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Abstract The aim of this paper is to introduce an invariant by translation
coefficient different from the variation one (widely used in literature but not
fulfilling that property) that allows us to study whether the mean is a good
representation of the distribution or not. The value of this new coefficient for
a normally distributed random variable is obtained in order to establish a
criterion, similar to the one used in the symmetry or kurtosis coefficients, to
decide the grade of representation of the mean.

1 Introduction

Why defining an alternative coefficient?

Variation coefficient is widely used in literature (see for example [1], [3]) in
order to obtain a grade of representation of the mean for different distribu-
tions, since it is a relative dispersion measure providing the number of times
that the standard deviation is contained in the mean of the corresponding
distribution. However, this coefficient is not invariant by translations which,
in our opinion, it is a quite significant issue. That is why we consider neces-
sary to define a coefficient that evaluates the spread or distance of the values
of the distribution with respect to a central one (allowing us to measure the
grade of representation of this central value as a numerical summary of that
distribution) that is invariant by changes in the origin of the distribution.

In order to show what we mean, let us introduce a numerical example.
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Example 1. Let us consider the height of a group of 10 individuals given in
three different ways: X(height in meters); Y = 100X (height in centimeters);
Z = Y − 100 (centimeters above one meter). The observed values, expressed
in the three alternative ways, are shown in table 1.

Table 1 Data example 1

X 1.7 1.85 1.72 1.65 1.73 1.58 1.65 1.69 1.6 1.67
Y 170 185 172 165 173 158 165 169 160 167

Z 70 85 72 65 73 58 65 69 60 67

Being the same data should provide us with exactly the same goodness of
representation of the mean as a numerical summary of this distribution, inde-
pendently of the units (X vs Y ) or the referential origin (X vs Z ) considered
to describe them. The variation coefficient for variable X is

x = 1.684 S2
x = 0.005164 ⇒ VC(X) =

√
0.005164

1.684
= 0.042672789

and for variable Y is

y = 168.4 S2
y = 51.64 ⇒ V C(Y ) =

√
51.64

168.4
= 0.042672789

which means that a scale change does not affect it. However

z = 68.4 S2
z = 51.64 ⇒ V C(Z) =

√
51.64

68.4
= 0.105059908

so translations do affect the value of this coefficient. This representation of the
mean of Z can be understood as a worse one than that of X since the variation
coefficient is greater for Z than for X. This coefficient can undergo dramatic
changes for different expressions of the same set of values. Let us consider a
new variable T = Y − 170 that provides the centimeters above/below 170.
Despite the sign, the value of the variation coefficient is much greater for T
than for Y

t = −1.6 S2
t = 51.64 ⇒ V C(T ) =

√
51.64

−1.6
= −4.49131106

This means, with the interpretation broadly given to this coefficient in liter-
ature, that the grade of representation of -1.6 as a numerical summary of the
average difference between the height (in centimeters) of those individuals
and 170 is significantly smaller than that of 168.4 centimeters as the average
height of the same group of individuals. The same holds with 68.4 centimeters
exceeding the meter as a representation of these data (T vs Z). This makes no
sense for us, since the information given by these distributions is intrinsically
the same, although the values differ from one variable to another.
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Example 2. Let us consider a normally distributed random variable X ∼
N(µ, σ). Assume that we are working with a given value of the variance (say 1
for sake of simplicity). The bell-shape density function that characterizes the
distribution is exactly the same, independently of the location of the mean.
Hence, a constant value for a coefficient giving the goodness of representation

of the mean was to be expected. However, as V C(X) = SD(X)
E(X) , that is,

V C(X) = σ
µ , this coefficient increases as the mean decreases. That is the

same as saying about the mean that the closer to zero, the less representative
of the distribution.

2 Definition of a new coefficient

Is it possible to express how spread out the values of a distribution are with
respect to a central value, and, consequently, how good this central value is
as a representation of the distribution, in such a way that translation
changes do not affect that goodness of representation (as it happens with the
variation coefficient)?

We may agree that moving the values to another location keeping static the
“distances” between them and their relative positions between each other
should not affect the representation of the mean as a numerical summary of
the data, since the dispersion of the data is exactly the same in both locations,
being the value of the referential point (mean) the only noticeable modifica-
tion. “Moving the values to another location” has modified the mean, while
“keeping static their relative positions between each other” does not change
the variance of the distribution. So, as the variance averages the squared
distances of the data with respect to their mean, why not introducing some
invariant by translations measure in the denominator of the “variation coef-
ficient” so that the value it takes is exactly the same wherever the data are
located? Doing so, the corresponding value of the ratio will show how good
the mean is to summarize the values of a distribution just paying attention
to the relative positions within the data but not to the actual location with
respect to a given origin.

