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ABSTRACT

A detailed snow avalanche susceptibility map of the eastern hillside in the Aramo Range
(Cantabrian Mountains) is presented at a scale of 1:25,000. The Aramo Range is one of the
major middle-altitude mountains of the Asturian Central Massif. Although it has of moderate
height (maximum altitude of 1791 masl), its eastern slope presents unusual snow
avalanche activity. Specifically, a hundred of snow avalanche tracks have been mapped
based on meticulous fieldwork and supported by interviews with local people, searches in
newspaper archives, photointerpretation, and calculations based on the digital terrain model
and geographic information system. As a result, a susceptibility map has been elaborated,
which shows the suitability of combining fieldwork and geographic information technology.
The composition consists of two maps that detail how the susceptibility mapping is
obtained. The section analysed is limited to the eastern slope of the Aramo Range, whose
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total surface area is 1555.62 ha.

1. Introduction

Snow avalanches are one of the main processes
involved in the dynamics and evolution of mountain
environments (Butler, 1985; Schweizer, Jamieson, &
Schneebeli, 2003). In particular, they have a decisive
influence on the landscape of mountain environments,
since not only increase the geomorphic processes, but
also affect the forest and supra-forest zones of the geoe-
cological belts subjected to their disturbances (Bebi,
Kulakowski, & Rixen, 2009; Buisson & Charlier,
1989; Rixen, Haag, Kulakowski, & Bebi, 2007; Schaerer,
1972). They are also a significant natural risk that
endanger the safety of people and the integrity of infra-
structures (Fuchs & Briundl, 2005; Keiler, 2004;
Stethem et al., 2003) even in the European middle-alti-
tude mountains, provided there are heavy snowfall and
adequate slopes (Poblete Piedrabuena, Beato Bergua, &
Marino Alfonso, 2016b).

However, these areas are not well studied and have
not received the interest that has been shown for the
higher Spanish mountains, especially the Pyrenees
(Chueca & Julidn, 2010; Chueca, Julidn, & Montanés,
2014; Furdada et al.,, 1995; Julidn & Chueca, 2012;
Mases & Vilaplana, 1991).

In the Cantabrian Range, there is a regional scale
susceptibility map for avalanches in Asturias based
on the study of geomorphological features, vegetation
cover, and numerical models (Marquinez et al.,

2003). Likewise, mention should be made of the
work which reveals the need for more detailed analy-
sis such as that carried out in the Alto Sil (Santos,
Redondo, Gémez, & Gonzilez, 2010), the Central
Massif of the Picos de Europa (Vada, 2011; Vada,
Frochoso, & Vilaplana, 2012), the Alto Carrién (Ser-
rano, Goémez, & Pisabarro, 2016) and, finally, in the
San Isidro Massif (Poblete Piedrabuena et al,
2016b). Also of note is the historical analysis of
snow avalanches in the Asturian Massif based on
newspaper sources (Garcia-Hernandez et al., 2017).
Nevertheless, all environmental studies should be
based on fieldwork and geomorphological photoin-
terpretation, since they provide essential information
that numerical models and historical sources can
obviate, especially in the small-area studies (Poblete
Piedrabuena, Beato Bergua, & Marino Alfonso,
2016a). This has been shown in Beato Bergua, Poblete
Piedrabuena, and Marino Alfonso (2017) that reveal
the importance of snow avalanches in the Cantabrian
middle-altitude mountains, which participate in the
configuration of the landscape, changes in forest
structure, and constitute a constant hazard.

In this work, the main aim is the analysis of the sus-
ceptibility of snow avalanches on the eastern slope of
the Aramo Range, whose results are represented in a
detailed mapping made from an exhaustive fieldwork
and geographic information technology.
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2, Study area

The Aramo Range is situated at the intersection of the
43°16'N parallel and the 5°53'W meridian, and is part
of the Cantabrian Mountains (NW Spain). It is a
middle-altitude mountain unit located within of the
Asturian Central Massif just 20 km southwest of
Oviedo (Figure 1). On the eastern hillside of the
Aramo Range (the municipal districts of Morcin and
Riosa, Asturias), we have selected an area of
1555.62 ha, between 1600-1500 (slope crest level)
and 700 m a.s.l., where the effects of snow avalanche
disturbances occur.

