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1 INTRODUCTION

ABSTRACT

Estimating the atmospheric parameters of M-type stars has been a difficult task due to the
lack of simple diagnostics in the stellar spectra. We aim at uncovering good sets of predictive
features of stellar atmospheric parameters (7, log (g), [M/H]) in spectra of M-type stars.
We define two types of potential features (equivalent widths and integrated flux ratios) able
to explain the atmospheric physical parameters. We search the space of feature sets using a
genetic algorithm that evaluates solutions by their prediction performance in the framework of
the BT-Settl library of stellar spectra. Thereafter, we construct eight regression models using
different machine-learning techniques and compare their performances with those obtained
using the classical x> approach and independent component analysis (ICA) coefficients.
Finally, we validate the various alternatives using two sets of real spectra from the NASA
Infrared Telescope Facility (IRTF) and Dwarf Archives collections. We find that the cross-
validation errors are poor measures of the performance of regression models in the context
of physical parameter prediction in M-type stars. For R ~ 2000 spectra with signal-to-noise
ratios typical of the IRTF and Dwarf Archives, feature selection with genetic algorithms
or alternative techniques produces only marginal advantages with respect to representation
spaces that are unconstrained in wavelength (full spectrum or ICA). We make available the
atmospheric parameters for the two collections of observed spectra as online material.

Key words: methods: data analysis —methods: statistical —techniques: spectroscopic — stars:
atmospheres — stars: fundamental parameters — stars: late-type — stars: statistics.

higher transit frequencies and larger expected numbers of transits
for any given observation time span.

M-type dwarfs constitute the largest contribution by number to the
Galactic population (Bochanski et al. 2010). This Galactic com-
ponent is very important as its properties convey crucial infor-
mation about the Galactic structure and evolution (Bonfils et al.
2013). They are known to harbour super-Earth (Bonfils et al. 2013)
and Earth-sized exoplanets (Dressing & Charbonneau 2015), and
have recently become a major target in large-scale searches for
habitable ones due, amongst other reasons, to the reduced star-to-
planet mass and light ratios (Alonso-Floriano et al. 2015). In addi-
tion, the geometrical probability to observe a transit is significantly
higher because the habitable zone is closer to the host star (Shields,
Ballard & Johnson 2016), and the shorter orbital periods result in

* E-mail: Isb@dia.uned.es

These stars span two orders of magnitude in luminosity and al-
most one order of magnitude in mass, from 0.075 M® to 0.6 MO.
At 0.35 MO, these stars become fully convective and, given their
low internal pressures, this results in life spans that greatly exceed
the age of the Universe (Adams, Bodenheimer & Laughlin 2005).
Although much theoretical work has been invested in understanding
this low-mass end of the Main Sequence (Browning 2008), there
are still some discrepancies between models and observations (see
e.g. Torres 2013, for an account of the observed inflated radii and
cooler temperatures with respect to model predictions).

Scattering from the fine dust grains that form in the atmospheres
of the coolest M dwarfs results in veiling of the spectra (Allard
et al. 2012). Furthermore, the complexity of modelling the molec-
ular bands (numerous transitions, frequency-dependent absorption
coefficients, collisional transitions) and the difficulty in defining a
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true stellar continuum prevents the application of standard tech-
niques (common for F-, G- and K-type stars) to the determination
of physical parameters of M-type stars.

Given the prevalence of these late-type stars, it has become in-
creasingly important to be able to estimate their atmospheric phys-
ical parameters with reproducible methods that provide homoge-
neous values for large samples of spectra. Rojas-Ayala et al. (2012)
proposed the H,O-K2, Nar and Car spectral indices to estimate
spectral type, effective temperature (7.) and metallicity from
K-band spectra between 1.0 and 2.4 um at a resolution R =~ 2700.
They measured spectral types with a quoted accuracy of 0.6 sub-
types, and metallicities with a root mean square error (RMSE)
of 0.1 dex (0.14 dex for the iron abundance). The definition of
the line/band spectral regions and pseudo-continuum is justified in
terms of contiguity and the avoidance of other atomic features.

Neves et al. (2014), in contrast, concentrated on high-resolution
(R~ 115000) spectra in the optical range. They proposed a method
based on a linear least-squares fit of the equivalent widths (EWs) of
4104 lines in the 530-690 nm spectral range to effective tempera-
tures and metallicities derived from the scales by Neves et al. (2012)
and Casagrande, Flynn & Bessell (2008). They show RMSE of 0.12
dex for the metallicity and 293 K for the effective temperature. New-
ton et al. (2015) developed a calibration of effective temperatures,
radii and bolometric luminosities with Mg and Al spectral features
measured in low-resolution near-infrared spectra (from the SpeX
instrument at the NASA Infrared Telescope Facility (IRTF, Cush-
ing, Rayner & Vacca 2005; Rayner, Cushing & Vacca 2009), the
same instrument used and described in Section 3 of this work).
They quoted residual standard deviations of the T fit of 73 K.

Mann et al. (2015) calculated effective temperatures using the
classical x? minimization of the observed optical spectra with re-
spect to the CIFIST2011 library of BT-Settl synthetic spectra. Un-
certainties of temperatures are estimated around 60 K. Metallicities
are estimated from the EW's of atomic spectral lines in near-infrared
spectra (again SpeX) using calibrations obtained from wide bina-
ries with FGK primaries. The estimated errors in metallicity are
0.08 dex.

The previous summary shows a lack of estimates for the surface
gravity and a variety of methodologies for the estimation of temper-
atures and metallicities. In this work we are mainly concerned with
estimating atmospheric physical parameters using spectral features
and libraries of synthetic spectra. Our aim is to identify the best
spectral features for estimating 7., log (g) and [M/H], not only for
M dwarfs but also for other luminosity classes.

Cesetti et al. (2013) proposed sensitivity maps (the derivative of
the monochromatic fluxes with respect to the atmospheric physical
parameters) to rank spectral features. They searched the space of
spectral features for predicting T, log (g) and [M/H]. In contrast,
Mann et al. (2013) concentrated their efforts on a systematic search
for spectral diagnostics of the metallicity in the domain of moderate
resolution (1300 < R < 2000) visible and infrared spectra of late-K
and M dwarfs. In this sense, our work represents an extension of
the work by Mann et al. (2013) in that we (i) include other lumi-
nosity types other than dwarf stars in the analysis; (ii) search for
spectral diagnostics of the effective temperature and surface gravity
as well; (iii) include the definition of the continuum bands in the
search for the optimal features, as opposed to using a fixed list of
continuum definitions; (iv) train a regression model to predict the
physical parameters from the set of optimal spectral features rather
than a collection of linear models, one for each spectral feature; and
(v) introduce the technique of cross validation in order to minimize
the problem of overfitting (see e.g. Gelman et al. 2013) and the

associated underestimation of the prediction errors. Our (compara-
tively more complex nonlinear) regression models integrate all the
information from the selected features to produce a single estimate
of the physical parameters. These more complex models come at
the expense of abandoning the empirical approach of Mann et al.
(2013) that used observed spectra of late-K and M dwarfs in bina-
ries with solar-type primaries. Our more comprehensive approach
requires a larger set of spectra to select the features and train the
regression models and thus we must turn to libraries of synthetic
spectra that cover more densely and homogeneously the space of
parameters.

In this work we explore the validity of the features proposed
by Cesetti et al. (2013) and propose and evaluate new features us-
ing standard machine-learning (ML) techniques. In Section 2 we
describe the methodology used to define and evaluate the spec-
tral features; in Section 3 we apply the methodology described in
Section 2 in the context of the wavelength coverage and resolution
of the IRTF collection of spectra; we describe the feature defini-
tion results and evaluate them for the task of predicting physical
parameters on the actual observed spectra that make up the collec-
tion. Section 4 describes the same steps in the context of the Dwarf
Archives collection of spectra. Finally, Section 5 summarizes the
main results and conclusions of the paper.

2 METHODOLOGY

The objective addressed in this section is to develop an automated
procedure to identify spectral bands that yield good atmospheric
temperature, gravity and metallicity (hereafter physical parame-
ters) diagnostics for M-type stars. Given the lack of a calibration set
of benchmark stars with observed spectra and homogeneous cover-
age of the space of physical parameters, we must turn to synthetic
libraries of spectra. Furthermore, only temperatures and gravities
can be calibrated independently of the spectra (for example as in
Ségransan et al. 2003, using interferometry): all metallicity esti-
mates in the literature are based on collections of synthetic spectra,
and therefore spectral synthesis codes are the only resource to con-
struct regression models. Even in the case of interferometry, the
estimates of radii (and therefore gravity) depend on stellar models
(although less strongly) via limb-darkening corrections.

As an alternative to the methods based on genetic algorithms used
in this work, the atomic or molecular line/band parameters can be
used in principle to select the spectral features that are more sensitive
to changes in the physical parameters, as in Passegger, Wende-von
Berg & Reiners (2016). However, the suitability of spectral features
as diagnostics of the stellar atmospheric properties depends not
only on the individual behaviour of each line/band, but also on the
relative properties of neighbouring features in the same spectral
region, which may overlap depending on the spectral resolution.
Furthermore, good spectral diagnostics at a given signal-to-noise
ratio (SNR) may show a severely degraded predictive power in the
low-SNR regime. Therefore, we propose an alternative selection
approach that considers the resolution and SNR ratio, to assess
the utility of spectral features for the task of inferring physical
atmospheric parameters.