Definition 1. For any variable X, the representation coefficient of X is
the ratio between its standard deviation and its range, that is

RC(X) =
D(X)

R(X)
=

D(X)

max(X) - min(X)

This coefficient is well defined for any nondegenerate variable X and takes
nonnegative values smaller than 1. It is quite easy to see that the closer to
one, the less representative the mean.
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A more general representation coefficient

Nevertheless, outliers can strongly affect the value of this coefficient, so it may
be better to exclude that part of the distribution on calculating a grade of the
representation of the mean. We intend to present a coefficient which is not
so sensitive to the presence of extreme values of the distribution. There are
different ways of detecting outliers but, regardless of the method, any value
that is really far from the rest of the observations is said to be an outlier.
For instance, µ± 2.7σ are the outliers cutoffs given in [4] when working on a
normal distribution.

For any r ∈ (0, 1) let P100r(X) denote the 100r − th percentile of X, that
is, r = P (X ≤ P100r(X))

Definition 2. The 100r% trimmed representation coefficient of X is
defined as

RC100r(X) =
D(X)

P100(1− r
2 )

(X)− P 100r
2

(X)
∀r ∈ [0, 0.5]

where P0(X) = min(X) and P100(X) = max(X) (so this coefficient is a
generalization of the latter one).

Remark 1. This coefficient is generally well defined. Once again there are
some exceptions, since the denominator is zero for any value of r when X is
degenerate. It is also zero for not so large values of r when X doesn’t take
too many different values (then its “extreme” percentiles coincide, that is, it
is “almost sure” degenerate; median and mode will coincide in that case and
the mean is rarely going to be chosen as a representation of such a variable).

Remark 2. In general, any of these trimmed representation coefficients com-
pares the value of a dispersion measure with respect to the mean with a
dispersion measure which does not refer to any particular central value and
that does not take into account outliers (to the extent the experimenter wants
to). Then, it can be used to measure how good the mean is as a numerical
summary of the distribution.

Remark 3. Although it can be defined for any value of r ∈ [0, 1], it is not
sensitive to eliminate too many “outliers”; so, it makes not much sense to
calculate it for r > 0.5. For instance, the 100r% trimmed representation
coefficient equals the 100(1-r)% one in absolute value.

Property 1. (Invariance by translations). The trimmed representation co-
efficient is invariant by translations, that is, RC100r(X+k) = RC100r(X) ∀r ∈
[0, 1] and ∀k ∈ R.

Proof. Trivial since D(X + k) = D(X) ∀k and P (X + k ≤ y) = P (X ≤
y − k) ∀y ⇒ P100r(X + k) = k + P100r(X). Hence P100(1− r

2 )
(X + k) −

P 100r
2

(X + k) = P100(1− r
2 )

(X)− P 100r
2

(X) ut
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Property 2. (Absolute invariance by scale). The trimmed representa-
tion coefficient is invariant by change of scale in absolute value, that is,
|RC100r(kX)| = |RC100r(X)| ∀r ∈ [0, 1] and ∀k ∈ R.

Proof. Trivial since D(kX)= kD(X) ∀k. On the other hand, P (kX ≤ y) =
P (X ≤ y

k ) ∀y ∀k > 0 ⇒ P100r(kX) = kP100r(X) and P (kX ≤ y) = P (X ≥
y
k )∀y ∀k < 0 ⇒ P100r(kX) = kP100(1−r)(X). Hence |P100(1− r

2 )
(kX) −

P 100r
2

(kX)| = |k| |P100(1− r
2 )

(X)− P 100r
2

(X)| ut

Example 1 (continued). For the data of the height used above, one can obtain

RC10(X) =

√
0.005164

1.85− 1.58
= 0.266151766 RC10(Y ) =

√
51.64

185− 158
= 0.266151766

RC10(Z) =

√
51.64

85− 58
= 0.266151766 RC10(T ) =

√
51.64

15− (−12)
= 0.266151766

Analogously, RC50(X) =
√
0.005164

1.72−1.65 = RC50(Y ) = RC50(Z) = RC50(T ).
Invariance holds for any r.

