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Abstract: A soft sensor is presented that approximates certain health parameters of automotive
rechargeable batteries from on-vehicle measurements of current and voltage. The sensor is based on
a model of the open circuit voltage curve. This last model is implemented through monotonic neural
networks and estimate over-potentials arising from the evolution in time of the Lithium concentration
in the electrodes of the battery. The proposed soft sensor is able to exploit the information contained
in operational records of the vehicle better than the alternatives, this being particularly true when the
charge or discharge currents are between moderate and high. The accuracy of the neural model has
been compared to different alternatives, including data-driven statistical models, first principle-based
models, fuzzy observers and other recurrent neural networks with different topologies. It is concluded
that monotonic echo state networks can outperform well established first-principle models. The
algorithms have been validated with automotive Li-FePO4 cells.
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1. Introduction

Battery costs comprise an estimated 25–50% of the electric vehicle [1]. Maximizing the life
expectancy of a battery has undeniable economic implications, hence preventing the conditions that
shorten Lithium battery life (high temperatures, overcharging, deep discharges, high current, etc.) is
a major concern. Despite this, to the best of our knowledge, there are not reliable sensors that can
measure the State of Health (SoH) of batteries that are already installed in a vehicle. Most of the SoH
estimators are laboratory tools that cannot be easily adapted for on-vehicle condition monitoring.

Laboratory techniques for determining the SoH comprise direct measurements and
electrochemical models [2]. There are advantages and drawbacks for the two families of methods.
On the one hand, direct measurements can provide a view of the current state of the battery, but
this view cannot be extrapolated to the future, i.e., direct measurements cannot always anticipate an
incipient deterioration. On the other hand, electrochemical models have predictive capabilities, but
these depend on many physical parameters of the battery. The evolution in time of these physical
parameters is uncertain, hence electrochemical models do not perform well in mutable scenarios.
Moreover, laboratory techniques for diagnosing a deterioration require, in certain cases, destructive
operations (measuring the capacities of the positive and negative electrodes, the loss of Lithium
inventory, etc.).

To a certain extent, these problems can be addressed through computer simulation. If a sufficiently
precise battery model is available, it can be used for “virtual laboratory” experiments, where those
off-vehicle laboratory measurements mentioned before are applied to a computer simulation of the
battery. Machine learning techniques can be used to keep this model in sync with the current state
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of the battery. These learning algorithms operate with sequences of voltages and currents streamed
by on-vehicle sensors [3]. The combination of a learning battery model and a suitable virtual lab
procedure, with the purpose of synthesizing health-related variables from operational data, will be
referred to as a “soft sensor” in this contribution [4].

The physical properties of a battery evolve with time, thus a learning battery model is needed.
Many different battery models have been studied (a bibliographic study will be carried on in Section 2).
In this paper, a soft sensor is proposed that combines transformation models [5] with reservoir
computing [6] in a new class of monotonic Echo State Networks (ESN). Monotonic ESNs will serve as a
dynamical model of the over-potentials arising from the nonlinear profiles of the Lithium concentration
in the electrodes of the battery [7]. The new soft sensor is able to exploit the health-related information
contained in operational records of the vehicle better than the alternatives, particularly when the
charge or discharge currents are moderate to high. To validate this assertion, the accuracy of the new
sensor has been compared, over automotive Li-FePO4 cells, to a selection of model-based observers
of the state of health, including data-driven statistical models, first principle-based models, fuzzy
observers and recurrent neural networks with different topologies.

This paper is organized as follows: Section 2 contains a brief bibliographic study about battery SoH
assessment. In Section 3, the proposed Monotonic Echo Serial Network is introduced. An empirical
study is introduced in Section 4, where the newly proposed sensor is compared to relevant alternatives.
The paper concludes in Section 5.

2. State of the Art: Machine Learning Methods Suitable for Battery SoH Assessment

The functional dependence between the stored charge and the Open Circuit Voltage (OCV) of the
battery at equilibrium contains information related to the most common deteriorations of a battery,
such as the losses of Lithium inventory, active masses of anode and cathode [8,9]. Many different
techniques exist for determining the OCV of a battery from data: “black boxes” or pure data-driven
techniques such as statistical models, time series [10] and neural networks [11]; “grey boxes”, such
as equivalent circuits [12] or fuzzy semi-physical models [13] and “white boxes” or first-principle
models, that are based on the knowledge about the electrical and chemical processes that occur while
the battery is being operated.

