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Global patterns of planktonic diversity are mainly determined by the dispersal of propagules

with ocean currents. However, the role that abundance and body size play in determining

spatial patterns of diversity remains unclear. Here we analyse spatial community

structure - β-diversity - for several planktonic and nektonic organisms from prokaryotes to

small mesopelagic fishes collected during the Malaspina 2010 Expedition. β-diversity was

compared to surface ocean transit times derived from a global circulation model, revealing a

significant negative relationship that is stronger than environmental differences. Estimated

dispersal scales for different groups show a negative correlation with body size, where less

abundant large-bodied communities have significantly shorter dispersal scales and larger

species spatial turnover rates than more abundant small-bodied plankton. Our results confirm

that the dispersal scale of planktonic and micro-nektonic organisms is determined by local

abundance, which scales with body size, ultimately setting global spatial patterns of diversity.
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The oceans represent the largest continuous environment on
Earth. Over long timescales, all marine ecosystems are
connected to each other by ocean currents1. However,

biological connectivity, or the exchange of individuals across
geographically separated subpopulations2, is not uniform as there
exist barriers to dispersal. Such barriers include not only land
masses, but also persistent frontal features at a range of spatial
scales, sharp environmental gradients, and other oceanographic
features3. Further, dispersal along ocean currents and the effect of
these ‘physical barriers’ varies across taxa. In particular, as seen in
terrestrial examples4,5, differences in body size and abundance
amongst taxa are hypothesized to play a major role in deter-
mining both the distributional patterns and the scale of dispersal
for marine planktonic species6–9. In order to understand how
marine biodiversity is maintained locally and structured spa-
tially10, it is therefore necessary to investigate the relationship
between planktonic dispersal, body size, and local abundance9,11.

The shift in species composition among locations12, or β-
diversity, is strongly influenced by environmental heterogeneity
and seascape features, such as differences in temperature or
geographic distance13. The scale-dependence of β-diversity can be
described as a ‘distance-decay’ rate, measured as the slope of a
linear relationship between the logarithm of community simi-
larity and the logarithm of geographic distance among pairs of
sites14. In both oceanic and terrestrial ecological communities,
distance-decay patterns are set by three major mechanisms15,16:
(1) local niche-based processes, which are summarized by the
statement that, below 1-mm body size, “everything is everywhere,
but the environment selects”7,17,18; (2) the effects of dispersal
limitation, as hypothesized by the neutral theory of biodiversity19;
these effects lead to a negative relationship between community
similarity and geographic distance, even in a completely homo-
geneous environment; and (3) the spatial configuration of the
seascape, which can also dictate the rate at which organisms
disperse among sites1. It is a major challenge to elucidate which of
these mechanisms is dominant for any given ecological com-
munity, since differences in key environmental characteristics are
often strongly correlated with geographic distance8,19,20. Indeed,
while distance-decay patterns have been observed for specific taxa
in terrestrial (e.g., rainforest trees21), freshwater (e.g., aquatic
beetles22; fish and macroinvertebrates23), and marine commu-
nities (e.g., coral reefs19; marine bacteria and prokaryotes24,25;
and macrobenthos and plankton26), few studies have identified a
robust distance-decay pattern across taxa or across key physio-
logical traits, such as body size27.

Body size is the dominant physiological factor determining
individual metabolic rates28 and, according to the metabolic
theory of ecology29, it also controls numerous ecological pro-
cesses. For example, smaller organisms have higher metabolic
rates, faster growth rates, shorter generation times, and higher
energy needs relative to larger organisms. Small organisms are
generally more abundant, in terms of population density, than
larger organisms28. This means that smaller organisms are
expected to have lower local extinction rates30 and, therefore,
reduced demographic stochasticity and ecological drift19 com-
pared to larger organisms. Importantly, among smaller, mostly
passively dispersed taxa, body size is expected to be inversely
correlated with the spatial scale of dispersal. In fact, dispersal
limitation has been hypothesized to increase with body size in
planktonic communities7,11. In the oceans, therefore, smaller
planktonic organisms, which are relatively more abundant, are
expected to disperse farther with oceanic currents6, leading to
shallower distance-decay slopes than those of larger planktonic
organisms7,8,24.

Here we have quantified empirically derived distance-decay
slopes and measured dispersal scales for a number of planktonic

and micro-nektonic organisms, spanning a wide range of body
sizes and abundances, from prokaryotes to small mesopelagic
fishes. With these analyses, we have tested the hypothesized size-
dependence of community dispersal scales and resulting spatial
patterns of regional connectivity. To do so, we first explored the
importance of surface ocean transit times, derived from previous
Lagrangian particle simulations1, in explaining spatial patterns of
β-diversity for each biological group, accounting for the relative
contribution of environmental filtering31. Since β-diversity is
controlled by surface ocean transit time, we then used the
distance-decay slopes of each biological group to infer the com-
munity dispersal scale as a proxy of distribution range (sensu
biogeography). These analyses are based on samples of pelagic
communities collected across the subtropical and tropical ocean
during the Malaspina 2010 Circumnavigation Expedition32. Our
results show that the species composition of plankton and micro-
nekton communities in tropical and subtropical open ocean is in
large part determined by oceanic currents. Given this finding, we
also explored the dispersal scale of each biological group and
found a negative relationship between dispersal scale and body
size: less abundant large-bodied plankton and micro-nekton
communities in near-surface epipelagic waters show significantly
shorter dispersal scales and larger spatial species-turnover rates
compared to more abundant small-bodied plankton.

Results
Community assembly contributors. We find that the relative
influence of surface ocean transit times and differences in
environmental factors on plankton and micro-nekton community
structure vary among groups (Mantel tests Table 1, Supplemen-
tary Fig. 1). For example, planktonic community β-diversity is
significantly correlated with surface ocean transit times in all
groups, explaining on average 22% of the variance (Table 1).
Correlations with environmental distances are only significant for
Cercozoa and myctophids, explaining 6–8% of the variance. In
these two groups, the correlation between β-diversity and surface
ocean transit times remains significant after controlling for
environmental factors (Table 1). We also find low-shared cov-
ariation between environmental distance and surface ocean
transit times, indicative of the low-spatial autocorrelation in
oceanic factors. In fact, the correlation between the surface ocean
transit times and the environmental distance among the all pair
sites is rather weak (Mantel r = 0.09, Supplementary Table 1). A
large fraction of the β-diversity variance remains unexplained by
the selected explanatory factors (multiple regression on distance
matrices, Table 1). This finding reflects the complexity of inter-
acting mechanisms controlling spatial community assembly in
the oceans. In addition, we find no relationship between the
relative contribution of environmental drivers and body size
(non-parametric bootstrap, p-value >0.05, Supplementary
Table 2).

