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RESUMEN (en español) 

 

 

La correspondencia AdS/CFT, o también llamada dualidad holográfica, ha llegado a ser 

una de las herramientas más potentes para describir sistemas físicos en donde las 

interacciones entre sus constituyentes no se pueden describir mediante análisis 

perturbativo. En la presente tesis, se han examinado las aplicaciones de la 

correspondencia AdS/CFT a algunos de los más interesantes sistemas físicos en la 

actualidad, tales como el plasma de quarks y gluones (QGP), actualmente generado en 

colisiones de iones pesados, así como sistemas bidimensionales, con posibles 

aplicaciones a materia condensada. 

 

Hemos examinado las relaciones entre coeficientes de transporte, i.e. cantidades que 

indican la respuesta a estímulos externos, existentes en sistemas que presentan simetría 

rotacional y de paridad en dos dimensiones espaciales, de acuerdo con el contexto de la 

dualidad holográfica, siendo capaces de plantear un procedimiento para obtener 

información acerca de dichas relaciones para este tipo de sistemas. Dicho procedimiento 

fue contrastado con sistemas ya conocidos, obteniendo los resultados esperados. 

 

En cuanto al QGP, combinando un modelo holográfico para describir materia 

quarkionica en estado deconfinado, esto es, en estado libre, junto con un modelo usado 

para describir dicha materia en estado confinado (formando bariones), se ha modelizado 

el interior de una estrella de neutrones, hallando relaciones para la masa y radio globales 

que concuerdan con los datos experimentales. Predijimos además la existencia de una 

transición de primer orden a esas densidades tan brusca que la porción de materia 

deconfinada es prácticamente despreciable. 

 

Además, existen argumentos (relacionados con el tamaño de las estrellas de neutrones y 

la viabilidad de que posean materia quarkionica) que establecen que el QGP a 

densidades intermedias pueda comportarse como un sistema de gran rigidez y 

fuertemente acoplado. Aunque la dualidad holográfica es exitosa para describir sistemas 

a acoplo fuerte, no ha sido capaz hasta ahora de describir sistemas extremadamente 

rígidos. En la presente tesis se presentan varios modelos válidos y precisos, de acuerdo 

con la correspondencia AdS/CFT, que caracterizan sistemas rígidos a acoplo fuerte, 

encontrando de hecho que pueden llegar a reproducir la máxima rigidez que un sistema 

físico pueda presentar, dictada por causalidad. 
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RESUMEN (en Inglés) 

 
 

The AdS/CFT correspondence, also called holography, has become one of the most 

powerful tools to describe physical systems whose interactions between their 

constituents are non-perturbative. In the present thesis, we have examined some 

applications of the AdS/CFT correspondence to some of the most interesting and 

challenging systems in physics nowadays, such as the quark gluon plasma (QGP), which 

is currently generated in heavy ion collisions, as well as systems in two spatial 

dimensions, which could be related to real systems in that appear in condensed matter 

physics. 

 

Within the context of holography, we have examined the relations between the transport 

coefficients, i.e. quantities that characterize the response against external perturbations, 

existing in systems that exhibit rotational and parity invariance in two spatial 

dimensions. In particular, we have been able to propose a method to draw information 

about such relations for these systems. Such prescription was tested with already known 

systems, obtaining the expected results. 

 

In relation to the QGP, by combining a holographic model to describe deconfined quark 

matter, that is, free quarks, with a model employed to describe confined quark matter 

(that constitute baryons), we have modeled the interior of a neutron star, finding 

relations for the overall mass and radii that agree with the data from current 

astrophysical observations. In particular, we predicted the existence of a first order 

phase transition at densities so large, that only a tiny fraction of deconfined matter was 

allowed to be present. 

 

In addition, there are some arguments (related to the size of neutron stars and the 

possibility of accommodating a deconfined quark core) that state that the QGP at 

intermediate densities may behave as a stiff system, i.e. rigid against compression, at 

strong coupling. Although holography has been successful in describing strongly 

coupled systems, it has been unable to model systems with large stiffness. In this thesis 

we presented several valid and accurate holographic models that reproduce stiff systems 

at strong coupling, finding actually that they can accommodate the largest possible 

stiffness, dictated by causality. 
 

