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Abstract A proactive multicriteria mechanism for Virtual Datacenter optimiza-
tion through server consolidation is proposed. In contrast with previous works
where heuristic mechanisms were designed using expert knowledge, the new proac-
tive approach uses multiobjective evolutionary algorithms to learn fuzzy rule-based
systems that determine optimal reallocation decisions according to the preferences
of the datacenter operator and a prediction of the load. Experimental evaluations
based on an actual IT service provider show that the proactive mechanism is
capable of improving energy savings compared to commercial hypervisors while
complying with service provider’s preferences and constraints.

Keywords Energy-efficiency · Virtualization · Multi-criteria decision making ·
Evolutionary algorithms · Distal learning

1 Introduction

Information Technology (IT) has played a key role in the transformation of mod-
ern society by consistently delivering innovative products and services, increasing
productivity and supporting economic growth. Nevertheless, IT environmental im-
pact is far from negligible as data centers alone are responsible for 23% of the
global ICT industry CO2 emissions, which in turn are estimated to be as high as
the aviation industry [17, 18]. Moreover, data center-related power consumptions
continue to grow, and are estimated to increase by 53% between 2013 and 2020
according to [12]. Given so, substantial efforts have been done by the leading IT
service providers to maximize the energy efficiency of large-scale data centers in
the pursuit of reducing power consumptions and operating costs. However, large-
scale infrastructures only represent 5% of the data centers’ energy use, with the
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remaining 95% used by the far less efficient small and medium-scale ones [12].
As a result of this, efforts focused in improving the efficiency of multi-purpose
small and medium-scale infrastructures with common workload patterns may yield
greater overall power savings. It is noteworthy that certain types of services may
only exhibit around 20% of resource usage rates, and underutilized systems can
potentially expend a lot of energy needlessly, which can be saved by through vir-
tualization and consolidation technologies [14]. Hence, in this paper we focus on
the optimization of multi-purpose virtualized infrastructures by maximizing server
consolidation through live virtual machines migrations, and thus reducing overall
power consumptions.

The field of virtual machine allocation and server consolidation has been ex-
tensively studied by many authors over the last years [3,27]. Though some authors
propose algorithms based on mixed integer nonlinear programming or linear in-
teger programming [5, 19], the majority of solutions are of heuristic nature [4, 16]
because virtual machine consolidation can be formulated as a bin-packing problem,
which is inherently NP-hard. These solutions, such as [6,21] seek to reduce energy
consumption while adhering to Service Level Agreement. In fact, commercial Vir-
tual Machine Monitors (VMMs) such as Microsoft Hyper-V [29], Citrix XenServer
[8] or VMware vSphere [20] already feature built-in heuristic algorithms to im-
prove their energy efficiency through server consolidation. To further improve the
results achieved with heuristic algorithms, load forecasting has also been explored
[10,15,16,25,30,37]. In addition to this, other authors have addressed this problem
as a multiobjective one, where energy saving is one objective among others such as
service quality, reallocations or the impact on hardware reliability, all of which shall
also be optimized to build an effective solution [4,7,13,24,28,31,32,38]. These last
approaches are based on metaheuristics-based optimization, and present a robust
solution that accounts explicitly for all factors involved, but lack the simplicity
and determinism of simple heuristics. While heuristics have low runtimes, multi-
objective allocation algorithms explore larger search spaces where the evolution
must be often limited by a maximum number of evaluations. This hinders their
application in commercial environments where the VMM must issue optimization
decisions on a frequent basis with very low computational overhead, and preferably
in a deterministic way.

Given so, and according to the best of our knowledge, it has not been yet
presented an holistic and flexible solution that addresses the consolidation prob-
lem as a multiobjective learning task. Knowledge-based systems implementing
low-complexity, deterministic heuristics should be elicited from workload records,
while also leveraging load forecasting to maximize the results achieved. In partic-
ular, we propose a proactive multicriteria optimization mechanism based on the
framework proposed in [1, 2], whose utility function is a fuzzy rule-based system
learned by means of multiobjective genetics-based machine learning (GBML) in a
distal supervised learning approach.

The remainder of the paper is as follows. Section 2 explains the architecture
of the VDCs that are addresses in this paper. Section 3 explains the mechanism
proposed. Section 4 shows the experimental results. Section 5 concludes the paper.
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Fig. 1: Virtual Datacenter architecture.