In the following, we adopt the BT-Settl CIFIST2011 library of
synthetic spectra (Allard et al. 2013) as the framework where spec-
tral diagnostics will be searched. This library does not include
variations due to line-broadening mechanisms such as micro- or
macro-turbulence or rotation and hence our results can be biased
if their effects in the spectra are strong. The predictions from the
models presented here do not take these broadening mechanisms
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into account. These synthetic spectra were preprocessed in several
steps, as described below.

2.1 Spectral preprocessing

First, and in order to define good temperature diagnostics, spectra
between 2000 and 4200K in steps of 100K were selected, with
log (g) in the range between 4 and 6 dex (when g is expressed in
cms~2), in steps of 0.5 dex. The metallicity of the representative
spectra was restricted to the set 0, 0.5 and —1 dex. This yields a
total set size of 535 available spectra.

A series of preprocessing steps was then carried out in order to
match the spectral resolution and wavelength coverage and sam-
pling of the synthetic library to that of the collection of observed
spectra collected from the Dwarf Archives or IRTF (see below).
This required the definition of a common wavelength range present
in all available observed spectra, and subsequent trimming to match
that range. A unique wavelength sampling was also defined and all
spectra (synthetic and observed) interpolated to match the sampling.
Finally, all spectra, both synthetic and observed, were divided by
the integrated flux in order to factor out the stellar distance. This is
necessary in order to compare our feature selection proposal with
the techniques that make use of the full spectrum (minimum x? and
independent component analysis (ICA) compression; see below).

In order to avoid selecting spectral features that work well only
in the unrealistic SNR = oo regime, the search for optimal diag-
nostics of the atmospheric parameters of M stars was carried out
for three SNR values (10, 50 and co) by degrading the synthetic
spectra with Gaussian noise of zero mean. These values were found
to be sufficient in a wide range of experiments carried out in par-
allel and described in Gonzalez-Marcos et al. (2017). The special
SNR = oo case has been retained for the sake of completeness
although Gonzdlez-Marcos et al. (2017) show that training sets de-
rived from noiseless spectra are at best unnecessary, and at worst
damage performance severely.

2.2 Feature definition and selection

As mentioned in Section 1, defining good spectral diagnostics for
the prediction of atmospheric physical parameters of M stars is a
difficult task. The work in Cesetti et al. (2013) defined wavelength
regions in the / and K bands optimal for determining physical pa-
rameters based on the sensitivity exhibited by the flux emitted in
these segments to changes of the physical parameters. The sen-
sitivity was measured in terms of the derivative of the flux with
respect to the physical parameter. The approach adopted here is to
select spectral features that yield the best accuracy when used as
predictive variables in a regression model that estimates the stellar
atmospheric physical parameters (7, log (g) and metallicity). The
evaluation of the accuracy of the estimates produced from a subset
of features is described further below. We consider the effective
temperature as the dominant parameter influencing changes in the
stellar spectra (a strong feature). Therefore, it was estimated first,
and then used as input in the regression models for the gravity and
metallicity.
Here, a feature F is defined as

A2
F=/‘<1—fud-m 1)
A Fconl

where f()) denotes the normalized flux from the star at wavelength
A, and where Fo is the average flux in a spectral band between
Acont: 1 and Aconi; 2. We explain below how we search for the band
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definitions that produce physical parameter predictions with the
smallest errors.
We also studied features defined as

A
P f f)-da )
f f)-da

where Ay, A, A3 and A4 delimit two spectral bands such that the ratio
of the integrated fluxes in the two bands is assumed to be a good
feature for predicting the star atmospheric physical parameters,
alone or in combination with other features. The results obtained
with this alternative feature definition did not differ significantly
on average from those observed with that adopted in equation (1),
and including them here would result in an excessively lengthy
article. In view of the equivalent global performances, we preferred
the former because it allows direct comparison with the features
proposed by Cesetti et al. (2013).

We used genetic algorithms (hereafter GAs) to solve the opti-
mization problem described above, that is, the problem of finding
the features (band boundaries) that minimize the prediction error
of a regression estimate of the physical parameters. We used the
implementation of genetic algorithms publicly available as the r Ga
package (Scrucca 2013). The concept of using in silico (that is, an
algorithmic analogue of) evolution for the solution of optimization
problems was introduced by Holland (1975). Although its appli-
cation is now reasonably widespread (see e.g. Goldberg 1989), it
became popular only when sufficiently powerful computers became
available. GAs were presented to the astronomical community by
Charbonneau (1995), and have been used extensively in the past
(see De Geyter et al. 2013, for a significant application of GAs in
astronomy).

For the sake of simplicity, let us define GAs as search algorithms
that are based on the principle of evolution by natural selection. The
procedure works by evolving (in the sense explained below) an ini-
tial random population of chromosomes, in our case defined as sets
of spectral features defined by equation (1). Evolution proceeds via
cycles of differential replication, recombination and mutation of the
fittest chromosomes. The concept of fittest is context dependent, but
in our case fitness is defined in relation to the accuracy with which
a simple multivariate linear model trained on a given chromosome
(a set {F;} of spectral features) predicts the physical parameters.
This linear model may not capture instrinsic nonlinearities between
the input space (the features) and the predicted physical parame-
ters but it is significantly faster and simpler than the actual models
(described in Section 2.3) that will eventually be used to predict
the physical parameters. It would certainly be preferable to use as
fitness criterion the accuracy of the models described in Section 2.3
but this turned out to be computationally prohibitive for the several
millions of evaluations involved in the GA. The accuracy of the
linear models is measured with the Akaike information criterion
(AIC) of the fitted linear model. The AIC value of a given model is
given by equation (3),

AIC =2 x k —2 x In(L), 3)

where k is the number of model parameters and £ is the maxi-
mum value of the likelihood function (the probability of the data
given the linear model). Since k is fixed for all models, the AIC
effectively reduces to the maximum likelihood or least-squares
criterion.

The data set used to search for the optimal set of spectral
features will be, as mentioned before, the BT-Settl collection of
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synthetic spectra, where each spectrum is tagged with the effective
temperature, gravity and metallicity of the model atmosphere from
which the spectrum emerged.

The implementation of the GA comprises the following steps:

(i) Stage 1: Definition of the population of potential features as
a set of chromosomes that are evolved by the genetic algorithm in
order to increase the fitness.

(ii) Stage 2: Each chromosome in the population is evaluated by
its ability to predict the physical parameters of each star in the data
set (fitness function: equation 3).

(iii) Stage 3: Chromosome selection. The new generation of in-
dividuals is initialized by transferring a number of the fittest chro-
mosomes in the previous generation. The percentage of individuals
transferred is known as the degree of elitism.

(iv) Stage 4: The population of chromosomes is replicated. Chro-
mosomes with higher fitness scores will generate more numerous
offspring.

(v) Stage 5: The genetic information contained in the parent
chromosomes is combined through genetic crossover (two ran-
domly selected parent chromosomes are used to create two new
chromosomes).

(vi) Stage 6: Mutations are then introduced in the chromosomes
randomly. These mutations produce new genes by randomly re-
defining the gene components (that is, by changing the band bound-
aries A; that define the gene). Stages 5 and 6 are applied over the
chromosomes established at Stage 4.

(vii) Stage 7: This process is repeated from Stage 2 until a target
accuracy is achieved or the maximum number of iterations attained.

We test features defined by bands (the numerator and denomi-
nator of equation 1) that comprise 10 consecutive bins (fluxes) of
a spectrum. The bands tested in different features may overlap by
as much as five consecutive bins (which in practice implies that we
define the first feature as the spectral chunk between wavelength
bins i = 1 and i = 10, the second feature between bins i = 6 and
i = 15, the third feature between bins i = 11 and i = 20, etc). The
spectral bands in the numerator and denominator of a test feature
cannot overlap.

It would be possible to evaluate the predictive performance of in-
dividual features defined with equation (1). An obvious conceptual
limitation of this univariate approach (considering chromosomes
that code a single predictive feature) would be the lack of consider-
ation that features work in the context of interconnected pathways
and therefore it is their behaviour as a group that has to be eval-
uated in terms of the predictive accuracy. In other words, a single
feature can yield a poor predictive performance alone, but improve
very significantly the prediction accuracy when used in combina-
tion with other features. Multivariate selection methods thus seem
more suitable for the analysis of the regressors since variables are
tested in combination to identify interactions between features. In
this work we define a chromosome as a set of 10 individual genes,
and each gene codes a pair of non-overlapping spectral bands, the
ratio of which is the feature defined by equation (1).

The population size was set to 8000 individuals and the maxi-
mum number of accepted iterations set to 4000. We produced three
randomly started populations so as to provide enough initial variety.
The crossover and mutation probabilities were set to 0.85 and 0.35,
respectively. Elitism (the fraction of the population copied into the
next generation and composed of the fittest individuals) was fixed to
15 per cent. We used a binary codification of the chromosomes and

a parallel implementation of the GA in a farm of fifteen computers
per physical parameter.’

Feature fitness was defined in terms of the RMSE of a linear
regression model trained with the chromosome features. It is im-
portant to stress that the regression model used to evaluate the fitness
of the feature sets (chromosomes) is not the same model that will be
used in practice to predict physical parameters for observed spectra,
as described in Section 2.3 below. For fitness evaluation in the GA
we used a simple multilinear model for the sake of speed, given
the extreme size of the search space of all possible combinations of
10 spectral features. In the IRTF context, these 10 features in each
chromosome are selected from among the roughly 6000 potential
features. This is 600010, which has an order of magnitude of 10**.

