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Abstract The usual estimators of the regression under isotonicity assump-
tions are too sensitive at the tails. In order to avoid this problem, some new
strategies for fixed designs are analyzed. The uniform consistency of certain
estimators on a closed and bounded working interval are obtained. It is shown
that the usual isotonic regression can be employed when the number of ob-
servations at the edges of the interval is suitably controlled. Moreover, two
modifications are proposed which substantially improve the results. One mod-
ification is based on the reallocation of part of the edge observations, and the
other one forces the isotonic regression to take values within some horizon-
tal bands. The theoretical results are complemented with some examples and
simulation studies that illustrate the performance of the proposed estimators
in practice.
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1 Introduction

The problems of estimating and testing about the regression function when it
is isotonic have been widely analyzed in the literature. Comprehensive books
on these topics are [3] and [20]. The natural estimator in this context is the
so-called isotonic regression, defined as the isotonic function that better fits
the data with respect to the weighted empirical L2 distance.
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In [4] it is proved that this estimator is uniformly consistent in a closed
and compact interval strictly contained in the design interval under general
conditions and fixed design. In [12] this result is improved by relaxing the mo-
ment assumptions in the preceding work, but restricting the situation handled
in [4] to the particular case of uniform weights. However, it is well-known that
the isotonic regression has a spiking problem, and it is usually too sensitive at
the tails [18].

In order to alleviate the spiking problem, a more robust estimator could
be considered, e.g., one based on the L1 distance [24] or the M-estimators [1].
In [26] an estimator with good properties for testing isotonicity is considered.
This estimator is based on a penalized loglikelihood function. The idea is to
modify the response observations at the first and last design points, and then to
obtain the corresponding isotonic regression. Some properties of consistency
can be derived from [18]. Nevertheless, none of these estimators have been
proved to be uniformly consistent under fully random sampling in general.

As an alternative, we explore ways to guarantee the consistency of the
usual isotonic regression estimator by proposing some ways of designing the
experiment. Specifically, we derive a generalization of the well-known consis-
tently result in Brunk (1970) by allowing different weighting functions, and we
show how to apply this result, in conjunction with an appropriate fixed design,
to prove the uniform consistency avoiding, in this way, the spiking problem.
Moreover, we will propose a slight modification of the original estimator (to
restrict it to a band) that guarantees the uniform consistency with quite weak
requirements on the number of observations on the tails. In details, we consider
three approaches:

1. To suitable choose the number of observations at the first and last design
point. In this case, we prove that the usual isotonic regression is uniformly
consistent. In particular, we extend the results in [4] and [12] to the whole
working interval and general weights;

2. To modify the first approach by reallocating part of the observations con-
sidered at the first and last design point at some artificial adjacent points;

3. To force the isotonic regression to take values within some horizontal band
[8].

Guaranteeing the uniform consistency can be specially valuable in situations
like those in [21], as the behaviour of the tails becomes under control. It is
also important for deriving consistent estimators of the conditional variance
function in heteroscedastic models. This could allow us to improve the different
tests about isotonicity (see for instance, [5], [6], [26]).

It will be theoretically shown that the magnitude order of sample size
required to obtain the consistency of the third estimator is lower than the nec-
essary for the other two estimators. The way of distributing the total number
of observations according to each design in practice is explained by considering
some simulations. The empirical results indicate that the proposed methods
outperform the classical approach and the estimators in [24], [1] and [26]. The
second and the third estimators perform better in general.
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The rest of the paper is organized as follows. In Section 2, notation con-
cerning the isotonic regression is introduced. The basic conditions to obtain
the previous consistency results are recalled, and the behaviour of the classical
isotonic estimator at the tails is illustrated by means of some examples. The
three new strategies to estimate the regression under isotonicity are presented
in Section 3, and the conditions to guarantee the consistency are established.
In Section 4, the experimental results are shown. In Section 5, extensions to
the multidimensional case is discussed. Finally, the proofs are included in the
Appendix.

2 Regression model and notation

We consider the regression model Y (x) = m(x) + ε(x) where x ∈ A ⊆ R
and the errors ε(x) have 0 mean. The regression function m is assumed to be
continuous and isotonic.

In order to estimate m, we consider a fixed design {x1,n, . . . , xn,n} ⊂ A
with xi,n < xj,n (1 ≤ i < j ≤ n, n ∈ N) and rn(i) independent observations
Y 1(xi,n), . . . , Y

rn(i)(xi,n) on each design point xi,n (1 ≤ i ≤ n, n ∈ N). The
observations {Y j(xi,n)} constitute a triangular array of row-wise independent
random variables.