Community dispersal scales and spatial turnover. The sig-
nificant negative relationship observed between oceanic transit
times and β-diversity for planktonic and micro-nektonic organ-
isms, more so than environmental distance, let us estimate
community dispersal scales and spatial species turnover rates. The
former is determined by means of the halving-time, that is, the
oceanic transit time at which species similarity halves16; the latter
comes from the slope of the distance-decay relationship for each
group (Methods section; Fig. 1 and Table 2). In addition to the
Mantel tests, the distance-decay slopes and the community
similarity halving-times reinforce the result that community
similarity decreases with the logarithm of surface ocean transit
times (Fig. 1, Supplementary Fig. 2). For example, prokaryotes
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and microbial eukaryotes exhibit very long halving-times: 5094
and 866 years, respectively. In contrast, gelatinous zooplankton
(15.5 years), myctophids (1 year) and macrozooplankton (2
years) show the shortest halving-times (Table 2). Likewise, the
time-decay slopes are highest for large-sized groups, such as
myctophids (−0.0807), macrozooplankton (−0.0657), and gelati-
nous zooplankton (−0.0336) (Fig. 1a, Table 2). Myctophids and
macrozooplankton show very high initial similarity between
neighboring stations, denoting a high-spatial dependence in
community structure compared to smaller organisms (Fig. 1a,
Table 2). In contrast, the shallow time-decay slopes and long
halving-times of prokaryotes and microbial eukaryotes indicate
globally mixed distributions for these groups (Fig. 1a, b). These
groups of small organisms show the highest local abundance
values (prokaryotes = 3.30 × 1011± 4.10 × 1010 ind. m−3; micro-
bial eukaryotes = 1.72 × 109± 1.49 × 109 ind. m–3), 8–10 orders of
magnitude more abundant than larger organisms (macro-
zooplankton = 1.79 × 10−1± 2.5 × 10−1 ind. m−3; myctophids =
3.5 × 10−3± 1.9 × 10−2 ind. m−3) (Table 3). The hypothesized
size-dependence of dispersal in planktonic and micro-nektonic
organisms is supported by a significant negative log–log rela-
tionship between the organism size and halving-time and time-
decay slope (Fig. 2, Table 4). As expected, we also find a strong
significant negative correlation between the organism’s body size
and its local abundance (r2 = 0.93; p-value <0.001) (Fig. 3c), as
well as a significant positive log–log relationship between the local
abundance and halving-time and time-decay slope (Fig. 3a, b,
Table 4).

Community spatial clustering. Spatially heterogeneous patterns
in community similarity are observed in each size-group (Fig. 4).
Specifically, hierarchical clustering33 of our estimates of com-
munity similarity reveals distinct spatial patterning of larger
organisms, with clear biogeographic regions in the myctophid,
meso- and macrozooplankton communities (Fig. 4b, c, Supple-
mentary Fig. 3f). In these large-sized communities, connectivity is
highest in the Atlantic Ocean and the southern Indian Ocean.

Network graphs also reveal an area of high β-diversity for myc-
tophids in the central Pacific Ocean (Fig. 4c, pink points), where
species connectivity is low due to limited mixing between
neighboring communities. Marine communities in the Pacific and
Atlantic Oceans cluster into different groups, reflecting the bar-
rier imposed by land (Fig. 4). A possible oceanographic barrier is
also detected in the Hawaiian archipelago, dividing communities
into two different groups at either side of the islands (Fig. 4c). In
contrast to large-sized groups, small-sized groups show many
different clusters of various sizes, randomly distributed over the
global ocean, as seen, for example, in diatoms (Fig. 4a).

Discussion
In our analysis, the spatial arrangements of the sampled assem-
blages reveal that surface ocean transit time explains a larger
fraction of the variability in planktonic and micro-nektonic
community similarity than do environmental factors. This indi-
cates that passive dispersal with surface ocean currents—arguably
an ecologically neutral process similarly affecting all planktonic
and micro-nektonic organisms—is a stronger determinant of
community structure than niche-filtering factors19. In addition,
the low-spatial correlation found between oceanic transit time
and environmental distance likely results from the global scale of
our study (tropical and subtropical regions of the world’s oceans).
Contrary to most regional studies where climate and space cor-
relate well, here climatically very similar locations can be geo-
graphically far apart, for instance, two antipode points in the
equator or two points at 30° North and South.

We have found that dispersal limitation in small (0.0003 to ca.
10 mm) abundant planktonic and micro-nektonic organisms
increases with body size. This is based on a trend toward steeper
time-decay slopes and shorter halving-times with increasing body
size. Notably, the large halving-times of marine microbial
organisms imply that, when dispersing with ocean currents, it
would take thousands of years of oceanic transport for such
communities to halve the similarity between adjacent sampling
stations (i.e., the initial similarity). However, in some biological

Table 1 Correlations between community similarity with currents and environmental factors

Biological groups Mantel correlation Mantel partial correlation MRM

N pairs Ocean transit
time

Environmental
distance

Ocean transit time partialling out
environmental distance

Ocean transit time +
environmental distance

Prokaryotes 120 0.28** 0.02 — 0.29**
Small heterotrophic
flagellates

112 0.30** 0.04 — 0.31**

Green algae 112 0.27** 0.04 — 0.28**
Fungi 89 0.13** 0.02 — 0.13**
Microbial eukaryotes ALL 112 0.24** 0.005 — 0.24**
Parasites 112 0.23** 0.002 — 0.23**
Cercozoa 107 0.10** 0.06* 0.07** 0.12**
Large flagellates 112 0.19** 0.08 — 0.22**
Coccolithophores 0–160m 133 0.28** 0.01 — 0.28**
Diatoms 0–160m 133 0.21** 0.02 — 0.22**
Diatoms surface 93 0.17** 0.04 — 0.18**
Dinoflagellates 0–160m 133 0.21** 0.004 — 0.21**
Dinoflagellates surface 112 0.11** 0.04 — 0.12*
Mesozooplankton 0–200m 36 0.40** Not available — Not available
Gelatinous zooplankton 61 0.11** 0.04 — 0.11**
Macrozooplankton 65 0.23** 0.05 — 0.27**
Myctophids 95 0.32** 0.08** 0.20** 0.32**