The GA procedure provides us with a large collection of chro-
mosomes, each one consisting of 10 spectral features. We choose
10 as a compromise. On the one hand, we have the intuition that
the physical parameters that we intend to predict can be formulated
as nonlinear combinations of several interacting features (that is,
the predictive power of the set of features is higher that the sum of
the individual predictive powers of the individual features). On the
other hand, we need to limit the complexity of the models in order
to attain reasonable computation times. Although these collections
of chromosomes resulting from the GA are all potential solutions
of the problem, it is not immediately clear which one should be se-
lected for the final regression model. In this work we have selected
the most frequent features amongst the fittest chromosomes as pre-
dictive variables of the physical parameters in regression models.
Features appearing in fewer than five chromosomes were initially
discarded as they cannot be relevant by themselves and just arise
randomly by combination with other stronger chromosomes.

Once the GA has generated a proposal set of features for predict-
ing each of the physical parameters, the next step consists in training
the regression model based on these features. This is described in
the next section.

2.3 Regression models

Once a feature set has been selected from the output of the GA,
we construct regression models to predict the physical parameters
(response or predicted variables) from it. In the context of machine
learning, constructing a regression model consists in using a train-
ing set (a set of cases defined by the selected variables for which
the physical parameters are available) to infer the parameters of a
mapping between the feature set and predicted variables. The re-
gression model parameters should not be confused with the physical
parameters of the atmosphere we aim at inferring.

In this case, our training set is again the BT-Settl collection of
synthetic spectra, for which we already computed the feature set as
part of the GA selection procedure. Of course, for each spectrum
we also have available the effective temperature, the gravity and the
metallicity. Once the model is trained, we will apply it to observed
spectra as described in Sections 3 and 4.

Several regression models are trained for the prediction of each
physical parameter in order to evaluate their performance:

(i) Bagging with multiadaptive spline regression models (here-
after MARS).

! All computations needed for this work were carried out in the CeSViMa
(http://www.cesvima.upm.es/) power7 HPC characterized by processors
with eight cores and four threads per core, running at 3.3 GHz and with
32 Gb of RAM each.
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(i1) Random forest regression models (RF).

(iii) k-nearest neighbours (KNN).

(iv) Generalized boosted regression models (GBM).

(v) Support vector regression with Gaussian kernel (SVR).
(vi) Multi-layer perceptron neural networks (NNET).

(vii) Kernel partial least-squares regression (KPLS).

(viii) Rule regression models (RR).

In order to assess the validity of our feature sets we also compare
the predictions based on them with other input spaces. In particular,
we also compute physical parameters that yield the the minimum 2,
and train a projection pursuit regression model with the independent
components (Hyvarinen 1998) derived from each spectrum.

Including here a sufficient description of each and every regres-
sion model that we trained would render the manuscript excessively
lengthy but interested readers can find additional information in
Baraud (2002), Geman, Bienenstock & Doursat (1992), Elith,
Leathwick & Hastie (2008), Meyer, Leisch & Hornik (2003), Svet-
nik et al. (2003). Suffice it to say that each one of them can be
thought of as a parametric model that predicts one physical pa-
rameter from an input vector. The input vector can be the full nor-
malized spectrum, the ICA lower-dimensional representation of the
full spectrum, the spectral features selected by Cesetti et al. (2013)
or those selected by the GA. The regression model parameters are
inferred (using strategies that differ from one regression model to
another) from a set of examples. As explained above, this set of
examples (spectra of stars for which we know the physical param-
eters) is called the training set, and the process by which the model
parameters are determined from the training set is called training of
the model. In the next paragraph we give minimal details of each
regression model trained, and references for the interested reader.

In order to avoid the well known problem of overfitting (see e.g.
Dietterich 1995), we use five-fold cross validation to estimate the
prediction errors. n-fold cross validation consists in dividing the
training set into n disjoint subsets and training different regression
models, each one of them with (n — 1) of the n subsets. The nth
subset not used for training is used instead to estimate the errors.

As every type of model has its own set of tuneable parameters as
well as its own training procedure, we have used a common R (R
Core Team 2016) wrapper for all models named cAret (short for
Classification And REgression Training, Kuhn 2008). This wrapper
enables a common interface, as well as the use of the same set of
training/set samples for the adopted five-fold cross-validation error
estimation. As explained above, each regression model has its own
set of model parameters. For each model we have searched for the
parameter set that minimized the root mean square error (RMSE)
in a grid of values defined ad hoc for each technique.

The adopted procedure for learning the models can then be sum-
marized as the pseudocode 2.1.

Algorithm 2.1: MODEL LEARNING(DataSet, Par Ranges)

SM()([elPuramerer.\' <~ ParRanges
SpatarFolders < Preprocess(DataSet)
for each x € SModelPammelfrs
for each z € Spararoiders
H DS(z) < Hold-out specific samples
MOdel(Z) <~ Fits(SDataFoldfr.i \ HDS(Z))
Perf(z) < Predicts(Model(z), HDS(z))
Perf(x) < Average(Perf(z)) Yz € Spararoiders
OPS < argmax(Perf(y)) Vy € Sumodeiparameters
Model < Fits(DataSet, OPS)

do do

MNRAS 476, 1120-1139 (2018)

In the description of Algorithm 2.1 ParRanges represents the set
of available parameter ranges, which are organized into different
sets named Syodeiparamerers- Similarly, the available DataSet will be
used to create the five disjoint data folders named Spusaroiders- Then,
the learning procedure sequentially combines all the data folders
excluding one (HDS(z)). By fitting the models according to the
particular parameter set and training data, the algorithm produces
models Model(z). These models can now be scored against the
unseen data folder to yield Perf(z). The selection of the most suitable
model configuration (Model) will be based on the parameter set
OPS, which maximizes the average performance for the available
training data DataSet.

During the preprocessing stage (2.1) the spectral resolution of the
BT-Settl library was degraded to the IRTF resolution (R ~ 2000)
by convolving with a Gaussian. Then, the spectra were trimmed to
produce valid segments between 8145.92 and 24 106.85A, which
is the spectral range common to all M stars in the IRTF library.
Finally, all spectra were divided by the total integrated flux in this
range in order to factor out the stellar distance.

As mentioned above, the training set was constructed from the
BT-Settl library of stellar spectra. The interested reader may find
different approaches in the literature to the problem of finding an op-
timal set of training examples. Ness et al. (2015), for example, prefer
to use real observed spectra rather than synthetic libraries to create
a generative model in which the individual spectral fluxes are mod-
elled as second-degree polynomials with the physical parameters
as arguments. The real observed spectra have physical parameters
taken from the literature, which in turn are almost always inferred
using synthetic spectral libraries. In our opinion, this approach does
not solve the dependence of the predicted parameters on the neces-
sarily imperfect synthetic libraries, but has the advantage that the
relative frequencies of examples in the training set represent bet-
ter the biases naturally encountered in surveys than the uniform
sampling of parameter space found in synthetic libraries. Recently,
Heiter et al. (2015) have started a program to compile a set of stars
with accurate physical parameter determinations inferred indepen-
dently of spectroscopic measurements and atmospheric models (as
much as possible). Unfortunately, this ambitious program only con-
tains 34 stars of spectral types F, G and K. In the M regime we find
similar approaches in Boyajian, van Belle & von Braun (2014) and
references therein, where the atmospheric parameters are derived
using interferometric measurements of stellar radii. Again, this only
amounts to a very small number (21 K and M stars) of examples
and a very sparse sampling of the parameter space.

All efforts to compile training sets of stars with accurate, homo-
geneous, and reliable physical parameters derived independently of
spectroscopic measurements are valuable not only because they al-
low for the improvement of the stellar atmospheric models but also
because they help increase the reliability of the regression models
by making them independent of these atmospheric models. But until
these training sets with sufficient and homogeneous sampling of the
parameter space are available, we must turn to the use of synthetic
libraries.

3 PHYSICAL PARAMETERS OF THE IRTF
COLLECTION OF SPECTRA

In the following, we will summarize the results obtained for the
IRTF data set. We deal with the different physical parameters in
separate sections. We start by reporting the root mean/median square
errors (RMSE/RMDSE) with respect to the parameters gathered

810Z Jagquiaoa(] /| U0 Jasn sauoloisinbpy ap ugiooss "opalnQ op pepisisAlun Aq 0vEE€Z6¥/0Z L L/1/9.vioBlSqe-ajone/seiuw;/woo dno-oiwapese//:sdiy woll pepeojumod



Estimating M-type-star atmospheric parameters

1125

6e-04

Ly

4e-04
NNV VIR INIREEEE
HIYRYRNREEREEE]

B B B

4000

3500

———
="
—
——— ]
—SV |
]
——————

INIBIBISISISIBEEESEE]

TV

3000

BN
BIgIEIBIRIRI)

P!

4T
IEIBIP)|

BEEIFIEI SRR

Flux(relative units)
2e-04
&Eii%}}fl}iilijl I TIrT
3

HILL

Ptttk AL
LSRR

1

133

2500

o
ool

2000

0e+00

T T T
8000 9000 10000

T
11000

T T T
12000 13000 14000

Lambda(Angstroms)

Figure 1. Features selected by the GA for predicting 7. using noiseless BT-Settl synthetic spectra in the IRTF wavelength range and resolution. The BT-Settl
spectra are plotted in a colour scale that ranges from blue (2000 K) to red (4100 K). The empty boxes correspond to the selected features and the grey boxes to

the continuum bands.
from the literature by Cesetti et al. (2013) and included in their
table 3.

