w ∈ RNB×1, the vector whose components are the coefficients
of the (minus) discrete normal derivative −∂hnφh = S∗hyh = wh =

∑
j∈Bwjej solving

the system

BB,Bw =MB,:y −KB,Iφ. (16)

Formally, we can also write that w = B−1
B,BSTMy. To finish this section we also define

the matrix A ∈ RNB,×NB and the vector f ∈ RNB×1 by

Ai,j = (S∗hShei + νei, ej)Γ and fi = (S∗hyΩ, ei)Γ.

We have that

Jh(uh) =
1

2
uTAu− fTu+ cΩ. (17)

We also note that

A = STMS + νBBB. (18)

To compute the vector f , we consider the projection of yΩ onto Yh in the L2(Ω) sense,
yΩ,h = ΠhyΩ and denote yΩ ∈ RN×1, the vector whose j-th component is yΩ,h(xj),
and

f = STMyΩ. (19)

So for uh, vh ∈ Uh, the latter represented by the vector v, we can compute

J ′(uh)vh = vTBB,Bw + νvTBB,Bu− vTf .

Notice that applying the equality (16), the explicit computation of w is not necessary,
and we can write

J ′(uh)vh = vT (MB,:y −KB,Iφ+ νBB,Bu− f).

3. Unconstrained problem

Problem (PU) has a unique solution ū ∈ L2(Γ) that satisfies J ′(ū) = 0. For every
0 < h < h0, problem (PU

h ) has also a unique solution ūh that satisfies J ′h(ūh) = 0. The
problems being convex, these conditions are also sufficient. Moreover it is known that
ūh → ū strongly in L2(Γ) and also error estimates are available in terms of the mesh
size h if ν > 0 and the domain is either 2D and polygonal or smooth. See [1, 2, 4–6, 29].

Let us comment two different approaches for the solution of the FE approximation
of (PU).
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3.1. Solve the optimality system for the state, the adjoint state and the
control.

We write first order optimality conditions for (PU
h ). There exists some h0 > 0 such

that for every 0 < h < h0, there exist unique ūh ∈ Uh, ȳh ∈ Yh and ϕ̄h ∈ Yh0 satisfying
the optimality system:

a(ȳh, zh) = 0 for all zh ∈ Yh0, (20a)

ȳh ≡ ūh on Γ, (20b)

a(zh, ϕ̄h) = (ȳh − yΩ, zh)Ω for all zh ∈ Yh0, (20c)

νūh ≡ ∂hnϕ̄h on Γ. (20d)

Taking into account the definition of discrete variational normal derivative and rela-
tions (14)–(16), we can write this optimality system as

KI,I OI,B KI,B OI,I
OB,I IB,B −IB,B OB,I
−MI,I −MI,B OI,B KI,I
MB,I MB,B νBB,B −KB,I



yI
yB
u
ϕI

 =


0I
0B

−MI,:yΩ

MB,:yΩ

 .
We may eliminate u with the boundary condition, and reorder the equations to get
the linear system [

M+ νB −K:,I
−KI,: OI,I

] [
y
ϕI

]
=

[
MyΩ

0

]
. (21)

Notice that system (21) is solvable even for ν = 0 (it is equivalent to (22), and A
is symmetric and positive definite for ν ≥ 0; see Lemma 3.1 below.). Solving this
equation would completely solve the problem for the unconstrained case. When the
discretization is very fine, the number of unknowns may make the solution of the
system by direct methods too difficult. The preconditioned conjugate gradient method
for this kind of linear systems is studied by Schöberl and Zulehner in [30] and Herzog
and Sachs in [31]. A preconditioner can be built using matrices representing scalars
products in Yh and Yh0. Following Algorithm 1 in the last-mentioned reference, at each
iteration three linear systems must be solved: two of size N and one of size NI. In [31,
Algorithm 3], the systems are solved using a multigrid method.

Reduced problems in the adjoint state variable and related pcg have also been
studied in [32]. Nevertheless, the structure of the matrix we have in (21) is different to
the one treated in that reference and application of their results is not straightforward.

3.2. Use an iterative method to solve a reduced problem in the control
variable.

Let us see another way of solving (PU
h ). Using (17), first order optimality conditions

can also be written as

Au = f . (22)
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Lemma 3.1. The matrix A is symmetric and positive definite for all ν ≥ 0 and there
exists C > 0 independent of h and ν such that its condition number is bounded by

κ(A) ≤
C
λNB (BB,B)

λ1(M) λN (M) + νλNB(BB,B)

λ1(M) + νλ1(BB,B)
, (23)

where 0 < λ1(BB,B) < λNB(BB,B) and 0 < λ1(M) < λN (M) are respectively the
smallest and greatest eigenvalues of the matrices BB,B and M.

Proof. It is clear from (18) that A is symmetric. The mass matricesM and BB,B are
symmetric and positive definite and therefore λ1(M) > 0 and λ1(BB,B) > 0. Since the
boundary components of Su are exactly u, we have that ‖Su‖RN ≥ ‖u‖RNB and hence

uTAu = uT (STMS + νBB,B)u = (Su)TM(Su) + νuTBB,Bu
≥ (λ1(M) + νλ1(BB,B))‖u‖2RNB (24)

so A is positive definite.
From [4, Equation (3.8)], we know that there exists some C > 0 such that

‖Shuh‖L2(Ω) ≤
√
C‖uh‖L2(Γ). Since

‖Shuh‖2L2(Ω) = (Su)TM(Su) ≥ λ1(M)‖Su‖2RN

and

‖uh‖2L2(Γ) = uBB,Bu ≤ λNB(BB,B)‖u‖2RNB ,

we obtain

uTAu = (Su)TM(Su) + νuTBB,Bu ≤ (C
λNB(BB,B)

λ1(M)
λN (M) + νλNB(BB,B))‖u‖2RNB .

The bound for the condition number follows directly from the last inequality and
(24).

For a graded family of meshes with grading parameter 0 < µ ≤ 1 (see [33]), we
usually define h = N−1/d, N being the number of nodes of the mesh and d the
dimension of Ω. The case µ = 1 corresponds to that of a quasi-uniform mesh family.

Corollary 3.2. If Th is a family of graded meshes with grading parameter 0 < µ ≤ 1,
then there exists C > 0 independent of h and ν such that

κ(A) ≤ Ch(2d−1)
(

1− 1

µ

)
1 + νh

(
1− 1

µ

)
d

h
1

µ + ν
. (25)

In particular, for a quasi-uniform family, there exists C > 0 such that

κ(A) ≤ C 1 + ν

ν + h
. (26)
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Proof. from [34] and [33], we have that there exists constants 0 < C1 < C2

λNB(BB,B) ≤ C2h
d−1, λ1(BB,B) ≥ C1h

d−1

µ , λN (M) ≤ C2h
d, λ1(M) ≥ C1h

d

µ

Estimate (25) follows then from (23). Estimate (26) follows from (25) for µ = 1.

The explicit computation of the matrix A is out of the question, since it requires the
solution of 2NB systems of size NI. Much better performance can be achieved using
an iterative method which only requires the computation of d = Au. This is shown in
Algorithm 1.

Algorithm 1: Function d = Au
1 solve (14) for y
2 solve (15) for φ
3 set d =MB,:y −KB,Iφ+ νBB,Bu

Preconditioned conjugate gradient methods can be carried out at the cost of one
evaluation of Au per iteration. The computation of f can be done in a similar way,
but of course it only must be computed once; see Algorithm 2.

Algorithm 2: Computation of f

1 define yΩ by yj = yΩ,h(xj) for j = 1 : N
2 set y = yΩ in (15) and solve for φ
3 set f =MB,:yΩ −KB,Iφ

To finish this section, let us say a word about a preconditioner to solve (22). In
practice, matrices like BB,B or P = MB,B + νBB,B make acceptable preconditioners.
This is specially important when using graded meshes; see Example 3.5 below. Notice
that at each pcg iterate, we only need to solve two linear systems, each of size NI, to
compute Au, plus another one of size NB to compute P−1r.

Example 3.3. All the code for all the examples has been made by the author using
Matlab R2015b and has been run on a desktop PC with Windows 10 Pro 64bits with
16GB RAM DIMM 1333Mhz on an Intel Core i7 CP 870@2.93Ghz.

In this example we compare the different execution times, tD and tP , that we obtain
when we solve the optimality system using a direct solver for equation (21) or using
an iterative method, the preconditioned conjugate gradient method in our case, to
solve the reduced problem (22). We have used respectively Matlab builtin commands
mldivide and pcg.

We use the example in [5], where Ω the interior of the convex hull of the points
(−0.5,−0.5), (0.5,−0.5), (0.5, 0), (0, 0.5), (−0.5, 0.5); yΩ ≡ 1 and ν = 1.

A rough initial mesh is built with Matlab PDEToolbox (version 2.1) commands
initmesh and ’hmax’ set to 0.2 and subsequent nested meshes are obtained by regular
diadic refinement using refinemesh. We use our own code to assemble the matrices
K, M and B.

