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Abstract The Aumann-type mean fulfills very convenient properties as a
location measure of a random fuzzy number, but its high sensitivity to out-
liers makes other alternatives, such as fuzzy M-estimators of location, more
suitable to describe contaminated data sets. Under some conditions, fuzzy M-
estimators fulfill properties such as the strong consistency and the translation
equivariance. However, the scale equivariance does not hold in general and
the choice of the measurement units may have too much influence on the re-
sults. A first solution to solve this was the selection of the tuning parameters
involved in the most used loss functions (Huber’s, Tukey’s and Hampel’s) in
terms of the distribution of distances of the observed data to the considered
initial location estimate. Now a second solution is proposed including a robust
estimate of the unknown dispersion in the definition of fuzzy M-estimators of
location. The empirical comparison of both proposals shows that the latter
solution may be more suitable for dealing with extreme data, and therefore it
could better identify which observations should be considered outliers indeed.
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1 Introduction

Fuzzy numbers can model experiments characterized by an underlying im-
precision, such as ratings, opinions or perceptions (see e.g. De la Rosa de
Sáa et al. [3]). Due to their interest, statistical methodology is being adapted
to analyze this kind of data. With respect to central tendency measures, the
best-known one is the Aumann-type mean [8], which generalizes the notion of
mean of a real-valued random variable. Even when the Aumann-type mean
fulfills very good statistical and probabilistic properties, outliers have too
much impact on its estimate. For that reason, M-estimators of location have
been recently defined in the fuzzy number-valued case by Sinova et al. [10]
and their robustness has been shown. This is not the only robust location
measure for fuzzy numbers proposed in the literature (we could think, for
example, about some extensions of the concept of median like the ones in-
troduced in [11] and [12]), but their performance seems to be the best in
general. Although the empirical study addressed in [10] concludes that there
is no uniformly best location estimator, it highlights the good behavior of
fuzzy M-estimators of location.

Scale equivariance, on the contrary, does not hold for fuzzy M-estimators
of location unless the loss function involved in their definition is a power
function. This is an important drawback, since it means that measurement
units could have a lot of impact on the results. A first solution was provided
in [10] and consists in choosing the tuning parameters in the used loss func-
tions (Huber’s and Hampel’s, and it could be also applied to other functions
such as Tukey’s) taking into account the distribution of distances from the
observed data to the initial estimate considered for the computation of the
corresponding M-estimator. Therefore, the loss function is adapted to the
magnitude of the data we are working with.

The aim of this paper is to present an alternative to solve the lack of scale
equivariance. In the classical settings, where the same problem has had to be
dealt with, a robust estimate of the dispersion is introduced in the definition
of the M-estimator of location to make it scale equivariant. Recently, a robust
estimate of the dispersion of a random fuzzy number, the median distance
deviation about the median, has been analyzed (see [4]). The idea is, in
consequence, to use a similar median distance deviation about the median
to extend M-estimators of location with unknown dispersion to the fuzzy
number-valued settings.

The rest of the paper is structured as follows. The preliminaries on the
space of fuzzy numbers and fuzzy M-estimators of location are recalled in
Section 2. Section 3 presents the concept of fuzzy M-estimators of location
with unknown dispersion and the study of their scale equivariance, whereas
their empirical comparison with the previously defined fuzzy M-estimators
of location is presented in Section 4. Finally, some concluding remarks are
provided in Section 5.
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2 Preliminaries on the space of fuzzy numbers and
fuzzy M-estimation of location

In this section, the most important characteristics of the space of fuzzy num-
bers will be recalled, as well as the adaptation of M-estimators of location to
the fuzzy-valued settings.
Fc(R) will denote the class of (bounded) fuzzy numbers, which are map-

pings Ũ : R→ [0, 1] such that their α-levels

Ũα =

{x ∈ R : Ũ(x) ≥ α} if α ∈ (0, 1]

cl{x ∈ R : Ũ(x) > 0} if α = 0,

are nonempty compact intervals. It is possible to interpret Ũ(x) as the ‘degree

of compatibility’ of x with Ũ (or ‘degree of truth’ of the assertion “x is Ũ”).
Fuzzy data are very useful to model those phenomena such as human

perceptions or valuations which present an underlying imprecision. Indeed,
their α-levels incorporate a certain gradualness that does not appear when
dealing with interval-valued data.

Concerning the mathematical operations among these kinds of data, the
sum and the product are defined by means of Zadeh’s extension principle,
which extends level-wise the usual interval arithmetic.