We report both the mean and the median square errors because
the accuracy estimates are often dominated by a small subset of
the spectra that produce errors outlying the overall distribution.
Whenever the mean and median square errors differ significantly,
we can deduce that this is the case and hence the mean is not
representative of the typical errors.

3.1 Spectral bands selected

The GAs were applied to the selection of features for the prediction
of effective temperature from both noiseless and noisy spectra. For
the IRTF wavelength range and resolution, results in the features
have been included in Table A1. Features are ordered by the fitness
value (according to the AIC criterion, as explained in equation 3)
and we only consider features that are present in at least five sets.

Table Alshows a very wide variety of features with very few
repetitions. Only spectral features 4, 5, 6 and 9 in the SNR = 50
experiment are also found in the SNR = oo and SNR = 10 feature
sets (albeit with different continuum definitions). This reinforces
the impression that the information useful for the estimation of the
effective temperatures is spread over the entire IRTF spectrum.

For gravity estimation (on a logarithmic scale) and metallicity, the
GA search procedure produces the features presented in Tables A2
and A3, respectively. Fig. 1 shows a graphical representation of the
bands selected for the determination of the effective temperature
superimposed on a set of noiseless BT-Settl spectra.

3.2 Regression models

3.2.1 Effective temperature models

Table C1 summarizes the RMSE/RMDSE for the complete set of
models: the minimum x? estimate based on the full spectrum (x?),
the projection pursuit regression based on the ICA components
(PPR-ICA) and models trained on the spectral features proposed
by the GA (GA-RF, GA-GBM, GA-SVR, GA-NNET, GA-MARS,
GA-KPLS, GA-RR). For each model, we report the RMSE/RMDSE
obtained for several noise levels of the training sets. SNR = oo
corresponds to noiseless spectra. In the GA cases, models are trained
with the spectral features found by the genetic algorithms when
applied to BT-Settl spectra of the corresponding SNR.

Table C1 shows that the performance of classifiers based on
the full spectrum (or in a compressed version in the form of ICA
components) and the best classifier based on features derived from
limited spectral bands is equivalent. The Bartlett test shows that the
variances are homogeneous with a Bartlett’ s K of 8.5 with two de-
grees of freedom and a p-value of 0.014 26. The Fligner—Killeen test
shows that homoscedasticity is verified at the p = 0.005 886 level.
Finally, the F~ANOVA test clearly shows that there is no signifi-
cant difference between models. Thus, we conclude that the quality
of features from the two approaches (full spectrum and selected
features) is equivalent in predictive performance. The difference
between the performances of the best classifier (GA-KNN; best on
average over SNR), the minimum x? classifier, and the PPR-ICA
classifiers are not statistically significant. In any case, it is evident
that the RMSE is significantly above the grid spacing in tempera-
ture. We interpret the small differences as an indication that there is
as much information spread over the entire spectrum shape as can
be distilled from a few spectral bands.

The comparison with the effective temperatures compiled by
Cesetti et al. (2013) shows, however, some significant differences
across models when evaluated not by the RMSE/RMDSE, but by
the average bias (see Table C2).

In general, all regression models tend to predict lower effective
temperatures than those in the literature except in the noiseless
scenario. The models trained with noiseless spectra tend to over-
estimate T, suggesting that the optimal SNR is between SNR =
50 and co. The minimum x? approach and the GA-KNN model
systematically underestimate 7. for all SNR regimes. This shared
behaviour is not surprising since minimum x? is a single-nearest-
neighbour method applied in the space of the entire spectrum as
opposed to the space-selected features.

We have found in previous studies that, at least for input spaces
constructed from ICA compressions of the spectra, it is not nec-
essary to adapt the training set SNR to match exactly that of the
prediction set. On the contrary, we find that two regimes are suffi-
cient to obtain acceptable results. The two regimes are separated at
SNR = 10. The model trained with SNR = 50 spectra gives close
to optimal results for spectra with SNRs above 10, while below that
limit the same situation holds for the model trained with SNR = 10
spectra (Gonzélez-Marcos et al. 2017).

Fig. 2 shows the correlation between the T, estimates of the
best (in the RMDSE sense) regression models and the effective
temperatures in table 3 of Cesetti et al. (2013). It is worth noting that
in the M-star regime, there are 63 effective temperatures available
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Figure 2. Comparison of the effective temperatures from the literature
included in Cesetti et al. (2013) and those inferred from the KNN model
trained with the GA features (black). In orange and blue we show the
estimates from the minimum y 2 estimate and from the PPR model based on
the ICA components, respectively.

in Cesetti et al. (2013), and 46 of the 63 were estimated from the
spectral types using the calibrations of Ostlie & Carroll (2007). We
have substituted them with a spline fit to the combined data sets of
M dwarfs in Rajpurohit et al. (2013) and Boyajian et al. (2012) as
it removes systematic biases in the temperatures between 2500 and
3500K.

It is not evident that the GA-KNN model performs significantly
better than the minimum y? estimate, but in the following we will
retain the former for further analysis. Fig. 2 shows that the GA
features can be used to estimate effective temperatures with an
accuracy equivalent to that yielded by full wavelength range spectra
of the same resolution.

We have trained the same nonlinear regression models discussed
above using the features suggested by Cesetti et al. (2013). The
performance of the models based on these features is included in
Table C3. From the comparison of Tables C1 and C3 we can draw
the following conclusions:

(i) The RMSE for SNR = 10 and 50 is equivalent for the re-
gression models trained on GA features and those recommended in
Cesetti et al. (2013).

(i) However, the RMDSE from Cesetti et al. (2013) is signifi-
cantly higher in the case of the features for all SNR values.

(iii) In the unrealistic case of noiseless spectra, the features pro-
posed by Cesetti et al. (2013) produce RMSE and RMDSE signifi-
cantly worse than the GA features.

However, the cross-validation errors are far from informative with
respect to the true performance when the models are applied to real
data. In the case of the features defined by Cesetti et al. (2013),
we find that the best RMSE/RMDSE (obtained not from cross val-
idation but from the comparison with the effective temperatures in
table 3 of Cesetti et al. (2013)) is attained by the CES-NNET model.
Fig. 3 shows a graphical comparison of the CES-NNET predictions
with the table 3 reference values. Again, and in the rest of this work,
we substitute the effective temperatures in that table, which were
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Figure 3. Comparison of the effective temperatures from the literature
included in Cesetti et al. (2013) and those inferred from the NNET model
trained with the features introduced in Cesetti et al. (2013) (black). In orange
and blue we show the estimates from the minimum x2 estimate and from
the PPR model based on the ICA components, respectively.

estimated using the Ostlie & Carroll (2007) calibration, with those
from the spline fit described above.

Fig. 3 shows that the features found by the GA are to be preferred
to the ones proposed by Cesetti et al. (2013). We would like to
emphasize that Figs 2 and 3 compare the predictions of the best
regression models trained with the features derived by the GA or
by the sensitivity maps described in Cesetti et al. (2013) with the
effective temperatures gathered from the literature. These literature
estimates are not free of errors and therefore the comparison of the
two figures only reveals the better adequacy of the GA features to
reproduce these literature values.

3.2.2 Surface gravity models

For the validation of our models, we only have 10 literature values of
the surface gravity available in table 3 of Cesetti et al. (2013). Unfor-
tunately, this is too small a number to draw significant conclusions
on the comparison of methodologies from external data. Hence, we
are left only with plausibility arguments for the selection of models.
In this section log (T.sr)-log (g) diagram comparisons will be used
to select the most plausible model results.

An important difference with respect to the models discussed
above is that we use the 7. estimated in the previous stage as
input in our models. It introduces an average improvement in the
RMSE/RMDSE of 20 per cent with respect to the models without
input information on the effective temperature although it represents
arisk if the 7.5 estimate is in gross error.

Table C4 shows the RMSE and RMDSE of the cross-validation
experiments for the log(g) regression models and the same SNR
regimes discussed for the estimation of T.;. We have assessed the
models according to plausibility arguments relative to the distribu-
tion of the model predictions in T.4—log (g) diagrams. Fig. 4 shows
this distribution for four models selected based on these plausibility
criteria: GA-RR, GA-PLS, GA-KNN (all three of them for SNR =
50), and PPR-ICA (clockwise, starting at the top left). These models
that produce the most plausible log (7.)-log (g) diagrams are not
amongst the best performing in terms of RMSE or RMDSE except
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correspond to values derived from high-resolution infrared spectra by Lindgren et al. (2016) and Lindgren & Heiter (2017), and red symbols are our own

predictions.

in the case of the PPR-ICA model. This is another indication that
the cross-validation errors are not good predictors of the true per-
formance on real spectra. All four panels show a tendency towards
lower surface gravities at the coolest end, and a reasonable capa-
bility to separate dwarfs from giants, and giants from supergiants.
We include as orange squares the recent predictions by Lindgren,
Heiter & Seifahrt (2016) and Lindgren & Heiter (2017) for a set of
sources with high-resolution infrared spectra. The estimates are in
reasonable agreement with the extrapolation of the distributions that
can be guessed from the values in table 3 of Cesetti et al. (2013)
(represented by black filled symbols). Since we cannot propose
quantifications of this plausibility argument valid for all luminosity
classes, we let the reader decide which estimate (GA-RR, GA-PLS,
GA-KNN or ICA-10) is to be preferred. If we judge only by the
concordance with the locus defined by the M dwarfs in the stud-
ies by Lindgren et al. (2016) and Lindgren & Heiter (2017), then
ICA-10 is to be preferred.

