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Abstract: This concept article aims to show the rationale of targeting extracellular α-Synuclein
(α-Syn) from cerebrospinal fluid (CSF) as a new strategy to remove this protein from the brain
in Parkinson’s disease (PD). Misfolding and intracellular aggregation of α-synuclein into Lewy
bodies are thought to be crucial in the pathogenesis of PD. Recent research has shown that small
amounts of monomeric and oligomeric α-synuclein are released from neuronal cells by exocytosis
and that this extracellular alpha-synuclein contributes to neurodegeneration, progressive spreading
of alpha-synuclein pathology, and neuroinflammation. In PD, extracellular oligomeric-α-synuclein
moves in constant equilibrium between the interstitial fluid (ISF) and the CSF. Thus, we expect that
continuous depletion of oligomeric-α-synuclein in the CSF will produce a steady clearance of the
protein in the ISF, preventing transmission and deposition in the brain.

Keywords: Parkinson’s disease; alpha-synuclein; cerebrospinal fluid; immunotherapy; “CSF sink”
hypothesis

1. Extracellular α-Synuclein as a Target in Parkinson’s Disease

α-Synuclein (α-Syn) is a small protein comprising 140 amino acids with three domains:
the N-terminally segment, a central hydrophobic region—also called the “non-amyloid component” or
“NAC”—, and the C-terminal region, with an important role in the aggregation of the protein [1–3].
Under physiological conditions, α-Syn is in its native conformation as a soluble monomer [4].
Although the functions of α-Syn have not been elucidated, it has been associated with the suppression
of apoptosis, the regulation of glucose levels, the modulation of calmodulin activity, playing
a role as a molecular chaperone, the maintenance of levels of polyunsaturated fatty acids and
antioxidants, neuronal differentiation, and the regulation of dopamine biosynthesis [5] and plays
a role in maintaining a supply of synaptic vesicles in mature presynaptic terminals [6]. However,
an influence of genetic mutations has been found in the N-terminal domain, speeding up aggregation,
and the importance of the NAC domain in the formation of toxic α-Syn oligomers and fibrils [3],
which could affect many cellular pathways and functions such as endocytosis, transport of ER to
Golgi, the ubiquitin–proteasome system (UPS), autophagy, ER, and oxidative and nitration stress [7–9].
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In α-synucleinopathies, an important characteristic is the presence of intracellular protein bodies
containing α-Syn aggregates, known as Lewy bodies [6,10] (Figure 1).

Figure 1. Effects of intracellular and extracellular alpha-synuclein. [10].

Two hypotheses about the structure of the protein have been proposed: An alpha-helical folded
tetramer and a tetramer structure that is only adopted after membrane binding [11–14]. Bartels et al.
observed the status of endogenous α-Syn in human red blood cells, showing that this endogenous
cellular protein exists natively as a 58 kDa helically folded tetramer [13]. In a study conducted in
mice, the native form of the protein could be an unstructured monomer, which exhibits a random
spiral structure [15].

The phosphorylation of α-Syn is essential in the degradation process [16,17]. The UPS degrades the
soluble monomer of α-Syn and the autophagy-lysosomal pathway is responsible for the degradation of
the most complex conformations [18,19]. The insoluble form of the protein has not been associated with
neurotoxic effects although it is misfolded, but its monomeric and oligomeric forms present neurotoxic
effects, being their propagation possible given by extracellular vesicles [20]. This suggests a toxicity
not only to the central nervous system (CNS), but also to other systems, leading to an analysis of the
relationship of the protein with non-motor symptoms (for example, the lack of olfactory sensation)
of Parkinson’s disease (PD) [21,22]. This propagation becomes an important factor in the progression
of PD [22–29]. It is believed that α-Syn is secreted, because it can be detected in human plasma and
cerebrospinal fluid (CSF) [30,31]. Despite this mechanism is not yet known, it has been indicated its
released by exosomes in a calcium-dependent manner [32]. Although the physiological structure and
normal function of the protein are not fully understood, it is believed to (1) involve functions in the
compartmentalization, storage, and recycling of neurotransmitters and the physiological regulation of
certain enzymes, and (2) increase the number of dopamine transporter peptides molecules [33,34].