Consider a non-negative weighting function w : A → R+ and let T I
n be the

set of real isotonic functions defined on {x1,n, . . . , xn,n}. The argmin of

n∑
i=1

rn(i)∑
j=1

w(xi,n)(Y
j(xi,n)− f(xi,n))

2

on T I
n is the well-known isotonic regression estimator m̂I , which can be com-

puted by means of PAVA (see [2], and also [13] for an implementation in R).
In this “classical setting“ the obtained estimator is just defined on the

fixed design points. This situation has been widely analyzed in the literature
both from the estimating as well as the testing view points (see, for instance,
[4], [5], [6], [7], [9], [10], [17], [21], [25], [26]). As usual in this setting, this
regression estimator can be defined on the whole set A by considering any
isotonic extension. In this way, we will denote by m̂∗

I any isotonic extension of
m̂I on A verifying that m̂∗

I(x) = m̂I(x1,n) if x ≤ x1,n and m̂∗
I(x) = m̂I(xn,n)

if x ≥ xn,n.
As an alternative to the classical setting, the function to be minimized has

been proposed to be modified by adding a penalty term in order to take into
account the smoothness of the regression function (see, for instance, [15], [19],
[23], [27]) or even different constraints are considered (see, for instance, [16],
[22]). The introduction of a penalty term leads in many cases to a solution de-
fined on the whole set A for which no isotonic extension between design points
is needed. It is also possible to consider a continuous version of the isotonic
regression problem (see, for instance, [11], [14]) by using an integrable weight
function defined on the whole A. All these modifications rely on additional
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assumptions on the smoothness of m. The main aim here is to analyze ways of
designing the experiment making the classical isotonic regression estimator to
be consistent (alternatives 1 and 2 mentioned in the introduction). Addition-
ally, alternative 3 introduces a slight modification of the isotonic regression
estimator (by simply adding a restriction to the original minimization prob-
lem in order to directly control the behaviour of the estimator at the tails).
Nevertheless, no assumptions on the smoothness of m are imposed.

As in [12], we will consider F : [0,∞) → [0, 1] to be the function given by

F (y) = sup
x∈A

P (|ε(x)| > y), for all y ∈ [0,∞).

In addition, Nn(J) will stand for the number of observations at those design
points contained in J ⊆ A for each n ∈ N. That is,

Nn(J) =
∑

{i:xi,n∈J}

rn(i).

In this way, Nn(A) will be the overall sample size.
We will consider the following conditions proposed in [12]:

– (C1) m is continuous and isotonic on A.
– (C2) limy→∞ F (y) = 0;

∫∞
0

y|dF (y)| < ∞.
– (C3) For all x ∈ A so that (x,∞)∩A 6= ∅, min{{x1,n, . . . , xn,n} ∩ (x,∞)}

tends to x as n → ∞ and, analogously, for all x ∈ A so that (−∞, x)∩A 6=
∅, max{{x1,n, . . . , xn,n} ∩ (−∞, x)} tends to x as n → ∞.

– (C4) lim supn→∞ Nn(A)/Nn(J) < ∞ for all J ⊆ A.

Conditions (C1) and (C2) are only connected with the regression model,
while conditions (C3) and (C4) refer to the design. Specifically, (C3) indicates
that the set of design points tends to be dense in A as n tends to infinity.
Condition (C4) balances the ratio between the sample size per design point and
the overall sample size (to avoid too much sample information concentrated
in a subinterval of A). In particular, if A = [0, 1] and considering the set of
equally spaced design points xi,n = i/(n+ 1) for all i ∈ {1, . . . , n} and n ∈ N,
then condition (C3) is fulfilled. Moreover, if rn(i) = 1, then condition (C4) is
also satisfied.

Under conditions (C1)-(C4), [12] proved the uniform consistency of m̂∗
I

(with constant weighting function) on any closed and bounded subset B ( A.
However, as it is well-known that the behaviour of the estimator at the tails can
be poor. To illustrate this fact, in Figure 1 and 2 we have chosen A = [−1, 1],
m(x) = 1, w(x) = 1, ε(x) distributed as a N (0, 1) for all x ∈ A and equally
spaced design points. We see that if rn(i) = 1 for all i ∈ {1, . . . , n}, then
the estimates are not suitable at the tails even if n is large (Situations a).
However, with the same total sample sizes, the behaviour improves if more
observations per design point at the edges are considered (Situations b). This
fact is connected with the results in Section 3.
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Fig. 1 Regression function (thick line). Situation a1): n = 40 and r40(i) = 1 for all i ∈
{1, . . . , 40}. Simulated points (◦), estimates (dash lines). Situation b1): n = 32, r32(1) = 5,
r32(32) = 5 and r32(i) = 1 for all i ∈ {2, . . . , 31}. Simulated points (�), estimates (thin
lines)
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Fig. 2 Regression function (thick line). Situation a1): n = 100 and r100(i) = 1 for all i ∈
{1, . . . , 100}. Simulated points (◦), estimates (dash lines). Situation b1): n = 80, r80(1) = 11,
r80(80) = 11 and r80(i) = 1 for all i ∈ {2, . . . , 79}. Simulated points (�), estimates (thin
lines)

3 The results

As a starting point, in next theorem we generalize the consistency result in
[12] by considering more general weighting functions. In order to achieve the
result the following condition on the weighting function proposed by [4] will
also be considered:
– (C5) w is bounded and bounded away from 0.

Obviously, (C5) is verified by the constant weighting function used in [12].

Theorem 1 If conditions (C1)-(C5) are satisfied, then for each closed and
bounded subinterval B ( A,
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sup
x∈B

|m̂∗
I(x)−m(x)| n→∞−→ 0 a.s.− [P ].

In this section we propose three different approaches to consistently esti-
mate the regression function under isotonicity in a working interval A = [a, b].

The first procedure, P1, is based on a design in which the number of
observations at the ending design points is as follows:

– (C6) lim supn→∞ Nn(A)/min(rn(1), rn(n)) < ∞.