Fig. E1 shows the equivalent diagram for predictions obtained
from the features selected in Cesetti et al. (2013). Again, we select
the regression models that yield the most plausible log (Tr)-log (g)
distributions with no quantitative criteria defined to select the mod-
els. The superiority of the GA-based features over those defined by
Cesetti et al. (2013) is again evident.

3.2.3 Metallicity models

Finally, the same regression models are trained to infer the metal-
licity, again considering the effective temperature as an input
feature as in the log(g) regression models. Table C5 shows the
RMSE and RMDSE obtained for the cross-validation experiments
of each regression model. The minimum cross-validation errors are
consistently obtained with the minimum x2, PPR-ICA and GA-
KNN (with some exceptions). The differences from these cross-

validation experiments are only marginal, but we see that even at
these intermediate resolutions the reduction of dimensionality (ei-
ther with ICA or GA) produces an improvement in the predictions.

This is even more evident if we compare our predictions with
more recent metallicity estimates not included in Cesetti et al.
(2013). We have gathered estimates for stars in both the IRTF col-
lection and a series of recent metallicity catalogues by Rojas-Ayala
et al. (2012), Neves et al. (2013), Newton et al. (2014), Gaidos
et al. (2014), and Mann et al. (2015). All of the aforementioned
references provide us with estimates of the iron abundance ratio
[Fe/H] except Rojas-Ayala et al. (2012), which provides both the
overall metallicity [M/H] and the [Fe/H] ratio. Our estimates, com-
ing from the BT-Settl library, are for the [M/H] ratios, so some
offset could be expected from the different nature of the quantities
compared. Hence, when comparing our estimates with those from
the literature, we compute the RMSE or RMDSE after subtract-
ing any difference in the mean. It turns out that, after correcting
for these different scales, PPR-ICA trained with SNR = 10 exam-
ples yields the lowest RMSE/RMDSE. Fig. 5 represents the esti-
mates of [M/H] obtained from the PPR-ICA-based regressor, as a
function of the values taken from these references for the sources
in common. The black empty circles represent values from Ce-
setti et al. (2013); orange filled circles, values from Neves et al.
(2013); green filled squares, values that the Vizier catalog entry for
table 8 of Neves et al. (2013) links to Jao et al. (2005), although we
find no evidence that Jao et al. (2005) contains estimates of metal-
licities; cyan and blue filled squares, values of [M/H] and [Fe/H],
respectively, in Rojas-Ayala et al. (2012); red filled squares, values
from Mann et al. (2015); yellow filled squares, values from Newton
et al. (2014); and, finally, black filled squares, values from Gaidos
et al. (2014).

It is remarkable that the minimum x? predictions result in a
50per cent increase in the RMDSE with respect to the ICA-10
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Figure 6. Plane of predictions for Tesr (from GA-KNN-00) and log (g)
(from GA-RR-50) with metallicity predictions from PPR-ICA-10.

models and the best-performing GA-based models. Therefore, we
advise against their use in the context of metallicity estimations.

Fig. 6 summarizes the predictions from a set of selected regres-
sion models in Ty (from the GA-NN-oco model), log (g) (from the
GA-RR-50 model) and metallicity (from the PPR-ICA-10 model).
Again, plausibility arguments such as the lower metallicity of the
supergiants apparently give evidence supporting the good perfor-
mance of our models, but the lack of extensive good-quality es-
timates of the physical parameters of the IRTF collection of stars
prevents us from a more quantitative assessment of the predictions.

The equivalent plot for predictions based on the features defined
by Cesetti et al. (2013) and the RF model trained with SNR = 50
spectra is included as Fig. E2.

MNRAS 476, 1120-1139 (2018)

4 PHYSICAL PARAMETERS OF THE DWARF
ARCHIVES COLLECTION OF SPECTRA

4.1 Spectral bands selected

As for the IRTF spectra, the spectral resolution of the BT-Settl
library was degraded to match the average resolution of the spectra
in the Dwarf Archives.” Then, the spectra were trimmed to produce
segments in the spectral range common to all spectra of M stars
in the archive, to avoid missing data in the input variables. Finally,
all spectra were divided by the total integrated flux in this range in
order to factor out the stellar distance.

There is little hope a priori for reasonable accuracies with re-
gression models that predict the surface gravity and metallicity
from such wavelength-limited, low-/intermediate-resolution spec-
tra. Anyhow, we provide the results obtained applying the same
methodology as in Section 3 (and described in Section 2) to show
the limitations.

The application of the GA to the selection of features for the pre-
diction of effective temperature within the Dwarf Archives wave-
length range and resolution results in the features included in
Table B1. Table B2 shows the spectral features selected for pre-
dicting the surface gravity, and Table B3 those for predicting metal-
licity.

4.2 Regression models

In the following, we will summarize the results obtained for the
Dwarf Archives data set. We deal with the different physical param-
eters in separate sections. We start by reporting the cross-validation
root mean square errors (RMSE) and root median square error
(RMDSE) for the five-fold cross-validation strategy, and we sub-
sequently discuss the accuracy of the predictions with respect to
literature values where available.

4.2.1 Effective temperature models

Table D1 summarizes the RMSE/RMDSE for the complete set
of models: the minimum x? estimate based on the full spectrum
(x?), the projection pursuit regression based on the ICA compo-
nents (PPR-ICA) and some models trained on the spectral features
proposed by the GA (GA-RF, GA-GBM, GA-SVR, GA-NNET,
GA-MARS, GA-KPLS). For each model, we report the RMSE/
RMDSE obtained for several noise levels of the training sets.

Again, as in the IRTF case, we see that the compression of the
spectra results in a clear performance degradation with respect to
the x? minimization technique results. Fig. 7 shows a comparison
between the effective temperatures derived from a spectral type
calibration (x axis) and the predictions of the best regression models
(v axis). In particular, we have converted the spectral types available
in the DwarfArchives.org collection to effective temperatures using
the same spline fit described in the IRTF section. This shows that
the best results based on the 10 features selected by the GA are
barely equivalent to the prediction accuracy of the x> estimates.
The decrease in the number of predictive variables results in a
simpler and faster model, but the x> model is already simple, so
our conclusion is that the feature selection in this context of low-
resolution spectra in the optical range is unnecessary.

Having shown that the feature selection with GAs degrades
the performance of regression models, one can wonder whether a

2 http://spider.ipac.caltech.edu/staff/davy/ARCHIVE/index.shtml
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various regression models (y axis): x2 model (top left, SNR = 50), random forest regression model (top right, SNR = 00), GA-MARS model (bottom left, SNR
= 10), and the neural network model (bottom right, SNR = 10). Blue squares denote Main Sequence dwarfs and red triangles denote giant stars (luminosity

class III) according to Cesetti et al. (2013).

different feature selection procedure would produce better results.
In particular, we investigate the possibility that the features pro-
posed by Cesetti et al. (2013) result in a performance equal to or
even better than the one achieved with x2.

We train the same types of regression models to the features
selected in Cesetti et al. (2013), again learning from BT-Settl spectra
of various SNRs and predicting over the Dwarf Archives set. A
summary of the results can be found in Table D2, where we use
CS- to indicate that the model was trained using the features by
Cesetti et al. (2013).

For SNR = 10, the best GA models (GA-KPLS in RMDSE or
GA-RF in RMSE) outperform the best CS model (GA-GBM). For
SNR = 50 the situation depends on the figure-of-merit used to com-
pare the regression models: in RMSE the best model is CS-GBM
while in RMDSE GA-GBM outperforms all CS models. Finally, for
the unrealistic case of noiseless spectra, Table D2 shows an over-
whelming degradation of the prediction accuracy from CS features.
But even in the only case where the CS features outperform those
selected by the GA, the performance is below the one achieved by
the minimum yx? approach. It is important to remark here that the
features selected in Cesetti et al. (2013) were fit for the IRTF wave-
length range and resolution, and not all of them can be extracted
from Dwarf Archives spectra. Hence, unlike in the case of the IRTF
spectra, the comparison of GA- and CS-based performances with
Dwarf Archives spectra is not fair and the results are only included
for the sake of completeness.

The relationship between the GA predicted effective temperature
and the one measured by Rojas-Ayala et al. (2012) (blue for the
predictions by the GA-MARS SNR = 10 model and black for
the GA-RF SNR = oo model), and by Lindgren et al. (2016) and
Lindgren & Heiter (2017) (orange and green for the same models
as before) can be found in Fig. 8.

4.2.2 Surface gravity models

As in the IRTF exercise, we attempt to select features for surface
gravity estimation from BT-Settl spectra using GAs despite the

o
o
[19)
<
o
8A L]
[
< . .
o
) e VT
o | Loy V)
Ag ] [ H
<< *.-
©] v
~ -
H% " u u
8A [ l’ -
(= “
) » -
L} (]
)
o
o
[Te)
QY
o
o |
o
8V

T T T T T T
2000 2500 3000 3500 4000 4500
Toii(Literature)

Figure 8. Relationship between log (7.sr) from Rojas-Ayala et al. (2012)
on the x axis and log (Tefr) as predicted by the GA-RF model with SNR =
oo (black symbols, squares for dwarfs and a triangle for the only giant in the
sample) and the GA-MARS trained with SNR = 10 data (blue symbols).
Green and orange symbols correspond to sources in common with Lindgren
etal. (2016) and Lindgren & Heiter (2017) and the predictions by the GA-RF
(SNR = 00) and GA-MARS (SNR = 10) models, respectively.

much lower spectral resolution and smaller wavelength coverage of
the Dwarf Archives spectra. Since there is no substantive compila-
tion of surface gravities that we could cross-match with the IPAC
list of M stars in the Dwarf Archive, we are left with the same
plausibility arguments used in the IRTF study, which are based on
the log (Tesr)-log (g) diagram.