Mantel correlations and Multiple Regression on distance Matrices (MRM) between β-diversity (i.e., community variation in space), environmental distance, and pair-site ocean transit times; and Mantel
partial correlations after controlling for the effects of environmental distance, in statistically significant cases. N pairs: number of pair-sites considered at each group. The statistical significance of
comparisons is assessed using Mantel and partial Mantel tests based on Pearson’s product moment correlation using 9999 permutations
*p-value ≤0.05; **p-value ≤0.01
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groups, such as surface dinoflagellates, community similarity is
never less than half of the initial similarity, even for stations
located far apart. As such, the halving-time is a relative indicator,
or proxy, of community dispersal scale, and should not be
interpreted as an absolute value of the transit time that operates
among the sub-communities. Therefore, communities of small
organisms (body size <2 mm) and high-local abundance are
likely to have a panmictic worldwide distribution7,11. On the
other hand, larger-sized organisms exhibit stronger spatial pat-
terning6,33 and need only a few decades of surface ocean transit
time, ~20 years at most, to halve their initial similarity. This
means that for these large-sized organisms, species will be similar

at geographically proximate locations, and dissimilar between
distant locations. These results highlight that patterns of β-
diversity in open-ocean in planktonic and micro-nektonic
organisms are size-dependent34. In order to explain the under-
lying process of this empirical finding, we have identified a sig-
nificant positive relationship between the local abundance and the
community dispersal scales. This was expected since local abun-
dance scales negatively with body size29,35, as confirmed in our
data. Moreover, generation time also scales negatively with body
size29,35. Locally abundant species are exposed to lower local
extinction rates30 and hence, reduced demographic stochasticity
and ecological drift19. Therefore, we suggest that large population
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Fig. 1 Time-decay between community similarity and surface ocean transit time. Time-decay relationship between community similarity using Jaccard
similarity index and surface ocean transit time. Each line represents the community similarity decay between the species similarity and the logarithm of the
surface ocean transit times for each biological group. a Main biological groups: prokaryotes (green); coccolithophores 0–160m (cyan); dinoflagellates
0–160m (yellow); diatoms 0–160m (orange); microbial eukaryotes all (purple); gelatinous zooplankton (gray); mesozooplankton 0–200m (black);
macrozooplankton (brown); myctophids (blue). b All biological groups: prokaryotes (solid green); coccolithophores 0–160m (solid cyan); dinoflagellates
0–160m (solid yellow); diatoms 0–160m (solid orange); mesozooplankton 0–200m (solid black); gelatinous zooplankton (solid gray); macrozooplankton
(solid brown); myctophids (solid blue); small heterotrophic flagellates (dashed green); green algae (dashed cyan); fungi (dashed yellow); parasites (dashed
orange); cercozoa (dashed black); large flagellates (dashed gray); dinoflagellates surface (dashed brown); diatoms surface (dashed blue)
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densities and short generation times of micro-planktonic organ-
isms are the mechanisms explaining the larger geographic range
and relatively weak spatial structure of these organisms30,34,36,37.
In contrast, larger planktonic organisms generally have longer
generation times and smaller population densities38, and are
therefore more sensitive to local extinctions and ecological drift,
resulting in stronger spatial structure. In addition, lower sinking
losses39 and longer survival times of resting stages of small pas-
sively dispersed plankton (from prokaryotes to phytoplankton)40

allow their populations to travel greater distances than large-sized
plankton.

In our study, the environment, through environmental species
sorting, explains little of the observed spatial variation in com-
munity structure in both plankton and micro-nekton groups.
There are multiple plausible explanations for this finding. First,
the Malaspina sampling was restricted to tropical and subtropical
regions and took place in summertime, when horizontal envir-
onmental gradients are typically low at surface. As a result, it is
difficult to capture assemblage variations due to climate. Second,
the presence-absence indices that we used are less sensitive41

compared to relative abundances. We anticipate that the latter

indice would potentially identify a stronger relationship in both
small and large-sized plankton and micro-nekton with environ-
mental gradients. Other potential reasons might stem from the
other environmental variables not measured in our study, and the
exclusion of biotic variables, which might play a role driving
spatial distribution, particularly in large planktonic taxa. Finally,
marine microbial communities are mainly dispersed by advection
and diffusion. These, together with their relatively high-niche
plasticity compared to the plasticity of larger-bodied taxa, results
in microbes showing broad spatial distributions. However, our
results do not identify low niche plasticity in large-bodied taxa42,
and we observe no significant relationship between organism
body size and environmental variability. This is in line with a
recent meta-analysis by Soininen41 that concluded that body size
and environmental species sorting are not significantly related in
a data set spanning a range in body size of up to 12 orders of
magnitude. This apparent contradiction in thinking and evidence
highlights the need for further research on the strength of
environmental species sorting among organisms of different size.

In addition to passively dispersed planktonic organisms, we
also analysed connectivity in myctophid fish communities
(micro-nekton), which are active swimmers. The myctophid
group showed short dispersal scales and a steep distance-decay
slope comparable with those of other large-bodied passive dis-
persers (i.e., gelatinous zooplankton and macrozooplankton).
This evidence of dispersal limitation for myctophids is likely a
result of their migration patterns being mostly vertical (rather
than horizontal), as they move daily between the mesopelagic and
epipelagic zones43. In contrast, numerous marine megafauna,
such as large pelagic fish and marine mammals, actively move
horizontally, either to forage for food or to complete long-
distance migration44. Indeed, previous research has demonstrated
a positive relationship between dispersal distance and body size
for such megafauna45. For myctophids, horizontal movement
occurs predominantly as larvae, with passive transport by ocean
currents in epipelagic waters43. The observed similarity in dis-
persal patterns of myctophids and macrozooplankton may thus
arise from the same processes: passive horizontal dispersion of

Table 2 Halving-times for each biological group

Biological groups Logarithmic decay between species
similarity and surface ocean transit
time

Size range (mm) Size mean
(mm)

Sampling depth
(m)

Habitat

Slope (c) S0 HT (years)