 

 

 

 

SR. PRESIDENTE DE LA COMISIÓN ACADÉMICA DEL PROGRAMA DE DOCTORADO EN MATERIALES 



Contents

1 Preface 5

2 Introduction 6

3 Articles 18

4 Results 117

5 Conclusions 120

5.1 Systems in 2 + 1 dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.2 Systems in 3 + 1 dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6 Conclusiones 123

6.1 Sistemas en 2 + 1 dimensiones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.2 Sistemas en 3 + 1 dimensiones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7 Report on the impact factor 126



Acknowledgments

I wish to thank many people who greatly contributed to my development as a researcher,

specially to my supervisor Carlos Hoyos, not only for sharing with me his wide knowledge on the

AdS/CFT correspondence and physics in general, but also for his essential and skilled guidance,

top-rate professionality and friendly treatment to me. I am also deeply thankful to Aleksi Vuori-

nen, for the great support that he gave me the times I have been at the University of Helsinki

as a visitor, as well as for his pleasant character and strong involvement during the development

of the works we share, in collaboration with Niko Jokela, to whom I wish also to thank. I would

like to thank also my PhD colleagues and collaborators, Christian Ecker and Eemeli Annala, for

their hard work and involvement, and for so many useful discussions with them.

I also would like to thank Yolanda Lozano and to the High Energy Theoretical Physics Group

for supporting me with their GRUPIN 14-108 Ph.D. research grant, in order to carry out my ac-

tivities as a Ph.D. student, and for supporting me when attending to conferences, Ph.D. schools

and seminars, so essential and fruitful in my improvement as a researcher.

Finally, but not less important, I would like to give special thanks to my parents and to
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About this thesis

This thesis is oriented towards the gauge/gravity duality and its applications to physical

phenomena. It is presented as a compendium of publications that reflect the research activities

that I carried out as a Ph.D student under the High Energy Physics Theory group at the Oviedo

University from 2014 to 2017.

In this thesis, we shall begin by giving an introduction in section 2, in which we shall explain

some issues regarding the holography and give an overview to some of its applications to phe-

nomenology, providing also a complementary bibliography. In section 3 we present the papers

just as they were published, leaving for section 4 a summary of the main results of the such

papers, while in section 5 we comment on the conclusions that we have drawn from our research.

Finally, in section 7 we give some additional information about the papers, such as their impact

parameter according to the Journal Citation Reports.
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Summary

The AdS/CFT correspondence, also called holography, has become one of the most pow-

erful tools to describe physical systems whose interactions between their constituents are non-

perturbative. In the present thesis, we have examined some applications of the AdS/CFT

correspondence to some of the most interesting and challenging systems in physics nowadays,

such as the quark gluon plasma (QGP), which is currently generated in heavy ion collisions, as

well as systems in two spatial dimensions, which could be related to real systems in condensed

matter physics.

Within the context of holography, we have examined the relations between the transport co-

efficients, i.e. quantities that characterize the response against external perturbations, existing

in systems that exhibit rotational and parity invariance in two spatial dimensions. In particular,

we have been able to propose a method to draw information about such relations for these sys-

tems. Such prescription was tested with already known systems, obtaining the expected results.

In relation to the QGP, by combining a holographic model to describe deconfined quark

matter, that is, free quarks, with a model employed to describe confined quark matter (that

constitute baryons), we have modeled the interior of a neutron star, finding relations for the

overall mass and radii that agree with the data from current astrophysical observations. In

particular, we predicted the existence of a first order phase transition at densities so large, that

only a tiny fraction of deconfined matter was allowed to be present.

In addition, there are some arguments (related to the size of neutron stars and the possibility

of accommodating a deconfined quark core) that state that the QGP at intermediate densities

may behave as a stiff system, i.e. rigid against compression, at strong coupling. Although holog-

raphy has been successful in describing strongly coupled systems, it has been unable to model

systems with large stiffness. In this thesis we presented several valid and accurate holographic

models that reproduce stiff systems at strong coupling, finding actually that they can accom-

modate the largest possible stiffness, dictated by causality.
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Resumen

La correspondencia AdS/CFT, o también llamada dualidad holográfica, ha llegado a ser una

de las herramientas más potentes para describir sistemas f́ısicos en donde las interacciones entre

sus constituyentes no se pueden describir mediante análisis perturbativo. En la presente tesis,

se han examinado las aplicaciones de la correspondencia AdS/CFT a algunos de los más in-

teresantes sistemas f́ısicos en la actualidad, tales como el plasma de quarks y gluones (QGP),

actualmente generado en colisiones de iones pesados, aśı como sistemas bidimensionales, con

posibles aplicaciones a materia condensada.

Hemos examinado las relaciones entre coeficientes de transporte, i.e. cantidades que indican

la respuesta a est́ımulos externos, existentes en sistemas que presentan simetŕıa rotacional y de

paridad en dos dimensiones espaciales, de acuerdo con el contexto de la dualidad holográfica,

siendo capaces de plantear un procedimiento para obtener información acerca de dichas relaciones

para este tipo de sistemas. Dicho procedimiento fue contrastado con sistemas ya conocidos, obte-

niendo los resultados esperados.