We again use the effective temperatures as input of the regression
models. Table D3 shows the cross-validation RMSE and RMDSE
for the same set of regression models used throughout this article.
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Figure 9. log (Ter)-log (g) planes obtained using the %2 (SNR = 50) log (Tefr) predictions and the log (g) values from the GA-NNET (SNR = 10, top left),
GA-SVR (SNR = 10, top right), 2 (SNR = 50, bottom left) and PPR-ICA (SNR = 10, bottom right) regression models. Black symbols correspond to objects
with physical parameters in table 3 of Cesetti et al. (2013); green symbols correspond to the predictions shown in Section 3.2.1 for the IRTF spectra; blue
squares correspond to predictions for dwarf stars according to the DwarfArchives.org luminosity classes; red triangles correspond to giant stars according
to DwarfArchives.org; orange symbols correspond to values derived from high-resolution infrared spectra by Lindgren et al. (2016) and Lindgren & Heiter
(2017); and, finally, empty grey circles correspond to sources with no luminosity class in DwarfArchives.org.

It shows that the GA-RF model outperforms all others in all SNR
regimes, giving a consistent RMDSE of 1.0 dex. Obviously, this
is barely enough for classification in luminosity classes. Further-
more, and as has been the case in the evaluation of all previous
regression models, the cross-validation errors are poor estimates of
the true performances on real observed spectra. Fig. 9 shows the
log (Teir)-log (g) diagram for the two best-performing log(g) re-
gression models (GA-NNET and GA-SVR, both trained with SNR
= 10 BT-Settl spectra) and the two reference models based on the
minimization of the x> (SNR = 50) and the PPR-ICA (SNR =
10). Three of the four panels (all except the 2 predictions) show a
strong spurious correlation in the gravities of the M dwarfs in the
sense that the coolest dwarfs have unreasonable values of log(g)
around 2 dex. The PPR-ICA model shows this trend too, but with
a much shallower slope (log (g) &~ 4 at log (Tefr) & 3.4). Only the
GA-NNET model (and to a lesser extent the x> model) places giant
stars (red triangles) in the locus expected, judging by the values in
table 3 of Cesetti et al. (2013) (black filled symbols) and the pre-
dictions for the IRTF data set (green filled symbols). The various
symbols (squares, triangles, circles) reflect the luminosity classes
found in either table 3 of Cesetti et al. (2013) (for the IRTF values)
or the DwarfArchives table.

Fig. E3 shows the log (Tes)-log (g) diagram for predictions ob-
tained from the features selected in Cesetti et al. (2013) and the
Dwarf Archives data. As in the IRTF case, we select the regression
models that yield the most plausible log (T.)-log (g) distributions
with no quantitative criteria defined to select the models. It shows
the superiority of the GA-based features over those defined by Ce-
setti et al. (2013).
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4.2.3 Metallicity models

Finally, the same analysis is performed for metallicities, again us-
ing the previously inferred temperature as a fixed input feature.
Table D4 shows a summary of the cross-validation performance of
the different models.

In general, models trained with SNR = oo show much poorer
performance except for the GA-RF and GA-GBM cases. The best
x? model produces errors almost a factor of two larger than the
GA-RF-0co model (although it has to be borne in mind that, while
our regression models are capable of predicting metallicities that
are intermediate in the grid, the minimum x? can only yield values
in the grid, which has a step size of 0.5 dex). Models trained with
SNR = 10 and 50, in contrast, show a more consistent behaviour
for the entire set of regressors, with poorer performances than the
apparently optimal GA-RF-oo, but also smaller differences between
models.

In order to select the best model, we again compare our model
predictions with the reference catalogues used in Section 3.2.3. We
select the random forest trained with noiseless synthetic spectra
as the best model, which renders the minimum RMSE (0.3 dex).
Fig. 10 shows the comparison of our estimates with the reference
catalogues, using the same symbols and colours as in Fig. 5.

Our value of the RMSE contrasts with the differences between
estimates for the same star in the literature. We obtain a mean
difference of 0.1 dex, a factor of three smaller than our RMSE.

It is interesting to note that our predictions extend to metallicities
as low as [M/H] = —2.1. Fig. 11 shows a histogram of the metal-
licities predicted by the GA-RF-oo model for the Dwarf Archives
set of spectra. We find predictions below —1.5 for 11 sources, six
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Figure 11. Predictions of the GA-RF-oo regression model for the metal-
licity of Dwarf Archives stars.

of which have been previously identified as subdwarfs of different
categories (see Table 1).

The remaining five stars with metallicities below —1.5
are 2MASS J17275631-3240430 (—2.0 dex); LHS 1625
(—1.97 dex); 2MASS J19215188+-2802275 (—1.9 dex); 2MASS
J190046754-2806462 (—1.7 dex), classified as K7III by Kirkpatrick
et al. (1994); and 2MASS J14465233—5320580 (—1.7 dex).

Table 1. Previously known subdwarfs in the Dwarf Archives collection of
spectra and the corresponding GA-RF-oo predictions.

Identifier  Classification Reference GA-RF-00
LHS 3768 usdM3 Kirkpatrick, —2.1
Henry & Simons (1995)

LHS 2352 esd Kirkpatrick et al. (1995) —2.0
LHS 1691 usdM2 Lépine, Rich & Shara (2007) —1.95
LHS 2023 esdM6 Riaz, Gizis & Samaddar (2008) —1.95
LHS 515 esdM5 Reid & Gizis (2005) —1.8
LP471-17 sdM Kirkpatrick et al. (1995) —-1.7

5 SUMMARY AND CONCLUSIONS

In this work we have attempted to construct regression models to
predict physical parameters of M-type-star atmospheres. We have
tried several representation spaces or sets of predictive variables:
the full spectrum, the ICA compression coefficients, and several
sets of features (pseudo-equivalent widths) optimized using GAs to
predict effective temperatures, surface gravities and metallicities.
The main conclusions for this extensive study can be summarized
as follows:

(1) The cross-validation root mean square errors based on a train-
ing set of synthetic spectra are poor estimates of the true perfor-
mance of a regression model applied to true observed spectra. As
stated in Section 3.2.1, the errors estimated with the cross-validation
experiments are much lower than those found by comparison with
the literature values collected in Cesetti et al. (2013). We inter-
pret this as a direct consequence of (i) the differences between the
BT-Settl library of synthetic spectra and the real spectra of M stars,
and (ii) the internal errors in the literature values collected in Ce-
setti et al. (2013). There may also be a contribution due to noise
excursions not properly accounted for by the Gaussian random
noise added to the synthetic spectra, but we do not expect this
contribution to be the major contributor to the difference between
cross-validation error estimates and external validation with litera-
ture values.

(i) The features selected by Cesetti et al. (2013) based on sensi-
tivity maps (the gradient of the monochromatic fluxes as a function
of the physical parameters) have sub-optimal performances when
used for prediction purposes.

(iii) In the context of IRTF spectra (R ~ 2000 between 8146
and 24 107 A), our feature set for predicting effective temperatures
combined with a nearest-neighbour regression model produces sim-
ilar results to those obtained from the x? classical technique and a
projection pursuit regression model based on the ICA compression
coefficients. Hence, there is no apparent gain in reducing the di-
mensionality of the representation space other than the simplicity,
interpretability and computation speed of the models.

(iv) For the prediction of the IRTF star surface gravities, and
based on plausibility arguments, we find a significant improvement
in the predictions obtained from machine-learning models (mainly
rule regression and artificial neural networks) and the GA features
with respect to minimizing the x? of the full spectrum. While ICA
remains a competitive alternative, it fails to produce predictions for
the coolest giants in the sample that are consistent with the literature
luminosity class. However, ICA shows the best agreement with the
M dwarf stellar parameters derived from high-resolution infrared
spectra in Lindgren et al. (2016) and Lindgren & Heiter (2017). In
the case of metallicities, the ICA coefficients remain as the opti-
mal representation space although, at these reduced resolutions, the
accuracy of the predictions is low.
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(v) In the context of predicting T, for Dwarf Archives optical
spectra, dimensionality reduction is not necessary and may indeed
be counterproductive as it seems to induce a bias for the lowest
temperatures. The prediction of surface gravities seems hopeless
in the representation spaces tested in this work, whether it is the
full spectrum in a x> minimization scheme, or a machine-learning
algorithm applied to ICA coefficients or GA features.

(vi) Finally, although the typical dispersion of the predictions for
metallicities of Dwarf Archives stars is large (*0.25 dex) we find
that our model based on GA-selected features and a random forest
regression model can detect subdwarfs known in the literature and
we produce a list of five new candidates that need to be confirmed
with higher-resolution spectra.

The models developed in this work and the tools to preprocess
the spectra are available upon request to the first author as RData
files.
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APPENDIX A: IRTF FEATURES

In this Appendix we list the features selected by the Genetic Algorithm for the IRTF wavelength range and resolution.

Table Al. Recommended features and continuum bandpasses for predicting Tesr using BT-Settl with SNR = oo, 10 and 50 and the IRTF wavelength range
and resolution.