Prokaryotes −0.0232** 0.52 5094 0.0003–0.001 0.0005 0 E
Small heterotrophic flagellates −0.0231** 0.34 56 0.0008–0.003 0.002 0 E
Green algae −0.0222** 0.24 5 0.0008–0.003 0.0025 0 E
Fungi −0.0194** 0.16 3 0.0008–0.003 0.003 0 E
Microbial eukaryotes all −0.0102** 0.22 866 0.0008–0.003 0.002 0 E
Parasites −0.0100** 0.22 802 0.0008–0.003 0.004 0 E
Cercozoa −0.0121** 0.12 12.5 0.0008–0.003 0.005 0 E
Large flagellates −0.0181** 0.39 1215 0.0008–0.003 0.006 0 E
Coccolithophores 0–160m −0.0341** 0.52 198 0.002–0.5 0.0142 0–160 E
Diatoms 0–160m −0.0275** 0.27 158 0.002–0.4 0.033 0–160 E
Diatoms surface −0.0206** 0.17 1 0.002–0.4 0.033 0 E
Dinoflagellates 0–160m −0.0156** 0.35 7325 0.002–0.5 0.043 0–160 E
Dinoflagellates surface −0.0046** 0.19 14,931,726 0.008–0.003 0.043 0 E
Mesozooplankton 0–200m −0.0135** 0.16 18 0.3–5 2.65 0–200 E
Gelatinous zooplankton −0.0336** 0.38 15.5 >5 5 0 N
Macrozooplankton −0.0657** 0.55 2 4–15 5.41 0 N
Myctophids −0.0807** 0.47 1 20–110 35 0 M&N

Halving-times derived from species similarity and surface ocean transit times with logarithmic decay models. The logarithmic decay model shows the community similarity decline (slope) with the
logarithm of surface ocean transit time
HT Halving-time, N neustonic, E epipelagic, M mesopelagic, So initial similarity
**p-value <0.01

Table 3 Local abundance of main biological groups

Main biological groups Abundance± SD (ind. m−3)

Prokaryotes 3.30 × 1011± 4.10 × 1010

Microbial eukaryotes all 1.72 × 109± 1.49 × 109

Coccolithophores 0–160m 8.08 × 106± 7.60 × 106

Diatoms 0–160m 7.16 × 106± 1.30 × 106

Dinoflagellates 0–160m 2.80 × 106± 1.80 × 106

Mesozooplankton surface 6.00 × 103± 1.09 × 104

Gelatinous zooplankton 0.04235± 1.49 × 109

Macrozooplankton 0.179± 0.251
Myctophids 0.0035± 0.0193

Mean abundance and standard deviation (ind. m−3) of main biological groups (microbial
eukaryotes subgroup abundance is not determined)
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larvae, with movement as juvenile and adults mainly devoted to
diel vertical behavior. It is worth noting that contradictory results
have been found in a study by Jenkins et al.9, whose findings
suggested that body size controls the dispersal of active dispersers,
but not of passive dispersers like planktonic organisms. However,
this study9 did not characterize the full range of body sizes that
we have studied, and therefore is limited in its scope. Our data
support the existing understanding that β-diversity in the pelagic
domain increases with body size in small and mainly passive
organisms but decreases in actively mobile larger taxa (pelagic
fishes, cetaceans), because high-dispersal capacity reduces com-
positional differences between sites27. Furthermore, given that the
community dispersal scale defined here is a good proxy for the
geographic range of a particular community, it seems that the
local abundance of the species from an ecological guild relates
positively to their geographic range in plankton, similar to many

other groups from marine and terrestrial domains, including both
passively and actively dispersing species46.

The spatial distribution of community similarity, identified
using hierarchical clustering, revealed distinct size-dependent
spatial patterns. In particular, we identified large-scale frontal
zones as areas of low β-diversity in the case of mesozooplankton
and especially myctophid fishes. These frontal zones act as bar-
riers separating subtropical gyres and are typically areas of rela-
tively high-primary production47. Limited dispersal between
distinct pelagic provinces has been shown to play a major role in
plankton population differentiation, and in the creation of strong
genetic breaks and enhanced diversity in bridging regions48.
Another interesting conclusion drawn from these network maps
is that modeling results of global ocean transit times indicate that
the Atlantic Ocean is less connected than are the Pacific and
Indian Oceans. This is mirrored in the spatial clustering of

r 2 = 0.77

p-value < 0.001

1

2

3

4

5

6 7

8
9

5.0

7.5

10.0

12.5

15.0

−8 −4 0 4

Ln (Size (mm))

Ln
 (

ha
lv

in
g-

tim
e 

(d
ay

s)
)

r 2 = 0.04

p-value > 0.05

1

2

3

4

5
6

7

8

9
10

11

12
13

14

15
165

10

15

20

−8 −4 0 4

Ln (Size (mm))

Ln
 (

ha
lv

in
g-

tim
e 

(d
ay

s)
)

r 2 = 0.36

p-value < 0.01

1

2

3

4

5

6

7

8

9

−0.075

−0.050

−0.025

−8 −4 0 4
Ln (Size (mm))

Ln
 (

tim
e-

de
ca

y 
sl

op
e)

r 2 = 0.41

p-value < 0.01

1

2

3
4

5
6

7
8

9

10

11

12

13

14

15 16

−0.075

−0.050

−0.025

−8 −4 0 4
Ln (Size (mm))

Ln
 (

tim
e-

de
ca

y 
sl

op
e)

a b

c d

Fig. 2 Correlations between halving-time and time-decay slope with body size and local abundance. a Correlation between the logarithms of halving-time
(y) and body size (x) in main biological groups; linear regression equation y= 9.093–0.724x, n= 9, r2= 0.767, p-value <0.001. b Correlation between the
logarithms of halving-time (y) and body size (x) in all biological groups; linear regression equation y = 9.223–0.406x, n= 16, r2= 0.037, p-value >0.05. c
Correlation between the logarithms of the time-decay slope (y) and body size (x) in main biological groups; linear regression equation y = −0.042 −
0.004x, n= 9, r2= 0.363, p-value <0.01. d Correlation between the logarithm of the time-decay slope (y) and body size (x) in all biological groups; linear
regression equation y= −0.040 − 0.004x, n= 16, r2= 0.406, p-value <0.01. Main biological groups a–c: prokaryotes (1); microbial eukaryotes all (2);
coccolithophores 0–160m (3); dinoflagellates 0–160m (4); diatoms 0–160m (5); gelatinous zooplankton (6); mesozooplankton 0–200m (7);
macrozooplankton (8); myctophids (9). All biological groups b–d: prokaryotes (1); coccolithophores 0–160m (2); large flagellates (3); dinoflagellates
0–160m (4); diatoms 0–160m (5); small heterotrophic flagellates (6); dinoflagellates surface (7); parasites (8); gelatinous zooplankton (9); green algae
(10); mesozooplankton 0–200m (11); macrozooplankton (12); myctophids (13); cercozoa (14); fungi (15); diatoms surface (16). Ln Napierian logarithm. P-
value is calculated at 95% of confidence interval in non-parametric bootstrap cross-validation. The dashed black line shows the model fit
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planktonic organisms found in our data, particularly in mycto-
phids and macrozooplankton, where a set of unique clusters are
only seen in the Atlantic Ocean (orange-color stations), and
another set of unique clusters (pink and dark-orange stations)
only in the Pacific and Indian Oceans.