Recent research showed that small amounts of monomeric and oligomeric α-Syn are released
from neuronal cells by unconventional exocytosis, and this extracellular α-Syn contributes
to neurodegeneration, progressive spreading of α-Syn pathology, and neuroinflammation.
Extracellular α-Syn is taken up by neurons through endocytosis and undergoes endocytic trafficking
for degradation in lysosomes. Thus, α-Syn aggregates can be transmitted from neuron to
neuron via the extracellular milieu and can propagate aggregates by a “seeding” mechanism.
Moreover, extracellular α-Syn oligomers induce microglia via activation of Toll-like receptor 2 [35].

Several studies have shown a reduction in CSF α-Syn levels in PD [36–38] so it has been considered
as a potential biomarker for the diagnosis of PD, but its sensitivity and specificity indicate that it will
not be sufficient [39]. Plasmatic and urine vesicles derived from the CNS containing α-Syn might also
be used as biomarkers in the diagnosis of PD [40].
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To control the toxicity produced by α-Syn, some methods have been found: reducing α-Syn
cleavage by caspase-1 [41], inducing protein clearance through neuronal autophagy [42], and cellular
clearance through innate and adaptive immunization due to the proteotoxic mechanisms and
inflammation that the protein induces [33]. In addition, antibodies directed to the sites of C-terminal
truncation, oxidation, and nitration of alpha-synuclein might reduce the propagation and inhibit
oligomerization, which would be a therapeutic potential [43].

2. Targeting Extracellular α-Synuclein at the Cerebrospinal Fluid

The immunological selection of oligomeric extracellular α-Syn in animal models accelerates
the clearance of this protein [43]. The use of anti-α-Syn antibodies in transgenic mice promoted
extracellular clearance mediated by microglia, preventing its transmission from cell to cell, as well
as reducing neurodegeneration and functional deficits associated with its overexpression [43].
However, there might be a more efficient way of removing oligomeric α-Syn from the brain: removing
it from the CSF. We propose that a therapeutic approach ensuring continuous flow from the brain
interstitial fluid (ISF) to the CSF would remove extracellular α-Syn more effectively.

We have previously posed a new therapeutic hypothesis: that soluble peptides can be cleared
from the brain with interventions where peptides are continuously removed from the CSF [21]. In other
words, altering the levels of soluble proteins in the CSF also alters their levels in the brain parenchyma.
In PD, extracellular oligomeric- α-Syn moves in constant equilibrium between the ISF and the CSF [20].
Thus, we expect continuous depletion of oligomeric- α-Syn in the CSF would produce a steady
clearance of oligomeric- α-Syn in the ISF, preventing transmission and deposition in the brain.

Today, we can conceive several innovative ways of removing peptides continuously from the
CNS by accessing the CSF and debugging it using filtration devices. For instance, peptides can be
targeted either by size—particularly the aggregated forms—or by immunological techniques, or by
a combination of both. These devices can be endowed with different technologies able to capture target
molecules, such as oligomeric α-Syn , from the CSF. Thus, these interventions would work as a central
sink of α-Syn, reducing the levels of CSF oligomeric α-Syn, and, by means of the CSF-ISF equilibrium,
would promote the efflux of oligomeric α-Syn from the ISF to the CSF (Figure 2).

Figure 2. Double dynamic equilibrium of soluble α-Syn: there is a bidirectional equilibrium between
insoluble and soluble pools of soluble α-Syn in the interstitial fluid (ISF) and there is a second
equilibrium, also probably bidirectional, of soluble α-Syn between the ISF and the cerebrospinal
fluid (CSF). The “CSF sink therapeutic strategy” consists in sequestering target proteins from the CSF
with implantable devices, thus inducing changes in the levels of these proteins in the ISF.
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3. Conclusions

We introduce here a rationale for the “CSF sink” hypothesis and conclude that continuous
depletion of oligomeric α-Syn in the CSF will produce a steady clearance of oligomeric α-Syn in
the ISF. Implantable devices aimed at sequestering oligomeric α-Syn from the CSF may represent
a new therapeutic strategy in PD and other α-synucleinopathies.

Acknowledgments: No funds were received funds to cover the costs to publish in open access.