For the pcg we use as initial guess the null vector, a relative tolerance of 1E-10
and the preconditioner P = MB,B + νBB,B. At each iteration we have to solve the
linear systems (14) and (15). To do this, we first obtain the Cholesky factors of KI,I
so that at each iteration we only have to solve triangular systems. The interior mesh
nodes were ordered using a symmetric approximate minimum degree permutation in
order to minimize the number of nonzero elements in the Cholesky factors of KI,I using
Matlab command symamd. An analogous reordering of the boundary nodes is done



Optimization for Dirichlet Control Problems 13

Table 1. Execution times for the 2D problem in Example 3.3. ν = 1.

h N NI NB tD (s) tP (s) pcg J(ūh)

0.2× 2−4 10657 10337 320 0.5 0.2 7 0.3470689275
0.2× 2−5 42305 41665 640 4.1 1.0 7 0.3471023330
0.2× 2−6 168577 167297 1280 46.1 5.9 7 0.3471129922
0.2× 2−7 673025 670465 2560 453.0 31.0 7 0.3471163823
0.2× 2−8 2689537 2684417 5120 ∞ 177.5 7 0.3471174585

to optimize the sparsity pattern of the Cholesky factors of the preconditioner. This
reorderings and factorizations take more or less the same cputime than each single
iteration of the pcg. This time is included in tP .

For reference and possible double-check, we also report on the optimal value of the
functional. We have marked with ∞ the experiments in which we have run out of
RAM.

Example 3.4. In this example we show that the number of pcg iterations for each
fixed h is independent of the value of ν ≥ 0 for all ν < ν0. We take the same domain
and meshes as in the 2D problem in Example 3.3 and set yΩ(x) = |x|2, so that J(ū) > 0
even for ν = 0. The results are summarized in Table 2.

Table 2. Dependence of the number of pcg iterations w.r.t. the

regularization parameter in Example 3.4.

h \ ν 1E4 1E2 1 1E-2 1E-4 1E-6 0

0.2× 2−5 2 3 7 26 49 49 49
0.2× 2−6 2 3 7 28 63 65 65
0.2× 2−7 2 3 7 28 81 86 86

This example and the previous one show that choosing to use a direct or an iterative
method depends strongly on the mesh size and the number of iterations required for the
pcg to converge to a prescribed accuracy. The computation time for pcg is proportional
to the number of iterates needed. Comparing Tables 1 and 2 shows that for h > 0 not
very small and ν > 0 small enough, the direct method will be faster than the iterative
one. For instance, for h = 0.2 × 2−5 the direct method will be faster for ν < 1E − 2;
for h = 0.2× 2−6, the critical ν would be slightly greater than 1E− 4; and for smaller
h it seems preferable to use pcg.

Example 3.5. In this example we show the effect of the use of P = MB,B + νBB,B
as a preconditioner to solve (22). In this case ν = 0.01, Ω = {x = reiθ ∈ R2 : r <
1, 0 < θ < 11π/12}, and we use a mesh family graded at the origin with parameter
µ = 13/33 ≈ 0.4; see [33]. In Table 3 we compare the number of iterations used
to reach the prescribed accuracy of 1E−10 without and with preconditioner. This
example shows very clearly the effectiveness of this strategy of preconditioning.

Table 3. Number of conjugate gradient iterations without
and with preconditioner in Example 3.5. Graded mesh and
ν = 0.01.

N NI NB No P P J(ūh)

289 225 64 46 26 0.0228920077
1089 961 128 103 24 0.0230219261
4225 3969 256 214 24 0.0231321072

16641 16129 512 421 24 0.0231982941
66049 65025 1024 733 26 0.0232287479



Optimization for Dirichlet Control Problems 14

Example 3.6. A 3D example in a polyhedron. Up to our best knowledge, there
is not a general theory about regularity of the solutions or approximation results for
3D Dirichlet control problems posed on polyhedral domains. In [2], the authors study a
semi-discrete or variational approach to 3D problems on regular domains. Although the
semi-discrete approach coincides with the full approach for unconstrained problems,
we cannot profit their results since the regularity of the solutions in a smooth domain is
(see [2, Lemma 2.1]) much higher than the one we may obtain in polyhedral domains.

For this example we will take Ω the unit cube (−0.5, 0.5)3, yΩ ≡ 1 and ν = 1. First,
we obtain a regularity result for the solution of our problem.

Proposition 3.7. Let Ω ⊂ R3 be the interior of a rectangular parallelepiped and
yΩ ∈ Lp(Ω) for some 3 < p < +∞. Consider ū the solution of problem (PU). Then,
ū ∈ W 1−1/p(Γ), ȳ ∈ W 1,p(Ω) and ϕ̄ ∈ W 2,p(Ω). Moreover, ū ≡ 0 on the edges and
corners of Γ.

Proof. Since ū ∈ L2(Γ), using transposition and interpolation it is clear that
y ∈ H1/2(Ω). Classical Sobolev embedding in 3D leads to y ∈ L3(Ω). Since Ω is a
parallelepiped and yΩ is regular enough, [35, Theorem 1] states that ϕ̄ ∈W 2,3(Ω), and
hence ∂nϕ̄ ∈ ΠiW

2/3,3(Γi), where Γi, i = 1 : 6, are the faces of Γ. This does not imply
immediately that ū belongs to W 2/3,3(Γ) because 2/3 · 3 = 2, which is the topological
dimension of Γ, and some integral compatibility condition should be imposed on the
edges; but for all q < 3, it is true that ū ∈ W 1−1/q,q(Γ), and therefore ȳ ∈ W 1,q(Ω).
Using again Sobolev embeddings, we have that ȳ ∈ Ls(Ω) for all s < +∞ and hence
ȳ − yΩ ∈ Lp(Ω). Applying once again [35, Theorem 1], we have that ϕ̄ ∈W 2,p(Ω).

Now we have that ∂nϕ̄ ∈ ΠiW
1−1/p,p(Γi) and we can prove that if we define ∂nϕ̄ = 0

on the edges of Ω, then we obtain a continuous function. To do this, we use a similar
argument to the one used in [7, Section 4] for 2D problems. Since p > 3, ϕ̄ ∈ C1(Ω̄).
Consider two faces A and B with a common edge AB and let τ1

X , τ2
X be two linearly

independent vectors tangent to face X (X = A or X = B) such that τ1
A = τ1

B is
also tangent to the edge AB. Since ϕ̄ = 0 on Γ, we have that for every x ∈ A,
∇ϕ̄(x) · τ1

A = ∇ϕ̄(x) · τ2
A = 0 and for every x ∈ B, ∇ϕ̄(x) · τ1

B = ∇ϕ̄(x) · τ2
B = 0. So for

x ∈ AB, we have that ∇ϕ̄(x) = 0 and therefore ∇ϕ̄(x) ·n can be seen as a continuous
function if we set its value to 0 on the edges, despite the jump discontinuities of the
normal vector n.

So ū is continuous and hence ū ∈ W 1−1/p,p(Γ). The regularity of the optimal state
follows from the trace theorem; see e.g. [36].

Using this regularity, an error estimate can be proved for the example problem.

Proposition 3.8. Let Ω be a rectangular parallelepiped and yΩ ∈ Lp(Ω) for some
3 < p < +∞. Consider ū be the solution of problem (PU) and ūh be the solution of
(PU

h ). Then there exists some h0 > 0 and C > 0 such that for all 0 < h < h0

‖ū− ūh‖L2(Γ) ≤ Ch1−1/p.

The proof follows the same guidelines as those of [1] or [5, Section 6.1] and thus will
be omitted. An interesting remark is that for 2D problems, we can deduce uniform
convergence for the controls using the L2(Γ) estimate and an inverse inequality, since
the boundary is 1D. This does not work for 3D problems with the error estimate at
hand, since now Γ is 2D.

To solve the problem we have used a regular mesh of identical cubes of size h, each
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Table 4. Execution times for the 3D problem in Example 3.3. ν = 1.

h N NI NB tD (s) tP (s) pcg J(ūh)

2−4 4913 3375 1538 0.7 0.2 6 0.4142332683
2−5 35937 29791 6146 123.2s 5.2 6 0.4159847757
2−6 274625 250047 24578 ∞ 183.7 6 0.4164610762

of them divided into 6 tetrahedra according to the Kuhn triangulation of the cube (see
e.g. [37]). Up to our best knowledge, the current version of the Matlab PDEToolbox
(version 2.1) computes an approximation of B using the barycenter formula. Although
this does not affect the order of convergence for the FEM, this matrix plays a central
role in Dirichlet control problems (for instance, BB,B is not singular, but the barycenter
approximation may be singular), so we have computed it in an exact way (using the
mid-sides formula). Mesh data, computation times and optimal values are displayed
in Table 4.

4. Control constrained problems

Problem (PC) has a unique solution ū ∈ L2(Γ) that satisfies J ′(ū)(u − ū) ≥ 0 for all
u ∈ Uα,β. For every 0 < h < h0, problem (PC

h ) has also a unique solution ūh that
satisfies J ′h(ūh)(uh − ūh) ≥ 0 for all uh ∈ Uhα,β. The problems being convex, these

conditions are also sufficient. Moreover it is known that ūh → ū strongly in L2(Γ)
and also error estimates are available in terms of the mesh size h when ν > 0 and
the domain is convex in 2D. See [1, 6]. In [2] the smooth (2D and 3D) case is treated
using variational approach, whose optimization process is different from the one we
are presenting in the work at hand: in [3, Ch. 2.1], the problem is solved using a fixed
point method, convergent for ν large enough; see [18] and Remark 3 below for the
convergence of the semismooth Newton method.