The Aramo Range is a limestone mountain that rises
above valleys carved out of erodible siliceous materials,
almost all of which are from the Carboniferous period.
More precisely, it is a massive wall over 1700 m a.s.l. in
altitude (the maximum altitude is the Gamoniterio
Peak with 1791 m a.s.l.) that extends as a ridge about
12 km long with a north—south orientation, with two
dominant and wide slopes: the western and the eastern.
The latter is where snow avalanche disturbances that
have been mapped in this paper predominate. Finally,
the Aramo Range is crowned by a platform more than
1300 m a.s.l. that has many karst areas and is domi-
nated by grasslands with the occasional shrubs, where
livestock grazes in summer. We can observe grazing
lands with sheepfold ruins and a large catalog of
samples of karstic activity like dry valleys, dolines,
pipes, or chimneys, caves, lakes, ponors, and karst
springs. The morphogenetic action of the snow has
increased the efficiency of the karst processes (nival
dolines and nivation niches).

From the geological point of view, the Aramo Range
belongs to the Pliegues y Mantos Region, one of the
western units of the Cantabrian Zone (Lotze, 1945).
This sector corresponds to Paleozoic materials with
different resistance to erosion, structurally organized
by folds and overthrust mantles. The Sobia-Bodén
Unit thrust on the Aramo Unit constituting its eastern
and southern boundary. On the other hand, the Aramo
Unit, composed of overlaying verticalized sheets of
Namurian limestones, sometimes folded and later frac-
tured, is thrusting over the Central Coal Basin. Thus,
the Aramo Range is hugely elevated over the pre-Ste-
phanian Carboniferous materials (slates and sand-
stones with limestone and coal strata) by the Aramo
Overthrust, which largely justifies the topographical
and ecological idiosyncrasy of the eastern slope, and
its recent geological and geomorphological history,
forms, and processes (Figure 2).

In addition, the hillsides are steep, often regularized
slopes between rocky escarpments, debris deposits, and
mass movements of enormous dimensions that con-
nect with valleys below 400 m a.s.l. The intense snow
avalanche activity is partially explained by the hillside
slope. More than half of the eastern hillside presents

slopes prone to the formation of avalanches that is to
say, between 30° and 50°.

As for the climate, we find typical Atlantic con-
ditions with abundant rainfall (oscillating between
1100 and 1500 mm and well-distributed throughout
the year) and mild temperatures (between 6°C and
13°C). However, we can broadly consider three types
of climate according to the Lopez and Lépez (1959)
classification: a climate of transition to fresh (Cfsbs)
between 700 and 1000 m a.s.l; a properly fresh climate
(Cfsc) between 1000 and 1500 m a.s.l.; and a cold
mountain climate (Dfsc) above 1500 m a.s.l., where
there are sub-zero temperatures 3-6 months a year,
and half the precipitation is snowfall (Mufioz Jiménez,
1982). In this respect, there are several intense storms
during the winter that come mainly from the north-
west. Thus, on the eastern slope of Aramo Range, lee-
ward to the snow storms, snow avalanches are trigged
annually and there is a permanent snow avalanche risk
(Figure 3).

Asturian mountains are affected annually by four
very intense snowstorms, which produce snow cover
in the order of 1 m from 980 m a.s.l. upwards. In
2016, for example, 478.3 mm w.e. of snow fell and 7
episodes of snowfall above 30 mm in 72 h occurred
(own follow-up of data obtained from the Spanish
Meteorological Agency).