2 System overview

The systems under study in this paper are the Virtualized Data Centers (VDC),
as these have become the cornerstone infrastructure in any IT modern service
provider, whether they supply applications (Software as a Service), software plat-
forms (Platform as a Service) or infrastructure services (Infrastructure as a Ser-
vice). The success of this model derives from the extensive use of virtualization
technology, which is leveraged to achieve greater levels of hardware utilization and
therefore reducing acquisition and operating costs, along with improved applica-
tion isolation, security, fault tolerance, manageability and flexibility [3, 24,26,27].
The basic architecture of a Virtualized Data Center is depicted in Figure 1 and
can be structured in three layers: 1) the physical layer, 2) the virtualization layer
and 3) the application layer [35].

The physical layer consists of a set of heterogeneous servers whose hardware is
the computational foundation of the entire model. These servers are often denoted
as Physical Machines (PM), and each PM is characterized by its physical resources
and its ACPI state 1. The virtualization layer is responsible for the creation,
allocation, running and management of Virtual Machines (VMs). The key element
is the Virtual Machine Monitor (VMM) which is deployed onto the PMs as an
agent to administrate their local resources in order to host the VMs. This layer is
controlled from a centralized management server that orchestrates VM allocation
and migration, and also PM reconfiguration by issuing commands to change their
ACPI state. Finally, the application layer consists of the Operating System (OS)
and applications (Apps) encapsulated in each VM.

1 The Advanced Configuration and Power Interface (ACPI) is an open standard that Oper-
ating Systems use, among other things, to manage to perform power management operations
over compatible devices. Further details can be found in http://www.uefi.org/acpi/specs.
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Given a set P with a total of nP PMs, let each p ∈ P be characterized by the
number of its physical cores (pcores(p)), its RAM memory capacity (memory(p)),
and its network capacity (network(p)), having this last one computed as the aggre-
gated bandwidth of its active network adapters. It is also assumed that centralized
storage systems are used, so local disk access/write performance does not affect
directly its hosting capacity and neither do its storage space. Similarly to PMs,
given the set of VMs V , then each v ∈ V is characterized by both the maximum
virtual resources that is entitled to use and its current demand of those resources.
In this case, let ωcpu

v (t) denote the aggregated load of the virtual CPUs (vCPUs)
at time t and let be ωmem

v (t) and ωnet
v (t) its memory and network counterparts.

Moreover, we define the allocation of the VM v onto the PM p using the function
mapv,p(t), which takes 1 if v is hosted on p at time t, and 0 otherwise.

We can now define four metrics to characterize the behavior of the VDC as
a whole over a period of time delimited between tini and tend, accounting for
the Quality of Service (QoS) provided to the users, its power consumption, the
amount of VM reallocations, and the impact on hardware reliability. The QoS
is measured in terms of physical resources overload, as these situations produce
service degradations that are noticeable to the end users. This is measured for
the VDC as the average degree of PM overload as seen in Equation 1, having
each individual PM overload assessed according to its highest overloaded resource,
whether it is CPU, memory or network interfaces, as shown in Equation 2.

QoS =
1

nP

∑
p∈P

1

tend − tini

∫ tend

tini

overloadp(t)dt. (1)

overloadp(t) = max
{

overloadcpu
p (t), overloadmem

p (t), overloadnet
p (t)

}
. (2)

overloadcpu
p (t) =

{
loadcpu

p (t)− 1 if loadcpu
p (t) > 1

0 otherwise
.

loadcpu
p (t) =

∑
v∈V

ωcpu
v (t) ·mapv,p(t)

pcores(p)
.

overloadmem
p (t) =

{
loadmem

p (t)− 1 if loadmem
p (t) > 1

0 otherwise
.

loadmem
p (t) =

∑
v∈V

ωmem
v (t) ·mapv,p(t)

memory(p)
.

overloadnet
p (t) =

{
loadnet

p (t)− 1 if loadnet
p (t) > 1

0 otherwise
.

loadnet
p (t) =

∑
v∈V

ωnet
v (t) ·mapv,p(t)

network(p)
.