Author Contributions: MMG conceived the CSF sink hypothesis and wrote the manuscript. HPZ, CTZ and BFG
revised the existing literature and critically reviewed the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Burre, J.; Sharma, M.; Sudhof, T.C. Definition of a molecular pathway mediating
alpha-synuclein neurotoxicity. J. Neurosci. 2015, 35, 221–232. [CrossRef] [PubMed]

2. Conway, K.A.; Harper, J.D.; Lansbury, P.T. Accelerated in vitro fibril formation by a mutant alpha-synuclein
linked to early-onset Parkinson disease. Nat. Med. 1998, 4, 1318–1320. [CrossRef] [PubMed]

3. Conway, K.A.; Lee, S.J.; Rochet, J.C.; Ding, T.T.; Williamson, R.E.; Lansbury, P.T.J. Acceleration of
oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to
early-onset Parkinson’s disease: Implications for pathogenesis and therapy. Proc. Natl. Acad. Sci. USA
2000, 97, 571–576. [CrossRef] [PubMed]

4. Bridi, J.C.; Hirth, F. Mechanisms of alpha-Synuclein Induced Synaptopathy in Parkinson’s Disease.
Front. Neurosci. 2018, 12, 80. [CrossRef] [PubMed]

5. Emamzadeh, F.N. Alpha-synuclein structure, functions, and interactions. J. Res. Med. Sci. 2016, 21, 29.
[CrossRef] [PubMed]

6. Kim, W.S.; Kågedal, K.; Halliday, G.M. Alpha-synuclein biology in Lewy body diseases. Alzheimers Res. Ther.
2014, 6, 73. [CrossRef] [PubMed]

7. Kokhan, V.S.; Afanasyeva, M.A.; Van’kin, G.I. Alpha-Synuclein knockout mice have cognitive impairments.
Behav. Brain Res. 2012, 231, 226–230. [CrossRef] [PubMed]

8. Wang, T.; Hay, J.C. Alpha-synuclein Toxicity in the Early Secretory Pathway: How It Drives
Neurodegeneration in Parkinsons Disease. Front. Neurosci. 2015, 9, 433. [CrossRef] [PubMed]

9. Norris, E.H.; Giasson, B.I.; Ischiropoulos, H.; Lee, V.M.-Y. Effects of Oxidative and Nitrative Challenges on
α-Synuclein Fibrillogenesis Involve Distinct Mechanisms of Protein Modifications. J. Biol. Chem. 2003, 278,
27230–27240. [CrossRef] [PubMed]

10. Lee, V.M.-Y.; Trojanowski, J.Q. Mechanisms of Parkinson’s disease linked to pathological alpha-synuclein:
New targets for drug discovery. Neuron 2006, 52, 33–38. [CrossRef] [PubMed]

11. Games, D.; Valera, E.; Spencer, B.; Rockenstein, E.; Mante, M.; Adame, A. Reducing C-Terminal-Truncated
Alpha-Synuclein by Immunotherapy Attenuates Neurodegeneration and Propagation in Parkinson’s
Disease-Like Models. J. Neurosci. 2014, 34, 9441–9454. [CrossRef] [PubMed]

12. Mor, D.E.; Ugras, S.E.; Daniels, M.J.; Ischiropoulos, H. Dynamic structural flexibility of alpha-synuclein.
Neurobiol. Dis. 2016, 88, 66–74. [CrossRef] [PubMed]

13. Bartels, T.; Choi, J.G.; Selkoe, D.J. Alpha-Synuclein occurs physiologically as a helically folded tetramer that
resists aggregation. Nature 2011, 477, 107–110. [CrossRef] [PubMed]

14. Burre, J.; Sharma, M.; Tsetsenis, T.; Buchman, V.; Etherton, M.R.; Sudhof, T.C. Alpha-synuclein promotes
SNARE-complex assembly in vivo and in vitro. Science 2010, 329, 1663–1667. [CrossRef] [PubMed]

15. Xu, L.; Pu, J. Alpha-Synuclein in Parkinson’s Disease: From Pathogenetic Dysfunction to Potential
Clinical Application. Parkinsons Dis. 2016, 2016, 1720621. [CrossRef] [PubMed]

16. Li, W.; West, N.; Colla, E.; Pletnikova, O.; Troncoso, J.C.; Marsh, L. Aggregation promoting C-terminal
truncation of α-synuclein is a normal cellular process and is enhanced by the familial Parkinson’s
disease-linked mutations. Proc. Natl. Acad. Sci. USA 2005, 102, 2162–2167. [CrossRef] [PubMed]