4.1. Continuous problem

We can formulate first order optimality conditions as: there exist unique ū ∈ L2(Γ),
ȳ ∈ H1/2(Ω) and ϕ̄ ∈ H1

0 (Ω) such that

−∆ȳ = 0 in Ω, ȳ = ū on Γ, (27a)

−∆ϕ̄ = ȳ − yΩ in Ω, ϕ̄ = 0 on Γ, (27b)

(−∂nϕ̄+ νū, u− ū) ≥ 0 for all u ∈ Uα,β. (27c)

We first describe a semismooth Newton method to solve this optimality system
and prove a convergence result for it (see Theorem 4.2). Next, we will reformulate
the optimality system in terms of the Lagrange multipliers related to the constraints.
We will see that this approach is better suited to the discrete problem, but has the
drawback that the Newton method related to it is not semismooth; nonetheless, we
will prove a convergence result for it; cf. Theorem 4.3. To facilitate the notation, we
will skip the lower bound α, and will work only with the constraint u ≤ β.

The variational inequality (27c) is a projection in L2(Γ). In this case, it is equivalent
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to a pointwise projection:

νū(x) = min{νβ(x), ∂nϕ̄(x)} on Γ. (27d)

In order to analyze the semismooth Newton method to solve the optimality system,
we define G : L2(Γ)→ L2(Γ) by

G(u) = νu−min{νβ,−S∗(Su− yΩ)}.

Thus, solving the optimality system is equivalent to solving

G(u) = 0. (28)

Given u ∈ L2(Γ), we define the sets of active and free points related to u as

ΓA(u) = {x ∈ Γ : −S∗(Su− yΩ) > νβ}, ΓF (u) = Γ \ ΓA(u).

Abusing notation and when this does not lead to confusion, we will often drop the u
and only write ΓA and ΓF . (Although it is customary to use the word “inactive”, we
have preferred to use “free” since we have already used the letter I for the identity
matrix I and the interior nodes I.) χB will denote the characteristic function of a set
B.

Lemma 4.1. The relation G : L2(Γ) → L2(Γ) is slantly differentiable in the sense
stated in [15] and ∂CLG semismooth in the sense stated in [20, Ch. 2], where ∂CLG
is Clarke’s generalized differential [38].

A slanting functional M(u) ∈ L(L2(Γ), L2(Γ)) is given by

M(u)v = νv + χΓF (u)S
∗Sv

for all v ∈ L2(Γ).
Finally, if ν > 0, M(u) has an inverse uniformly bounded in L(L2(Γ), L2(Γ)) for

all u ∈ L2(Γ).

Proof. Using (2) in Lemma 2.1, we have that there exists some q > 2 such that
S∗S ∈ L(L2(Γ), Lq(Γ)). The slant differentibility then follows directly from [15, Pr 4.1
b)] and the semismoothness from [20, Theorem 2.13]; see also [14].

The expression for the slanting functional follows from the slant derivative of the
function min(0, ·) and the chain rule [20, Theorem 2.10(c)].

Given z ∈ L2(Γ), existence of v ∈ L2(Γ) satisfying M(u)v = z is straightforward,
since the equation can be reduced to a symmetric positive definite system on the
inactive set:

M(u)v = z ⇐⇒
{
νv = z on ΓA(u),
νv = z − S∗Sv on ΓF (u).
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This equations can be read as

−∆y = 0 in Ω, y = v on Γ,

−∆ϕ = y in Ω, ϕ = 0 on Γ,

νv = z on ΓA(u), νv = z + ∂nϕ on ΓF (u).

Let us define w = χΓF (u)v. Taking into account the definition of S and S∗, we have
that νv = νw + zχΓA(u) and

−∆yw = 0 in Ω, yw = w on Γ,

−∆ϕw = yw in Ω, ϕw = 0 on Γ,

w = 0 on ΓA(u), νw = z + ∂nϕw − S∗SzχΓA(u) on ΓF (u).

On one hand, using the continuity of S∗ (cf. (2)) and of S, we have

‖S∗SzχΓA(u)‖L2(Γ) ≤ C‖z‖L2(ΓA(u)) ≤ C‖z‖L2(Γ). (29)

On the other hand, using the definition of solution in the transposition sense, we have
that

(yw, yw)Ω = −(w, ∂nϕw)Γ = −ν(w,w)Γ + (w, z)Γ − (w, S∗SzχΓA(u))Γ.

So

ν‖w‖2L2(Γ) = (w, z)Γ − (w, S∗SzχΓA(u))Γ − ‖yw‖2L2(Ω)

≤ ‖w‖L2(Γ)‖z‖L2(Γ) + ‖w‖L2(Γ)‖S∗SzχΓA(u)‖L2(Γ)

≤ C‖w‖L2(Γ)‖z‖L2(Γ).

And we get ‖w‖L2(Γ) ≤ C/ν‖z‖L2(Γ). Taking into account the definition of w and
the condition for v on the active set, we get that ‖v‖L2(Γ) ≤ C/ν‖z‖L2(Γ), where C is
independent of u, and hence M(u) has a uniformly bounded inverse for each ν > 0.

Remark 2. Notice that in the infinite dimensional case, if ν = 0 then M(u)v =
χΓF (u)S

∗Sv. In practical cases, it is known (cf. (3) or [8]) that there exists t > 0 such

that S∗Sv ∈ Ht(Γ) which is compactly embedded in L2(Γ), and hence M(u) does not
have a bounded inverse.

Given a current iterate u ∈ L2(Γ), we may compute next iterate u+ using a semis-
mooth Newton method as follows:

M(u)(u+ − u) = −G(u).

Writing this in detail leads to

νu+ − νu+ χΓF (u)S
∗S(u+ − u) = −νu+ min{νβ,−S∗(Su− yΩ)},

which means that, if ν > 0,

νu+ − νu = −νu+ νβ ⇒ u+ = β on ΓA(u),
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and

u+ = −1

ν
S∗(Su+ − yΩ) on ΓF (u).

This equations can be read as

−∆y+ = 0 on Ω, y+ = u+ on Γ, (30a)

−∆ϕ+ = y+ − yΩ on Ω, ϕ+ = 0 on Γ, (30b)

u+ = β on ΓA(u), u+ =
1

ν
∂nϕ

+ on ΓF (u). (30c)

With all these considerations, we can write a semismooth Newton method to solve the
optimality system in the infinite dimensional case.

Algorithm 3: Semismooth Newton method to solve (27a), (27b), (27d)

1 Initialize k = 0 and provide u0 ∈ L2(Γ)

2 Set u = uk

3 Compute ΓA(u) and ΓF (u)
4 Solve the optimality system (30a) (30b), (30c)

5 Set uk+1 = u+

6 Set k = k + 1
7 Stop or go to 2

Theorem 4.2. The semismooth Newton method described in Algorithm 3 converges
q-superlinealy to ū provided u0 is close enough to ū in the sense of L2(Γ).

Proof. Once we have proved Lemma 4.1, this result is a direct consequence of [10,
Theorem 3.4]; see also [15, Theorem 1.1] or [20, Theorem 2.12].

The discrete version of the variational inequality (27c) –see (36d) below– does not
have a pointwise version analog to (27d). A more convenient approach to the contin-
uous problem, from the point of view of the discretized problem, is obtained using
Lagrange multipliers associated to the bound control constraints. The con of this ap-
proach is that we do not obtain a semismooth Newton method, in the sense that the
involved functions are known not to be semismooth.

Remark 3. It must noticed that, when the variational discretization of the control is
used, [2, 3, 18, 19], the discrete optimal control is obtained as the pointwise projection
of the discrete optimal adjoint state as in (27d), so convergence of the semismooth
Newton method for such a discretization would follow from Theorem 4.2 and Lemma
4.1 with S replaced by Sh.

To simplify the notation, we will reduce the exposition to the case of having only
an upper bound u ≤ β on Γ.

Condition (27c) can be replaced by the following pair of equations: there exists also
λ̄ ∈ L2(Γ) such that equation (27d) can be written as

νū(x) = ∂nϕ̄(x)− λ̄(x) on Γ. (31a)

ū(x) ≤ β(x), λ̄(x) ≥ 0, λ̄(x)(ū(x)− β(x)) = 0 for a.e. x ∈ Γ. (31b)
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Condition (31b) can be written as

λ(x)−max{0, λ(x) + c(u(x)− β(x))} = 0 for a.e. x ∈ Γ, (32)

which is true for any c > 0. It is known that the operator described in (32) neither
is semismooth in L2(Γ) (following [20, Lemma 2.7]) nor has a slant derivative (as in
[15, Pr 4.1]). Since u ∈ L2(Γ) appears inside the max operation, it is not clear that
Newton’s method applied to (27a), (27b), (32) converges. Define

Fc(u, λ) =

(
νu+ S∗Su− S∗yΩ + λ
λ−max{0, λ+ cu− cβ}

)
and for each pair control-multiplier (u, λ) ∈ L2(Γ)× L2(Γ), set

ΓA(u, λ) = {x ∈ Γ :
1

c
λ+ u > β}, ΓF (u, λ) = Γ \ ΓA(u, λ).

We have that (
νI + S∗S I
−cχΓA(u,λ)I χΓF (u,λ)I

)
∈ ∂CLFc(u, λ).

So, given a current iterate (u, λ), a Newton-like iterate to obtain (u+, λ+) reads as

νu+ = −S∗(Su+ − yΩ)− λ+, (33a)

u+ = β on ΓA(u, λ), (33b)

λ+ = 0 on ΓF (u, λ). (33c)

It is remarkable that the parameter c only appears in this equations hidden in the
definition of the active set.