In summary, we have shown that planktonic and micro-
nektonic β-diversity declines logarithmically with surface ocean
transit times, and that dispersal limitation is a more powerful
determinant of community structure than is niche segregation in
the tropical and subtropical open ocean. More importantly, we
have identified that large-bodied plankton groups and neustonic-
migrating mesopelagic myctophid fishes have shorter dispersal
scales and higher species spatial turnover rates when compared to
more abundant micro-plankton groups. Together, these results
highlight that body size, local abundance, and ocean currents are
key determinants of global patterns of biodiversity in marine
planktonic and small-bodied pelagic communities.

Methods
Data collection. The Malaspina Expedition sailed the subtropical and tropical
Atlantic, Indian, and Pacific Oceans on board R/V Hespérides, with a balanced
distribution sampling to characterize pelagic communities across the open ocean in
the northern and southern hemisphere32. Samples included pelagic communities
encompassing six orders of magnitude in body length, including prokaryotes
(~0.0003 − 0.001 mm) and small microbial eukaryotes (~0.0008 − 0.003 mm), large
microbial eukaryotes (i.e., phytoplankton (~0.002 − 0.5 mm), surface mesozoo-
plankton (~0.2 − 3 mm) and epipelagic mesozooplankton (~0.3 − 5 mm), macro-
zooplankton (~4 − 15 mm), gelatinous zooplankton (>5 mm), and myctophid
fishes (20−110 mm) (Supplementary Table 3). In this paper, we focus on the
neuston, epipelagic, and neuston-migrating mesopelagic communities. Neuston

communities include gelatinous zooplankton, macrozooplankton, and mesozoo-
plankton (surface) occupying the first centimeters of surface ocean. Epipelagic
communities include mesozooplankton (epipelagic), phytoplankton divided as
diatoms, coccolithophores and dinoflagellates, and prokaryotes and small microbial
eukaryotes living in the first 200 m of the water column. Mesopelagic communities
include myctophid fishes found in the neuston layers during their nightly migra-
tion (Supplementary Table 3).

At each sampling location, ~12 L of seawater was used to determine the
composition of microbial communities (marine prokaryotes and small microbial
eukaryotes). Water samples were pre-filtered through a 200 μm mesh to remove
large plankton, followed by sequential filtration, involving filtering the sample
through a 20-µm Nylon mesh followed by a 3 µm pore-size polycarbonate filter
(Poretics), and finally through a 0.2 µm polycarbonate filter (Poretics) using a
peristaltic pump (MasterFlex 7553-89 with cartridges Easy Load II 77200-62, Cole-
Parmer Instrument Company) to collect the prokaryotes and small eukaryotes (size
fraction: 0.0003 − 0.001 mm). The filters were then flash-frozen in liquid N2 and
stored at −80 °C until DNA extraction. Water samples for nano- and micro-
autotrophic plankton (for simplicity, hereafter ‘phytoplankton’) determination
were taken from surface waters (3 m) using a 30 L Niskin bottle, and from the
depth receiving 20% of the light (PAR) incident just below the surface, and the
depth of the chlorophyll maximum, using a Rosette sampler system fitted with 24,
10 L Niskin bottles and a SeaBird CTD sensor. The water was introduced in glass
bottles that were hermetically capped after fixation with hexamine-buffered
formaldehyde solution (4% final formalin concentration)49. Gelatinous
zooplankton, macrozooplankton, surface mesozooplankton and myctophid fish
were sampled using a neuston sampler (80 cm wide, 30 cm high) fitted with a 200
µm mesh size, towed at 2–3 knots during 10−15 min at a depth of 15 cm and a
distance of 5 m from the starboard side of the hull50. Deeper mesozooplankton
communities (0–200 m) were sampled with a multi-net (300−5000 µm mesh size).

Species identification. Traditional taxonomy approaches were used to identify
species of phytoplankton49, gelatinous zooplankton50, surface mesozooplankton,
and juvenile and adult stages of myctophids51 (Supplementary Table 3). For
phytoplankton examination, 100 mL aliquots of sample were settled in composite

Table 4 Correlations between halving-time and time-decay slope with body size and local abundance

Main biological groups (n= 9) Statistic Parametric model Bootstrap

Ln (HT) vs Ln (size) Confidence interval (−1.067, −0.715)
p-value 0.001 <0.001
RMSE 1.542
Adjusted r2 0.767
Linear regression equation y= 9.093 − 0.724x

Ln (time-decay slope) vs Ln (size) Confidence interval (−1.180, −0.236)
p-value 0.050 <0.01
RMSE 0.020
Adjusted r2 0.363
Equation y= −0.042 − 0.004x

Ln (HT) vs Ln (abundance) Confidence interval (0.727, 1.057)
p-value 0.001 <0.001
RMSE 1.547
Adjusted r2 0.766
Equation y= 7.892 + 0.248x

Ln (time-decay slope) vs Ln (abundance) Confidence interval (0.359, 1.140)
p-value 0.022 <0.01
RMSE 0.018
Adjusted r2 0.487
Equation y= −0.051 + 0.001x

All biological groups (n= 16) Statistic Parametric model Bootstrap

Ln (HT) vs Ln (size) Confidence interval (−0.709, 0.100)
p-value 0.230 >0.05
RMSE 4.199
Adjusted r2 0.037
Equation y= 9.223 − 0.406x

Ln (time-decay slope) vs Ln (size) Confidence interval (−1.244, −0.252)
p-value 0.005 <0.01
RMSE 0.016
Adjusted r2 0.406
Equation y= −0.040 − 0.004x