3. Materials and methods

The materials used in the making of the map were
obtained through of the Spanish National Geographic
Institute and consisted of: (i) National Topographic
Base at a 1:25,000 scale, vectorial format SHAPEFILE
(.shp); (ii) Digital Terrain Model with 5-meter grid
spacing, raster format ASCII (.asc) ESRI array; and
(iii) 0.5m pixel, colour digital orthophotography
from the Aerial Orthophoto National Program
(PNOA) taken from 2011 onwards, ECW format.

We have also used the 1:25,000 Topographic Map
(MTN25) printed edition, and black and white aerial
photographs at a 1:30,000 scale processed in 1980—
1986, all also from the Spanish National Geographic
Institute.

The method employed involved the combination of
interviews, field observations, a review of landscape
photographs and newspaper sources, together with
remote sensing of aerial photos and digital orthophoto-
graphs. The fieldwork consisted of using GPS to mark
trajectories, and to delineate the forms and locations of
avalanche paths, remnants of snow, accumulations of
debris, torn or decapitated trees, fragments of scattered
trees, and any other evidence of the action of snow
(Figure 4).

The initial scale of the maps was 1:25,000, but the
use of GIS and digital cartographic materials of high
spatial resolution allowed us to work at scales greater
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Figure 1. Location of the study area. (a) Hypsometric map. (b) Hillshade map on the ortophotography of the east hillside of the

Aramo Range.

than 1:5000. The digital base was carried out by means
of ESRI ArcMapl0.1, combining the vectorial topo-
graphic base, digital terrain model, digital orthophoto-
maps, and the GPS information. The resulting
cartographical base was then exported to ADOBE Illus-
trator CS6 to design the composition of the maps in
this paper.

4. Cartographic representation

The snow avalanche susceptibility cartography of the
eastern hillside of the Aramo Range is made up of
two Main Maps and one inset map (the location of
the mapped area). The Main Maps are: vegetal for-
mations and documented snow avalanches and snow
avalanche susceptibility. In addition, previous maps
of aspects and slopes have been made to show the
steps in the analysis of this phenomenon, and in draw-
ing up a map of these characteristics from the

treatment of the most relevant factors. These maps
provide essential information for territorial planning
and risk prevention. Of course, the graphical criteria
of Krygier and Wood (2011) and Otto, Gustavsson,
and Geilhaussen (2011) have been taken into account
in order to create order, harmony, and readability.

The formation of snow avalanches largely depends
on the steep slopes of this hillside and its leeward situ-
ation to the snow storms coming from the northwest.
The two most frequent types of avalanche are wet
snow avalanches, which channelled along paths as
they descend, and loose snow avalanches (sluffs),
which occur with high frequency in the section with
the highest slope (>50°) as it purges. The interactions
between snow avalanches and vegetation are comple-
tely clear, and consequently are shown on the veg-
etation map, which also explains, to a large extent,
the current land uses and landscape (Beato Bergua
et al., 2017).
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Figure 2. Geological map. (1) Rafieces-La Vid Group: dolomites, limestones, sandstones, shales and marlstones (Lower Devonian).
(2) Ermita Formation: quartzite sandstones, microconglomerates and siltstones (Upper Devonian). (3) Cdndamo-Baleas and Alba
Formation: limestones (Upper Devonian - Carboniferous). (4) Barcaliente Formation: micritic limestones (Namurian Carboniferous).
(5) Valdeteja Formation: bioclastic limestones (Namurian Carboniferous). (6) Lena Group: shales, sandstones, marlstones, limestones
and coal (Moscovian Carboniferous). (7) Canales Formation: shales, sandstones and limestones (Moscovian Carboniferous). (8)
Mieres Formation: quartzite conglomerates, sandstones, shales and coal. (Moscovian Carboniferous). (9) Mass movements. (10) Deb-

ris deposit. (11) Fluvial deposits. (12) Overthrusts. (13) Faults.