SNR = co SNR = 10 SNR =50
A A2 )Vconl; 1 )\cont; 2 Al A2 )\cont; 1 )\cont; 2 Al A2 )Vcnm; 1 )\cont; 2
9225.86 9283.94 9736.02 9793.96 8235.96 8294.04 12681.62 12768.68 8145.92 8204.03 12636.48 12723.57

1110648 1119356 13497.81 13613.95 8505.89 8563.93  13378.12 13494.13 8895.95 895395 11331.57 11418.65
13438.08 13554.08 12006.54 12093.56 9376.07 9433.92 12951.62  13038.62 8176.03 8234.13 1061136  10698.46

9135.89 9193.91  10002.04 9999.92 8145.92 8204.03  12366.32 1245333 13438.08 13554.08 1254646 12633.49
9555.93 9614.06  12951.62 13038.62 9195.86 9253.93 9135.89 9193.92 8235.96 8294.04 11961.44 12048.54
9466.08 0523.82  13137.94 13253.96 9585.95 9644.12  10002.04 9999.92 9376.07 9433.92  10002.04 9999.92

11196.56  11283.24 1254646  12633.49 8385.99 844394 1182648 11913.28 9406.09 9463.96  13258.32  13374.32
8566.08 8624.07 1325832 13374.32 9135.89 9193.92 9225.86 9283.94 9346.13 9403.92  13086.46 13 194.09
8266.11 8324.03 9856.06 991391 1361820 13734.15 11376.63 1146351 1110648 11193.56 13438.08 13554.08
8235.96 8294.04 1236632 12453.33 9105.87 9163.91 8865.98 8923.94 9255.86 9314.01 8865.98 8923.94

Table A2. Recommended features and continuum bandpasses for predicting log (g) using BT-Settl spectra of SNR = 0o, 10 and 50 in the IRTF wavelength
range and resolution.

SNR =00 SNR = 10 SNR =50

)Ll }“2 )\com; 1 Acom; 2 )\1 )\2 )“conl; 1 Acom; 2 )\1 )LZ )\cont; 1 )\com; 2

10245.88 10304.02 11241.29 11328.54 8176.03 8234.13 9165.87 922391 11151.63 1123846 13086.46 13194.09
841591 847396 11511.51 11598.51 10485.99 10563.41 10002.04 9999.92 8385.99 844394 1361820 13734.14
12906.56 12993.61 13041.48 13133.82 8656.09 8714.047 1092646  11013.60 8176.03 8234.13  11241.29 11328.54
8716.00 8773.99 1042590 10484.13 9525.89 9584.059  10002.04 9999.92 8536.03 8594.06 13041.48 13133.82
8805.93 8863.97 12816.72  12903.73 8205.98 8263.967 13041.48 13133.82 12771.70 12858.73 10306.03  10363.88
10126.02 1018393 13086.46 13194.09 1027597 10333.96 11376.63 11463.51 13378.12 13494.13  10002.04 9999.92
8176.03 8234.13  10971.57 11058.46 10306.03 10363.88 11151.63  11238.46 8626.02 8683.99 1092646 11013.60
8626.02 8683.99 1074643 10833.57 9165.87 922391 8385.99 8443.94 9826.05 9883.91 10006.07 10064.01
8536.03 8594.06 1021595 10274.10 9645.82 9704.16 13137.94 1325396 10521.56 10608.46 11736.71 11823.49

12951.62  13038.62 11196.56  11283.24 8326.00 8383.94 12726.69 12813.71 8205.98 8263.96 9796.09 9853.94

Table A3. Feature and continuum bandpasses selected for predicting metallicity using noisy BT-Settl spectra with signal-to-noise ratios equal to oo, 10 and
50 in the IRTF wavelength range and resolution.

SNR = oo SNR = 10 SNR = 50
)Ll )\2 )Lcom; 1 )\cont; 2 )\1 )\2 }\conl; 1 )“conl; 2 )¥1 )LZ )\cont; 1 )\com; 2
12096.68 12183.66  12051.50  12096.68 8235.96 8294.04  11331.57 11418.65 9255.86 9314.01 1319794 13313.92
9525.89 9584.05  12321.33  12408.32 9376.07 943392 1056633  10653.62  8385.99  8443.94 9376.07 9433.92
8205.98 8263.96 10126.02 10183.93  10306.03  10363.88 9942.14 9999.92  8716.00  8773.99 9585.95 9644.12
8566.08 8624.07 12276.52  12363.34 1128642 11373.45 11241.29 1128642 823596 8294.04 13086.46 13 194.09

11196.56 1128324 11151.63  11196.56 9676.00 9734.02 13086.46 13194.09 9676.00 9734.02 10791.44 10878.40
11151.639  11238.46  11466.35 11553.33 8775.95 8833.94 8415.91 8473.96 841591 847396 1241134  12498.41

9555.93 9614.06 8205.98 8263.96 1241134 1249841 1024588 10304.02  8446.03  8503.94 9406.09 9463.96
11016.62 11103.37 10791.44  10878.40 8476.01 8534.03  12276.52  12363.34 820598  8263.96 8955.88 9013.95
9766.16 0823.94  12681.62 12768.68 12636.48 1272357 12051.50 12138.72  8985.93  9043.98 12186.62  12273.48
9942.14 9999.92 9555.93 9614.06 8415.91 8473.96 1361820 13734.14  9015.98  9073.98  11241.29  11328.54
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APPENDIX B: DWARF ARCHIVES FEATURES

In this Appendix we list the features selected by the Genetic Algorithm for the Dwarf Archives wavelength range and resolution.

Table B1. Spectral features and continuum bandpasses selected by the GA for predicting Tefr using BT-Settl spectra with SNR = 0o, 10 and 50 in the Dwarf
Archives wavelength range and resolution.

SNR = oo SNR =10 SNR =50
)\1 )LZ )Lcom; 1 )\com; 2 )\1 )LZ )\com; 1 )\com; 2 )\1 )\2 )\com; 1 )\com; 2
7062 7094.4 7314 7346.4 7692 7724.4 6936 6968.4 7062 7094.4 7296 7328.4
7116 7148.4 7782 7814.4 6990 7022.4 7998 8030.4 7026 7058.4 7044 7076.4
7134 7166.4 7872 7904.4 6900 6932.4 7548 7580.4 7080 7112.4 7926 7958.4
6900 6932.4 7764 7796.4 7854 7886.4 7710 7742.4 6900 6932.4 7548 7580.4
7170 7202.4 7890 7922.4 7116 7148.4 7908 7940.4 7134 7166.4 7836 7868.4
7080 7112.4 7926 7958.4 7278 7310.4 7926 7958.4 7296 7328.4 7962 7994.4
7188 7220.4 7548 7580.4 7152 7184.4 7746 7778.4 6936 6968.4 7728 7760.4
7800 7832.4 7962 7994.4 7134 7166.4 7764 7796.4 6972 7004.4 6900 6932.4
6990 7022.4 7008 7040.4 6918 6950.4 6900 6932.4 6990 7022.4 7944 7976.4
7026 7058.4 6990 7022.4 7224 7256.4 7962 7994.4 6918 6950.4 7782 7814.4

Table B2. Spectral features and continuum bandpasses selected by the GA for predicting log (g) using BT-Settl spectra of SNR = oo, 10 and 50 in the Dwarf
Archives wavelength range and resolution.

SNR = co SNR = 10 SNR = 50
)»1 )»2 )»cont; 1 )\cont; 2 )»1 )»2 )»com; 1 )\conl; 2 )¥1 )¥2 )\com; 1 )‘-cont; 2
7134 7166.4 7044 7076.4 6990 7022.4 6918 6950.4 6918 6950.4 6936 6968.4
6954 6986.4 7152 7184.4 6900 6932.4 7278 7310.4 6936 6968.4 7836 7868.4
7512 7544.4 7890 7922.4 7062 7094.4 7242 7274.4 7656 7688.4 7890 7922.4
7062 7094.4 7224 7256.4 7692 7724.4 7008 7040.4 6900 6932.4 7872 7904.4
6936 6968.4 7854 7886.4 7656 7688.4 7998 8030.4 7008 7040.4 7044 7076.4
6900 6932.4 7746 7778.4 6936 6968.4 7836 7868.4 7512 7544.4 7656 7688.4
6918 6950.4 7800 7832.4 7206 7238.4 7062 7094.4 7440 7472.4 7332 7364.4
7008 7040.4 7134 7166.4 7512 7544.4 7926 7958.4 7800 7832.4 7692 7724.4
7872 7904.4 7008 7040.4 7764 7796.4 7710 7742.4 7404 7436.4 7548 7580.4
7962 7994.4 7980 8012.4 7404 7436.4 7548 7580.4 7080 7112.4 7152 7184.4

Table B3. Spectral features and continuum bandpasses selected by the GA for predicting metallicities using BT-Settl spectra of SNR = co, 10 and 50 in the
Dwarf Archives wavelength range and resolution.