Soft sensors can be regarded as software-based observers of the state variables of a dynamical
system. Examples of technologies suitable for its use in soft sensors are ARIMAX or NARMAX
time series (Auto Regressive Integrated Moving Average with Explanatory Variable, and Nonlinear
AutoRegressive Moving Average with eXogenous input, respectively) [14], Recurrent Neural
Networks [15] or NARX (Nonlinear AutoRegressive with eXogenous input) neural or fuzzy models [16].
Fuzzy rule-based models allow incorportating expert knowledge in the form of “if-then” rules, and
can take different forms: for example, there are fuzzy models of the nonlinearities in weakly linear
models [17], state-space models with fuzzy rule-based parameters [18], and Wiener or Hammerstein
Fuzzy Systems, where a linear dynamical system is followed by a static nonlinearity [19,20]. Recurrent
Neuro-Fuzzy models [21] and NARX Neuro-Fuzzy Systems [22] have also been used in the past for
modeling dynamic systems. For instance, ANFIS [23] has been arranged in a NARX configuration in
dynamical problems [23].

Not all preceding methods can be used for assessing the health of a battery. NARX models are not
appropriate for systems with a strong dependence on the initial conditions [24,25], but other recurrent
neural networks are suitable for this problem. For example, Simple Recurrent Netwoks (SRNs), such
as Elman or Jordan models [15], that are learnt with Backpropagation Through Time (BTT), can model
these systems. The combination of SRNs and BTT is prone to the “vanishing gradient” problem [26],
hence SRNs may not the best option; other neural architectures are more efficient than SRNs for events
with a long time lag, as happens with batteries. Among these new architectures, Long Short-Term
Memory (LSTM) and Reservoir Computing (RC) networks exhibit promising properties. LSTMs are
based on units composed of memory blocks with gates that control the flow of information through the
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cell, where the weights control the operation of the gates [27,28]. Alternatively, Reservoir Computing
(RC) is another recent extension that relies on a fixed, complex dynamical system (the “reservoir”) that
is mapped to the desired output by means of a trainable readout mechanism. In particular, in Echo
State Networks, the reservoir is a large recurrent neural network with randomly assigned weights,
and the readout is a single neural layer whose weights are updated with ridge regression [29,30].
There are some variants of the ESN where the readout is nonlinear, such as ϕ-ESNs [31], or there is
an additional feed-forward net between the inputs and the outputs that models short lags, such as
ESN-R2SP (Echo State Network - Reservoir with Random Static Projections) [32]. These configurations
can be benefitial when modelling highly non-linear systems, and its potential for diagnosing batteries
has not been explored yet.

In this paper, a nonlinear readout ESN is used, but the learning process is different from that
of ϕ-ESNs. The weights of the nonlinear readout are not optimized to reduce the squared error
between the output of the net and the desired output, but an intermediate target function is sought
that is comonotonic with the desired output of the net, and the nonlinear part is obtained via isotonic
regression between intermediate and output variables, as described in the following section.

3. System Identification through Prediction Error and Transformation Models

Most machine learning techniques for identifying nonlinear systems entail the use of Prediction
Error Methods (PEMs). PEMs are based on a parametric definition of the model, and the learning task
consists in finding the set of parameters minimizing the prediction error for a given sequence of inputs
and outputs [33]. As mentioned, in grey and white boxes, the knowledge that is discovered in the
data is combined with different amounts of prior knowledge about the problem domain. This domain
knowledge can be explicit, taking the form of constraints on the values of the learned parameters, or
be implicitly built in the structure of the model, as done for instance with semi-physical models [34].

Embodying domain knowledge in the learning improves the model when the data is insufficient,
but it can introduce additional “systematic” errors. This is so because “first principle” models depend
on assumptions that do not always hold in practice. A balance must exist between those elements of
the dynamic behavior of the system that are taken for granted and those that are learnt from data. It is
often accepted, as a basic principle, that the amount of prior knowledge in a data-driven model has to
be kept as low as possible.