Definition 1. Let Ũ , Ṽ ∈ Fc(R). The sum of Ũ and Ṽ is defined as the

fuzzy number Ũ + Ṽ ∈ Fc(R) given for each α ∈ [0, 1] by

(Ũ+Ṽ )α = Minkowski sum of Ũα and Ṽα =
[

inf Ũα+inf Ṽα, sup Ũα+sup Ṽα
]
.

Let Ũ ∈ Fc(R) and γ ∈ R. The product of Ũ by the scalar γ is defined

as the fuzzy number γ · Ũ ∈ Fc(R) given for each α ∈ [0, 1] by

(γ · Ũ)α = γ · Ũα =

{[
γ · inf Ũα, γ · sup Ũα

]
if γ ≥ 0,[

γ · sup Ũα, γ · inf Ũα
]

otherwise.

Now the family of distances between fuzzy numbers introduced by Mon-
tenegro et al. [7], which extends the one proposed by Bertoluzza et al. [1], will
be recalled. Note that its use is very convenient due to the lack of linearity
in the space (Fc(R),+, ·) as explained in e.g. [2].

Definition 2. Let θ ∈ (0,+∞) and let ϕ be an absolutely continuous prob-
ability measure on ([0, 1],B[0,1]) with the mass function being positive on
(0, 1). The mid/spr-based L2 distance between any two fuzzy numbers

Ũ , Ṽ ∈ Fc(R) is defined as
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Dϕ
θ (Ũ , Ṽ ) =

[∫
[0,1]

(
mid Ũα −mid Ṽα

)2
+ θ

(
spr Ũα − spr Ṽα

)2
dϕ(α)

]1/2
,

where mid Ũα = (inf Ũα + sup Ũα)/2 and spr Ũα = (sup Ũα − inf Ũα)/2.

The role of θ and ϕ is not stochastic, but to weigh the importance of the
deviation ‘in shape’ in contrast to the deviation ’in center’, and the relevance
of the different α-levels, respectively. It can be proven that the usual choice
1/3 makes all the points in the intervals (once fixed any α) equally important.

M-estimators of location will be defined in terms of the mid/spr-based
L2 distance since the space (Fc(R), Dϕ

θ ) can be isometrically embedded into
a convex cone of a certain Hilbert space by means of the so-called support
function (in Puri and Ralescu’s sense [8]).

The notion of random fuzzy number in Puri and Ralescu’s sense [8] math-
ematically formalizes the random mechanism generating fuzzy data.

Definition 3. Let (Ω,A, P ) be a probability space modeling a random ex-
periment. A mapping X : Ω → Fc(R) is said to be a random fuzzy number
associated with the random experiment if, and only if, for each α ∈ [0, 1] the
interval-valued mapping Xα (where Xα(ω) =

(
X (ω)

)
α

for all ω ∈ Ω) is a ran-
dom compact interval or equivalently, the real-valued functions inf Xα and
supXα are random variables.

A random fuzzy number is Borel-measurable with respect to the Borel
σ-field associated with the Dϕ

θ distance. In order to summarize the central
tendency of a random fuzzy number, one of the best-known measures is the
following.

Definition 4. Let X be a random fuzzy number and assume that the ex-
pected values of the random variables inf X0 and supX0 are finite. The
Aumann-type mean of X is the fuzzy number Ẽ(X ) ∈ Fc(R) such that
for each α ∈ [0, 1] (

Ẽ(X )
)
α

= [E(inf Xα), E(supXα)] .

As an extension of the concept of mean for real-valued random variables,
the Aumann-type mean inherits very convenient statistical and probabilistic
properties, but also the high sensitivity to outliers. For this reason, other
location measures for fuzzy-valued data with a more robust behavior have
already been proposed in the literature. In particular, the concept of median
has been extended to the fuzzy number-valued settings as follows.

Definition 5. Let X be a random fuzzy number and (X1, . . . ,Xn) be a simple
random sample from X . The (sample) 1-norm median is the fuzzy number̂̃
Me(X1, . . . ,Xn), for short

̂̃
Me, such that for each α ∈ [0, 1] it coincides with
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[Me{inf (X1)α, . . . , inf (Xn)α},Me{sup (X1)α, . . . , sup (Xn)α}],

with Me denoting the median of a real-valued random variable. In case any
of the medians is non-unique, the convention of considering the midpoint of
the interval of possible medians is used.