The next theorem states the uniform consistency on the whole A of any
isotonic extension m̂∗

1 of m̂1 = m̂I verifying that m̂∗
1(x) = m̂1(x1,n) if x ≤ x1,n

and m̂∗
1(x) = m̂1(xn,n) if x ≥ xn,n.

Theorem 2 If conditions (C1)-(C5) and condition (C6) are satisfied, then

sup
x∈A

|m̂∗
1(x)−m(x)| n→∞−→ 0 a.s.− [P ].

The second procedure, P2, is based on a simple reallocation of the obser-
vations at the ending points that allows us to make use of Theorem 1 in order
to guarantee the consistency. For each n ∈ N let kan, k

b
n ∈ N and consider kan

independent observations Z1
a , . . . Z

ka
n

a distributed as Y (a) and kbn independent
observations Z1

b , . . . Z
kb
n

b distributed as Y (b). Let m̂2 be the isotonic function
computed from the design points Bn = ∪ka

n
j=1{a − j/kan} ∪ {x1,n, . . . , xn,n} ∪

∪kb
n

j=1{b+j/kbn}, associating the observation Zj
a with the point a−j/kan for each

j = 1, . . . , kan, the observation Zj
b with the point b+j/kan for each j = 1, . . . , kbn,

and the rest of the observations with the original points. That is, m̂2 is the
argmin of

n∑
i=1

rn(i)∑
j=1

w(xi,n)
(
Y j(xi,n)− f(xi,n)

)2

+

ka
n∑

j=1

w(a)
(
Zj
a − f(a− j/kan)

)2
+

kb
n∑

j=1

w(b)
(
Zj
b − f(b+ j/kbn)

)2

on the set of isotonic functions defined on Bn. The estimator m̂2 is just an
isotonic regression, then it can be computed by means of the PAVA algorithm
in the usual way.

Remark 1 We have kept the notation for the number of observations at the
original design points for the sake of simplicity. However, it should be under-
lined that we propose to reallocate the observations obtained at the ending
points, not to obtain extra observations at the new (artificially considered)
design points. This fact will be illustrated in Section 4. �
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Under the next condition about the number of reallocated observations, it
is possible to prove the uniform consistency on the whole A of any isotonic
extension m̂∗

2 of m̂2.

– (C7) lim sup
n→∞

max(kan, k
b
n)

Nn(A)
< ∞; lim sup

n→∞

Nn(A)

min(kan, k
b
n)

< ∞.

The first part of condition (C7) along with condition (C4) implies that the
latter condition is also satisfied for the overall sample size Nn(A) + kan + kbn
(and not only for Nn(A)).

Theorem 3 If conditions (C1)-(C5) and condition (C7) are satisfied, then

sup
x∈A

|m̂∗
2(x)−m(x)| n→∞−→ 0 a.s.− [P ].

Conditions (C6) and (C7) state almost the same in connection with the
observations considered for the ending design points. Actually, the number of
observations required at the ending design points are of the same order. The
main difference is as follows. In the first case, all the information at the end-
ing points is used together in order to obtain a global consistent estimator
of the regression function. In contrast, in the second one, different estimators
can be used at the boundaries. In general, the reallocated observations con-
sidered at the tails are used to control the behaviour of the estimator there,
by constraining in some sense the possible values.

Lastly, we consider an alternative design, P3, that allows us to reduce
the number of observations at the ending design points with respect to the
previous designs. Based on this design we propose a new estimator of the
isotonic regression by combining in some sense the main ideas of the previous
situations.

On the one hand, the estimator will use all the information together for
obtaining a global estimator (as in the first situation). On the other hand, the
idea of constraining the possible values of the estimator is handled by directly
restricting the isotonic regression to take values in an appropriate region as
follows:

For any i ∈ {1, . . . , n}, let

Y (xi,n) =
1

rn(i)

rn(i)∑
j=1

Y j(xi,n),

Y =
1∑n

i=1 rn(i)

n∑
i=1

rn(i)∑
j=1

Y j(xi,n),

and let m̂3 be the isotonic regression estimator restricted to take values in

[min(Y (x1,n), Y ),max(Y , Y (xn,n))].
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That is, m̂3 is the argmin of

n∑
i=1

rn(i)∑
j=1

w(xi,n)
(
Y j(xi,n)− f(xi,n)

)2
on the set of isotonic functions defined on T I

n and taking values restricted to
[min(Y (x1,n), Y ),max(Y , Y (xn,n))] (see [8]). Thus, the uniform consistency on
the whole A of any isotonic extension m̂∗

3 of m̂3 can be proved by considering
the following condition concerning the ending design points:

– (C8) limn→∞ min(rn(1), rn(n)) = ∞.

Theorem 4 If conditions (C1)-(C5) and condition (C8) are satisfied, then

sup
x∈A

|m̂∗
3(x)−m(x)| n→∞−→ 0 a.s.− [P ].

Condition (C7) obviously implies condition (C8). Nevertheless, there are
many possible ways of choosing the number of observations at the ending
design points verifying conditions (C4) and (C8) for which condition (C7)
fails. In this way, if A = [0, 1], and the situation with equally spaced design
points introduced in Section 2 is considered, we have that

- If rn(1) = rn(n) = n, then conditions (C4) and (C7) are satisfied, and
consequently condition (C8) is satisfied.