A recent approach for encoding a small amount of prior knowledge in a model consists of
enforcing the monotonicity of certain nonlinear blocks in the transference function. For instance, any
digitally sampled system can be regarded as the composition of a continuous system and a staircase
function. Saturations, dead zones, backlashes and different kinds of hysteresis also match this kind of
“monotonic” prior information. The best studied cases are arguably monotonic Hammerstein or Wiener
models, that consist of a composition of a linear system with a nonlinear monotonic function [35].

Transformation Models: A Proposed Monotonic Echo State Network

Monotonic dynamical models can be learnt through transformation models [5]. Formally, let ( f , θ)

be a dynamical model defined by a parameter θ, applied to an input variable {ut}t, ut ∈ Rm, and a
nonlinear function f : R→ R applied to the output of the dynamical model. Let also the output of the
dynamical model be {zt}t, zt ∈ R. The output of ( f , θ) is the sequence {ŷt}t, where ŷt( f , θ) = f (zt).
This sequence depends on the input sequence {ut}t, the parameter θ and the nonlinear function f .

Given a pair of sequences {yt}t (desired output) and {ut}t (observed input), the purpose of
the learning algorithm is to find the value of θ and the function f for which the sequence {ŷt}t

(model output) best approximates the desired output of the system {yt}t. PEMs aim to minimize the
following error:

error( f , θ) =
T

∑
t=d

(ŷt( f , θ)− yt)
2. (1)
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On the contrary, transformation models do not minimize the prediction error but search
for the simplest model whose output is comonotonical with the desired output of the system.
For example, the MINLIP algorithm for Monotone Wiener Systems [36] aims to solve the following
optimization problem:

min complexity( f )

s.t. ŷt( f , θ) = yt, for all t = d + 1, . . . , T. (2)

d is a time delay, used for ignoring the effect of the initial conditions (state of the system at t = 0).
In the presence of noise, the transformation model is formed by introducing residuals et such that
ŷt( f , θ) = f (zt + et). The learning becomes:

min complexity( f ) and |et|
s.t. f (zt(θ) + et) = yt, for all t = d + 1, . . . , T. (3)

The nonlinear function f is defined by means of a isotonic regression algorithm on the set of pairs
{(zt, yt)}t [5]. Finally, the complexity of f is measured through its Lipschitz constant, which is the
lowest value L such that

| f (zi)− f (zj)| ≤ L|zi − zj| for all i, j. (4)

In order to define the proposed Monotonic Echo State Networks, let us rewrite first Equation (3)
as follows:

min complexity( f ) and |et|
s.t. the sequences {zt(θ) + et}t=d+1,...,T and {yt}t=d+1,...,T , are comonotonic. (5)

By means of Equation (5), the minimization of |et| can be combined with the comonotonicity
constraint by means of a rank correlation test τ [37], giving the following unconstrained optimization
problem (see Figure 1):

min complexity( f )

max τ
(
{zt(θ)}t=d+1,...,T ; {yt}t=d+1,...,T

)
. (6)

Observe that the values et do not appear anymore in Equation (6), as their effect is subsumed in
the rank correlation test.

The particularization of this structure to battery models follows. According to [7], the perceived
voltage of an Li-Ion rechargeable battery depends on the Nernstian equilibrium potentials of the
different phases of the lithiated graphite, LixC6. The concentrations of the different phases depend,
in turn, on the charge current through a diffusion process, with complex dynamics. During charge,
the voltage of the battery is higher than the equilibrium voltage because the concentrations of the
different stages of LixC6 have not yet reached their final equilibrium. As a result, the voltage of the
battery is the same as the voltage of an (hypothetical) instrumental cell at equilibrium, whose charge
is higher than that of the actual battery. When the charge current is extinguished, the charge of the
instrumental cell slowly converges to that of the actual cell. The opposite happens during discharge,
when the instrumental battery has a lower charge than the actual battery. Let us call “effective charge”
to the charge of the instrumental battery (see Figure 2). Observe that the effective charge and the actual
battery voltage are comonotonical because they are related through the (scaled) OCV curve of the
battery, which is monotonical by definition.
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Figure 1. Prediction Error Models (PEMs) vs. the proposed formulation of transformation models:
Upper part: PEMs find the parametric expressions of the dynamic model and the monotonic function
by minimizing the prediction error of the model. Lower part: The purpose of transformation models
is to learn a dynamical model whose output is comonotonic with the desired output. The monotonic
function is not given a parametric expression but is obtained by interpolation (in the noiseless case) or
isotonic regression (noisy data).
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Figure 2. Transformation model of a battery: the perceived voltage of the battery when it is being
charged (or discharged) matches the Open Circuit Voltage (OCV) at an instrumental cell at equilibrium,
with a charge that is higher (or lower) than the actual charge. Since the OCV is monotonically increasing
with respect to the charge, the instrumental or “effective” charge is also comonotonical with respect to
the measured voltage.