Let powerp(t) denote the power consumption of the host p at time t, then the over-
all VDC power consumption is approximated by adding the power consumption
of every powered-on PM:

Power consumption =
∑
p∈P

∫ tend

tini

powerp(t) · statep(t)dt. (3)
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The amount of VM reallocations is the number of times that a VM has been
migrated from a host to another. Let ndVM(v) be the number of discontinuities of
the allocation function mapv,p(t) in the time interval t ∈ (tini, tend):

VM reallocations =
∑
v∈V

ndVM(v). (4)

PM reconfigurations is the number of times that a PM has changed its power state.
Let the function statep(t) be the state of host p at time t, taking the value 1 if p
is powered-on, and 0 otherwise. Let ndPM(p) be the number of discontinuities of
the function statep(t) in the time interval t ∈ (tini, tend), then:

PM reconfigurations =
∑
p∈P

ndPM(p). (5)

Given this, we can state that the VDC optimization problem consists of minimizing
power consumptions (Eq. 3) within admissible figures of QoS penalty (Eq. 1), live
VM migrations (Eq. 4) and impact in hardware reliability (Eq. 5) for the VDC
operator.

3 Proactive multicriteria optimization

Reducing the power consumption of a VDC for any service provider is not a trivial
task, since these infrastructures play a key role at their core business. Unsuitable
optimization policies may lead to severe impacts on the service quality perceived by
the end customers, or produce early hardware degradation that increases mainte-
nance costs and reduces service reliability. According to our experience, any VMM
optimization mechanism intended to have a practical application in real world
VDCs should be based upon four key principles. First, it should address the op-
timization problem as a multiobjective one where the goal is not to find the best
solution but rather a set of optimal tradeoffs between all the conflicting objectives,
thus allowing the VDC operator to select the most suitable option given his or her
particular set of preferences and/or constraints. Second, optimization mechanisms
that are used in many VDCs are often required to be deterministic and also to
require low runtimes and computational costs. Though sophisticated metaheuris-
tics or complex search algorithms could deliver better scheduling solutions, those
included in commercial VMMs such as the VMware vSphere, Microsoft Hyper-V
or the Citrix XenServer are based on deterministic knowledge-based systems with
expert-defined rule bases that are capable of exhibiting conservative behaviors
aimed at protecting service quality, while featuring very low runtimes that allow
for a more frequent invocation. Third, tuning the optimization mechanism should
not be done by hand but rather machine-learned to assure achieving the expected
results. Lastly, the mechanism must be robust so that whenever is presented with
a new demand scenario, the system will continue to respond as expected accord-
ing to the preferences that were implicitly modeled. This is better addressed by
avoiding reactive approaches that make reallocation or reconfiguration decisions
based on the past demand of the VDC, instead of forecasting the expected one
and acting proactively in response.
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Given so, we propose a proactive VDC optimization mechanism based on the
application of predictive techniques for computing systems introduced in [1,2]. In
essence, the VDC is optimized over a future temporal horizon, by issuing the real-
location and reconfiguration decisions that achieve the highest alignment with the
preferences/constraints of the VDC operator. This alignment is enforced using a
utility function that assess the value of each optimization, and that is elicited from
data in a machine learning approach. Temporal horizons are forecast according to
a predictive model of the incoming demand built from past records of the VMs
load and requests volume in each time slot.

Figure 2 represents the architecture of the proposed mechanism, and its control
algorithm is showed in Algorithm 1. Let t denote the beginning of the current
control interval and t+ 1 be its end, let V be the set of VMs and P the set of PMs
in the datacenter, let dv(t−1, k) be the k last workload records for the VM v, let φv

be the demand forecasting model built at time t for the VM v, let f be a function
that computes the load of VM resources given a certain volume of requests per
unit of time, let ω̂v(t+ 1) the forecast resource utilization of the v VM during the
current control interval, let J be the utility function, let mapv,p(t) and statep(t)
be as defined in the preceding section and let map′v,p(t) be a temporal variable
that stores an auxiliary replica of the VM-to-PM mappings to assess potential
allocations using the utility function J . Then, the control cycle is as follows:

1. The expected resource load of each VM is estimated for the current control
interval using the demand forecasting model φv. This model is built from the k
last workload records of the VM v, and is used to estimate the average volume
of concurrent user demands. This can be done using a variety of techniques as
proposed by other authors (see [10,15,16,25,30,37]). In the experiments done
in Section 4, the demand was forecast through the Monte Carlo simulation
method using adjusted probability distributions with their parameters values
elicited from past demand records. CPU, memory and network loads are then
estimated by multiplying the expected demand by a series of coefficients rep-
resenting the average resource load per concurrent request. Nevertheless, more
sophisticated load models based on queuing networks as proposed in [5] can
also be used for more accurate results.