Algorithm 4: Newton-like method to solve (27a), (27b), (32)

1 Initialize k = 0 and provide (u0, λ0) ∈ L2(Γ)× L2(Γ)

2 Set u = uk and λ = λk

3 Compute ΓA(u, λ) and ΓF (u, λ)
4 Compute (u+, λ+) using (33a) (33b), (33c)

5 Set uk+1 = u+ and λk+1 = λ+

6 Set k = k + 1
7 Stop or go to 2

Theorem 4.3. If c = ν > 0, the sequence uk generated by the Newton-like method
described in Algorithm 4 converges q-superlinearly to ū in L2(Γ) provided u0 is close
enough to ū in the sense of L2(Γ) and λ0 = S∗yΩ − (S∗Su0 + νu0).

Proof. In this case we cannot apply directly the results in [10, Theorem 3.4]; see
also [15, Theorem 1.1] or [20, Theorem 2.12] since u ∈ L2(Γ) appears inside the max
operation, and it is known that the operator described in (32) is not semismooth
(following [20, Lemma 2.7]) or has not a slant derivative (as in [15, Pr 4.1]).

We will follow instead the method of proof of [15, Theorem 4.1] and we will show
that the sequence uk generated by Algorithm 4 is exactly the same as the one generated
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by Algorithm 3, which we will call ũk.
Writing in detail (33a) we obtain

−∆y+ = 0 on Ω, y+ = u+ on Γ, (34a)

−∆ϕ+ = y+ − yΩ in Ω, ϕ+ = 0 on Γ, (34b)

νu+ = ∂nϕ
+ − λ+ on Γ. (34c)

Using now (33b) and (33c) we obtain

−∆y+ = 0 on Ω, y+ = u+ on Γ, (35a)

−∆ϕ+ = y+ − yΩ on Ω, ϕ+ = 0 on Γ, (35b)

u+ = β on ΓA(u, λ), u+ =
1

ν
∂nϕ

+ on ΓF (u, λ), (35c)

λ+ = ∂nϕ
+ − νβ on ΓA(u, λ), λ+ = 0 on ΓF (u, λ). (35d)

Notice that (35a), (35b) and (35c) is exactly as (30a), (30b) and (30c), provided that
ΓA(u, λ) = ΓA(u).

To finish, let us prove by induction that uk = ũk and ΓA(uk, λk) = ΓA(ũk) for
all k ∈ N ∪ {0}. For k = 0 it is clear from the definition of the active sets and the
choice of λ0 made in the assumption of this theorem. Suppose now uk = ũk and
ΓA(uk, λk) = ΓA(ũk). It is clear that uk+1 = ũk+1. On the other hand, from (35c)
and (35d) and the choice c = ν we have that cuk+1 + λk+1 = −S∗S(uk+1 − yΩ), and
therefore ΓA(uk+1, λk+1) = ΓA(ũk+1).

The result, hence, follows from Theorem 4.2.

We want to remark here that writting the Newton step as in (35a), (35b), (35c) and
(35d) we obtain exactly the same kind of algorithm as the one described in [13]

4.2. Finite dimensional approximation

Let us focus now on the finite dimensional approximation. For every 0 < h < h0, there
exist a unique solution ūh ∈ Uh of (PCh ) and unique, ȳh ∈ Yh and ϕ̄h ∈ Yh0 such that

a(ȳh, zh) = 0 for all zh ∈ Yh0, (36a)

ȳh ≡ ūh on Γ, (36b)

a(zh, ϕ̄h) = (ȳh − yΩ, zh)Ω for all zh ∈ Yh0, (36c)

(−∂hnϕ̄h + νūh, uh − ūh) ≥ 0 for all uh ∈ Uhα,β. (36d)

This way of writting the optimality system is useful to obtain error estimates (cf.
[1, 2, 5]). Nevertheless, we cannot deduce a pointwise projection formula for the optimal
control from the variational inequality.

Remark 4. This difficulty is of course not exclusive of Dirichlet control problems.
Think of this naive example. Let Γ = [−1, 1] and take a mesh with nodes {−1, 0, 1}.
For every uh, vh ∈ Uh, we have that (uh, vh)Γ = uTBv, where B is the mass matrix

B =
1

6

 2 1 0
1 4 1
0 1 2

 .
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Consider α = −∞, β = 0, and take , e.g., w = (−2, 1, 1)T . Then we have that

(−wh+ūh, uh−ūh) ≥ 0 ∀uh ∈ Uhα,β =⇒ ūh = −1.5e1+0e2+0e3 =⇒ u = (−1.5, 0, 0)T ,

but

min(w,0) = (−2, 0, 0)T ,

and we get different results with the L2(Γ) projection and the pointwise projection.

To circumvent this difficulty, we rewrite conditions (36a)–(36d) in order to use
standard semismooth Newton method. Taking into account (17), we can write (PC

h )
as

min 1
2u

TAu− fTu
subject to α ≤ u ≤ β, (37)

where A and f are defined in (18) and (19) and α,β ∈ RNB×1 are the vectors whose
j-component are respectively α(xj) and β(xj) and the inequalities are understood
componentwise. In order to simplify the notation, we will restrict ourselves again to the
case without lower bound. The optimality system can thus be written in the following
form: if u is the solution of problem (37), then there exists a unique λ ∈ RNB×1 such
that

Au+ λ− f = 0,
λ ≥ 0, u ≤ β, λT (u− β) = 0.

(38)

To continue, we rewrite again the second condition in (38) to obtain

Au+ λ− f = 0,
λ−max(0,λ+ c(u− β)) = 0.

(39)

Notice that (39) looks like a discrete version of the optimality system formed by (27a),
(27b) and (32). Acting in an analogous way as we did for the continuous problem, we
define

Fh,c(u,λ) =

(
Au+ λ− f

λ−max(0,λ+ c(u− β))

)
.

and for every pair (u,λ), we define the sets of active and free indexes as

A(u,λ) = {j : λj + c(uj − β(xj)) > 0}, F(u,λ) = {j : λj + c(uj − β(xj)) ≤ 0}. (40)

Abusing notation and when this does not lead to confusion, we will often just write A
and F. Notice that A ∪ F = B for every possible pair control-multiplier.

Lemma 4.4. The function Fh,c is slantly differentiable for every c > 0. A slanting
function for Fh,c is

Mh,c(u,λ) =

(
A IB,B

−cIB,AIA,B IB,FIF,B

)
.
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Finally, for all ν ≥ 0, the inverse of Mh,c(u,λ) is uniformly bounded w.r.t (u,λ).

Proof. In finite dimension, the function max{0, ·} is semismooth due to Rademacher’s
theorem and Mh,c is a slanting function; see e.g. [20, Example 2.4] or [15, Lemma 3.1].

Let us prove the uniform boundedness of the inverse. Given z ∈ RNB and η ∈ RNB ,
we have that

Mh,c(u,λ)

[
v
µ

]
=

[
z
η

]
⇐⇒

 Av + µ = z,
−cvA = ηA,
µF = ηF.

We write the last equalities as

Av +

[
µA
0F

]
= z −

[
0A
ηF

]
=: ζ,

−cvA = ηA.

This is the optimality system of the equality constrained optimization problem

v = arg min
w∈RNB

1

2
wTAw − ζTw,

subject to wA = −ηA/c.

Writing w = IB,FwF + IB,AwA and taking into account the equality constraint, we
have that vF is the solution of the following unconstrained optimization problem

vF = arg min
wF

1

2
wT

F (IF,BAIB,F)wF −
(
IF,B(ζ +AIB,AηA/c)

)T
wF

and therefore vF is the solution of the following linear system

IF,BAIB,FvF = IF,B(ζ +AIB,AηA/c)

Since A is symmetric and positive definite, so is IF,BAIB,F, and its smallest eigenvalue
is bounded from below by 0 < λ1(M) + νλ1(BB,B); see (24). Therefore, the previous
system is solvable and there exists a constant C > 0, that may depend on h, ν and
c, but is independent of u, such that ‖vF‖ ≤ C(‖z‖ + ‖η‖). From this it is straight
to deduce that ‖v‖ + ‖µ‖ ≤ C(‖z‖ + ‖η‖) and hence Mh,c has a uniformly bounded
inverse.

With these considerations, given a current iterate (u,λ) with active and free index
sets A = A(u,λ) and F = F(u,λ), we can compute the next step of Newton’s method
(u+,λ+) solving

u+ = arg min
u∈RNB×1

1

2
uTAu− fTu

subject to uA = βA.
Set λ+ = f −Au+.
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At each iteration, this is equivalent to solving the following unconstrained optimization
problem in the lower-dimensional space RNF×1:

u+
F = arg min

uF∈RNF×1

1

2
uTF (IF,BAIB,F)uF −

(
IF,B(f −AIB,AβA)

)T
uF

u+
A = βA
λ+ = f −Au+

(41)

Again the preconditioned gradient method works fine to solve this problem. A good
preconditioner in practice is P =MF,F + νBF,F.