The desired outcome of the learning process is the scaled OCV curve, which can be exploited in
turn to obtain the health information about the battery [38]. Given that the expression of the dynamical
model of the effective charge is not needed, any black-box model is adequate. In this study, an Echo
State Network [29] with linear activation layer is used, as shown in Figure 3. The block composition in
Figure 2, in the particular case that the dynamical model is an ESN, will be referred to as “Monotone
Echo State Network”.

The inputs to the ESN are the current and the charge (its integral), and the output is the difference
between the actual charge of the battery and the effective charge defined before. Note, however, that
the desired output of the neural network is unknown in this problem, as we only know that it is
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comonotonical with the perceived voltage. The weights of the output layer cannot be determined by
ridge regression [30], but a gradient descent algorithm is used for minimizing a rank correlation test
between the output of the net and the voltage of the battery.

ESN

Current

Charge∫
Effective"
charge

+

+

Figure 3. Dynamical model of the effective charge: the dynamical model of the effective charge
comprises an Echo State Network (ESN) with two inputs: current and charge (integral of the current).
The output of the ESN is the difference between the actual charge and the effective charge.

4. Empirical Study and Discussion

Experiments in this section are designed for obtaining different battery health parameters through
model-based OCV curve approximations. This experimentation serves two purposes: (a) to find out
whether the proposed data-driven method is competitive with state-of-the-art dedicated models and
(b) to verify that the model is accurate enough for gaining insight into the SoH of the battery.

The experiments were conducted on three different batteries: Battery #1 is a 42Ah pouch battery
from European Batteries, and batteries #2 and #3 are cylindrical commercial Lithium Iron Phosphate
(LFP) cells manufactured by A123 Systems (Livonia, MI, USA), with 2.3 Ah name plate capacity
(see Figure 4). These batteries are selected so that the dependence on the following conditions can
be analyzed:

1. Influence of the charge/discharge rate in the accuracy of the sensor. Battery #1 was used for this purpose,
and was charged at 42, 21, 14, 8.4 and 1.68 Amps (these currents are named C1, C2, C3, C5 and
C25). It is expected that the soft sensor is effective for C25 and also that its quality degrades for
the higher currents.

2. Influence of the ageing of the battery. Batteries #2 and #3 were subjected to 6000 charge/discharge
cycles and different experiments were programmed at the beginning of their lifes, at half life
(3000 cycles) and at the end of their useful life (6000 cycles). Battery #3 had an abnormal
deterioration (electrodeposition). Battery #2 had a normal ageing with a gradual reduction of the
capacity until the end of its life.

3. Influence of the technology. Battery #1 is a pouch battery; #2 and #3 are cylindrical, and the capacities
are also different; Battery #1 is a large cell (42 Ah, used, for instance, in battery-electric buses) and
the other cells are much smaller (2.3 Ah, used for instance in the BMW ActiveHybrid 3 Hybrid
Electric Vehicles HEVs (Munich, Germany) or the Chevrolet Spark EV (Detroit, MI, USA)).

The LiFePO4 (LFP) pouch battery from European Batteries (Varkaus, Finland) (see Figure 4) has
a rated capacity of 42 Ah when discharged at 8.4 Amps. The average operating voltage is 3.2 V.
The discharge and charge cut-off voltages are 2.5 V and 3.65 V, respectively. The dimensions in mm are
275 × 166.5 × 13.3. The cell weighs 1010 g. The cylindrical battery from A123 Systems has a rated
capacity of 2.3 Ah when discharged at 2.3 Amps. The average operating voltage is 3.3 V. The discharge
and charge cut-off voltages are 2 V and 3.6 V, respectively. The dimensions in mm are ∅ 26 × 65.
The cell weighs 76 g.
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Figure 4. LiFePO4 (LFP) pouch battery from European Batteries (Varkaus, Finland) (left) and cell from
manufacturer A123 Systems (Livonia, MI, USA) (right).