2. For each VM v, all candidate PMs p ∈ P are found where v is allocatable
without overloading the host resources.

3. Every candidate mapping (v, p) is scored using the utility function J to de-
termine its alignment with the VDC preferences and constraints. The highest-
valued mapping is chosen and the required reallocations are implemented by
the VMM.

4. Those PMs without any VM allocated on them are shutdown or put in sleep
mode.

3.1 Fuzzy Rule-Based Utility Function

VM reallocations and PM reconfigurations issued by the controller are selected
according to the value scored in a utility function that establishes how well these
actions align with the predefined preferences and constraints for the VDC opera-
tion. The degree of alignment is denoted as “utility”, and ranges between 0 and 1
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Fig. 2: Predictive controller components overview.

Algorithm 1 Predictive control for an interval beginning at time t

input: V , P , map(t), d(t− 1, k)
1: for each v ∈ V do . Forecast future workload for each VM v
2: d̂v(t+ 1)← φv(dv(t− 1, k))

3: ω̂cpu
v (t+ 1)← fcpuv (d̂v(t+ 1))

4: ω̂mem
v (t+ 1)← fmem

v (d̂v(t+ 1))

5: ω̂net
v (t+ 1)← fnet

v (d̂v(t+ 1))
6: ω̂v(t+ 1)← {ω̂cpu

v (t+ 1), ω̂mem
v (t+ 1), ω̂net

v (t+ 1)}
7: end for each
8: mapv,p(t+ 1)← 0 ∀v ∈ V, p ∈ P . Reset all VM mappings to PMs
9: for each v ∈ V do . Compute new VM allocations

10: for each p ∈ P do
11: if v is allocatable in p at time t then
12: map′(t+ 1)← map(t+ 1)
13: map′v,p(t+ 1)← 1

14: Compute utility Uv,p with J(map′(t+ 1), map(t), ω̂v(t+ 1))
15: end if
16: end for each
17: host← arg maxp{Uv,p}
18: mapv,host(t+ 1)← 1 . Implement the highest J-valued allocation for v
19: end for each
20: for each p ∈ P do . Power off idle PMs
21: if mapv,p(t+ 1) = 0 ∀v ∈ V then
22: statep(t+ 1)← 0
23: end if
24: end for each

with 0 being the least useful one and 1 the most useful one. The utility function
takes as inputs three metrics that numerically summarize the effect of any given
allocation of a VM v onto a PM p at time t+ 1: the total load of the destination
PM, the accumulated power consumption and the need to migrate the VM v to a
different PM:

load = max{loadcpu
p (t+ 1), loadmem

p (t+ 1), loadnet
p (t+ 1)}.
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loadcpu
p (t+ 1) =

∑
v∈V

ωcpu
v (t+ 1) ·map′v,p(t+ 1)

pcores(p)
.

loadmem
p (t+ 1) =

∑
v∈V

ωmem
v (t+ 1) ·map′v,p(t+ 1)

memory(p)
.

loadnet
p (t+ 1) =

∑
v∈V

ωnet
v (t+ 1) ·map′v,p(t+ 1)

network(p)
.

power =
∑

powerp(t+ 1) ∀p ∈ P | ∃v ∈ V, map′v,p(t+ 1) = 1.

migration =

{
1 if map′v,p(t+ 1) 6= mapv,p(t)

0 otherwise
.

The utility function is a fuzzy rule-based system taking the form of a Takagi-
Sugeno-Kang (TSK) fuzzy model [22,34] with Q rules. The structure of this fuzzy
model can be expressed as follows:

if load is L̃1 and power is P̃1 and migration is M̃1 then value = w1

if load is L̃1 and power is P̃1 and migration is M̃2 then value = w2

if · · · then · · ·
if load is L̃1 and power is P̃1 and migration is M̃N3

then value = wN3

if load is L̃1 and power is P̃2 and migration is M̃1 then value = wN3+1

if · · · then · · ·
if load is L̃1 and power is P̃N2

and migration is M̃N3
then value = wN2×N3

if load is L̃2 and power is P̃1 and migration is M̃1 then value = wN2×N3+1

if · · · then · · ·
if load is L̃N1

and power is P̃N2
and migration is M̃N3

then value = wQ

where L̃1, . . . , L̃N1
, P̃1, . . . , P̃N2

and M̃1, . . . , M̃N3
are fuzzy sets with triangular

memberships forming a fuzzy partition [22] of the domain of the variables “load”,
“power” and “migration”, respectively, and where w1, . . . , wQ are the weights of
the Q rules, taking values between 0.0 and 1.0, and representing the utility of the
reallocation decision. Note that the partition L̃ has N1 linguistic terms, P̃ has N2

and M̃ has N3. Then, let the defuzzification function defuzz that computes the
output of the TSK model be defined as:

defuzz(load,power,migration) =

∑Q
r=1 L̃r(load) · P̃r(power) · M̃r(migration) · wr∑Q

r=1 L̃r(load) · P̃r(power) · M̃r(migration)
.

(6)
Finally, the utility of each potential VM reallocation can be expressed as:

J(map′(t+ 1), map(t), ω̂v(t+ 1)) = defuzz(load,power,migration) (7)

As explained earlier, the overall behaviour of the proactive optimization model
relies on the decisions made by the TSK fuzzy system, having this defined by a
combination of: (L̃1, . . . , L̃N1

, P̃1, . . . , P̃N2
, M̃1, . . . , M̃N3

, w1, . . . , wQ). Since an ex-
haustive search is unfeasible due to the large search space, and that the objectives
that are sought to be minimized are in conflict with each other, multiobjective
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evolutionary algorithms (MOEAs) are leveraged to learn the fuzzy model. From
the set of non-dominated solutions (Pareto Efficient Frontiers) learned through
MOEAs, then the VDC operator can pick the most suitable one according to its
tradeoff between the fitness components and to his or her particular set of pref-
erences and/or constraints. Specifically the chosen MOEA is the Non-dominated
Sorting Genetic Algorithm II (NSGA-II) [11] and the fitness is composed of the
metrics defined in Section 2 for QoS, power consumption, VM migrations and PM
reconfiguration (see Eq. 1, 3, 4 and 5, respectively). It is also remarked that uni-

form partitions are used to avoid tuning the membership functions L̃1, . . . , L̃N1
,

P̃1, . . . , P̃N2
, M̃1, . . . , M̃N3

, as this eases the learning process and does not present a
fundamental limitation since this can be compensated by altering the rule weights
w1, . . . , wQ. In other words, the genotype of each individual in the NSGA-II is
composed of the weighs w1, . . . , wQ of the TSK Fuzzy System rule base. Learning
is done in a distal supervised learning approach [23], as depicted in Figure 3. In
this setup, the learner (the NSGA-II algorithm) evolves a population of individu-
als in order to find the best Pareto Efficient Frontier. Nevertheless, the learner can
only control directly the weights of the rule base of each individual (the proximal
variables), while its fitness (the distal variables) is only controlled indirectly by
altering these proximal variables. The learner does this by creating new offspring
individuals that are tested in a VDC simulation (the environment). The outcome
of this simulation is used to compute the fitness of the individual which is then
returned as feedback to the NSGA-II algorithm. Note that the fitness components
are distal variables as their value depend on a given VDC scenario characterized
by a particular set of VMs, PMs, and workloads.

4 Experimental results

In order to evaluate the proposed solution, experiments were carried out taking
as reference ASAC Comunicaciones2, an actual service provider of a variety of
cloud services including SaaS, DaaS (Desktop as a Service), BaaS (Backup as a
Service) and IaaS. This provider was chosen as a reference infrastructure given

2 http://www.asac.as



10 Alberto Cocaña-Fernández et al.

that its mid-size TIER-III-certified3 datacenters make an excellent representation
of many medium-scale service providers running commercial VMMs and that have
room to improve their operating efficiency. The architecture of ASAC datacenters
is as explained in Section 2, with PMs grouped in clusters forming a VDC where all
VMs and services are isolated to ensure data protection and QoS. An example of
the VDCs operated by ASAC is one with 492 VMs running different type of services
including mail, web and application servers, domain controllers, DNS servers and
databases, among others. This VDC is built over 40 heterogeneous PMs with Intel
Xeon E5 and AMD Opteron 6000 CPUs ranging from 12 to 64 total cores and
from 196 to 393 GB of memory.