Evaluation of the log–log relationship between (i) group size vs halving-time (HT) and time-decay slope, and between (ii) local abundance vs halving-time and time-decay slope in main- and all biological
groups. The table shows parametric models (all observations included) and non-parametric bootstrap cross-validations (95% confidence interval)
Ln Napierian logarithm. RMSE root mean square error
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samples and observed under an inverted microscope, following the Utermöhl
method52. At least two transects of the chamber bottom were examined under high
magnification (×312) to count the smaller cells, and the whole chamber bottom was
scanned at ×125 to enumerate the larger, less frequent forms. Large phytoplankton
(dinoflagellates, diatoms and coccolithophores) were identified using inverted
microscopy to species level when possible. However, some taxa could only be
identified to genus (e.g., Thalassiosira spp.) or to more general categories like ‘Small
dinoflagellates’ or ‘Small coccolithophores’49. Gelatinous zooplankton were iden-
tified combining morphological taxonomical approaches and high-resolution
photography50 (Supplementary Table 3). The use of molecular approaches in
gelatinous zooplankton has many gaps, and the most common markers used in
techniques, such as DNA barcoding like COI or ITS are often not useful in
resolving all gelatinous phyla53. We confirmed some morphological identifications
using mainly DNA barcode with COI as molecular marker. However, in groups like
Ctenophora or in thaliaceans the identification approach was based solely on
morphology because the molecular markers were not valid to differentiate between
species53. Myctophids and surface mesozooplankton were identified using
morphometric and morphological parameters54. Metabarcoding was used to
identify macrozooplankton, epipelagic mesozooplankton (0−200 m), and microbial
communities (prokaryotes and microbial eukaryotes) (Supplementary Table 3).
Specifically, DNA from macrozooplankton (crustacean, mollusks, and insects)
was extracted as in Marco-Herrero et al.55. Target mitochondrial DNA from
the 16S rRNA and COI genes was amplified with polymerase chain reaction
(PCR). Primers 1472 (5′-AGATAGAAACCAACCTGG-3′)56 and 16L2
(5′-TGCCTGTTTATCAAAAACAT-3′)57 were used to amplify 540 bp (base pair)

of 16S, while primers COH6 (5′-TADACTTCDGGRTGDCCAAARAAYCA-3′)
and COL6b (5′-ACAAATCATAAAGATATYGG-3′)57 allowed amplification of
670 bp of COI. The PCR products were sent to external laboratories to be purified
and then bidirectionally sequenced (Sanger). Sequences were edited using the
Chromas software version 2.0 (http://technelysium.com.au/wp/chromas/). With
the final DNA sequences obtained, a BLAST search was executed on the NCBI
webpage (https://www.ncbi.nlm.nih.gov/) to get the sequence that matched best.
Macrozooplankton specimens were identified at species level when sequences fit
100%. Assignations to generic or familial level were made with a 90–99% diver-
gence, depending on taxa and genes analysed58. For lower % of divergence
Operational Taxonomic Units (OTUs) were kept without taxonomical adscription.
DNA from mesozooplankton (0–200 m) samples was extracted following Corell
and Rodriguez-Ezpeleta59. The V4 of the 18S rRNA gene was amplified using the
#1/#2RC primer pair60 following the ‘16S Metagenomic Sequence Library Pre-
paration’ protocol (Illumina, California, USA). Amplicons were purified using the
AMPure XP beads, quantified using Quant-iT dsDNA HS assay kit with a Qubit
2.0 Fluorometer (Life Technologies, California, USA) and pooled for high
throughput sequencing in the Illumina MiSeq platform (Illumina, California,
USA). After demultiplexing based on index, reads were trimmed at 200 bp (as
overall Phred quality scores decreased after this position) and processed following
the mothur61 MiSeq SOP62. Briefly, sequences with ambiguous bases, chimeras,
and global singletons were removed, and OTUs were created by merging reads at
97% similarity. Prokaryotic diversity was assessed by amplicon sequencing of the
V4–V5 regions of the 16S rRNA gene in the Illumina MiSeq platform (iTags) using
paired-end reads (2 × 250 bp) and primers 515F-Y (5′-
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Fig. 3 Correlations between halving-time and time-decay slopes with local abundance. a Correlation between the logarithms of halving-time (y) and local
abundance (x) in main biological groups; linear regression equation y= 7.892 + 0.248x, n= 9, r2= 0.766, p-value <0.001. b Correlation between the
logarithms of the time-decay slope (y) and local abundance (x) in main biological groups; linear regression equation y= −0.051 + 0.001x, n= 9, r2= 0.487,
p-value <0.01. c Correlation between the logarithms of local abundance (y) and body size (x) in main biological groups; linear regression equation y=
5.002 − 2.820x, n= 9, r2= 0.930, p-value <0.001. Main biological groups: prokaryotes (1); microbial eukaryotes all (2); coccolithophores 0–160m (3);
dinoflagellates 0–160m (4); diatoms 0–160m (5); mesozooplankton surface (6); gelatinous zooplankton (7); macrozooplankton (8); myctophids (9). Ln=
Napierian logarithm. P-value is calculated at 95% of confidence interval in non-parametric bootstrap cross-validation
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GTGYCAGCMGCCGCGGTAA-3′) and 926 R (5′-CCGYCAATTYMTT-
TRAGTTT-3′) targeting both Archaea and Bacteria63. Small microbial eukaryotic
diversity was assessed by amplicon sequencing of the V4 region of the 18S rRNA
gene with the Illumina MiSeq platform using paired-end reads (2 × 250 bp) and the
universal eukaryotic primers TAReukFWD1 (5′-CCAGCASCYGCGGTAATTCC-