Tests are conducted in an SBT10050 battery test system from PEC (Leuven, Beligium) and an
ICP750 climate chamber from Memmert (Schwabach, Germany). The ambient temperature was 23 ◦C.
The OCV of the 42 Ah battery has been measured through the “voltage relaxation” method [39]. This
method consists of charging the battery at constant current in small steps (about 5–10% of the capacity)
and then applying a constant voltage until the current is smaller than a threshold to ensure a full
charge (or discharge). Each of these steps is followed by a rest period of some hours, after which
the OCV voltage is measured (see Figure 5 for the actual current and voltage profiles obtained in the
relaxation experiment.) The OCV of the smaller A123 batteries has been obtained as the average, for a
set of stored charges, of the voltages of the C25 charge and discharge curves.
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Figure 5. Relaxation experiment for obtaining the OCV curve of the 42 Ah battery. The battery is
charged in steps of 5% of the capacity and left resting for some hours before the next charge step is
applied. Each of these steps produces a pair (voltage, capacity) of the OCV curve.

4.1. Assessment of the Neural Model

The first part of the experimentation consists of a numerical comparison of the accuracies of the
present approach and other OCV models in terms of the residual of the approximation of the model
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to the “ground truth” OCV measured at the laboratory. The amplitude of the residual is measured
through the following expression:

error =
1
N

N

∑
i=1

(
OCVtrue(qi)−OCVmodel(qi)

)2, (7)

where q1 . . . qn are the charges at the different resting phases, and N is the number of phases.
It is remarked that the experimental design of this study is unlike the standard practice in machine

learning experiments. In this problem, train and test datasets are not obtained with cross validation,
but the battery model is subjected to a “virtual lab” experiment. With the expression “virtual lab”,
we mean that a battery model is learned from on-vehicle data first. This model is subsequently used
to simulate a full charge at a very low current (a virtual experiment). The estimation of the (pseudo)
OCV curve is the set of pairs (charge, voltage) predicted by the learnt model during this simulated
experiment (see Figures 6 and 7).

ESN

Current

Charge∫
Effective"
charge

+

+
Scaled"
OCV

Rank"
Correlation"
Test

Voltage

Figure 6. Virtual laboratory-based training: training data is sampled while the battery is being used.
The rank correlation test between the output of the Monotone Echo State Network (MESN) (effective
charge) and the actual voltage of the battery is maximized. The OCV is obtained by applying isotonic
regression between the output of the trained MESN and the actual voltage.
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of discrete!
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Current!
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-
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Figure 7. Virtual laboratory-based validation: the OCV curve obtained in the training is compared to
a discrete set of points of the actual OCV curve of the battery, obtained in an independent relaxation
experiment, carried out in controlled conditions of load and temperature.

The following eight computer models are included in this study. The residuals of the
approximation of these models (see Equation (7)) and compared to that of the proposed MESN model:
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1. Abu–Sharkh’s method [40]. State-of-the-art method for determining the OCV of a battery from
operational data, based on a first-principles model of the battery.

2. Xu’s method [41]. Another specialized method that is based on Randles’ equivalent circuit.
3. LSTM [26]. An LSTM recurrent neural network with 20 hidden nodes with recurrent connections

followed by a linear layer. The net is primed with two sequences of inputs: the current and
the charge.

4. LSTM-dropout [28]. A regularized LSTM network where randomly chosen network units are
masked during training.

5. ESN [42]. Echo State Network, with a reservoir of size 1000, and a linear feed-forward layer
trained with ridge regression.

6. ϕ-ESN [31] An ESN with an additional nonlinear feed-forward layer, where the non-recurrent
layers are trained with the Adam algorithm [43].

7. ANFIS (Adaptive-Network-Based Fuzzy Inference System) [23] in a NARX configuration. ANFIS
is a mature technique where a fuzzy system is designed to be functionally equivalent to a
feed-forward net. Since NARX models are not well suited for this problem, this algorithm is
included as a “worst case” metric.