- If rn(1) = rn(n) = dlog(n)e, then conditions (C4) and (C8) are satisfied
but (C7) is not satisfied.

In order to clarify the differences between the approaches, we show a sim-
ulated situation in Example 1 in which P1, P2 and P3 are applied.

Example 1 We consider the heteroscedastic regression model represented in
Figure 3(a), where A = [1, 6] and m(x) is the cubic-shaped regression function
represented by a solid black line. The errors are Gaussian with increasing
variance in A. The ‘intensity’ of the conditional density function at each point
is represented by means of a color scale.

In order to estimate the regression function, N = 20 observations are
taken at random from this model according to the different designs proposed
in Section 3. Concretely, we have chosen n = 16 equally spaced design points
in A (with x1 = 1 and xn = 6) in all cases. For P1 and P3, rn(i) = 1 for all
i ∈ {2, . . . , n− 1} and rn(1) = rn(n) = 3 (see Figure 3 (c)). Regarding P2, we
have selected rn(i) = 1 for all i ∈ {1, . . . , n}, and we have fixed kan = kbn = 2.
Then, the total number of observations for the conditional distribution at the
point x1 = 1 (respectively xn = 6) is 3 in all procedures, although for P2 one
of the observations is reallocated at 6.5, and other one at 7 (respectively 0.5
and 0), as shown in Figure 3(d). This is equivalent to extending the regression
model to the interval [0, 7] in a constant way (Figure 3(b)), and taking one
observation of the conditional distribution at 6.5 and 7 (respectively 0.5 and
0).
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(a)

(c)

(b)

(d)

Fig. 3 A simulated example. (a) Regression model. (b) Extended regression model. (c)
Fixed design for P1, P2 and P3, and observations for P1 and P3. (d) Fixed design for the
extended regression model and reallocated observations for P2.

The estimate in P1 is just the isotonic regression of the corresponding data
(Figure 4). For P2, firstly the isotonic regression for the reallocated data is
computed (Figure 5(a)); secondly, the estimate is obtained by constraining the
overall estimate to the working interval A (Figure 5(b)).

Fig. 4 A simulated example. Estimate for P1.

Finally, for P3, firstly a band to constrain the values of the estimator (by
basically averaging the observations at the ending design points) is consid-
ered (Figure 6(a)); secondly the isotonic regression restricted to this band is
computed as estimate of the regression (Figure 6(b)).
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(a) (b)

Fig. 5 A simulated example. (a) Estimate in the extended interval for P2. (b) Final estimate
for P3.

(a) (b)

Fig. 6 A simulated example. (a) Band of restricted regression values for P3. (b) Estimate
for P3.

A comparison of the three obtained estimates is shown in Figure 7. As
expected, the differences between the estimates mainly concern the tails. In
this particular example, the same result is given for P1 and P3 in the left
hand tail, although far from the one obtained with P2. Regarding the right
hand tail, the results of the three methods are different. �

4 Simulations

Simulations are carried out in order to compare the 3 proposed procedures
(P1, P2, P3) for uniformly estimating an isotonic regression function. At the
same time, they are compared to the classical isotonic regression estimator with
one observation per design point (P0), the median isotonic regression (L1) of
[24], the M-estimator (M) of [1], and the penalized estimator (W ) of [26]. As
mentioned in the introduction, L1 and M are robust estimators, whereas W
attempts to alleviate the spiking effect by modifying the observations at the
boundaries of A.

For all the simulations we have fixed A = [−1, 1]. We have considered
m(x) = xp for values of p in {0, 1, 3, 5} in order to cover different situations
regarding the increasing rate of m, as well as its behaviour on the tails. We
have chosen identically distributed errors with different distributions, namely,
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Fig. 7 A simulated example. Comparison of the different procedures (P1 in dotted line,
P2 in solid line and P3 in dashed line).

centred N (0, 1), U(−1, 1), Exp(1), Beta(0.3, 0.2) and Student’s t with 3 and 2
degrees of freedom, respectively denoted by D1, . . . , D6. Obviously conditions
(C1) and (C2) holds. Note that D1, D2, D5 and D6 are symmetric. D2 is
bounded and its density is equally distributed over its support. D4 is also
bounded, but asymmetric and its density is concentrated near the boundaries
of its support. D5 does not have finite variance, and it is used in [1] to illustrate
the robustness of the M-estimator. D6, however, has finite variance and, thus,
lighter tails than D5. Finally D3 is asymmetric with higher density near 0.

We have considered the same overall sample size N for all the procedures
and equally spaced design points, particularly xi,n = 2(i − 1)/(n − 1)− 1 for
any i ∈ {1, . . . , n} and any n ∈ N. For P0, L1 and W , n = N and rn(i) = 1
are taken for all i ∈ {1, . . . , N} (Situation introduced in Section 2). For P1
and P3, rn(1) = rn(n) = dN/10e+1 with n = N − 2dN/10e and rn(i) = 1 for
all i ∈ {2, . . . , n− 1}, and for P2, kan = kbn = dN/10e with n = N − 2(dN/10e)
and rn(i) = 1 for all i ∈ {1, . . . , n}. In this way, the number of observations
considered at the boundary of A is the same for all the procedures. Conditions
(C3) and (C4) hold, as well as the corresponding conditions (C6), (C7) and
(C8) in each case. Finally, we select w(x) = 1 for all x ∈ A, so condition (C5)
is also fulfilled.