En cuanto al QGP, combinando un modelo holográfico para describir materia quarkionica

en estado deconfinado, esto es, en estado libre, junto con un modelo usado para describir dicha

materia en estado confinado (formando bariones), se ha modelizado el interior de una estrella

de neutrones, hallando relaciones para la masa y radio globales que concuerdan con los datos

experimentales. Predijimos además la existencia de una transición de primer orden a esas den-

sidades tan brusca que la porción de materia deconfinada es prácticamente despreciable.

Además, existen argumentos (relacionados con el tamaño de las estrellas de neutrones y la

viabilidad de que posean materia quarkionica) que establecen que el QGP a densidades inter-

medias pueda comportarse como un sistema de gran rigidez y fuertemente acoplado. Aunque la

dualidad holográfica es exitosa para describir sistemas a acoplo fuerte, no ha sido capaz hasta

ahora de describir sistemas extremadamente ŕıgidos. En la presente tesis se presentan varios

modelos válidos y precisos, de acuerdo con la correspondencia AdS/CFT, que caracterizan sis-

temas ŕıgidos a acoplo fuerte, encontrando de hecho que pueden llegar a reproducir la máxima

rigidez que un sistema f́ısico pueda presentar, dictada por causalidad.
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1 Preface

This thesis has been submitted to the Faculty of Science, University of Oviedo, as a partial

fulfillment of the requirements to obtain the PhD degree. The work presented here has been

developed during the years 2014-2017 under the supervision of Dr.Carlos Hoyos at the Depart-

ment of Physics of Oviedo University.

Thesis objectives

The present thesis investigates the applications of holography to the description of physi-

cal systems in two and three spatial dimensions. By means of the gauge/gravity duality, the

following aspects are examined:

• A general prescription to derive Ward identities for fluid hydrodynamics on a plane.

• The modeling of the deconfined state of the Quark Gluon Plasma, taking particular interest

on the ultra-dense regime. The characterization, by means of a sensible holographic model

(either stand-alone or combined with other complementary models), of the phase diagram

at those densities.

• A prediction of allowed mass vs radius curves for stable neutron stars from holographic

models. A comparison of the results with astrophysical observations.

• In holographic UV complete quantum field theories, it has been conjectured a bound on

the speed of sound, vs less than 1/
√

3. Testing whether this bound is true. If not, present

holographic models that describe relativistic matter at equilibrium with a speed of sound

larger than 1/
√

3.

• Determining if any other bound on the speed of sound may exist for UV complete holo-

graphic theories in four dimensions. This question is equivalent to determining what is the

stiffest system that the gauge/gravity duality can model.
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2 Introduction

In theoretical physics, important new results have often been found by realising that two dif-

ferent concepts are related to each other at a deep and fundamental level. Examples of such

relations are dualities, which relate two seemingly different quantum field theories to each other

by stating that the theories are in fact equivalent. The Anti-de Sitter/Conformal Field Theory

correspondence (AdS/CFT) is one example of duality, which relates a quantum field theory on

flat spacetime to a string theory.

In the so-called weak form, the AdS/CFT correspondence is an example of a strong-weak

coupling duality, namely, if the field theory is strongly coupled, the dual gravity theory is clas-

sical and weakly coupled. Thanks to this, certain questions relating strongly coupled quantum

field theories become computationally tractable on the gravity side and also conceptually clearer.

The AdS/CFT correspondence and its generalizations [1–3] has become a unique tool to exam-

ine strongly coupled phenomena (see [4] for a review). The holographic duality has successfully

been applied to obtain correlation functions and non-linear fluid dynamics for systems which

were intractable before [5]. During the last ten years, its applications to condensed matter (CM)

have become wide [6,7], allowing to shed some light into some non-conventional materials, such

as, topological systems [8], Weyl semimetals at strong coupling [9], certain superconductors [10],

p-wave superfluids [11] or metal-insulator transitions [12]. Not only that, but it has also been

used to the prediction of new states of matter with particular and unique properties, [13, 14],

the modeling phase transitions [15–17] or to the characterization of the Kondo effect and Fano

resonances for systems at strong coupling [18].

An important aspect has been the derivation of fluid properties, in particular those associated

to the transport of conserved currents such as energy, momentum or charge. Transport is

characterized by transport coefficients, that can be defined from correlators of conserved currents

through Kubo formulas, or in other ways such as constitutive relations in hydrodynamics. An

alternative way to identify the coefficients is through the derivative expansion of the equilibrium

partition function as in [19, 20]. Moreover, not all the transport coefficients one can possibly

define are independent. For correlators of conserved currents there are Ward identities that

impose relations among them, thus constraining some of the transport coefficients. In some cases

these relations lead to interesting effects, an example is the relation between Hall conductivity

and Hall viscosity found in [21] for Quantum Hall systems with Galilean invariance. Both

coefficients are interesting from the point of view of the characterization of topological phases.
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However, in general, viscosities are much more difficult to measure than conductivities, since it

is necessary to deform the material and measure the resulting stress, while the conductivities can

be determined by a much simpler measurement of an electric current. This situation is helped

by the relation between the two. In the presence of an inhomogeneous electric field, the Hall

current receives a correction, which to leading order in derivatives is

J i ∼ σHEi + σ
(2)
H ∇

2Ei. (2.1)

The coefficient σ
(2)
H depends on the Hall viscosity and other quantities that can be determined

independently. This in principle allows to determine the Hall viscosity via highly inhomogeneous

electric fields, which may be easier to realize experimentally than a direct measurement of the

viscosity.