8. ARIMAX(2,1): Auto Regressive Integrated Moving Average with Explanatory Variable time
series, with orders AR = 2, MA = 1—also intended as a baseline.

The results of the study are displayed in Tables 1–3. The influence of the charge/discharge rate in
the accuracy of the sensor is studied in Table 1. Observe that the accuracy of all methods degrades for
high currents. Remarkably, neural networks were able to improve over battery specific algorithms,
and MESN was able to keep the C25 accuracy for C5 discharges. In addition to this, the performance
of MESN is better by an order of magnitude than any of the other methods for currents higher than
C5 (i.e., C3, C2, C1). This is the main result of this contribution, as the purpose of this method is to
measure the health of a battery from data sampled while the vehicle is in use, and the nominal current
of this battery is higher than C5.

Table 2 measures the accuracy of the model when the batteries are at the beginning, middle and
end of life and the ageing process has been uniform (without abnormal deterioration). In all cases, the
charging current is C25. In these experiments, Abu–Sharkh and Xu’s methods were only evaluated
in their most favourable configuration, i.e., for charges lower than 80% of the capacity of the battery.
The accuracy of MESN is comparable or better than that of the specific methods, showing that the
method is not negatively influenced by the battery age, as expected (because MESN does not depend on
an electrochemical model of the battery; the only assumption related to the electrochemical properties
of the battery was the comonotonicity of the charge and the voltage when the cell is at equilibrium).

Lastly, Table 3 measures the accuracy of the model at the beginning, middle and end of life
when an abnormal deterioration takes place (an electrodeposition happened at some point between
the middle and the end of the life). There are not appreciable differences between the accuracy of
the battery model in this case and the results in Table 2. Observe that MESN was not better than
Abu–Sharkh’s method for the battery at the beginning of its life. In any case, the differences between
these two methods are not significant, owing to the fact that MESN was the best method in the first
column of Table 2, with another A123 cell with the same SoH. It is also remarked that MESN was able
to obtain very good results for the degraded cells. In Figure 8, a graphical assessment of the accuracy
of the OCV model is shown: the residual is low in the flat area of the curve, and moderate in the areas
with strong slopes (battery charge lower than 10% or higher than 90%).
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Table 1. Influence of the charging current. Average quadratic error of Open Circuit Voltage (OCV),
obtained from Recurrent Neural Networks (RNN), Long-Short Term Memory (LSTM), Echo State
Networks (ESN), γ-Echo State Networks (γ-ESN), Adaptive Neuro-Fuzzy Inference Systems (ANFIS),
Autoregressive Integrated Moving Average with Explanatory Variable (ARIMAX) and Monotone Echo
State Networks (MESN).

C25 C5 C3 C2 C1

Abu–Sharkh 0.0003 0.0094 0.0080 0.0084 0.0110
Xu 0.0006 0.0086 0.0146 0.0153 0.0073

LSTM 0.0077 0.0301 0.0070 0.0066 0.0064
LSTM-dropout 0.0100 0.0295 0.0067 0.0083 0.0093

ESN 0.0056 0.0326 0.0083 0.0106 0.0083
γ-ESN 0.1553 0.0854 0.0279 0.0132 0.0212
ANFIS 0.2026 0.2016 0.0731 0.0595 0.0334

ARIMAX(2,1) 0.0127 0.0391 1.0153 0.0165 0.0202

MESN 0.0003 0.0003 0.0007 0.0007 0.0018

Table 2. Influence of the number of cycles without electrodeposition. Average quadratic error of OCV,
obtained from RNN, LSTM, ESN, γ-ESN, ANFIS, and ARIMAX.

New Battery Middle Life End of Life

Abu–Sharkh 0.0003 0.0008 0.0009
Xu 0.0008 0.0016 0.0015

LSTM 0.0016 0.0027 0.0069
LSTM-dropout 0.0015 0.0035 0.0033

ESN 0.0060 0.0131 0.0125
γ-ESN 0.0132 0.0120 0.1972
ANFIS 0.0573 0.0913 0.0808

ARIMAX(2,1) 0.0494 0.0619 0.0603

MESN 0.0002 0.0005 0.0008

Table 3. Influence of the number of cycles with electrodeposition. Average quadratic error of OCV,
obtained from RNN, LSTM, ESN, γ-ESN, ANFIS, and ARIMAX.