The experimental setup is based on a total of 250 VMs of four different types
and 30 PMs. Given that VDCs may exhibit different patterns of activity, five
workload scenarios were defined. Briefly explained, Scenario 1 features a static
demand where all VMs maintain the same arrival pattern. Scenario 2 shows pro-
gressive hourly changes in the arrival patterns so that the load represents that of
most corporate services. Scenario 3 sharpens the changes in the arrival patterns.
Scenarios 4 and 5 are similar to Scenarios 2 and 3, respectively, but shifting the
arrival coefficients a few hours for each VM type so that the demand for each type
differ from the others. A detailed specification on how these scenarios are defined
and generated is accessible in [9]. In addition to the five scenarios, four arbitrary
sets of preferences were defined to resemble the potential inclinations of the VDC
operator, and therefore assess the ability of every algorithm to comply with them:

A. Minimum power use regardless of QoS, VM reallocations and/or PM reconfig-
urations.

B. Minimum power use without any noticeable QoS penalty (QoS = 0.0).
C. Minimum power use with QoS = 0.0 and less or equal to 100 VM reallocations.
D. Minimum power use with QoS = 0.0 and less or equal to 100 VM reallocations

and 10 PM reconfigurations.

A simulator was developed for both learning and testing so that every algo-
rithm can be evaluated in the four criteria of the fitness defined in Section 2.
The holdout method was used for validation, randomly sampling three different
datasets in each scenario for training, validation and testing. The proactive model
described in Section 3 along with the optimization algorithms of three leading
VMM commercial solutions [33] were tested under each of the five scenarios using
the simulator. In particular the algorithms evaluated are:

1. The Microsoft Hyper-V [29], labeled as “HyperV(high, low)” where high and
low are the load percentages for the “high” and “low” thresholds.

2. The Citrix XenServer [8], labeled as “XenServer(mode, critical, high, low)”
where mode is the configured mode in XenServer (either “Performance” or
“Density”) and critical, high, low are the load percentage in each of the three
defined “critical”, “high” and “low” thresholds.

3. The VMware vSphere [20, 36], labeled as “VMware(target, tolerance)” where
target is the target resource utilization and tolerance is the utilization rate
tolerance above and below the target.

3 These certifications are granted by the Uptime institute according to the availability and
redundancy of its physical infrastructure. Further information can be found on its website
https://uptimeinstitute.com
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Scenario 2 test set

QoS Power use (kWh) VM realloc. PM reconf.

HyperV(70, 20) 0.00×1000 208.32 58 18
HyperV(80, 30) 0.00×1000 187.59 14 19

HyperV(90, 40) 4.08×10−05 112.94 141 42

HyperV(95, 45) 9.34×10−05 104.13 144 50

XenServer(P, 90, 80, 20) 0.00×1000 192.17 8 7

XenServer(D, 90, 80, 20) 9.90×10−05 126.14 6430 35

XenServer(D, 95, 80, 25) 9.90×10−05 126.14 6430 35

XenServer(D, 99, 80, 30) 9.90×10−05 126.14 6430 35

VMware(50, 20) 0.00×1000 155.18 5853 82
VMware(63, 0) 0.00×1000 155.82 7347 152
VMware(63, 7) 0.00×1000 144.03 7227 157
VMware(63, 18) 0.00×1000 131.80 6781 115

VMware(63, 27) 6.55×10−06 127.46 5403 66

Proactive TSK(A) 2.65×10−02 99.97 3092 69
Proactive TSK(B) 0.00×1000 109.77 9811 64
Proactive TSK(C) 0.00×1000 168.31 44 17
Proactive TSK(D) 0.00×1000 174.25 46 10

Table 1: Experiment results for the test set of the Scenario 2.
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Fig. 4: VDC simulation trace for the test set of the Scenario 2.

4. The proactive model proposed in this paper, labeled as “Proactive TSK(SoP )”,
where SoP is the previously defined set of preferences (A-D) that the chosen
TSK individual is tailored to fit, as according to the results obtained during
training.

Due to space limitations, only the results for two of the scenarios from the
experimental setup are included in this article. The remainder of the results are
accessible in [9]. In particular, experimental results for Scenario 2 are shown in
Table 1 and Figure 4, and for Scenario 5 in Table 2 and Figure 5. Lastly, Figure 6
shows the set of non-dominated solutions obtained for these two scenarios using
for the proactive model proposed in this paper.