3 The trimmed representation coefficient for a normally
distributed random variable

Invariance of the trimmed coefficient with respect to the parameters

Let X ∼ N(0, 1) and let P100r(X) be the 100r-th percentile of X. Then for
Y ∼ N(µ, σ)

r = P (Y ≤ P100r(Y )) = P (
Y − µ
σ

≤ P100r(Y )− µ
σ

)

⇒ P100r(Y ) = µ+ σP100r(X)

which means that the 100r% trimmed representation coefficient for a normal
distribution does not depend on its parameters.

RC100r(N(µ, σ)) =
σ

(µ+ σP100(1− r
2 )

(X))− (µ+ σP 100r
2

(X))

=
1

P100(1− r
2 )

(X)− P 100r
2

(X)
= RC100r(N(0, 1))
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Value of the trimmed representation coefficient for some usual 100r%

Let us use R for obtaining the corresponding percentiles of the normal dis-
tribution. As we have just proved, we can reduce our calculations to the
standard normal.

The 5th and 95th percentiles of N(0, 1) are

> qnorm(c(.95,.05), mean=0, sd=1, lower.tail=TRUE)
[1] 1.644854 -1.644854

so the 10% trimmed representation coefficient of N(0, 1) takes value

> 1.644854+1.644854
[1] 3.289708
> 1/3.289708
[1] 0.3039783

Proceeding in an analogous way we can obtain other percentages the values
shown in table 2.

Table 2 Values of the trimmed representation coefficient for the standard normal distri-

bution

100r% 1% 2% 2.5% 5% 10% 20% 50%

RC100r 0.142857 0.214929 0.2230746 0.2551067 0.3039783 0.3901519 0.7413008

As it can be seen, this coefficient takes quite similar values for r ∈
[0.02, 0.05] which are the most usual percentages for outliers cutoffs in lit-
erature.

4 Interpretation of the trimmed representation
coefficient

The value of this coefficient for the normal distribution can be used as a ref-
erence to determine whether the mean as a representation of the distribution
is good enough or not, analogously as, for example, the kurtosis coefficient

γ2(Y ) = µ4(Y )
[D(Y )]4 − 3 greater than 0 means that the distribution is sharper

than the bell-shaped one, with µ4(Y ) being the 4th central moment of Y.

Property 3. The closer to zero the (trimmed) representation coefficient of X,
the better its mean as a representation of the distribution of X.

Definition 3. The mean of a variable X is said to be more representa-
tive than the mean of the normal distribution for a 100r% if RC100r(X) ≤
RC100r(N(0, 1)).
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As we have just obtained, the trimmed representation coefficient of a nor-
mal distribution increases as the order (r) increases. So, the fewer values
included in the interval of reference of the denominator, the larger the coef-
ficient.

Whenever RC100r(X) > 0.7413008 it can be said that the mean of X is not
representative for the distribution since the central 50% of the observations
of a distribution is the minimal set of values to be considered on studying
their representation by means of a central value.

Example 1 (continued). As we have just obtained, RC10(X) = 0.266151766 <
0.3039783 = RC10(N(0, 1)), so, the mean of these data is a better representa-
tion of the distribution than that of the Gauss one. On the other side, if one
pay attention just to the data included in the box of a box-whiskers diagram,
one can conclude that those data are more disperse than those from a normal
distribution since RC50(X) = 1.026585384 > 0.7413008 = RC50(N(0, 1)).

5 Trimmed representation coefficient for other
theoretical distributions

Exponential distribution

Let us consider f(x) = λe−λx x > 0 the density function of an exponential
random variable X.

Property 4. The trimmed representation coefficient of an exponentially dis-
tributed random variable does not depend on the value of its parameter.

Proof. On calculating percentiles for an exponentially distributed random
variable X of parameter λ, one obtain

r = P (X < P100r) =

∫ P100r

0

λe−λxdx = 1− e−λP100r ⇒ P100r = − ln(1− r)
λ

Hence

RC100r(Exp(λ)) =
1
λ

1
λ ln(1− r

2 )− 1
λ ln( r2 )