For the penalized isotonic regression, W , firstly the isotonic regression is
used in order to compute σ̂n, the standard deviation of the residuals Y 1(xi,N )−
m̂(xi,N ), i ∈ {1, . . . , N}. It should be noted that by the independence assump-
tion, only γ(0) must be estimated in Equation (11) of [26]. Once σ̂n is com-
puted, the observations Y 1(x1,N ) and Y 1(xN,N ) are replaced by Y 1(x1,N ) +

0.15 σ̂n

√
N and Y 1(xN,N )− 0.15 σ̂n

√
N respectively. The estimator W is just

the isotonic regression of the modified data set.



12 Ana Colubi J. Santos Dominguez-Menchero Gil Gonzalez-Rodriguez

For each procedure, the estimation of the regression function has been
extended to the whole interval A by linear interpolation between design points
(being constant in the tails). As the interest relies on the uniform consistency
of the estimators and its behaviour on the tails, the supremum norm error
(SNE) is considered. Note that this value is usually attained at the tails due
to the spiking problem. The SNE has been approximated on the basis of a
grid of size G = 1000, zi = (i− 1)/(G− 1) for i = 1, . . . , G. Specifically, if m∗

stands for any of the obtained isotonic estimators,

SNE(m∗) = sup
i=1,...,G

|m∗(zi)−m(zi)|.

Its expected value has been estimated by Monte Carlo method on the basis of
10000 simulations for all procedures except for M for which only 200 simula-
tions were obtained. In this respect it should be noted that the dependence of
the M estimator on max−min formulae involves a high computational effort
in order to compute the M estimator. In the following tables a point-wise es-
timator of the expected value of SNE in the different scenarios is collected. In
addition, a percentile bootstrap confidence interval with 1000 iterations was
also computed and used to rank the estimators by determining those with
smaller expected value of SNE in each case (highlighted in blue).

N = 20
D1 D2 D3 D4 D5 D6

M 0.888 0.538 0.751 0.401 1.344 1.773
P0 0.894 0.519 0.842 0.357 1.363 2.016
L1 0.925 0.563 0.872 0.411 1.302 1.760
W 0.602 0.335 0.584 0.226 0.974 1.525
P1 0.557 0.321 0.536 0.221 0.882 1.322
P2 0.468 0.274 0.452 0.192 0.730 1.056
P3 0.456 0.265 0.439 0.182 0.701 1.017

N = 100
D1 D2 D3 D4 D5 D6

M 0.926 0.505 0.897 0.400 1.134 1.773
P0 0.889 0.518 0.861 0.354 1.389 2.055
L1 0.922 0.564 0.899 0.416 1.324 1.742
W 0.367 0.202 0.400 0.139 0.663 1.142
P1 0.309 0.180 0.307 0.125 0.506 0.838
P2 0.234 0.136 0.233 0.094 0.381 0.627
P3 0.230 0.133 0.230 0.093 0.372 0.594

N = 500
D1 D2 D3 D4 D5 D6

P0 0.893 0.518 0.855 0.357 1.387 2.066
L1 0.926 0.565 0.897 0.420 1.329 1.755
W 0.191 0.109 0.208 0.075 0.365 0.729
P1 0.151 0.088 0.150 0.061 0.253 0.439
P2 0.109 0.063 0.108 0.043 0.183 0.320
P3 0.108 0.063 0.107 0.043 0.180 0.304

Table 1 Expected value of SNE. Case p = 0.
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N = 20
D1 D2 D3 D4 D5 D6

M 1.088 0.683 0.969 0.476 1.432 1.822
P0 1.040 0.648 1.002 0.458 1.561 2.313
L1 1.074 0.700 1.005 0.490 1.477 1.975
W 0.876 0.568 0.879 0.427 1.309 1.959
P1 0.829 0.561 0.817 0.423 1.192 1.724
P2 0.799 0.555 0.785 0.422 1.102 1.519
P3 0.827 0.562 0.805 0.423 1.126 1.480

N = 100
D1 D2 D3 D4 D5 D6

M 0.997 0.586 0.907 0.437 1.319 1.923
P0 0.946 0.574 0.909 0.402 1.493 2.164
L1 0.982 0.631 0.957 0.463 1.409 1.818
W 0.567 0.375 0.599 0.294 0.936 1.435
P1 0.531 0.375 0.531 0.300 0.765 1.112
P2 0.515 0.371 0.514 0.298 0.713 0.996
P3 0.523 0.371 0.523 0.297 0.744 0.993

N = 500
D1 D2 D3 D4 D5 D6

P0 0.917 0.539 0.859 0.373 1.425 2.192
L1 0.952 0.588 0.917 0.445 1.351 1.842
W 0.340 0.235 0.358 0.186 0.550 1.039
P1 0.331 0.239 0.331 0.192 0.462 0.701
P2 0.327 0.238 0.326 0.192 0.448 0.644
P3 0.326 0.237 0.326 0.191 0.452 0.660

Table 2 Expected value of SNE. Case p = 1.