New Battery Middle Life End of Life

Abu–Sharkh 0.0002 0.0008 0.0010
Xu 0.0007 0.0016 0.0018

LSTM 0.0026 0.0026 0.0031
LSTM-dropout 0.0022 0.0019 0.0029

ESN 0.0054 0.0212 0.0639
γ-ESN 0.0062 0.1506 0.0343
ANFIS 0.0639 0.1709 0.1549

ARIMAX(2,1) 0.0620 0.0447 0.0828

MESN 0.0004 0.0001 0.0001
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Figure 8. Model (blue dots) and ground truth (spline-interpolated points of the relaxation-obtained
OCV curve) for the first A123 battery.

4.2. Extraction of Health Parameters from the OCV Model

The second part of the experimentation is guided to obtain SOH parameters from the OCV model
and to compare them to estimations of the same parameters that are taken from the “ground truth”
OCV curve. Incremental capacity Analysis (ICA) of the equilibrium open-circuit voltage is used to find
the signatures of the different deteriotations in the OCV [44]. It is remarked that standard ICA analysis
are not obtained from OCV estimations, as proposed in this paper, but from controlled discharges at
C25 at the laboratory (see Figure 9). There are five characteristic points in these curves [38] that can be
related to different degradations.
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Figure 9. Pseudo-OCV Incremental Capacity Analysis (ICA) from a controlled C25 discharge. The
labelling of the peaks of the curve is taken from [38]. (left) name convention and ICA curves for
battery A123 without electrodeposition and the beginning, half life and end of life; (right) battery A123
with electrodeposition.

The outputs of the proposed soft sensor, for batteries #2 and #3 at the beginning of their cyclings,
half and end of life are collected in Tables 4 and 5. A graphical analysis of the same data is provided in
Figure 10. Let us recall that the presented method obtains the OCV curve from on-vehicle data. It is
not expected that on-vehicle estimations are as precise as laboratory measurements. The differences
between the estimation and the ground truth are very small in the least squares sense (see Tables 1–3
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and Figure 8) and indeed may seem negligible, but it is possible that a model converges to the true
values in the least square sense, and, at the same time, the derivatives of this model do not converge
to the true derivatives. To a certain extent, this problem occurs in the case being studied because the
output of the neural net is discontinuous and therefore non-differentiable. A moderate smoothing
had to be applied in order to obtain the ICA curves. This smoothing must be small enough for not
distorting peaks 1 and 2. As a consequence of this, it is possible that some short peaks appear in
the ICA curve that are artifacts of the numerical methods (see, for instance, the peaks on the right
side—between the 3.40 and 3.45 Volt marks—of the blue curves in the left column of Figure 10).
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Figure 10. Pseudo-OCV analysis for OCV curves estimated at the laboratory (dashed lines) and
on-vehicle with the present model (continuous lines). Left column, from upper to lower: battery
A123 without electrodeposition. Right column: battery A123 with electrodeposition. The ICA curves
(derivative of the OCV with respect to stored charge) and the integral of these curves are plotted in the
same graphs. The accuracy of the proposed method is comparable to that of the relaxation experiment,
as both the integral of the curves and the position of the inflection point are similar.
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Table 4. Peak area, battery without electrodeposition. The diagnostic is the same with both relaxation
and the presented on-vehicle method: Peak area 1 decreases, Peak areas 2–5 are almost constant, thus
the main deterioration cause is Loss of Lithium Inventory (LLI). In addition, the values marked with an
asterisk are inaccurate because they are not in complete agreement with our laboratory measurements;
these values should be slightly smaller.