http://dx.doi.org/10.1523/JNEUROSCI.4650-14.2015
http://www.ncbi.nlm.nih.gov/pubmed/25834048
http://dx.doi.org/10.1038/3311
http://www.ncbi.nlm.nih.gov/pubmed/9809558
http://dx.doi.org/10.1073/pnas.97.2.571
http://www.ncbi.nlm.nih.gov/pubmed/10639120
http://dx.doi.org/10.3389/fnins.2018.00080
http://www.ncbi.nlm.nih.gov/pubmed/29515354
http://dx.doi.org/10.4103/1735-1995.181989
http://www.ncbi.nlm.nih.gov/pubmed/27904575
http://dx.doi.org/10.1186/s13195-014-0073-2
http://www.ncbi.nlm.nih.gov/pubmed/25580161
http://dx.doi.org/10.1016/j.bbr.2012.03.026
http://www.ncbi.nlm.nih.gov/pubmed/22469626
http://dx.doi.org/10.3389/fnins.2015.00433
http://www.ncbi.nlm.nih.gov/pubmed/26617485
http://dx.doi.org/10.1074/jbc.M212436200
http://www.ncbi.nlm.nih.gov/pubmed/12857790
http://dx.doi.org/10.1016/j.neuron.2006.09.026
http://www.ncbi.nlm.nih.gov/pubmed/17015225
http://dx.doi.org/10.1523/JNEUROSCI.5314-13.2014
http://www.ncbi.nlm.nih.gov/pubmed/25009275
http://dx.doi.org/10.1016/j.nbd.2015.12.018
http://www.ncbi.nlm.nih.gov/pubmed/26747212
http://dx.doi.org/10.1038/nature10324
http://www.ncbi.nlm.nih.gov/pubmed/21841800
http://dx.doi.org/10.1126/science.1195227
http://www.ncbi.nlm.nih.gov/pubmed/20798282
http://dx.doi.org/10.1155/2016/1720621
http://www.ncbi.nlm.nih.gov/pubmed/27610264
http://dx.doi.org/10.1073/pnas.0406976102
http://www.ncbi.nlm.nih.gov/pubmed/15684072


Brain Sci. 2018, 8, 52 5 of 6

17. Samuel, F.; Flavin, W.P.; Iqbal, S.; Pacelli, C.; Sri Renganathan, S.D.; Trudeau, L.-E. Effects of Serine 129
Phosphorylation on alpha-Synuclein Aggregation, Membrane Association, and Internalization. J. Biol. Chem.
2016, 291, 4374–4385. [CrossRef] [PubMed]

18. Snead, D.; Eliezer, D. Alpha-Synuclein Function and Dysfunction on Cellular Membranes. Exp. Neurobiol.
2014, 23, 292–313. [CrossRef] [PubMed]

19. Webb, J.L.; Ravikumar, B.; Atkins, J.; Skepper, J.N.; Rubinsztein, D.C. α-Synuclein Is Degraded by Both
Autophagy and the Proteasome. J. Biol. Chem. 2003, 278, 25009–25013. [CrossRef] [PubMed]

20. Emmanouilidou, E.; Melachroinou, K.; Roumeliotis, T.; Garbis, S.D.; Ntzouni, M.; Margaritis, L.H.
Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts
neuronal survival. J. Neurosci. 2010, 30, 6838–6851. [CrossRef] [PubMed]

21. Menendez, G.M. Mechanical Dilution of Beta-amyloid Peptide and Phosphorylated Tau Protein in
Alzheimer’s Disease: Too Simple to be True? Cureus 2017, 9, e1062. [CrossRef]

22. Luk, K.C.; Kehm, V.M.; Zhang, B.; O’Brien, P.; Trojanowski, J.Q.; Lee, V.M.Y. Intracerebral inoculation
of pathological alpha-synuclein initiates a rapidly progressive neurodegenerative alpha-synucleinopathy
in mice. J. Exp. Med. 2012, 209, 975–986. [CrossRef] [PubMed]

23. Beal, M.F. Parkinson’s disease: A model dilemma. Nature 2010, 466, 8–10. [CrossRef] [PubMed]
24. Prusiner, S.B. Cell biology. A unifying role for prions in neurodegenerative diseases. Science 2012, 336,

1511–1153. [CrossRef] [PubMed]
25. Desplats, P.; Lee, H.-J.; Bae, E.-J.; Patrick, C.; Rockenstein, E.; Crews, L. Inclusion formation and neuronal

cell death through neuron-to-neuron transmission of alpha-synuclein. Proc. Natl. Acad. Sci. USA 2009, 106,
13010–13015. [CrossRef] [PubMed]