On the other hand, with the representation of the
documented snow avalanches we wanted to show the
meticulous fieldwork and the importance of these
snow phenomena in a middle-altitude mountain
from the Cantabrian Range, which had not previously
been mapped or studied scientifically. Finally, the map
of snow avalanche susceptibility generated from the
digital terrain model corroborates and completes the
information obtained with the fieldwork (Figure 5).

The aspects map was made by GIS with the Aspect
tool from ESRI ArcMapl0.1 and the Digital Terrain
Model with 5-meter grid spacing from the Spanish
National Geographic Institute. With the resolution of

this raster, the accuracy for a 1:25,000 scale map is
highly satisfactory.

After that, we reclassified the raster in eight cat-
egories: North, Northeast, Northwest, East, West,
Southeast, Southwest, and South. Warm colours have
been used for the southern orientations, cold colours
for the northern ones, and two different shades of yel-
low for the slopes to the West and East. For the altime-
try, we used contours with a 100 m interval and
contour lines in black; toponymy and spot heights
are also included (Figure 6).

As is well-known, slopes that favour the triggering
of snow avalanches range between 30° and 50°
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Figure 3. Climate map. (1) Dfsc: cold mountain. (2) Cfsc: fresh climate. (3) Cfsbs: transition to fresh. (4) Cfb,: temperate.

(Schweizer et al., 2003). Four types of slopes are rep-
resented in this section: green represents the slopes
less than 10°; slopes between 10° and 30° are in yellow;
the areas with the highest probability of snow ava-
lanches are between 30° and 50° (Marquinez et al.,
2003; Poblete et al., 2016b) and are represented in
orange; red is used for scarps above 50° where snow
can barely accumulate. In this way, numerous purges
often occur that trigger snow avalanches below. Almost
60% of the hillside, more exactly 915 ha, has slopes
higher than 30°.

The slopes map base was also made by GIS, in this
case, from the reclassification of the raster resulting
from applying the Slope tool to the Digital Terrain
Model. Altimetry, toponymy, and spot heights are rep-
resented (Figure 7). We also include the current hydro-
graphic network, buildings, and roads. A neutral ink
(grey) contour line was used for buildings (with a
sand colour for filling), brown for roads and blue for

rivers, so that they could be represented discreetly,
thus facilitating map reading (Poblete et al., 2016a).

4.1. Vegetal formations map

Forest (viridian green), young forest (glade green),
scrubland (lemon curry), grassland with scrubs (mod-
erate apple green), and meadows (khaki) are the five
vegetation items mapped. For each of them, we have
used the colours mentioned above but have attenuated
them to allow the underlying orthophotographic tex-
tures to be seen better. In this way, the different plant
formations can be appreciated, which grants much
more realism to the image. For the delimitation of sur-
faces, we have used criteria based on percentage of
cover (Beato, Marino, & Poblete, 2017; Marino,
Beato, & Poblete, 2017) because the vegetal mosaic is
so fragmented that the map would be very difficult to
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Figure 4. (a) The east hillside of the Aramo on February 10, 2015. (b) Snow avalanches in the central sector of the hillside (Riosa) on
22 February 2016 and (c) in the forests of the north zone (Morcin) on 28 January 2015.

read if all the small polygons had been drawn (Figure
8).

This map includes the snow avalanches documented
from our own observations, the landscape photographs
collected, and the avalanches mentioned made by the
people interviewed, all within the period 2010-2017.
Likewise, the geomorphological evidence and the
destructive traces of snow action have been used. The
representation of the snow avalanches in this map is
due to the fact that they constitute one of the main dis-
turbances, the effects of which are seen in the distri-
bution of the vegetal formations. Altogether there are
almost 100 avalanche tracks, sometimes solitary, in
other cases organized in dendritic and hierarchical net-
works, located in both forests and pastures. We have
represented them with the usual colour for nivo-

periglacial phenomena according to the French carto-
graphic system (Joly, 1997), that is to say, violet.