Alternatively, taking into account the definition of A and f (see also Algorithms 1
and 2 respectively), we may write one step of the semismooth Newton algorithm as M+ νB −K:,I I:,A

−KI,: OI,I OI,A
IA,: OA,I OA,A

 y+

ϕ+
I
λ+
A

 =

 MyΩ

0I
IA,Bβ


u+ = y+

B
λ+
F = 0F

(42)

As for the unconstrained problem, direct methods for small size problems or precon-
ditioned conjugate gradient techniques described in [31] can be applied to solve this
system at each Newton step.

Remark 5. Notice that the only information from iteration k used to compute itera-
tion k+ 1 is the set of active indexes. Therefore, when A(uk+1,λk+1) = A(uk,λk) we
have reached an stationary point. This is usually the criterion used to stop the semis-
mooth Newton method. Another consequence of this is that to initiate the algorithm,
in principle we do not not need an initial guess u0 and λ0, but only an initial guess
for the active set. We include nevertheless an initial guess for the control variable in
Algorithm 5 because we use uk as the initial guess for the pcg to obtain uk+1.

Algorithm 5: Semismooth Newton method for (PC
h )

1 Set k = 0 and initialize u0 and λ0; compute A0 = A(u0,λ0)
2 Set A = Ak and F = B \ A
3 Compute (uk+1,λk+1) = (u+,λ+) using (41) [or (42)]
4 Set Ak+1 = A(uk+1,λk+1)
5 Stop or set k = k + 1 and return to 2

Theorem 4.5. The sequence uk generated by Algorithm 5 converges q-superlinearly
to u, the solution of (37), for every c > 0, provided (u0,λ0) is close enough to (u,λ).

This result is a direct consequence of Lemma 4.4 and [10, Theorem 3.4]; see also
[15, Theorem 1.1] or [20, Theorem 2.12].

Example 4.6. We resume the 2D problem described in Example 3.3 and the 3D prob-
lem described in Example 3.6, with the upper constraint β ≡ 0.16. We test Algorithm
5.

Following the tip of Theorem 4.3, we have taken the parameter c = ν and λ0 =
f−Au0. Nevertheless, as expected from Theorem 4.5, we have not been able to observe
any problem for different values of c. The seed is set to u0 = 0.
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To solve the optimality system of the unconstrained optimization problem at each
Newton iterate, we have used the preconditioned conjugate gradient method for (41)
with initial guess IF,Buk. The use of the reduced problem is even more advisable in
this case than it was in Examples 3.3 and 3.6, because the size of the system (42) is
N + NI + NA, which in any case is greater or equal than the size of the system (21),
which is N +NI.

In Tables 5 and 6 and we report on the number of Newton iterations for each mesh
size as well as the total number of conjugate gradient iterations. For reference, we also
report on the number of active nodes and the optimal solution of the discrete problem
being approximated.

Table 5. Newton iterations and total pcg iterations for a 2D con-

trol constrained problem

h NB NA Newton pcg J(ūh)

0.2× 2−4 320 245 3 16 0.3537665421
0.2× 2−5 640 491 4 20 0.3537991309
0.2× 2−6 1280 977 4 19 0.3538099358
0.2× 2−7 2560 1951 3 16 0.3538134437
0.2× 2−8 5120 3905 4 19 0.3538145736

Table 6. Newton iterations and total pcg iterations for a 3D

control constrained problem

h NB NA Newton pcg J(ūh)

2−2 98 54 2 7 0.3935682160
2−3 386 294 2 7 0.4007301110
2−4 1538 894 3 16 0.4104264396
2−5 6146 3210 3 15 0.4153200584
2−6 24578 11958 4 19 0.4173850169

Choosing the initial guess for Algorithm 5. If possible, it is a good idea to
select an initial point for the Newton method close to the solution. If we are dealing
with the problem for some mesh size h, a good candidate for the initial iteration is
Ihūh−1

, the solution in a coarser mesh with h−1 ≥ h. This idea can be iterated with a
mesh family with parameters h−M , . . . , h0 = h. The computation time should decrease
for fine meshes provided that the interpolation can be carried out in an effective way.
For instance, using nested meshes.

Example 4.7. Solving the last 2D problem in Table 5 takes a cputime of 620 sec-
onds. Using a nested iteration, we solve the problem with 5120 boundary nodes in
436 seconds, with just 2 Newton iterates and 7 conjugate gradient iterates at the
finest level. The times include mesh generations and matrix assembly. To generate the
meshes and interpolate the solution, we have used Matlab PDEToolbox command
refinemesh.

In the 3D case (see Table 6), solving the problem for h = 2−6 takes 681 seconds.
Using a nested mesh strategy this time is reduced to 404 seconds with 2 Newton iterates
and 9 pcg iterations at the finest level. In our example we have been able to make
an efficient interpolation of the solution at the previous level just using Matlab’s
interp3.

Example 4.8. Absence of Tikhonov parameter In the same 2D pentagonal do-
main, we take again β ≡ 0.16, but now α ≡ −1.2, ν = 0, yΩ ≡ 1 if x1 > 0.25, and
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α

β

(-0.5,-0.5)

(0.5,-0.5)

(0,0)

(0,0.5) (-0.5,0.5)

Figure 1. Discrete optimal control at the finest level for Example 4.8. The polygonal boundary has been

stretched over a line and the vertexes have been marked with circles on the graph of ūh.

yΩ ≡ −1 if x1 < 0.25. We are able to solve the finite dimensional problem, but up to
our best knowledge, there is no proof available about the convergence of the discrete
optimal solutions to the continuous optimal solution.

To solve the problem we follow a nested mesh strategy. The number of pcg iterations
per Newton iterate grow as h tends to zero, as is to be expected from Corollary 3.2;
see Table 7.

The constraints have been chosen in such way that we seemingly find both a bang-
bang part and a singular arc. We have sketched a plot of the discrete optimal control
for h = 0.2× 2−8 in Figure 1. The boundary has been stretched on a 1D line and its
corners have been marked with circles on the graph of ūh.

Table 7. Convergence history for a bilaterally con-

strained 2D problem with ν = 0.

h Newton pcg J(ūh)

0.2× 2−0 2 31 0.0694073016
0.2× 2−1 3 61 0.0849064798
0.2× 2−2 4 104 0.0920895196
0.2× 2−3 4 131 0.0971597067
0.2× 2−4 2 87 0.0998850162
0.2× 2−5 4 194 0.1011428500
0.2× 2−6 1 73 0.1017242162
0.2× 2−7 2 185 0.1020255084
0.2× 2−8 2 236 0.1021724081

5. State constraints

In the rest of the work, we will suppose that d = 2, Ω is convex and Γ is polygonal.
According to [5], if problem (P S) admits a feasible Slater point, then it has a unique

solution ū ∈ H1/2(Γ) and there exist ȳ ∈ H1(Ω)∩C(ω̄), ϕ̄ ∈W 1,t
0 (Ω) for all t < 2 and



Optimization for Dirichlet Control Problems 26

two nonnegative measures µ̄+, µ̄− ∈M(ω̄) such that

−∆ȳ = 0 in Ω, ȳ = ū on Γ, (43a)

−∆ϕ̄ = ȳ − yΩ + µ̄+ − µ̄− in Ω, ϕ̄ = 0 on Γ, (43b)

ū(x) =
1

ν
∂nϕ̄(x) on Γ, (43c)

〈µ̄+ − µ̄−, y − ȳ〉 ≤ 0 ∀y ∈ Ka,b, (43d)

and supp µ̄+ ⊂ {ȳ = b}, supp µ̄− ⊂ {ȳ = a}. In this case the adjoint state equa-
tion (43b) must be understood in the transposition sense, [5, Equation (4)], and 〈·, ·〉
denotes the duality product between M(ω̄) and C(ω̄).

As is pointed out in [12, page 197], or [15, page 878], the PDAS or semismooth
Newton methods described in the previous section are not applicable to this problem,
since the multiplier is a measure. In [39] a Moreau-Yosida regularization is proposed.
This strategy is further investigated in [16]. Let us briefly describe this method. Again,
to simplify the notation, we will do the exposition for the unilateral constraint y ≤ b
in ω̄.

Given a shift function µ∗ ∈ Lq(ω) for some q > 2 and a parameter γ > 0, we will
solve the unconstrained problem

(Qγ) min
u∈L2(Γ)

J(u) +
1

2γ

∫
ω̄

max{0, µ∗ + γ(Su− b)}2dx.

This problem has a unique solution uγ ∈ H1/2(Γ) for every γ > 0. Since the functional
is of class C1, first order optimality conditions can be derived directly from the work
[1]: there exist unique yγ ∈ H1(Ω) and ϕγ ∈ H1

0 (Ω) such that

−∆yγ = 0 in Ω, yγ = uγ on Γ, (44a)

−∆ϕγ = yγ − yΩ + χω̄ max{0, µ∗ + γ(yγ − b)} in Ω, ϕγ = 0 on Γ, (44b)

νuγ = ∂nϕ
γ on Γ. (44c)

Theorem 5.1. The semismooth Newton method to solve (44a), (44b), (44c) converges
locally q-superlinearly.

Proof. We may write the system (44a), (44b), (44c) as the equation G(u) = 0, where
G : L2(Γ)→ L2(Γ) is given by

G(u) = νu+ S∗Su− S∗yΩ + S∗
(
χω̄ max{0, µ∗ + γ(Su− b)}

)
.

Using the regularity results in [5, 8], together with the election of µ∗ in Lq(ω) we have
that µ∗ + γ(Su− b) ∈ Lq(Ω) for some q > 2, and hence G is semismooth in the sense
stated in [20]; see Theorems 2.13 and 2.10(c) in the aforementioned reference.