3′) and TAReukREV3 (5′-ACTTTCGTTCTTGATYRA-3′)64. For both groups,
sequence data processing was performed using an UPARSE65 based workflow
implemented in a local cluster [Marbits platform, ICM] (Logares66). Briefly, raw
reads were corrected using BayesHammer67 following Schirmer et al.68. Corrected
paired-end reads were subsequently merged with PEAR69; sequences longer than

a

b

c

Fig. 4 Spatial community patterns. Hierarchical clustering based on the Jaccard similarity index for, a diatoms 0–160m, b mesozooplankton 0–200m, and
c myctophids. Each color represents a different hierarchical cluster. The size of stations indicates the number of connections (i.e., species/OTUs similarity
between sites), that is, larger sized circles share more species (or OTUs) within all stations, compared to small sized circles. Some stations have been
aggregated based on proximity for clarity
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200 bp were quality-checked (maximum expected errors 0.5) and de-replicated
using USEARCH65. OTU were delineated at 97% similarity using UPARSE
V8.1.175665. To obtain OTU abundances, reads were mapped back to OTUs at
97% similarity using an exhaustive search (-maxaccepts 20 -maxrejects
50,000–100,000). Chimera check and removal were performed both de novo and
using the SILVA reference database70. Taxonomic assignation was performed by
blasting (i.e., BLASTn71) the sequence representative of each OTU against the 16S
SILVA v12370 and two in-house marine microeukaryote databases based in a
collection of Sanger sequences72 or 454 reads from the BioMarKs project (http://
www.biomarks.eu/). Analysis of macro-organisms was conducted at the species
level, where possible, and that of mesozooplankton and heterotrophic prokaryotes
and eukaryotes was conducted at the OTU level (Supplementary Table 3). Standard
protocols for assignment to OTUs or species for each group differed slightly
between groups depending on the taxa. However, the same approach was used for
all stations in the Malaspina cruise and, thus, the among-site similarity of each
group is consistent, independent of the exactness of OTU or species assignment.

Global estimates of abundance for each group were made using flow cytometer
counting73 (prokaryotes), microscope epi-fluorescence counting (small microbial
eukaryotes), inverted microscopy (phytoplankton), and stereo-microscope
counting (macrozooplankton) (Supplementary Table 3). The abundance of
phytoplankton (diatoms 0–160 m, coccolithophores 0–160 m and dinoflagellates
0–160 m) was vertically integrated (0–160 m). The abundance of myctophids,
gelatinous zooplankton and macro- and surface mesozooplankton was estimated
using traditional taxonomy identification techniques (Supplementary Table 3).

The above analyses produced a data set of nine focal organismal groups, with
high sample spatial resolution and species occurrence (Supplementary Table 4):
prokaryotes (120 stations and 1218 OTUs), microbial eukaryotes all (112 stations
and 35615 OTUs), coccolithophores 0–160 m (133 stations and 47 species),
dinoflagellates 0–160 m (133 stations and 236 species), diatoms 0–160 m
(133 stations and 68 species), mesozooplankton 0–200 m (36 stations and 4283
OTUs), gelatinous zooplankton (61 stations and 12 species), macrozooplankton
(65 stations and 46 species), and myctophids (95 stations and 12 species).
Additionally, to infer the relationships between body size and plankton biological
connectivity, and based on the taxonomic assignation of each OTU, we split the
small microbial eukaryotes group into 8 subgroups labeled as: Small heterotrophic
flagellates (1014 OTUs), Green algae (451 OTUs), Fungi (59 OTUs), Parasites
(20466 OTUs), Cercozoa (84 OTUs), Large flagellates (375 OTUs) Dinoflagellates
surface (8391 OTUs) and Diatoms surface (85 OTUs) (Supplementary Table 4).

Distance and similarity matrices. In Supplementary Fig. 4, we show a general
flow diagram with the steps we took to quantify the dispersal patterns of planktonic
and micro-nektonic communities. Briefly, the analysis involves the calculation of
three similarity or distance metrics for each pair of sampling locations, which over
all pairs is stored as a matrix: biotic similarity, environmental distance, and surface
ocean transit times (also a distance)31.

For the biotic similarity matrix, we calculated pairwise species similarities for
each group using the Jaccard similarity (J) index74 with species presence-absence
data to infer the variation of the species assemblages (β-diversity matrix):

Jði;jÞ ¼ a
aþ bþ c

; ð1Þ

where a is the number of species shared between two sites (i and j), b is the total
number of species that occur in site i but not in j, and c is the total number of
species that occur in site j but not in i.

The environmental distance matrix was populated using a multidimensional
Euclidean distance calculation, applied to a set of key environmental variables at
surface pair-sites (Table 5). All key environmental variables were converted into Z-
scores [(x-mean)/standard deviation] to give equal weight in the distance

calculation. The environmental variables used here have been previously shown to
be important to the spatial distribution of marine organisms43,75. Further, key
environmental variables were selected using a BIOENV function in R, which finds
a subset of environmental variables (from a larger super set), such that the
Euclidean distances of scaled environmental variables have the maximum (rank)
correlation with community dissimilarities76.

The surface ocean transit time matrix was built using estimates of minimum
connection times or surface ocean transit times between pair-sites obtained from
previously published global surface ocean Lagrangian particle simulations1. In
brief, velocity fields from the ECCO2 model (http://ecco2.org), an eddy permitting
global Ocean General Circulation Model (OGCM) with a 1/4° × 1/4° horizontal
resolution that assimilates satellite and in situ data using a 4D-var approach, were
used as inputs to the TRACMASS offline particle tracking framework77 to advect
virtual particles, bound to the near surface (5–20 m depth), using only horizontal
velocities. The particles (36 million in total) were seeded over 9 years and advected
for 100 years by looping velocity fields from the years 2000–2010, with particle
positions saved every 3 days. No extra diffusivity was added to the movement of the
particles. When calculating minimum connection times, we aggregated the model’s
¼° × ¼° grid cells to 11,116 discrete 2° × 2° patches. The size and number of these
connectivity patches were selected as a balance of computational feasibility and
biogeographic detail. However, for many pairs of patches, direct estimates of
minimum connection times were not available (due to the global scale of the
simulations and the relatively short integration period). Therefore, a shortest path
algorithm was applied to estimate minimum connection times between all pairs of
patches1.

To illustrate spatial patterns of minimum connection times (surface ocean
transit times), we show times to, and times from, for two Malaspina sampling
stations identified by white circle-dots in Fig. 5. Minimum transit times from these
Malaspina sampling stations to nearby surface ocean locations are short relative to
those to far-off locations (Fig. 5). These figures highlight the spatially
heterogeneous nature of global surface ocean connectivity and dispersal. For
example, the Atlantic Ocean is less connected, since the minimum connection
times between the Atlantic and other oceans are longer compared to the
connection times of the other oceans. It is important to note that dispersal scales
estimated from modeled surface ocean transit times may be a good first-order
approximation for planktonic organisms, but are less appropriate for larger
biological taxa—particularly for myctophids, which exhibit active vertical
migration. There are numerous alternatives to modeling the dispersal of actively
swimming marine organisms, ranging from complex agent-based models to simple
advection-diffusion methods. However, ocean transit times derived from passive
surface-ocean Lagrangian particle simulations were sufficient for our study of
global planktonic community structure.