According to Tables 1, 2 and 3, the estimators P2 and P3 provide, in
general, the best results in all the scenarios. Also, the estimator P1 is very
competitive, being one of the best ones in some cases. It is shown that for
the three proposed estimators, the expected SNE reduces as the sample size
increases, as it is expected according to Theorems 2, 3 and 4.

The robust estimators L1 or M outperform the isotonic regression when
the distribution of the errors has heavy tails, nevertheless, they are not use-
ful to face the spiking problem in general. On the other hand, the estimator
W exhibits a good behaviour in all scenarios, being the estimated expected
SNE decreasing as the sample size increases. It is particularly good when the
distribution of the errors has bounded support (D2 and D4), and concretely,
in this situation when p = 1 it slightly outperforms the proposed procedures
in some cases. This situation changes when the regression is constant (p = 0)
or when it has a high increasing rate (p = 5). This behaviour can be related
with the selection of the penalizing constant c = 0.15, that could be somehow
tuned depending on the conditional distributions, and the increasing rate of
the regression at the tails. In this respect it has to be mentioned that in the
proposed procedures it was fixed a 10% of sampling effort in each terminal
point that can also be tuned to improve the results.

Overall, according to the obtained results, it is not advisable to use the
robust estimators L1 or M in order to face the spiking problem. The estimator
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N = 20
D1 D2 D3 D4 D5 D6

M 1.079 0.687 0.961 0.484 1.429 1.745
P0 1.077 0.684 1.023 0.475 1.592 2.192
L1 1.098 0.711 1.018 0.488 1.518 1.902
W 0.925 0.636 0.921 0.492 1.344 1.839
P1 0.841 0.579 0.821 0.429 1.211 1.657
P2 0.830 0.598 0.806 0.442 1.124 1.489
P3 0.831 0.575 0.799 0.428 1.128 1.430

N = 100
D1 D2 D3 D4 D5 D6

M 1.026 0.632 0.906 0.454 1.398 1.695
P0 0.993 0.610 0.958 0.431 1.506 2.212
L1 1.023 0.661 0.987 0.472 1.418 1.876
W 0.662 0.467 0.696 0.379 0.971 1.480
P1 0.600 0.442 0.593 0.357 0.819 1.153
P2 0.592 0.443 0.585 0.359 0.775 1.029
P3 0.580 0.433 0.574 0.353 0.776 1.022

N = 500
D1 D2 D3 D4 D5 D6

P0 0.941 0.556 0.888 0.392 1.436 2.126
L1 0.977 0.610 0.938 0.455 1.362 1.801
W 0.432 0.316 0.448 0.258 0.640 1.013
P1 0.410 0.304 0.407 0.249 0.538 0.752
P2 0.405 0.303 0.404 0.248 0.529 0.703
P3 0.401 0.301 0.399 0.247 0.519 0.698

Table 3 Expected value of SNE. Case p = 5.

W could be interesting to be used, particularly when it is not possible to design
the experiment in the directions proposed for procedures P1, P2 or P3. Finally,
the three proposed estimators offer a solution to handle the spiking problem
and have a good behaviour in all the analysed scenarios, being, in general, P2
and P3 the best ones.

To finalise the analysis, a detailed comparison of the proposed estimators
P1, P2 and P3 has been carried out on the basis of the performed simulations.
In Figures 8, 9 and 10 we have summarized the distributions of SNE by means
of box-plots.

When the regression is constant, the empirical distributions of the SNE
associated with both P2 and P3 are usually strictly dominated by the one
associated with P1, which implies that P1 is worse. Regarding P2 and P3, the
higher quantiles (approximately those in [0.85, 1]) of the empirical distribution
of SNE for P2 are smaller than the corresponding ones of P3. The difference
is larger when the distribution of the errors has non-bounded support. On
the contrary, the median of the empirical distribution for P3 is almost always
smaller than the median for P2.

On the other hand, when the regression function is non-constant, the sit-
uation is rather different. The empirical distribution of SNE for P1 again
dominates almost always the corresponding distribution for P3, and also the
one associated with P2 when the error distribution has non-bounded support,
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Fig. 8 Distributions of SNE for constant regression (p = 0)
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Fig. 9 Distributions of SNE for linear regression (p = 1)
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Fig. 10 Distributions of SNE for non-constant regression (p = 5)

although the difference is not so important. In general, for bounded errors
cases, the empirical distributions of SNE for P2 and P3 are almost identical
in the linear case, whereas for the case of marked slopes (p = 5) the quantiles
corresponding to P3 are slightly smaller than the ones associated with P2. For
the unbounded case, if N = 20 or N = 100 we can see a slight improvement
of P2 with respect to P3, although this difference is balanced (and reversed
in some cases ) when N = 500.