Define now ωA(u) = {x ∈ ω̄ : µ∗ + γ(Su − b) > 0}. A slant differential of G(u) is
given by the expression

M(u)v = νv + S∗Sv + γS∗χωA(u)Sv.

Let us see that the inverse of M(u) is uniformly bounded in L(L2(Γ), L2(Γ)) for all
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u ∈ L2(Γ). M(u) is symmetric, continuous, and coercive on L2(Γ), existence and
uniqueness of a solution v ∈ L2(Γ) of the equation M(u)v = z for every z ∈ L2(Γ)
follows from Lax-Milgram theorem. The equation M(u)v = z can be read as

−∆y = 0 in Ω, y = v on Γ,

−∆ϕ = y + γχωA(u)y in Ω, ϕ = 0 on Γ,

νv = ∂nϕ+ z on Γ.

Using the definition of solution in the transposition sense and the last equation of this
system, we have that

(y, y + γχωA(u)y)Ω = −(v, ∂nϕ) = −ν(v, v)Γ + ν(v, z)Γ

and hence

ν‖v‖2L2(Γ) = ν(v, z)Γ −
∫

Ω
y2 − γ

∫
ωA(u)

y2 ≤ ν‖v‖L2(Γ)‖z‖L2(Γ).

So we have that ‖v‖L2(Γ) ≤ ‖z‖L2(Γ) and therefore the inverse of M(u) is uniformly

bounded in L(L2(Γ), L2(Γ)) for all u ∈ L2(Γ).

When γ → +∞, uγ → ū; see [39, Theorem 3.1] or [16, Pr 2.1].

Let us turn now to the discrete problem (P S
h ). Consider the space Mh ⊂ M(ω̄)

which is spanned by the Dirac measures corresponding to the nodes {xj}j∈J, where
J = {j : xj ∈ ω̄}. Following [5, Corollary 2], if the continuous problem (P S) has a
regular feasible Slater point, then (P S

h ) has a unique solution ūh. Moreover there exist
unique ȳh ∈ Kh

a,b, ϕ̄h ∈ Yh,0 and two nonnegative measures µ̄+
h , µ̄

−
h ∈Mh such that

a(ȳh, zh) = 0 ∀zh ∈ Yh0, ȳh = ūh on Γ, (45a)

a(zh, ϕ̄h) = (ȳh − yΩ, zh) + 〈µ̄+
h − µ̄

−
h , zh〉 ∀zh ∈ Yh0, (45b)

〈µ̄+
h − µ̄

−
h , yh − ȳh〉 ≤ 0 ∀yh ∈ Kh

a,b, (45c)

νūh = ∂hnϕ̄h on Γ, (45d)

and supp µ̄+
h ⊂ {xj : ȳ(xj) = b(xj)}, supp µ̄−h ⊂ {xj : ȳ(xj) = a(xj)}.

Since we are dealing with a finite dimensional problem and the max function is
known to be semismooth in finite dimension, we could think about applying directly a
semismooth Newton method as described in [12]. Nevertheless, the other assumption
fails here: the slant derivative may not have an inverse. Let us show this. Consider

F (u,µ) =

(
Au− f + STµ

µ−max{0,µ+ γ(Su− b)

)
.

It is clear that the optimality system (45a)–(45d) is equivalent to the equation
F (u,µ) = 0. We define the sets of active and free nodes related to a pair control-
multiplier as

A(uh,µ) = {j ∈ J : µj + γ(Sh(uh)(xj)− bj) > 0}, F = J \ A.



Optimization for Dirichlet Control Problems 28

The slant derivative of F (u,µ) is given by

M(u,µ) =

(
A ST

−γIJ,AIA,:S IJ,FIF,J

)
.

Remark 6. The inverse of M(u,µ) may not exist for some (u,µ). Indeed, for any
(z, δ) ∈ RNB × RNJ , we have that

M(u,µ)

(
v
η

)
=

(
z
δ

)
⇐⇒

{
Av + STη = z,

−γIJ,AIA,:Sv + IJ,FIF,Jη = δ.

From the second equation we may deduce

γIA,:Sv = −IA,Jδ.

If NA > NB we have a linear system with more equations than variables, and hence it
will not be consistent for at least one value of δ and M will not have an inverse.

Instead, we use a Moreau-Yosida penalization of (P S
h ). Again we will write only

the case of unilateral upper constraint. For some shift function µ∗ ∈ Yh such that
µ∗(xj) = 0 if j 6∈ J, and a parameter γ > 0, a direct discretization of (Qγ) could be

(Q̃γh) min
uh∈Uh

Jh(uh) +
1

2γ

∫
ω̄

max{0, µ∗ + γ(Shuh − b)}2dx.

A practical way of computing the integral in the penalty term is to use the lumped
mass matrix L ∈ RN×N . Since we are going to use it only for integrals in ω̄, we define
it as

Li,j = 0 if i 6= j, Lj,j = 0 if j 6∈ J, Lj,j =

N∑
k=1

Mk,j . if j ∈ J.

Therefore, we will be solving

(Qγh) min
uh∈Uh

Jh(uh) +
1

2γ

∑
j∈J
Lj,j max{0, µ∗(xj) + γ(Shuh(xj)− b(xj))}2.

Problem (Qγh) has a unique solution uγh ∈ Uh and there exist unique yγh ∈ Yh and
ϕγh ∈ Yh0 such that

a(yγh, zh) = 0 ∀zh ∈ Yh0, y
γ
h = uγh on Γ, (46a)

a(zh, ϕ
γ
h) = (yγh − yΩ, zh)Ω

+
∑
j∈J
Lj,j max{0, µ∗(xj) + γ(yγh(xj)− b(xj))}zh(xj) ∀zh ∈ Yh0, (46b)

νuγh = ∂hnϕ
γ
h on Γ. (46c)
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The nonlinear system (46a)–(46c) can be solved using a semismooth Newton
method. To this end, we will use the nonlinear operator Gh : RNB → RNB defined
by

Gh(u) = Au− f + STLmax{0,µ∗ + γ(Su− b)}.

Thus, solving (46a)–(46c) is equivalent to solving Gh(u) = 0.
For every uh ∈ Uh we define sets of active and free nodes as

Aω(uh, γ, h) = {j ∈ J : µ∗j+γ(Shuh(xj)−bj) > 0}, Fω(uh, γ, h) = I\Aω(uh, γ, h). (47)

Abusing notation we will drop some or all of the arguments or will use the vector
notation when this does not lead to confusion, e.g. Aω, Aω(u). Notice that if µ∗ ≡ 0,
then Aω(uh, γ, h) is independent of γ. For the sake of notation, it is also convenient to
define for every set Aω ⊆ J the diagonal matrix H(Aω) ∈ RN×N such that

Hi,j = δi,j

{
0 if j 6∈ Aω
Lj,j if j ∈ Aω.

Abusing notation, we will often write H(u) = H(Aω(u)) or even we will write H when
this does not lead to confusion. The proof of the following result is as the corresponding
one in infinite dimension.

Theorem 5.2. Gh(u) is slantly differentiable, a slant differential is given by

M(u)v = Av + γSTH(u)Sv

and it has a uniformly bounded inverse w.r.t. u.

Notice that using this H notation, we can write

Gh(u) = Au− f + STH(u)
(
µ∗ + γ(Su− b)

)
,

and therefore, for a given u, and denoting H = H(u), one Newton step reads like

Au+ + γSTHSu+ = f + STH(γb− µ∗). (48)

Let us comment that for the computation of w = STHy for some y ∈ RN , first we
solve

KI,Iφs = HI,:y, (49)

and, next, we have

w = HB,:y −KB,Iφs = −KB,Iφs

because H is diagonal and its nonzero components correspond to nodes that lie in ω̄,
and are hence interior to Ω.

Again a preconditioned conjugate gradient method can be used to solve this system,
provided an efficient way of computing d = (A + γSTHS)v and the second member
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of the system. Notice that in each of the algorithms 6 and 7 the computation of φ can
be done with just one system solve.

Algorithm 6: Function d = (A+ γSTHS)v

1 solve (14) for y
2 solve (15) for φr

3 solve (49) for φs

4 set φ = φr + γφs

5 set d =MB,:y −KB,Iφ+ νBB,Bu

Algorithm 7: Computation of c = f + STH(u)(γb− µ∗)
1 set y = yΩ; solve (15) for φr

2 set y = γb− µ∗; solve (49) for φs

3 set φ = φr + φs

4 set c =MB,:yΩ −KB,Iφ

Alternatively, the solution to (48) can be obtained solving

[
M+ νB + γH −K:,I

−KI,: OI,I

] [
y+

ϕ+
I

]
=

[
MyΩ +H(γb− µ∗))

0

]
u+ = y+

B .
(50)

Finally, the semismooth Newton algorithm to solve our problem reads as:

Algorithm 8: Semismooth Newton method for (Qγh)

1 Set k = 0 and initialize u0; compute Aω,0 = Aω(u0)
2 Set Aω = Aω,k and H = H(Aω)
3 Compute uk+1 = u+ using (48) [or (50)]
4 Set Aω,k+1 = Aω(uk+1)
5 Stop or set k = k + 1 and return to 2

Remark 7. As we noticed in Remark 5, the only information from iteration k used
to compute iteration k + 1 is the set of active indexes. Therefore, when Aω(uk+1) =
Aω(uk) we have reached an stationary point. This is usually the criterion used to stop
the semismooth Newton method.