Method New Battery Middle Life End of Life

Peak Area 1 Relaxation 210 175 150
Peak Areas 2–5 Relaxation 360 330 330(*)

Peak Area 1 Presented method 180 175 150
Peak Areas 2–5 Presented method 390 330 330(*)

Table 5. Peak area, battery with electrodeposition. The diagnostic with relaxation is incomplete because
peak 1 cannot be detected from the OCV curve for the resolution used in this experiment (4 mV). In any
case, laboratory and on-vehicle methods produce the same result: Peak area 1 does not decrease, Peak
areas 2–5 decrease, thus not only LLI but shrinking of the lithiathed graphite zone (Loss of Active
Material, LAMdeNE) effects are significant. This is in agreement with the presence of the abnormal in
the right part of Figure 9 (note that this peak cannot be reliably measured in Figure 10; the small peak
in the figures in the left part is an artifact of the smoothing algorithm).

Method New Battery Middle Life End of Life

Peak Area 1 Relaxation 220 220 –
Peak Areas 2–5 Relaxation 340 310 –

Peak Area 1 Presented method 170 200 120
Peak Areas 2–5 Presented method 430 330 250

Observe also in Figure 10 that the ICA curves obtained from the estimation have noticeable
differences with respect to those obtained from the relaxation curves in Figure 9. The positions of the
five peaks in this last figure cannot be recovered because model-estimated OCV curves have lower
resolution than laboratory measurements. The derivatives of the voltage with respect to the charge
were taken at steps of 40 mV. Hence, peaks 3, 4, and 5 cannot be reliably detected.

In any case, there is useful information about the battery health that is kept in the approximation.
In particular, we show that the approximation is good enough for obtaining the location of the inflection
point and also Peak areas 1 and 2–5. The evolution of these areas is enough for guessing whether the
main deterioration cause is a Loss of Lithium Inventory (LLI) or a shrinking of the lithiathed graphite
zone (LAMdeNE) (see Reference [45]). Hence, in this study, we will focus ourselves in the position
of the inflection point between peaks 1 and 2 and the area of the ICA curve to the left and right of
this inflection point. The evolution of these areas is enough for detecting “silent deteriorations”, i.e.,
those degradations that are not detected through capacity fade. The ICA curves (derivatives of the
OCV with respect to stored charge) and the integrals of these curves are plotted in the same graphs
(Figure 10), showing that the accuracy of the proposed method is comparable to another diagnosis that
was based on the “ground truth” OCV curve, as both the integral of the curves and the position of the
inflection point are similar.

For Battery #2 (see Table 4), we conclude that the diagnostic is the same with both relaxation
and the presented on-vehicle method: Peak area 1 decreases, and Peak areas 2–5 are almost constant,
thus the main deterioration cause is LLI. Observe that two values were marked with an asterisk in
this last table. These values are regarded as inaccurate because they are not in complete agreement
with the measurements taken on the ICA curve that are measured on the C25 discharge. They are
a consequence of the use of the OCV curve for performing the diagnosis and not a drawback of the
presented method.
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The most remarkable result in this experiment analysis is obtained for Battery #3, where the
presented method was able to predict an electrodeposition before it happened. Our method found that
Peak 1 was growing; according to References [46,47], an early detection of Lithium plating can be used
to reduce the duty-cycling scheme requirements, hence avoiding further degradation and prolonging
cycle-life. Laboratory and on-vehicle methods produce the same result: Peak area 1 does not decrease,
Peak areas 2–5 decrease, thus there is LLI and the effect of the shrinking of the lithiathed graphite zone
(LAMdeNE) is significant, in agreement with the presence of the abnormal peak in the right part of
Figure 9.

5. Conclusions

A new soft sensor for measuring certain health parameters of automotive batteries through
analysis of its OCV curve has been presented. This sensor could be embedded in SoH assessment
systems. The proposed sensor is based on a recurrent neural network that implements a transformation
model of the battery. The results were validated for LiFePO4 batteries. Eight different OCV models
were compared to the new approach: two first-principle models, five recurrent neural networks and
statistical time series. It was concluded that (a) MESN networks improve state-of-the-art methods
for OCV modeling when the charge current is moderate or high and (b) health diagnostics from
OCV models are useful for obtaining on-vehicle assessments of the battery health, including certain
silent deteriorations.

To the best of our knowledge, this is the first application of transformation models in battery
modelling. The method uses only a small amount of prior knowledge, which is the monotonicity
of the OCV with respect to the charge. Since this monotonicity assumption is valid for a large
number of scenarios (different currents, ageing and degradations), this technique is less restrictive
than electrochemical or equivalent circuit models.
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