26. Hansen, C.; Angot, E.; Bergström, A.-L.; Steiner, J.A.; Pieri, L.; Paul, G. α-Synuclein propagates from mouse
brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J. Clin. Investig.
2011, 121, 715–725. [CrossRef] [PubMed]

27. Luk, K.C.; Kehm, V.; Carroll, J.; Zhang, B.; O’Brien, P.; Trojanowski, J.Q. Pathological alpha-synuclein
transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 2012, 338, 949–953.
[CrossRef] [PubMed]

28. Lelan, F.; Boyer, C.; Thinard, R.; Remy, S.; Usal, C.; Tesson, L. Effects of Human Alpha-Synuclein A53T-A30P
Mutations on SVZ and Local Olfactory Bulb Cell Proliferation in a Transgenic Rat Model of Parkinson Disease.
Parkinsons Dis. 2011, 2011, 987084. [CrossRef] [PubMed]

29. Aulić, S.; Le, T.T.N.; Moda, F.; Abounit, S.; Corvaglia, S.; Casalis, L. Defined α-synuclein prion-like molecular
assemblies spreading in cell culture. BMC Neurosci. 2014, 15, 69. [CrossRef] [PubMed]

30. Ebrahimi-Fakhari, D.; Cantuti-Castelvetri, I.; Fan, Z.; Rockenstein, E.; Masliah, E.; Hyman, B.T. Distinct roles
in vivo for the ubiquitin-proteasome system and the autophagy-lysosomal pathway in the degradation of
alpha-synuclein. J. Neurosci. 2011, 31, 14508–14520. [CrossRef] [PubMed]

31. Shi, M.; Zabetian, C.P.; Hancock, A.M.; Ginghina, C.; Hong, Z.; Yearout, D. Significance and confounders
of peripheral DJ-1 and alpha-synuclein in Parkinson’s disease. Neurosci. Lett. 2010, 480, 78–82. [CrossRef]
[PubMed]

32. Gao, L.; Tang, H.; Nie, K.; Wang, L.; Zhao, J.; Gan, R. Cerebrospinal fluid alpha-synuclein as a biomarker for
Parkinson’s disease diagnosis: A systematic review and meta-analysis. Int. J. Neurosci. 2015, 125, 645–654.
[CrossRef] [PubMed]

33. Burre, J.; Vivona, S.; Diao, J.; Sharma, M.; Brunger, A.T.; Sudhof, T.C. Properties of native brain
alpha-synuclein. Nature 2013, 498, 6–7. [CrossRef] [PubMed]

34. Allen, R.H.E.; Standaert, D.G. Role of alpha-synuclein in inducing innate and adaptive immunity in
Parkinson disease. J. Parkinsons Dis. 2015, 5, 1–19. [CrossRef]

35. Lee, H.-J.; Bae, E.-J.; Lee, S.-J. Extracellular alpha-synuclein—A novel and crucial factor in Lewy body diseases.
Nat. Rev. Neurol. 2014, 10, 92–98. [CrossRef] [PubMed]

36. Tokuda, T.; Salem, S.A.; Allsop, D.; Mizuno, T.; Nakagawa, M.; Qureshi, M.M. Decreased alpha-synuclein in
cerebrospinal fluid of aged individuals and subjects with Parkinson’s disease. Biochem. Biophys. Res. Commun.
2006, 349, 162–166. [CrossRef] [PubMed]

37. Mollenhauer, B.; Locascio, J.J.; Schulz-Schaeffer, W.; Sixel-Doring, F.; Trenkwalder, C.; Schlossmacher, M.G.
Alpha-Synuclein and tau concentrations in cerebrospinal fluid of patients presenting with parkinsonism:
A cohort study. Lancet Neurol. 2011, 10, 230–240. [CrossRef]