Nevertheless, as we will see below in the context of algorithms 9 and 10, the main
use for the solution of (Qγh) will be to provide an initial guess for the next step in those
procedures, so it does not seem necessary to solve exactly (Qγh) in general. Following
[16], we may implement the following stopping criterion for Algorithm 8. After step 3,
we compute an approximation of the multiplier µk+1 ∈ RN as

µk+1,j = 0 if j 6∈ Aω,k, µk+1,j = µ∗j + γ(yk+1,j − bj) if j ∈ Aω,k

and we may stop the algorithm if

‖µk+1 −max(µ∗ + γ(yk+1 − b), 0‖L2(Ω) < ελ.

In practice, this quantity gives a good measure of the change in the active set between
iterates as well as the unfeasibility combined with the penalization parameter γ.
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We state the convergence result for the Newton method. It follows directly from
Theorem 5.2

Theorem 5.3. The semismooth Newton method to solve (Qγh) described in Algorithm
8 converges locally q-superlinearly to u, the solution of Gh(u) = 0, provided u0 is close
enough to u..

In all the examples below we have taken the shift µ∗ = 0.

Example 5.4. In general it is not a good idea to solve directly (Qγh) for some γ big
enough. The resulting intermediate problems are usually very ill conditioned.

We resume the 2D problem taken from [5] and described in Example 3.3. As in [5], we
take ω the ball centered at (−0.1,−0.1) with radius 0.2 and b ≡ 0.15. We use Algorithm
8 taking u0 = 0. The results are summarized in Table 8. We measure the unfeasibility
of the state as the maximum constraint violation mcv(yh) = ‖max(yh − b, 0)‖L∞(ω̄).

Table 8. Direct application of Algorithm 8 for γ = 109

h γ mcv yγh Newton pcg Jh(uγh)

0.2× 2−4 1E+09 6.0E-07 19 470 0.3552476482
0.2× 2−5 1E+09 1.1E-06 19 468 0.3552689635
0.2× 2−6 1E+09 1.6E-06 21 467 0.3552757641
0.2× 2−7 1E+09 2.5E-06 21 459 0.3552778183
0.2× 2−8 1E+09 2.7E-06 21 451 0.3552784696

The first thing that can be observed is that γ cannot be too big w.r.t. the problem
size. Although the algorithm should converge in finite time, a value too big for γ will
make the active sets of the intermediate steps fluctuate, and in practice it may not
stop. This is what happens in this case with meshes coarser than the first one exposed
in the table.

Nevertheless, the computational effort can be better measured by the total number
of conjugate gradient iterations made when we solve (48) in step 3 of Algorithm 8.
Solving the solution in the finest mesh takes 8246 seconds.

In [16] a continuation strategy is proposed. This reduces considerably the computa-
tional effort. We will use subscripts for the iteration number of the semismooth Newton
method described in Algorithm 8 and superscripts for the numbering of the iterates of
the continuation strategy provided in Algorithm 9. For some sequence {τn}n≥1 such
that τn > 1 for all n ≥ 1, we have

Algorithm 9: Continuation strategy to solve (Qγh)

1 Set n = 0 and initialize γ0 and u0

2 Compute un+1, the solution of (Qγ
n

h ) using Algorithm 8 with seed un

3 Set γn+1 = τn+1γn

4 Stop or set n = n+ 1 and return to 2

There are still three important details to be explained about Algorithm 9: first and
most important, the choice of the initial guess u0; next, the appropriate values for τn;
and finally, a suitable stopping criterion.

To obtain a good initial guess, we will solve the problem in a coarser mesh with a
smaller value of γ. Since we are going to deal with meshes of different sizes, we will
use the notation Aω(uh, γ, h) when needed. We also recall that Ih is the pointwise
interpolation operator from C(Γ̄) onto Uh. Given (h, γ0), we fix M > 0 and pick a
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finite sequence (hn, γn)Mn=0 such that hn is decreasing, hM = h, γn is increasing and
γM ≤ γ0.

Algorithm 10: Nested concept to choose u0 in Algorithm 9

1 Set n = 0 and initialize uh0
∈ Uh0

2 Solve (Qγnhn) using Algorithm 8 with initial guess uhn
3 Set uhn+1

= Ihn+1
uγnhn ∈ Uhn+1

4 Set n = n+ 1
5 If n < M goto 2
6 Return uhM ∈ Uh

Although Algorithm 10 is meaningful for non-nested meshes, the computational
effort needed to make the interpolation in step 3 in non-nested meshes can be consid-
erable, specially for 3D problems.

In [16] some criteria are given to choose τn+1 > 1. In practice, if τn+1 is very small
the algorithm would not advance; if it is very big, we would lose the advantage given
by the continuation strategy.

In [16] the authors stop the continuation strategy if residuals related to the state,
the adjoint state and the multiplier are smaller than a certain tolerance of order O(h2).
In our case, since the problem is linear quadratic, the residuals related to the state
and the adjoint state are zero (at least up to roundoff error). The residual related to
the multiplier can be computed as

rd =
∑

j∈An+1
ω

Lj,j(yn+1
j − bj).

As an alternative, a tolerance for the maximum constraint violation e∞ can be used
stop if mcv(yγnh ) ≤ e∞.

With all these considerations, we propose the following algorithm. Fix a mesh se-
quence such that {hj}Mj=0 is decreasing, γ0 > 0, C > 0, uh0

∈ Uh0
, nmax ∈ N and a

sequence {τn}nmax+1
n=1 such that τn > 1 for all n.
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Algorithm 11: Solving (P S
h )

1 Set j = 0, h = hj , uh,0 = uh0

2 Set n = 0
3 Compute uγnh , the solution of (Qγnh ), using Algorithm 8 with seed uh,n
4 if (rd < Ch2 or mcv(yγnh ) ≤ e∞) and j < M then
5 Set j = j + 1 and h = hj /* Refine mesh */

6 Set uh,n+1 = Ihu
γn
hj−1
∈ Uh /* Write last output in the new mesh

basis */

7 else
8 Set uh,n+1 = uγnh
9 end

10 Set γn+1 = τn+1γn /* Update γ */

11 Set n = n+ 1

12 if ( (rd < Ch2 or mcv(yγnh ) ≤ e∞) and j == M) or n > nmax then
13 Stop
14 else
15 Goto 3
16 end

Example 5.5. Now we apply Algorithm 11 for γ0 = 1, τn = 10 and a family of 9
nested meshes of sizes hj = 0.2 ∗ 2−j , j = 0 : 8, the coarsest for h0 with 52 nodes and
the finest for h8 with 2689537 nodes.

A summary of the results can be found in Table 9. The total computation time
was 1570 seconds, which is a significant improvement compared with the 8246 seconds
used by Algorithm 8 (see Example 5.4).

Table 9. Data for continuation strategy and nested choice of the
initial point.

j γn rd Newton pcg Jh(uγh)

0 1E+00 1.20E-02 2 12 0.3434276446
1 1E+01 7.24E-03 1 7 0.3464821594
1 1E+02 1.96E-03 1 7 0.3512477862
2 1E+03 2.35E-04 3 25 0.3544114381
3 1E+04 2.40E-05 4 37 0.3550780145
4 1E+05 2.39E-06 4 44 0.3552160750
5 1E+06 2.38E-07 5 59 0.3552595829
6 1E+07 2.37E-08 5 63 0.3552727851
7 1E+08 2.37E-09 5 54 0.3552770205
8 1E+09 2.37E-10 5 50 0.3552784696

Determination of (the support of) the Lagrange multipliers of (P S). Com-
parison of the adjoint state equations for (P S

h ) and (Qγh) leads to the approximation
formula

µ̄+
h ≈

∑
j∈Aω(uγh)

Lj,j(µ∗j + γ(yγh(xj)− bj))δxj .

Since ω̄ ⊂ Ω, it is very common that the Lagrange multipliers of the original problem
are finite sums of Dirac measures centered at points on the boundary of ω, say µ̄+ =∑n

k=1 µkδXk for some n > 0 and Xk ∈ ∂ω.
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Increasing γ will have as a result a better approximation of the Lagrange multiplier
and its support. Notice, nevertheless, this will done with great effort and the approxi-
mation of both the control, the state and the functional optimal value will not improve
in a significant way.

Example 5.6. In Example 5.7 the number of active nodes for the last mesh is 748.
All of them are on ∂ω but they are not isolated. We can see in Table 10 how the
number of active nodes decreases as γ increases, with little variation of the functional
or the state.

Table 10. Determination of the active set. Data

for h = 0.2× 2−8.