=
1

ln(1− r
2 )− ln( r2 )

ut

As we have proved that the value of the parameter is not essential for calcu-
lating the trimmed representation coefficient, for the sake of simplicity we will
use R and calculate the coefficient for an exponentially distributed random
variable of rate equal to one.
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> qexp(c(.95,.05,.75,.25), rate=1, lower.tail=TRUE)
[1] 2.99573227 0.05129329 1.38629436 0.28768207
> 1/(2.99573227-0.05129329)
[1] 0.3396233
> 1/(1.38629436-0.28768207)
[1] 0.9102392
> qexp(c(0.9,0.1,0.975,0.025), rate=1, lower.tail=TRUE)
[1] 2.30258509 0.10536052 3.68887945 0.02531781
> 2.30258509-0.10536052
[1] 2.197225
> 1/2.197225
[1] 0.4551195
> 3.68887945-0.02531781
[1] 3.663562
> 1/3.663562
[1] 0.2729584
> qexp(c(0.99,0.01,0.995,0.005), rate=1, lower.tail=TRUE)
[1] 4.605170186 0.010050336 5.298317367 0.005012542
> 4.605170186-0.010050336
[1] 4.59512
> 1/4.59512
[1] 0.2176222
> 5.298317367-0.005012542
[1] 5.293305
> 1/5.293305
[1] 0.1889179

The values of the trimmed representation coefficient for an exponential
distribution are shown in table 3. So, we can conclude that the mean of an

Table 3 Values of the trimmed representation coefficient for the exponential distribution

with mean one

100r% 1% 2% 5% 10% 20% 50%
RC100r 0.1889179 0.2176222 0.2729584 0.3396233 0.4551195 0.9102392

exponential distribution is slightly less representative of its distribution than
that of the normal one.

Uniform distribution

Let us consider X ∼ U(a, b), that is f(x) = 1
b−a if a < x < b
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Property 5. The trimmed representation coefficient of a uniform distributed
random variable does not depend on the value of its parameters.

Proof. On calculating percentiles for a uniformly distributed random variable
X on the interval (a,b), one obtain

r = P (X < P100r) =

∫ P100r

a

1

b− a
dx =

P100r − a
b− a

⇒ P100r = a+ r(b− a)

Hence,

RC100r(U(a, b)) =

√
(b−a)2

12

a+ (1− r
2 )(b− a)− a− r

2 (b− a)
=

1

(1− r)
√

12

ut

As we have just obtained that the trimmed representation coefficient of a
uniformly distributed random variable depends on the order, we can obtain
for any interval (a,b), the values given in table 4.

Table 4 Values of the trimmed representation coefficient for the (continuous) uniform
distribution

100r% 1% 2% 5% 10% 20% 50%

RC100r 0.291591045 0.294566463 0.303868562 0.320750149 0.360843918 0.577350269

So, whenever at most 10% of the extreme observations of a distribution
are excluded, the mean is said to be a better representation of the data of a
normal distribution than of a uniform one.

Some well-known discrete distributions

Finally, let us use R in order to obtain some percentiles from a Poisson of
mean 1 and also from a Binomial with 10 trials and p = 0.5. The values
obtained are shown below, and summarized in table 5.

> qpois(c(0.25,.75), lambda=1, lower.tail=TRUE)
[1] 0 2
> qpois(c(0.1,.9), lambda=1, lower.tail=TRUE)
[1] 0 2
> qpois(c(0.05,.95), lambda=1, lower.tail=TRUE)
[1] 0 3
> qpois(c(0.025,.975), lambda=1, lower.tail=TRUE)
[1] 0 3
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> qpois(c(0.01,.99), lambda=1, lower.tail=TRUE)
[1] 0 4
> qpois(c(0.005,.995), lambda=1, lower.tail=TRUE)
[1] 0 4
> qbinom(c(.005,.995), size=10, prob=0.5, lower.tail=TRUE)
[1] 1 9
> qbinom(c(.01,.99), size=10, prob=0.5, lower.tail=TRUE)
[1] 1 9
> qbinom(c(.025,.975), size=10, prob=0.5, lower.tail=TRUE)
[1] 2 8
> qbinom(c(.05,.95), size=10, prob=0.5, lower.tail=TRUE)
[1] 2 8
> qbinom(c(.1,.9), size=10, prob=0.5, lower.tail=TRUE)
[1] 3 7
> qbinom(c(.25,.75), size=10, prob=0.5, lower.tail=TRUE)
[1] 4 6

Table 5 Values of the trimmed representation coefficient for some discrete distributions

100r% 1% 2% 5% 10% 20%

RC100r(P(1)) 0.25 0.25 1
3

1
3

0.5

RC100r(B(10, 0.5)) 0.197642353 0.197642353 0.263523138 0.3952844707 0.790569415

All these values are larger than the corresponding ones for the normal
distribution, so these variables are worse represented by their means than
the normal one.
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