Among the robust location measures for fuzzy-valued data, the perfor-
mance of fuzzy M-estimators of location is certainly remarkable, achieving
the best results in many of the situations studied in [10].

Definition 6. Let (Ω,A, P ) be a probability space and X : Ω → Fc(R) be
an associated random fuzzy number. Moreover, let (X1, . . . ,Xn) be a simple
random sample from X . Then, the fuzzy M-estimator of location is the

fuzzy number-valued statistic ̂̃gM (X1, . . . ,Xn), given by

̂̃gM (X1, . . . ,Xn) = arg min
Ũ∈Fc(R)

1

n

n∑
i=1

ρ(Dϕ
θ (Xi, Ũ)),

if it exists, where the loss function ρ : R+ → R is assumed to be continuous
and non-decreasing and to vanish at 0.

In [10, 9] it has been proven that, even when they may fulfill very good
properties, fuzzy M-estimators of location are not scale equivariant unless ρ
is a power function, which is not a possible choice if we are looking for ro-
bustness. [10] selects the tuning parameters involved in some well-known loss
functions (Huber’s and Hampel’s) depending on the distribution of distances
from the observed data to the initial estimate considered for the computa-
tion of the M-estimator to avoid the bad influence of the measurement units.
A second alternative is introduced in Section 3 of this paper by extending
the classical M-estimators of location with unknown dispersion, which are
based on a robust estimate of the dispersion. The median distance deviation
about the median of a random fuzzy number has been defined using the ρ1
distance, which is an L1 metric based on the infimum/supremum characteri-
zation of fuzzy numbers, in [4]. However, a new alternative is now considered,
by replacing the ρ1 distance by the Dϕ

θ metric, since fuzzy M-estimators of
location are defined in terms of the latter (due to the isometrical embedding
mentioned above).

Definition 7. Let X be a random fuzzy number and (X1, . . . ,Xn) be a simple
random sample from X . The (sample) median Dϕ

θ−distance deviation
about the 1-norm median (MDD) is the following real number

σ̂ϕθ (X1, . . .Xn) = Me

{
Dϕ
θ (X1,

̂̃
Me), . . . , Dϕ

θ (Xn,
̂̃
Me)

}
,

applying the same convention as in Definition 5.
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It can be proven that the median Dϕ
θ -distance deviation about the 1-norm

median satisfies the scale equivariance property.

Proposition 1. Let (Ω,A, P ) be a probability space and X : Ω → Fc(R) be
an associated random fuzzy number. Moreover, let (X1, . . . ,Xn) be a simple
random sample from X . The median Dϕ

θ -distance deviation about the 1-norm
median is scale equivariant, that is, given any γ ∈ R,

σ̂ϕθ (γ · X1, . . . , γ · Xn) = |γ| · σ̂ϕθ (X1, . . .Xn).

Proof First, due to the properties of the 1-norm median (see [12]),

̂̃
Me(γ · X1, . . . , γ · Xn) = γ · ̂̃Me(X1, . . . ,Xn).

Therefore, for all i ∈ {1, . . . , n},

Dϕ
θ (γ · Xi,

̂̃
Me(γ · X1, . . . , γ · Xn)) = |γ| ·Dϕ

θ (Xi,
̂̃
Me(X1, . . . ,Xn))

since mid (γ · Ũ)α = γ ·mid Ũα and spr (γ · Ũ)α = |γ| ·spr Ũα for all Ũ ∈ Fc(R)
and all α ∈ [0, 1]. Finally,

σ̂ϕθ (γ · X1, . . . , γ · Xn)

= Me

{
Dϕ
θ (γ · X1,

̂̃
Me(γ ·(X1, . . . ,Xn))), . . . , Dϕ

θ (γ · Xn,
̂̃
Me(γ ·(X1, . . . ,Xn)))

}
= Me

{
|γ| ·Dϕ

θ (X1,
̂̃
Me(X1, . . . ,Xn)), . . . , |γ| ·Dϕ

θ (Xn,
̂̃
Me(X1, . . . ,Xn))

}
= |γ| · σ̂ϕθ (X1, . . .Xn).

�

3 Location M-estimators with unknown dispersion for
random fuzzy numbers

Due to the lack of scale equivariance of fuzzy M-estimators of location, the
classical M-estimators of location with unknown dispersion will be now ex-
tended to the fuzzy number-valued case. The alternative of simultaneously
estimating both the location and scale will be not considered in this paper,
since this procedure is already not satisfactory in the classical settings from
the robustness point of view and also due to the numerical inconvenience of
solving the system of two non-linear equations.