SNR = oo SNR = 10 SNR = 50
)¥1 )LZ )\com; 1 )\com; 2 )\1 )\2 )\com; 1 Acom; 2 )\1 )\2 Acom; 1 )W:om; 2
7188 7220.4 7854 7886.4 7692 7724.4 7026 7058.4 7098 7130.4 7926 7958.4
7080 7112.4 7926 7958.4 6900 6932.4 7008 7040.4 7188 7220.4 7962 7994.4
7116 7148.4 7098 7130.4 7350 7382.4 7908 7940.4 7368 7400.4 7980 8012.4
7422 7454.4 7836 7868.4 6918 6950.4 6900 6932.4 7116 7148.4 7872 7904.4
7350 7382.4 7998 8030.4 7098 7130.4 7314 7346.4 7062 7094.4 7206 7238.4
7224 7256.4 7818 7850.4 7440 7472.4 7872 7904.4 7584 7616.4 7170 7202.4
7710 7742.4 7062 7094.4 7134 7166.4 7962 7994.4 6936 6968.4 6918 6950.4
7476 7508.4 7944 7976.4 7368 7400.4 7926 7958.4 7692 7724.4 7890 7922.4
7134 7166.4 7584 7616.4 7080 7112.4 7044 7076.4 7134 7166.4 7548 7580.4
7836 7868.4 7278 7310.4 7044 7076.4 7980 8012.4 7494 7526.4 7998 8030.4
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APPENDIX C: IRTF RMSE REGRESSION MODELS

In this appendix we include evaluation measures for the regression models trained with spectra with the IRTF wavelength range and resolution
and three SNR levels.

Table C1. Cross-validation RMSE and RMDSE for the various regression models that predict e (K) in the
IRTF wavelength range and resolution.

SNR =10 SNR =50 SNR =00
Regression models RMSE RMDSE RMSE RMDSE RMSE RMDSE
x? 232 100 235 120 232 100
PPR-ICA 242 128 242 99 280 162
GA-RR 260 115 270 128 333 170
GA-RF 308 183 248 136 167 135
GA-GBM 287 160 248 149 233 113
GA-SVR 221 122 281 151 299 160
GA-NNET 283 192 264 114 326 212
GA-KNN 238 120 232 137 219 100
GA-MARS 253 113 254 95 226 133
GA-KPLS 275 120 300 119 387 218

Table C2. Average bias in the Tefr (K) estimates computed (IRTF wave-
length range and resolution), with respect to the reference values in table 3
of Cesetti et al. (2013).

SNR = 10 SNR = 50 SNR = 00
x?2 —77 —87 -85
PPR-ICA —104 —-55 —130
GA-RR —102 -39 170
GA-RF —173 —127 -5
GA-GBM —141 —109 32
GA-SVR —58 -3 92
GA-NNET —147 —36 39
GA-KNN —76 —110 —67
GA-MARS —57 —88 98
GA-KPLS —120 —4 214

Table C3. Regression model performance based on the features proposed by Cesetti et al. (2013).

SNR =10 SNR = 50 SNR = oo
Regression models RMSE RMDSE RMSE RMDSE RMSE RMDSE
CS-RR 252 140 532 322 606 537
CS-RF 234 180 264 218 321 265
CS-GBM 232 195 268 254 325 246
CS-SVR 268 227 293 257 432 364
CS-NNET 357 255 357 204 552 435
CS-KNN 249 172 293 256 327 230
CS-MARS 289 98 676 245 1570 590
CS-KPLS 351 162 856 456 1086 535

Table C4. RMSE and RMDSE for the various log (g) regression models [dex] in the IRTF wavelength range and resolution.

SNR = 10 SNR = 50 SNR = oo
Regression models RMSE RMDSE RMSE RMDSE RMSE RMDSE
x> 0.82 0.45 0.93 0.61 3.5 3.48
PPR-ICA 0.54 0.48 0.3 0.17 0.72 0.57
GA-RR 0.74 0.57 0.50 0.47 0.57 0.41
GA-RF 0.64 0.38 0.77 0.72 0.53 0.39
GA-GBM 0.48 0.45 0.61 0.47 0.49 0.41
GA-SVR 0.66 0.40 0.63 0.58 0.46 0.21
GA-NNET 0.78 0.61 0.47 0.44 1.2 0.97
GA-MARS 0.84 0.57 0.54 0.37 0.99 0.76
GA-KNN 1.23 0.83 1.39 1.44 1.60 1.32
GA-KPLS 0.99 0.99 0.51 0.49 0.96 0.77
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Table C5. RMSE and RMDSE for the various regression models (IRTF wavelength range and resolution) predicting
metallicity [dex].

SNR = 10 SNR = 50 SNR = oo
Regression models RMSE RMDSE RMSE RMDSE RMSE RMDSE
x2 0.76 0.22 0.36 0.18 0.36 0.18
PPR-ICA 0.24 0.13 0.31 0.22 0.43 0.27
GA-RR 0.31 0.17 0.30 0.24 0.78 0.23
GA-RF 0.33 0.25 0.73 0.41 0.61 0.36
GA-GBM 0.27 0.19 0.70 0.52 0.63 0.35
GA-SVR 0.33 0.22 0.45 0.32 0.92 0.89
GA-NNET 0.37 0.30 0.33 0.37 0.95 0.81
GA-MARS 0.36 0.16 0.49 0.41 0.83 0.85
GA-KNN 0.69 0.55 0.23 0.15 0.21 0.15
GA-KPLS 0.49 0.50 0.52 0.48 1.06 1.01

APPENDIX D: DWARF ARCHIVES RMSE REGRESSION MODELS

In this appendix we include evaluation measures for the regression models trained with spectra with the Dwarf Archives wavelength range
and resolution.

Table D1. RMSE and RMDSE for the various regression models that predict Tesr (K) in the Dwarf Archives wavelength
range and resolution.

SNR = 10 SNR = 50 SNR = oo
Regression models RMSE RMDSE RMSE RMDSE RMSE RMDSE
x? 147 79 121 56 126 57
PPR-ICA 188 126 164 95 191 130
GA-RR 189 102 287 103 378 239
GA-RF 160 97 196 103 145 94
GA-GBM 175 105 225 99 185 94
GA-SVR 203 112 285 106 368 154
GA-NNET 221 84 313 111 395 202
GA-MARS 222 76 361 103 374 157
GA-KNN 183 119 193 109 224 110
GA-KPLS 227 72 331 123 409 208

Table D2. Performances of regression models trained on the features selected by Cesetti et al. (2013) and applied to BT-Settl
spectra in the Dwarf Archives wavelength range and resolution.

SNR = 10 SNR =50 SNR = oo
Regression models RMSE RMDSE RMSE RMDSE RMSE RMDSE
CS-RR 211 128 400 239 828 774
CS-RF 203 140 243 121 306 172
CS-GBM 188 120 161 138 337 222
CS-SVR 197 135 379 194 840 688
CS-NNET 207 135 514 296 719 489
CS-MARS 252 124 789 186 3464 784
CS-KNN 235 158 246 137 314 175
CS-KPLS 250 201 741 361 2247 1424
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Table D3. RMSE and RMDSE for the various regression models predicting log (g) [dex] in the Dwarf Archives wavelength
range and resolution.

SNR = 10 SNR = 50 SNR = 0o
Regression models RMSE RMDSE RMSE RMDSE RMSE RMDSE
x2 22 1.6 22 1.4 22 1.6
PPR-ICA 2.1 1.8 1.8 1.4 43 42
GA-RR 2.0 1.8 2.1 1.8 3.7 32
GA-RF 13 1.0 1.6 1.1 1.4 0.9
GA-GBM 1.6 1.1 1.7 1.4 1.7 1.2
GA-SVR 2.0 1.8 2.1 1.9 23 1.6
GA-NNET 2.0 1.8 22 1.9 32 2.8
GA-MARS 1.8 15 2.0 1.7 2.0 1.5
GA-KNN 2.0 15 22 1.7 1.7 1.2
GA-KPLS 1.8 1.4 2.0 1.7 2.7 23

Table D4. RMSE and RMDSE for the various regression models predicting metallicity [dex] in the Dwarf Archives
wavelength range and resolution.

SNR = 10 SNR = 50 SNR = oo
Regression models RMSE RMDSE RMSE RMDSE RMSE RMDSE
x? 0.55 0.27 0.51 0.29 0.43 0.29
PPR-ICA 0.48 0.27 0.70 0.39 0.85 0.71
GA-RR 0.47 0.29 0.50 0.36 1.18 1.18
GA-RF 0.55 0.38 0.71 0.61 0.23 0.16
GA-GBM 0.64 0.43 0.87 0.84 0.31 0.23
GA-SVR 0.46 0.26 0.57 0.44 3.38 233
GA-NNET 0.52 0.45 0.66 0.54 2.03 1.88
GA-MARS 0.71 0.47 0.80 0.69 1.15 0.68
GA-KNN 0.37 0.28 0.99 0.78 0.56 0.32
GA-KPLS 0.67 0.61 0.63 0.55 1.17 1.02
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APPENDIX E: RESULTS WITH FEATURES FROM CESETTI ET AL. (2013)

In this appendix we include plots with the predictions of the best performing regression models with the features proposed by Cesseti et al
(2013).
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Figure E1. log (Z.sr)-log (g) diagrams produced by the CES-KNN (SNR = o0) effective temperatures, and gravities derived for the IRTF collection of spectra
with the CES-GBM (SNR = 50), CES-x2 (SNR = 50), CES-NNET (SNR = 50) and ICA-10 models (clockwise, starting from the top left).
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Figure E2. Comparison of the CES-RF (SNR = 50) regression model predictions for the IRTF collection of spectra with the estimates of the metallicity in
the literature. The symbols and colours are the same as in Fig. 5.
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Figure E3. log (T.sr)-log (g) diagrams produced by the CES-KNN (SNR = 00) effective temperatures, and gravities derived for the Dwarf Archives collection
of spectra with the CES-NNET (SNR = 10), CES-SVR (SNR = 50), CES-x2 (SNR = 50) and ICA-10 models (clockwise, starting from the top left).
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