4.2. Snow avalanche susceptibility map

Once the potential areas for the formation of snow ava-
lanches have been identified by GIS, this information
has been contrasted with (i) geomorphological evi-
dence and signs of destruction and transport by the
snow observed in the fieldwork, (ii) snow avalanches
occurred between 2010 and 2017, and (iii) interviews
with local people and enquiries in newspaper archives
used to elaborate the snow avalanche susceptibility
map. We distinguish three types of susceptibility:
high, medium, and low. High susceptibility corre-
sponds to areas higher than 1000 m a.s.l., with slopes

Figure 5. Snow avalanche paths were studied in the field in detail. Avalanche paths (a and b) are geomorphologically active sites.
Inside of paths can be appreciated remains of wet snow avalanches.
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above 30°, devoid of forest, and where snow avalanches
have been observed many times in recent years, even in
the forests. We have chosen red for this type, as it is
appropriate to all methods of natural risk analysis.
More than 20% of the slope examined, more exactly
an area of 345.25 ha, is of high susceptibility. Medium
susceptibility, coloured orange in accordance with the
criteria mentioned earlier, applies to zones over
1000 m a.s.l., with slopes above 30°, scattered trees,
and snow avalanches detected by photointerpretation.
This covers an area of 12.43 ha. The low susceptibility
zones on the hillside are above 900 m a.s.l. and have
more than 30° slope, without taken into account the
vegetation. They are shown in yellow and are spread
over 343.16 ha. In total, more than 45% of the study
area has some type of susceptibility (high, medium or
low), i.e. can be affected by snow avalanches.

The three types of susceptibility are attenuated to
reveal the textures of the hillshade map made from
the digital terrain model. We also show the anthropic
elements that can be affected by snow avalanches. In
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particular, buildings are represented in reddish
brown, and roads with a brown line. The most impor-
tant of these is the road that ascends to El Angliru
mountain pass, where two people were injured in the
2007 avalanche.

5. Conclusions

This article presents the snow avalanche susceptibility
mapping for the eastern hillside of the Aramo Range,
where until now this phenomenon had not been
studied scientifically. In fact, with few exceptions, the
middle-altitude mountains of the Cantabrian Moun-
tain have hardly been analysed from the perspective
of snow avalanches and related hazards. This contri-
bution demonstrates that this is a very interesting
line of research, and one which should be put into prac-
tice in these mountainous environments.

The large number of documented snow avalanches
discussed in this paper evidence the potential hazards
in the study area, and is explained by the location
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Figure 8. (a) The great fragmentation of the non-arboreous plant formations makes its mapping very difficult. (b) The activity of the
snow avalanches also favours this fragmentation, preventing the evolution of the areas of scrubland and forest. (c) In spring, the
effects of snow avalanches disturbances are easily distinguished by the brightness of the crushed and burned grass by the snow.

and the steep slopes, as well as by the maintenance of
areas of pastures where tree colonization is practically
impossible due to the destructive power of snow ava-
lanches. Because of this, maps of geology, climate,
aspects, slopes, vegetation, and documented snow ava-
lanches have been selected for publication to show the
importance of these factors and their interaction. Like-
wise, with each of the maps we wanted to present the
different steps undertaken to develop a calculation of
susceptibility based on the most relevant factors, giving
the present paper a pedagogical value, in addition.

This paper also focuses on the convenience of com-
bining classical fieldwork with the latest technologies
such as GIS tools, given that both provide us with
essential information for research, mapping, and man-
agement. The susceptibility map is a useful tool for
effective planning and can serve as a basis for derived
maps such as natural risks or landscape protection
maps.

Software

The digital cartographic base, the digitalization of
documented snow avalanches, and the calculations
over the digital terrain model used in the preparation
of this map were performed with ESRI ArcMapl0.1,
while the final design was carried out with the graphic
program ADOBE Illustrator CS6.
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