Definition 8. Let (Ω,A, P ) be a probability space and X : Ω → Fc(R) be
an associated random fuzzy number. Moreover, let (X1, . . . ,Xn) be a simple
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random sample from X . Then, the fuzzy MDD-based M-estimator of

location is the fuzzy number-valued statistic ̂̃gMMDD(X1, . . . ,Xn), given by

̂̃gMMDD(X1, . . . ,Xn) = arg min
Ũ∈Fc(R)

1

n

n∑
i=1

ρ

(
Dϕ
θ (Xi, Ũ)

σ̂ϕθ (X1, . . .Xn)

)
,

if it exists, where the loss function ρ : R+ → R is assumed to be continuous
and non-decreasing and to vanish at 0.

It can be shown that the fuzzy MDD-based M-estimator of location is
indeed scale equivariant as it happens in the real-valued settings.

Proposition 2. Let (Ω,A, P ) be a probability space and X : Ω → Fc(R) be
an associated random fuzzy number. Moreover, let (X1, . . . ,Xn) be a simple
random sample from X . The fuzzy MDD-based M-estimator of location is
scale equivariant, that is, given any γ ∈ R,

̂̃gMMDD(γ · X1, . . . , γ · Xn) = |γ| · ̂̃gMMDD(X1, . . . ,Xn).

4 Simulation study

This section aims to empirically compare the two alternatives proposed to
extend M-estimators of location to the fuzzy-valued case and avoid any prob-
lem with the measurement units. First, the tuning parameters involved in the
most used loss functions, such as Huber’s, Tukey’s or Hampel’s could be se-
lected in terms of the distribution of distances of the observed data to the
considered initial location estimate as in [10]. Secondly, fuzzy MDD-based
M-estimators of location are a scale equivariant measure that has been intro-
duced in Section 3.

Among the usual loss functions, we will consider the Hampel loss function
since its suitability was shown in [10] for many of the studied cases. The
Hampel loss function [5] corresponds to

ρa,b,c(x) =



x2/2 if 0 ≤ x < a,

a(x− a/2) if a ≤ x < b,

a(x− c)2

2(b− c)
+
a(b+ c− a)

2
if b ≤ x < c,

a(b+ c− a)

2
if c ≤ x,

where the nonnegative parameters a < b < c allow us to control the degree of
suppression of large errors. The smaller their values, the higher this degree.
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Note that apart from not being convex, this function can cope with extreme
outliers, since observations far from the center (x ≥ c) all contribute equally
to the loss.

Recall that the first alternative consists of fuzzy M-estimators of location
carefully choosing the values of the tuning parameters. Following Kim and
Scott [6], we will take a, b and c as the median, 75th and 85th percentiles of the
distances between the observations and an initial estimate, which throughout
this paper will be the 1-norm median.

100 trapezoidal fuzzy data are generated according to four real-valued
random variables: X = Tra(X1−X2 − X3, X1−X2, X1 +X2, X1 +X2 +X4),
so inf X0 = X1 − X2 − X3, inf X1 = X1 − X2, supX1 = X1 + X2 and
supX0 = X1 +X2 +X4.

A contamination proportion equal to cp ∈ {0, 0.1, 0.2, 0.4} is introduced
in each sample. Any kind of outlier is allowed in these simulation studies: all
the random variables detailed above (X1, X2, X3 and X4) can follow the cor-
responding distributions for the contaminated observations or just some (at
least one) of them. This means that we deal with outliers in location, outliers
in shape and/or outliers in both location and shape. A second parameter,
CD ∈ {0, 1, 5, 10, 100}, determines the distance between the distribution of
the regular and contaminated observations.

In CASE 1 the variables Xi are independent. In particular,

• X1 ∼ N (0, 1) and X2, X3, X4 ∼ χ2
1 for the regular observations.

• X1 ∼ N (0, 3) + CD and X2, X3, X4 ∼ χ2
4 + CD for the contaminated

observations.

In CASE 2 dependence between the variables Xi is introduced as follows.

• X1 ∼ N (0, 1) and X2, X3, X4 ∼ 1/(X2
1 + 1)2 +

√
χ2
1 for the non-

contaminated subsample (with χ2
1 independent of X1),

• X1 ∼ N (0, 3) + CD and X2, X3, X4 ∼ 1/(X2
1 + 1)2 +

√
χ2
1 + CD for the

contaminated subsample (with χ2
1 independent of X1).