These results show that XenServer changes its behavior according to its bi-
nary working mode and with little regard to the thresholds configured, achieving
scant energy savings and no QoS penalty in Performance mode (P) and greater
savings with greater QoS penalty in Density mode (D). This limited coverage of
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Scenario 5 test set

QoS Power use (kWh) VM realloc. PM reconf.

HyperV(70, 20) 0.00×1000 199.79 67 15

HyperV(80, 30) 3.37×10−05 170.27 84 31

HyperV(90, 40) 3.63×10−04 119.51 331 62

HyperV(95, 45) 6.15×10−04 99.81 396 105

XenServer(P, 90, 80, 20) 0.00×1000 192.17 34 7

XenServer(D, 90, 80, 20) 3.14×10−04 127.95 625 48

XenServer(D, 95, 80, 25) 3.14×10−04 127.95 625 48

XenServer(D, 99, 80, 30) 3.14×10−04 127.95 625 48

VMware(50, 20) 9.83×10−05 163.46 11219 281

VMware(63, 0) 6.48×10−05 157.05 12458 377

VMware(63, 7) 2.12×10−04 141.21 11662 373

VMware(63, 18) 4.49×10−04 135.67 11922 290

VMware(63, 27) 8.10×10−04 134.20 9720 219

Proactive TSK(A) 8.52×10−02 96.91 60919 473
Proactive TSK(B) 0.00×1000 157.29 64241 220
Proactive TSK(C) 0.00×1000 166.45 85 22
Proactive TSK(D) 0.00×1000 179.71 10 10

Table 2: Experiment results for the test set of the Scenario 5.
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Fig. 5: VDC simulation trace for the test set of the Scenario 5.

the objective space diminishes its flexibility to match the preferences of the VDC
operator while being competitive compared to the other VMMs. For instance, the
Performance mode does comply with all the evaluated sets of preferences, but its
power use is generally higher than with the other commercial VMMs, and Density
mode often leads to a certain degree of QoS degradation. vSphere features better
flexibility as any modification of its configuration parameters alters its behavior.
Nevertheless, this flexibility translates to a greater density of the objective space in
certain areas, but not of a greater overall coverage. This can be noticed by looking
at the predominately high number of VM reallocations. This reduces its applicabil-
ity to real-world cases when the VDC operator may prefer a conservative approach
towards reallocations and/or reconfigurations, as can be seen by consistently fail-
ing to comply with the sets of preferences C and D in all scenarios. Moreover, the
same configurations of vSphere lead to different QoS penalties in different scenar-
ios, thus increasing the risk of an unsuitable behavior on production environments.
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Fig. 6: Pareto Efficient Frontiers of the proactive model obtained in the experi-
ments for the test set of each scenario.

Hyper-V exhibits greater coverage of the objective space in terms of QoS and power
use. Finally, the proactive model proposed achieves an overall greater coverage and
density of the objective space, while its machine-learned approach diminishes the
risk of not complying with the operator preferences when used in live VDCs, as
opposed to the aforementioned hand-tuned commercial VMMs. Moreover, given
the defined sets of preferences, it overperformed the commercial VMMs in terms of
energy savings while strictly complying to their corresponding fitness constraints
in QoS, reallocations and reconfigurations.

5 Concluding remarks

Reducing the power consumption of VDCs through VM consolidation in any com-
mercial IT service provider is a challenging task given how critical these infrastruc-
tures are for its core business. Therefore, feasible optimization mechanisms must
be at the same time robust, deterministic and fast, while capable of complying
with the operating constraints dictated by the VDC operator. In order to achieve
this, a new proactive muticriteria optimization model based on fuzzy rule-based
system was proposed. This approach makes reallocation and reconfiguration deci-
sions according to a prediction of the workload and a utility function that assesses
the alignment of each decision with the desired behavior for the mechanism. This
function is machine-learned through multiobjective optimization under a distal
supervised learning setup. Experimental results obtained using as a reference in-
frastructure that of an actual IT service provider, support the adoption of the
proposed mechanism to improve the energy savings of commercial VMMs while
strictly complying with the service provider’s preferences and/or constraints.
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