http://dx.doi.org/10.1074/jbc.M115.705095
http://www.ncbi.nlm.nih.gov/pubmed/26719332
http://dx.doi.org/10.5607/en.2014.23.4.292
http://www.ncbi.nlm.nih.gov/pubmed/25548530
http://dx.doi.org/10.1074/jbc.M300227200
http://www.ncbi.nlm.nih.gov/pubmed/12719433
http://dx.doi.org/10.1523/JNEUROSCI.5699-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20484626
http://dx.doi.org/10.7759/cureus.1062
http://dx.doi.org/10.1084/jem.20112457
http://www.ncbi.nlm.nih.gov/pubmed/22508839
http://dx.doi.org/10.1038/466S8a
http://www.ncbi.nlm.nih.gov/pubmed/20739935
http://dx.doi.org/10.1126/science.1222951
http://www.ncbi.nlm.nih.gov/pubmed/22723400
http://dx.doi.org/10.1073/pnas.0903691106
http://www.ncbi.nlm.nih.gov/pubmed/19651612
http://dx.doi.org/10.1172/JCI43366
http://www.ncbi.nlm.nih.gov/pubmed/21245577
http://dx.doi.org/10.1126/science.1227157
http://www.ncbi.nlm.nih.gov/pubmed/23161999
http://dx.doi.org/10.4061/2011/987084
http://www.ncbi.nlm.nih.gov/pubmed/21766003
http://dx.doi.org/10.1186/1471-2202-15-69
http://www.ncbi.nlm.nih.gov/pubmed/24898419
http://dx.doi.org/10.1523/JNEUROSCI.1560-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/21994367
http://dx.doi.org/10.1016/j.neulet.2010.06.009
http://www.ncbi.nlm.nih.gov/pubmed/20540987
http://dx.doi.org/10.3109/00207454.2014.961454
http://www.ncbi.nlm.nih.gov/pubmed/25202803
http://dx.doi.org/10.1038/nature12125
http://www.ncbi.nlm.nih.gov/pubmed/23765500
http://dx.doi.org/10.3233/JPD-140491
http://dx.doi.org/10.1038/nrneurol.2013.275
http://www.ncbi.nlm.nih.gov/pubmed/24468877
http://dx.doi.org/10.1016/j.bbrc.2006.08.024
http://www.ncbi.nlm.nih.gov/pubmed/16930553
http://dx.doi.org/10.1016/S1474-4422(11)70014-X


Brain Sci. 2018, 8, 52 6 of 6

38. Hong, Z.; Shi, M.; Chung, K.A.; Quinn, J.F.; Peskind, E.R.; Galasko, D. DJ-1 and alpha-synuclein in human
cerebrospinal fluid as biomarkers of Parkinson’s disease. Brain 2010, 133, 713–726. [CrossRef] [PubMed]

39. Cersosimo, M.G. Gastrointestinal Biopsies for the Diagnosis of Alpha-Synuclein Pathology in
Parkinson’s Disease. Gastroenterol. Res. Pract. 2015, 2015, 476041. [CrossRef] [PubMed]

40. Yanamandra, K.; Gruden, M.A.; Casaite, V.; Meskys, R.; Forsgren, L.; Morozova-Roche, L.A. α-Synuclein
Reactive Antibodies as Diagnostic Biomarkers in Blood Sera of Parkinson’s Disease Patients. PLoS ONE
2011, 6, e18513. [CrossRef] [PubMed]

41. Dehay, B.; Decressac, M.; Bourdenx, M.; Guadagnino, I.; Fernagut, P.-O.; Tamburrino, A. Targeting alpha-synuclein:
Therapeutic options. Mov. Disord. 2016, 31, 882–888. [CrossRef] [PubMed]

42. Martinez-Vicente, M. Autophagy in neurodegenerative diseases: From pathogenic dysfunction to
therapeutic modulation. Semin. Cell Dev. Biol. 2015, 40, 115–126. [CrossRef] [PubMed]

43. Bae, E.-J.; Lee, H.-J.; Rockenstein, E.; Ho, D.-H.; Park, E.-B.; Yang, N.-Y. Antibody-aided clearance of
extracellular alpha-synuclein prevents cell-to-cell aggregate transmission. J. Neurosci. 2012, 32, 13454–13469.
[CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1093/brain/awq008
http://www.ncbi.nlm.nih.gov/pubmed/20157014
http://dx.doi.org/10.1155/2015/476041
http://www.ncbi.nlm.nih.gov/pubmed/26078752
http://dx.doi.org/10.1371/journal.pone.0018513
http://www.ncbi.nlm.nih.gov/pubmed/21541339
http://dx.doi.org/10.1002/mds.26568
http://www.ncbi.nlm.nih.gov/pubmed/26926119
http://dx.doi.org/10.1016/j.semcdb.2015.03.005
http://www.ncbi.nlm.nih.gov/pubmed/25843774
http://dx.doi.org/10.1523/JNEUROSCI.1292-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/23015436
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Extracellular -Synuclein as a Target in Parkinson’s Disease 
	Targeting Extracellular -Synuclein at the Cerebrospinal Fluid 
	Conclusions 
	References