γ NAω mcv(yγh) J(uγh)

1E+09 748 2.7E-06 0.3552784696
1E+10 230 9.1E-07 0.3552787761
1E+11 106 2.0E-07 0.3552788799
1E+12 46 4.1E-08 0.3552789024
1E+13 21 7.8E-09 0.3552789074
1E+14 11 1.9E-09 0.3552789083
1E+15 5 2.0E-10 0.3552789086

6. Control and state constraints

Again according to [5], if problem (PCS) admits a feasible Slater point, then it has a

unique solution ū ∈ H1/2(Γ) and there exist ȳ ∈ H1(Ω) ∩ C(ω̄), ϕ̄ ∈ W 1,t
0 (Ω) for all

t < 2 and two nonnegative measures µ̄+, µ̄− ∈M(ω̄) such that

−∆ȳ = 0 in Ω, ȳ = ū on Γ, (51a)

−∆ϕ̄ = ȳ − yΩ + µ̄+ − µ̄− in Ω, ϕ̄ = 0 on Γ, (51b)

ū(x) = min{β(x),max{α(x),
1

ν
∂nϕ̄(x)}} on Γ, (51c)

〈µ̄+ − µ̄−, y − ȳ〉 ≤ 0 ∀y ∈ Ka,b (51d)

and supp µ̄+ ⊂ {ȳ = b}, supp µ̄− ⊂ {ȳ = a}. As we said in the previous section, a
semismooth Newton strategy for this problem is meaningless, so instead we are going
to deal with a Moreau-Yosida approximation. As we did in the previous sections, we
will consider only unilateral constraints u ≤ β on Γ and y ≤ b in ω̄ to simplify the
notation. For a shift function µ∗ ∈ Lq(ω) for some q > 2 and a parameter γ > 0, we
consider the problem

(QC,γ) min
u∈U−∞,β

J(u) +
1

2γ

∫
ω̄

max{0, µ∗ + γ(Su− b)}2dx.

This problem has a unique solution uγ ∈ H1/2(Γ). Moreover, there exist yγ ∈ H1(Ω),
ϕγ ∈ Hs(Ω), s > 3/2, such that

−∆yγ =0 in Ω, yγ = uγ on Γ, (52a)

−∆ϕγ =yγ − yΩ + max{0, µ∗ + γ(yγ − b)} in Ω, ϕγ = 0 on Γ, (52b)

(−∂nϕγ + νuγ , u− uγ) ≥ 0 for all u ∈ U−∞,β. (52c)
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Define

Gγ(u) = νu−min
{
νβ,−S∗Su+ S∗yΩ − S∗χω̄ max{0, µ∗ + γ(Su− b)}

}
.

It is clear that uγ is the unique solution of (Qc,γ) if and only if Gγ(uγ) = 0. For some
fixed shift function µ∗ ∈ Lq(ω), q > 2, consider the active sets

ΓA(u, γ) = {x ∈ Γ : −S∗Su+ S∗yΩ − S∗χω max{0, µ∗ + γ(Su− b) > νβ}

and

ωA(u, γ) = {x ∈ ω̄ : µ∗ + γ(Su− b) > 0}.

A slant differential of Gγ(u) is given by

Mγ(u)v = νv + χΓA(u,γ)S
∗(1 + γχωA(u,γ))Sv.

Theorem 6.1. Gγ is slantly differentiable, Mγ(u) is a slant differential of Gγ and
for every fixed ν > 0, Mγ(u) has an inverse in L(L2(Γ), L2(Γ)) uniformly bounded
for all u ∈ L2(Γ). The semismooth Newton method Mγ(u+ − u) = −Gγ(u) converges
q-superlinearly.

Proof. The proof follows the same lines as those of Lemma 4.1 and Theorems 4.2 and
5.1

As we did for the pure control-constrained case, to deal with a problem better suited
to the finite dimensional case, we write the optimality condition (52c) with the help
of a Lagrange multiplier. There exists λγ ∈ L2(Γ) such that, for any c > 0,

νuγ =∂nϕ
γ − λγ on Γ, (53a)

λγ = max{0, λγ + c(uγ − β)} on Γ. (53b)

Define now

F γc (u, λ) =

(
νu+ S∗Su− S∗yΩ + S∗χω̄ max{0, µ∗ + γ(Su− b)}+ λ

λ−max{0, λ+ cu− cβ}

)
.

We have that (
νI + S∗(1 + γχωA(u,γ))S I

cχΓA(u,λ)
I χΓF(u,λ)I

)
∈ ∂CLF γc (u, λ)

and hence a Newton-like method to solve F γc (u, λ) = 0 is given by

νu+ = −S∗(1 + γχωA(u,γ)
)Su+ − yΩ)− λ+,

u+ = β on ΓA(u,λ),

λ+ = 0 on ΓF(u,λ).

Although F γc is known not to be slantly differentiable, it can be proved as in Theorem
4.3 that the sequence generated by the above described Newton-like method to solve
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F γc (u, λ) = 0 is the same than the one generated by the semismooth Newton method
to solve Gγ(u) = 0 provided we take the same initial guess u0, c = ν and λ0 =
S∗(yΩ − (1 + γχωA(u0,γ)

)Su0)− νu0.
Let us turn now to the finite dimensional problem. We can write the approximation

of problem (QC,γh ) as a constrained optimization problem in RNB,1:

(QC,γh )

{
min 1

2u
TAu− fTu+ 1

2γ max{0,µ∗ + γ(Su− b)}TLmax{0,µ∗ + γ(Su− b)}
subject to u ≤ β.

Existence and uniqueness of solution follows immediately from the coerciveness of the
discrete penalized functional. Since this discrete functional is also of class C1, first
order optimality conditions are standard and read as

Au+ STLmax{0,µ∗ + γ(Su− b)}+ λ = f ,
λ−max(0,λ+ c(u− β)) = 0.

(54)

Using the definitions (40) and (47) for the active sets of indexes A(u,λ) and Aω(u, γ, h)
and the matrix H related to Aω, we have that one step of Newton’s method can be
written as

u+
F = arg min

uF

1

2
uTF (IF,B(A+ γSTHS)IB,F)uF

−
(
IF,B(f −AIB,AβA − STH(µ∗ + γ(SIB,AβA − b)) )

)T
uF

u+
A = βA
λ+ = f −Au+ − STH(µ∗ + γ(Su+ − b))

(55)

or, alternatively, as M+ νB + γH −K:,I I:,A
−KI,: OI,I OI,A
IB,: OB,I OB,A

 y+

ϕ+
I
λ+

 =

 MyΩ +H(γb− µ∗)
0
IA,Bβ


u+ = y+

B
λ+
F = 0.

(56)

An adaptation of algorithms 5 and 8 to solve (QC,γh ) is straightforward, and so is
an adaptation of Algorithm 11 to use a continuation strategy together with a nested
mesh strategy.

Example 6.2. We repeat Example 5.5 adding the control constraint u ≤ 0.16. We
obtain the results summarized in Table 11. The total computation time was 2894
seconds. Although this may seem a lot of time, we have to remember that we are
solving an optimal control problem with pointwise constraints in both the control and
the state using a mesh with almost 2.7E+06 nodes and 5.4E+06 elements to test the
algorithm.
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Table 11. Convergence history for the solution of (PCS).

j γn rd Newton pcg Jh(uγh)

0 1E+00 9.42E-04 2 10 0.3527536758
1 1E+01 1.12E-03 2 10 0.3530056222
2 1E+02 9.03E-04 3 15 0.3535235000
3 1E+03 2.26E-04 4 33 0.3546079241
4 1E+04 2.38E-05 4 40 0.3551408902
5 1E+05 2.36E-06 6 59 0.3552411683
6 1E+06 2.34E-07 6 65 0.3552759281
7 1E+07 2.33E-08 8 94 0.3552874384
8 1E+08 2.32E-09 9 104 0.3552912421
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[13] Kunisch K, Rösch A. Primal-dual active set strategy for a general class of constrained

optimal control problems. SIAM J Optim. 2002;13(2):321–334. Available from: http:

//dx.doi.org/10.1137/S1052623499358008.
[14] Ulbrich M. Semismooth Newton methods for operator equations in function spaces.

SIAM J Optim. 2002;13(3):805–842 (2003). Available from: http://dx.doi.org/10.

1137/S1052623400371569.
[15] Hintermüller M, Ito K, Kunisch K. The primal-dual active set strategy as a semismooth

Newton method. SIAM J Optim. 2003;13(3):865–888 (2003). Available from: http://dx.
doi.org/10.1137/S1052623401383558.

[16] Hintermüller M, Kunisch K. Feasible and noninterior path-following in constrained min-
imization with low multiplier regularity. SIAM J Control Optim. 2006;45(4):1198–1221.
Available from: http://dx.doi.org/10.1137/050637480.

[17] Casas E, Mateos M, Raymond JP. Penalization of Dirichlet optimal control problems.
ESAIM Control Optim Calc Var. 2009;15(4):782–809. Available from: http://dx.doi.
org/10.1051/cocv:2008049.

[18] Hinze M, Vierling M. The semi-smooth Newton method for variationally discretized con-
trol constrained elliptic optimal control problems; implementation, convergence and glob-
alization. Optim Methods Softw. 2012;27(6):933–950. Available from: http://dx.doi.
org/10.1080/10556788.2012.676046.

[19] Hinze M. A variational discretization concept in control constrained optimization: the
linear-quadratic case. Comput Optim Appl. 2005;30(1):45–61. Available from: http://
dx.doi.org/10.1007/s10589-005-4559-5.

[20] Hinze M, Pinnau R, Ulbrich M, Ulbrich S.. Optimization with PDE constraints. (Math-
ematical Modelling: Theory and Applications; Vol. 23). New York: Springer; 2009.

[21] Gong W, Yan N. Mixed finite element method for Dirichlet boundary control problem
governed by elliptic PDEs. SIAM J Control Optim. 2011;49(3):984–1014. Available from:
http://dx.doi.org/10.1137/100795632.
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