Both the fuzzy M-estimate of location and the fuzzy MDD-based M-
estimate of location using the Hampel loss function are computed for each
contaminated sample using an algorithm as in [10]. Their population values
are approximated by Monte Carlo with 10000 iterations and the performance
of both proposals is compared in terms of the corresponding mean square er-
ror also approximated by Monte Carlo with 1000 iterations.

4.1 Results

Table 4.1 contains the results of the comparative analysis. In order to un-
derstand these results better, Figure 1 shows some samples generated using
the procedure explained in this section with some illustrative choices of the
contamination parameters cp and CD. It can be concluded that
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Table 1 Empirical comparison of the fuzzy M-estimate of location (Hampel) and the fuzzy

MDD-based M-estimate of location (MDD-H) using the Hampel loss function

CASE 1 CASE 2
cp CD Hampel MDD-H Hampel MDD-H

0 0 0.03157 0.02077 0.39544 0.11508

0.1 0 0.03242 0.02790 0.38452 0.11492
0.1 1 0.03272 0.03460 0.40867 0.13536

0.1 5 0.03079 0.04271 0.36526 0.18030
0.1 10 0.02903 0.02995 0.35188 0.14413

0.1 100 0.02977 0.02258 0.35691 0.11714

0.2 0 0.04257 0.05940 0.37045 0.11383
0.2 1 0.04595 0.08613 0.43351 0.15930

0.2 5 0.04685 0.16308 0.36094 0.33573

0.2 10 0.04444 0.08832 0.32239 0.23062
0.2 100 0.04649 0.02491 0.31370 0.11416

0.4 0 0.10742 0.20288 0.34975 0.11612

0.4 1 0.15262 0.37964 0.50878 0.23767
0.4 5 0.35651 1.82037 0.69800 1.55067

0.4 10 0.54289 3.21184 0.87081 2.37917

0.4 100 0.70982 0.03470 0.97474 0.11623

• there is no uniformly best estimator, since both the fuzzy M-estimator of
location and the fuzzy MDD-based M-estimator of location can provide us
with the most convenient estimate depending on the analyzed situation.

• the distribution seems to have more influence than the amount of contam-
ination on the choice of the best estimator.

• the larger the difference between the outlier and the non-contaminated
data, the more the fuzzy MDD-based M-estimate of location seems to
improve the results of the fuzzy M-estimate of location, since even after
scaling the observations, the difference between the outlier and the rest of
data is still clear and the Hampel loss function can conveniently cope with
it. This can be clearly noticed when cp = 0.4 and CD = 100 (graphics at
the bottom in Figure 1). Due to the chosen distributions, the opposite is
shown when cp = 0.4 and CD = 5 (graphics at the middle in Figure 1),
since outliers do not lie so far away from the non-contaminated part of the
sample in both CASE 1 and CASE 2 and adjusting the tuning parameters
in the Hampel loss function seems to be a better option than scaling all
the observations (and therefore shortening the distances between outliers
and the rest of data even more). However, when the contamination pro-
portion cp decreases to 0.1 and CD remains equal to 5 (graphics at the
top in Figure 1), it can be seen that CASES 1 and 2 are not so simi-
lar as in the previous situations, and the larger distance between outliers
and non-contaminated data in CASE 2 than in CASE 1 makes the fuzzy
MDD-based M-estimator of location improve the behaviour of the fuzzy
M-estimator of location only in CASE 2.
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Fig. 1 A sample of generated fuzzy numbers from CASE 1 (left column) and CASE 2

(right column) is compared when (cp, CD) is chosen to be (0.1, 5) –top–, (0.4, 5) –middle–
and (0.4, 100) –bottom–

5 Concluding remarks

In this paper, M-estimators of location with unknown dispersion have been
extended to the fuzzy number-valued settings in order to provide a scale
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equivariant alternative to fuzzy M-estimators of location. They have been
defined in terms of the median (Dϕ

θ -)distance deviation about the 1-norm
median. The two alternatives have been empirically compared and, even when
there is no uniformly best estimator, it seems that the fuzzy MDD-based M-
estimator of location may provide us with the best results when the distance
between the outliers and the ‘standard’ data is large enough. Therefore, it
could better identify which observations should be considered outliers indeed
since it is using the information of the global dispersion. However, it would
be advisable to complete this simulation study in the future to deal with
other kinds of distributions and check whether these preliminary conclusions
would remain.
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