To summarize, in general, it seems that P2 is slightly better than P3 (and
both outperform P1). The difference between both procedures is clearer in the
constant regression case. On the other hand, if the regression is non constant,
P2 seems to be preferable to P3 only when few observations are available
and the distribution of the errors has non-bounded support, while in those
cases with marked slopes at the tails, P3 outperforms P2. This means that, in
general, using the isotonic regression to stabilize the behaviour of the estimator
at the tails is comparable to using the overall mean of the data at the tails.
The main difference relies on the fact that theoretically P3 allows for fewer
observations at the boundaries of A than P2, although in this analysis, for
comparative purposes, exactly the same number of observations in a and b
was considered.
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5 Possible Extensions

Some ideas regarding the generalization of the obtained results to higher di-
mensions are outlined. Concretely we focus on the 2-dimensional Euclidean
space case considered in [12], where some rates on the consistency of the iso-
tonic regression in a closed and compact “interval” strictly contained in the
design “interval” are obtained under certain conditions. These conditions are
quite more complex than those presented for the 1-dimensional case, so we
refer to the reader to Section 4 of [12].

As we have concluded from the simulation study, P2 and P3 are in general
comparable and better than P1, so we will focus our comments on P2 and
P3. For the sake of simplicity, we will consider A = [0, 1]× [0, 1] and a uniform
weighting function as in [12].

Concerning P2, the situation can be handled by applying the ideas in
Section 3 together with the trick used in the proof of Theorem 3 in the following
way. First of all, the working rectangle A is slightly expanded (how much is
irrelevant as in the 1-dimensional case), say Ã = [−1, 2]× [−1, 2], and consider
the function Π : Ã → A that associates to each (x̃1, x̃2) ∈ Ã the closest point in
A. In this way, the original regression model Y (x1, x2) = m(x1, x2)+ ε(x1, x2)

can be extended to Ã as follows:

Ỹ (Π(x̃1, x̃2)) = m(Π(x̃1, x̃2)) + ε(Π(x̃1, x̃2)).

Consider a set of design points in Ã so that the corresponding conditions
in Section 4 of [12] are fulfilled (these conditions regard the distribution of
the errors in the model, as well as the set of design points chosen). Then,
Theorems 5 and 6 in [12], providing the corresponding rates of consistency for
the isotonic regression, can be applied. It should be noted that expanding the
working rectangle A only affects the design points in the following way: given
any design point (x̃1, x̃2) not belonging to A, it is associated with the point
Π(x̃1, x̃2) in the frontier of A, so according to the mentioned conditions, this
leads to an “elevated” concentration of design points at the frontier of A, with a
particular “extra” concentration at the corners of A (the same happened in the
1-dimensional case presented in Section 3). In particular, the number of design
points in any frontier segment J of A excluding the corners (like for instance
J = [a, b]×{0} with 0 < a < b < 1) verifies that lim infn→∞ Nn(J)/Nn(A) > 0
and, in addition, every corner C of A (as for instance C = {0} × {0}) verifies
that lim infn→∞ Nn(C)/Nn(A) > 0.

The key idea in procedure P3 is firstly to consider an appropriate design
allowing the derivation of a uniformly consistent estimator of the regression
function at the frontier of A. And, secondly, to use the estimate as a restriction
in the isotonic regression problem (so that the values of the isotonic regression
at the “tails” are under control). One of the fundamental points in this strategy
is that it is not necessary to allocate too many sample information in the
frontier of A, as condition (C8) is just a guarantee for the convergence of the
“frontier estimator”. Consequently, we can proceed as follows: Fix the amount
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of sample information to be used for the “frontier estimator“ (any function
of the sample size growing to infinity as the sample size increases is enough,
as for instance p × Nn(A) with 0 < p < 1 or even lower rates as an amount
proportional to logNn(A)), the remaining points (it is recommendable to keep
an amount proportional to the overall sample size Nn(A)) are allocated in the
interior of A so that the corresponding conditions in Section 4 of [12] are
fulfilled for any rectangle in the interior of A.

Now we face the main problem: to define a feasible restriction set through
a consistent estimator of m in the frontier, by allocating the design points
in the frontier of A in an appropriate way. First of all, consider the mapping
g : [0, 1] → {0} × [0, 1] ∪ [0, 1]× {0} defined for each x ∈ [0, 1] as

g(x) = (0, 2x)I[0,1/2](x) + (2x− 1, 1)I(1/2,1].

Obviously, for the “transformed” regression model Ỹ (x) = Y (g(x)), the regres-
sion function m̃(x) = m(g(x)) (with x ∈ [0, 1]) is a monotone non-decreasing
function and, consequently, we can consider any of the design strategies pro-
posed in Section 3 in order to estimate uniformly m̃ by means of m̂1. For the
other part of the frontier of A ([0, 1]×{0}∪{0}×[0, 1]), we proceed in a similar
way, allocating the rest of sample points and obtaining the estimator m̂2. It
should be noted that the corners (0, 0) and (1, 1) are common to both parts,
so the sample points allocated there (if any) are also shared. Now, we define
the estimator of m in the frontier of A as follows:

ĝ(x1, x2) =



min{m̂1(1/2 + x1/2), m̂2(x1/2)} if 0 < x1 < 1, x2 = 0,
min{m̂1(x2/2), m̂2(1/2 + x2/2)} if 0 < x2 < 1, x1 = 0,
m̂1(1/2 + x1/2) if 0 < x1 < 1, x2 = 1,
m̂2(1/2 + x2/2) if 0 < x2 < 1, x1 = 1,
min{m̂1(0), m̂2(0)} if x1 = x2 = 0,
min{m̂1(1), m̂2(1)} if x1 = x2 = 1.