Correlations between community similarity and descriptors. Mantel correla-
tions31 were estimated for species dissimilarity and surface ocean transit times, and
environmental distances. Partial Mantel tests were also used to determine the
relative contribution of surface ocean transit times and environmental distance in
accounting for community similarity. All Mantel tests were performed using the
vegan package in R78. Further, Multiple Regressions on Distance Matrices (MRM)
were used to apportion the variability in species composition among the different
predictor factors. The Mantel tests should be restricted to questions that concern
dissimilarity matrices, and not ‘raw data tables’ of spatial coordinates, from which
one can compute dissimilarity matrices79. In our study, the surface ocean transit
times among sites are not vectors of raw data tables from which a dissimilarity
matrix can be calculated; therefore, Mantel tests are suitable for our purpose.

Halving-time and time-decay slope. When β-diversity correlated significantly
with oceanic transit time, after partialling out by environmental factors, we

Table 5 Environmental variables used and model selection for explaining species similarity

Main biological groups Environmental variables BIOENV variable selection

Prokaryotes T, S, O2, Conduct, Fluo, PARi, SPARi, Turb, Beam-att-1m, O2volt, Zmax O2, Turb, Beam-att-1m, Zmax

Microbial eukaryotes ALL Turb, Zmax, O2

Coccolithophores 0–160m T, S, O2, Chl-a, Conduct, O2volt, Fluo, PARi, SPARi, Turb, Beam-att-1 m SPARi
Dinoflagellates 0–160m SPARi
Diatoms 0–160m O2volt
Mesozooplankton 0–200m Not available Not available
Gelatinous zooplankton SST (remotely sensed), SST, S, Chl-a,W, Z S
Macrozooplankton T, S, O2, Chl-a, Conduct, O2volt, Fluo, PARi, SPARi, Turb, Beam-att-1 m Turb, S
Myctophids T, S, O2, T400, T200, S400, S200, O2min, SFluo, Fluomax T400

Environmental variables and best BIOENV model selection for each of the different plankton groups.
SST sea surface temperature (°C), S salinity, O2 oxygen (ml/l), O2 volt oxygen (volts), O2min oxygen minimum concentration (ml/l), Conduct conductivity (S/m), Fluo fluorescence (volts), Fluomax

maximum fluorescense (volts), SFluo surface fluorescense (volts), Turb turbidity (FTU), PARi photosynthetic active radiation irradiance (µE/(cm2sg)), SPARi surface photosynthetic active radiation
irradiance (µE/(cm2sg)), Beam-att-1m beam attenuation coefficient at 1 m depth (m−1), Zmax maximum depth of sampling (m), Chl-a chlorophyll-a (µg/l), W wind (m/s), Z depth of station (m), T400
temperature at 400m (°C), T200 temperature at 200m (°C), S400 salinity at 400m, S200 salinity at 200m
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estimated rates of community dispersal and species spatial turnover using two
connectivity descriptors:

The time-decay slope14,16, which is a proxy for species turnover rates. Time-
decay rates were estimated using a Type 1 linear regression equation describing the
relationship between log community similarity (S) and log linear time (T):

log S ¼ aþ b logT; ð2Þ

where a is the intercept and b is the slope of the time-decay relationship which
reflects the rate of species turnover per unit time14.

The halving-time metric, which is a time-decay-based proxy for the scale of
dispersal16. The halving-time identifies the time at which community similarity
halves, and provides relevant information regarding the spatial scale of community
variation16. We calculated this metric using the surface ocean transit times (instead
of the normal geographic distances). Halving-times for each community were

calculated using a logarithmic decay model:

S ¼ c ln tð Þ þ int; ð3Þ

where S is community similarity at time t, c is the rate of time-decay, and int the
intercept of the model. Assuming S = 1 when t = 0; the corresponding halving-time
(tH) is:

tH ¼ e
S0
2�intð Þ
c

; ð4Þ

where So is the initial community similarity at the lowest transit time
(100 days). The value of 100 days to obtain the So was imposed after analysing the
similarity-decay of each group along surface ocean transit times. Long halving-
times, represented by shallow time-decay slopes, indicate slow species turnover,
while short halving-times imply fast species spatial turnover. The major advantage
of the halving-time over other metrics of dispersal scales is that it can be calculated
for any type of regression between similarity and distance, and offers, therefore, a
useful and easily comprehensible metric to compare across studies16. The
difference between using the halving-distance/times or the distance-decay slope
arises from the intercept of the relationship between species similarity and distance
(Supplementary Fig. 5). The higher the species occurrences along the stations, the
higher the similarity over distance; consequently, the intercept will be higher, too.
Since the halving-distance depends on the intercept, this will vary accordingly
(Supplementary Fig. 5). Both descriptors, the halving-time and distance-decay
slope, are key to revealing patterns of planktonic community assembly embedded
in distance-decay relationships16.

The hypothesis that dispersal scales and species spatial turnover rates decrease
with body size and local abundance was tested through the correlation between (1)
halving-times and time-decay slopes and the average body size of each biological
group, and (2) halving-time and time-decay slopes and the local abundance of each
biological group. The correlations were calculated using parametric linear models
and non-parametric bootstrap cross-validation techniques.

Spatial patterns of β–diversity. Network graphs were used to explore spatial
patterns of community similarity among all pair sites, using the igraph package80 in
R. Specifically, sampling stations were grouped according to their species compo-
sition (based on Jaccard distances), using hierarchical clustering. In addition, the
Analysis of Similarities (ANOSIM), performed using the vegan package78 in R,
permits us to obtain a significant number of clusters for the biological group.
Subsequently, network graphs were drawn with nodes (sampling stations) pro-
portional to the similarity between sites and color-coded to represent cluster
membership. In other words, the size of stations indicates the number of con-
nections—that is, larger-sized circles share more species (or OTUs) within all
stations, compared to small-sized circles, and the color represents a given hier-
archical cluster. A minimum similarity threshold was imposed allowing all nodes to
have a given connectivity degree.

Code availability. All code was written in the R programming language, which is
open source and freely available. Enquiries about the code used here can be
directed to the corresponding author, E.V.

Data availability. The presence/absence data of species and OTUs that support the
findings of this study are publicly available in the Pangaea open repository (https://
www.pangaea.de/) with the https://doi.org/10.1594/PANGAEA.874689 DOI
identifier.
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