The uniform consistency of m̂1 and m̂2 ensures the uniform consistency in the
frontier of A of ĝ. In addition, by construction, it is easy to check that ĝ is a
monotone and non-decreasing function. Finally, we define the estimator of m
on A as the corresponding isotonic regression restricted by ĝ, that is m̂ is the
argmin of

n∑
i=1

rn(i)∑
j=1

w(xi,n)
(
Y j(xi,n)− f(xi,n)

)2
on the set of isotonic functions (in the 2-dimensional Euclidean Space) defined
on the set of design points {xn,1, . . . , xn,n} and so that

max{ĝ(x1
i,n, 0), ĝ(0, x

2
i,n)} ≤ f(x1

i,n, x
2
i,n) ≤ min{ĝ(x1

i,n, 1), ĝ(1, x
2
i,n)}.

This solution can be found by considering the extension of the isotonic regres-
sion problem analyzed in [8].
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6 Appendix. Proofs

The following lemma is a slightly generalization of Lemma 3 in [12] that takes
into account weights. We will focus on the part of this lemma that will be used
for the different proofs.

Lemma 1 Let F be a real-valued function on [0,∞) satisfying condition (C2)
and let {Zi,n}ni=1 (n ∈ N) be a triangular array of row-wise independent
random variables so that E(Zi,n) = 0 and P (|Zi,n| ≥ z) ≤ F (z) for all
i = 1, . . . , n, n ∈ N and z ≥ 0. Let {wi,n}ni=1 (n ∈ N) be a family of posi-
tive and bounded real numbers, then

max
1≤k≤n

∣∣∣∣∣
k∑

i=1

Zi,nwi,n

∣∣∣∣∣ /n n→∞−→ 0 a.s.− [P ].

Proof: Fix 0 < M < ∞ so that wi,n ≤ M for all i = 1, . . . , n and n ∈ N.
Obviously,

P (|Zi,nwi,n| ≥ z) ≤ FM (z) = F (z/M)

for all z ≥ 0. In addition, it is easy to check that both limz→∞ FM (z) = 0
and

∫∞
0

z|dFM (z)| < ∞. Consequently, we can apply Lemma 3 in [12] to
the triangular array of row-wise independent random variables {Zi,nwi,n}ni=1

(n ∈ N) to prove the result.

Proof Theorem 1: As in [12], the result can be proven by combining the
reasoning of Theorem 4.1 of [4] with Lemma 1.

Proof Theorem 2: As Conditions (C1)-(C5) are satisfied, Theorem 1
guarantees the pointwise a.s.− [P ] convergence of m̂∗

I in (a, b). Thus, in order
to prove the result, it is enough to check the pointwise a.s.− [P ] convergence
in a and b.

First of all, we focus on the pointwise a.s. − [P ] convergence in a. In this
sense, taking into account the well-known max-min formula and the isotonicity
of m, it is easy to check that

|m̂∗
I(a)−m(a)| ≤ |m(x1,n)−m(a)|+ max

k=1,...,n

∣∣∣∣∣
∑k

i=1

∑rn(i)
j=1 w(xi,n)ε

j(xi,n)∑k
i=1 w(xi,n)rn(i)

∣∣∣∣∣ .
The continuity of m ensures that the first term in the preceding sum con-

verges to 0 as n → ∞. On the other hand, the second term is bounded by
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(
1

infx∈A w(x)

)(
Nn(A)

rn(1)

)
max

k=1,...,n

∣∣∣∣∣
∑k

i=1

∑rn(i)
j=1 w(xi,n)ε

j(xi,n)

Nn(A)

∣∣∣∣∣
which converges a.s. − [P ] to 0 as n → ∞ as a consequence of Lemma 1 and
Conditions (C5) and (C6). Consequently, the pointwise a.s.− [P ] convergence
in a follows. The pointwise a.s.− [P ] convergence in b can be deduced in the
same way.

Proof Theorem 3: By considering A = [a − 1, b − 1], m(x) = m(a),
w(x) = w(a) and ε(x) distributed as ε(a) for all x ∈ [a − 1, a) (analogous
at the point b) and the set of design points Bn, we have that the conditions
(C1)-(C5) are satisfied. Thus, the result follows directly from Theorem 1.

In order to prove the next two theorems, it should be noted that the in-
creasing of m̂∗

I together with Conditions (C1) and (C3) guarantee that it is
enough to prove the pointwise a.s.− [P ] convergence in [a, b].

Proof Theorem 4: Let In = min(Y (x1,n), Y ) and Sn = max(Y , Y (xn,n)).
Based on [8] it can be deduced that

m̂∗
3(x) = max{min{m̂∗

I(x), Sn}, In}

for all x ∈ [a, b] for certain isotonic extension m̂∗
I of the non-restricted isotonic

regression m̂I . In addition, m̂∗
3(a) = In and m̂∗

3(b) = Sn which, taking into
account Condition (C8) and the SLLN, converges a.s.− [P ] to m(a) and m(b),
respectively. Finally, note that as Conditions (C1)-(C5) are satisfied, Theo-
rem 1 guarantees the pointwise a.s. − [P ] convergence of m̂∗

I to m in (a, b),
and consequently the pointwise a.s. − [P ] convergence of m̂∗

3 to m in [a, b] is
obtained, which finishes the proof.
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