In terms of retarded 2-point functions of the energy-momentum tensor

Γµναβ(x, x̂) =
〈
Tµν(x)Tαβ(x̂)

〉
R
, (2.2)

the relevant Ward identity is, in the absence of external sources (i, j = 1, 2 label the spatial

directions)

∂0∂̂0Γ0i0j(x, x̂) + ∂k∂̂lΓ
kilj(x, x̂) ' 0. (2.3)

The right hand side might contain contact terms but otherwise it’s zero because of the conserva-

tion of the energy-momentum tensor. The identity can be derived combining the two identities

∂µΓµναβ(x, x̂) ' 0, ∂̂αΓµναβ(x, x̂) ' 0. (2.4)

In holography, some of these identities have been derived already from the holographic renormal-

ization procedure [22,23], in particular the Ward identities for charged 2+1 dimensional systems

were studied in some detail in [10, 24, 25]. In the case of asymptotically AdS spacetimes1 this

follows from ‘kinematics’, it is not necessary to know the full geometry but the identity follows

from the asymptotic expansion and the equations of motion. However, the second identity in

(2.4) does not follow directly from the asymptotic expansion, it requires further input. So far

the relations between viscosities and conductivities in the AdS/CFT correspondence could only

be checked by direct computation of the correlators, but a general ‘kinematic’ argument should

exist, since they follow from symmetries and will be valid in any field theory. In [32] we address

to this question, by examining strongly coupled systems in 2 + 1 dimensions with parity and

rotational invariance.

1Generalizations for other geometries have been discussed in [26–31].
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The holographic duality is not restricted to CM only. Quantitatively predicting the prop-

erties of Quantum Chromodynamics is one of the biggest challenges of modern physics [33, 34].

The complexity of the task originates from the need to non-perturbatively solve the theory of

strong interactions, QCD; either at zero density, by means of Lattice QCD which, although

accurate in the low density regime, requires the use of highly powerful computers and complex

programming algorithms, and at finite baryon chemical potential µB , wherein the lack of knowl-

edge becomes even greater. This combination of requirements is problematic, as it makes all

the usual first principles tools fail: Lattice simulations suffer from the sign problem at finite

baryon chemical potential [35], while perturbative QCD is invalidated by the sizable value of

the gauge coupling at moderate densities [36]. At present, the Equation of State (EoS), i.e. the

functional dependence of its energy density ε on the pressure p, which is the most fundamental

quantity that governs the thermodynamic behavior of neutron star matter, is under quantita-

tive control for cold strongly interacting matter at baryon densities below the nuclear saturation

limit, nB ≤ ns ≈ 0.16/fm3, where Chiral Effective Theory (CET) works [37, 38], as well as at

baryon chemical potential above roughly 2.5 GeV where the perturbative EoS converges [39–42].

These limits unfortunately exclude the densities ns ≤ nB ≤ 10ns, where it is possible that a

deconfining phase transition to quark matter takes place [43]. Under these circumstances, it is

a common approach in phenomenological physics to employ fixed EoS parametrized in a certain

way (polytropic EoS, [44]). While they can provide some insight, they do not lean on a first-

principle formulation.

Clearly, there is a need for fundamentally new approaches to the physics of strongly coupled

quark matter — a challenge not unlike understanding the dynamics of hot quark-gluon plasma.

In this context, a very promising approach has turned out to be to apply the holographic duality.

Although limited by the fact of involving the large N limit, fundamentally different than QCD,

with N = 3, it has been nevertheless successfully used to study the deconfined phases of QCD

matter [45,46] and to probe very nontrivial equilibration dynamics [47–49], giving useful insight

on qualitative properties of QCD.

In the first formulation of the duality [1], the field theory is superconformal with degrees of

freedom in the adjoint representation, however, there are several ways to capture the dynamics

of fundamental flavors. One way in particular, which has been regarded in the present thesis,

is to consider the addition of probe D-branes in the ’t Hooft limit of λYM ≡ g2YMNc � 1 and

Nc � Nf . In this approach, the gluon sector continues to be described by classical supergravity

(SUGRA) [50]. States with finite baryon density in the gauge theory correspond to gravity con-
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figurations with a gauge field turned on in the D-brane worldvolume. The free energy can then

be computed by evaluating the classical on-shell action of SUGRA together with the D-brane

action. Given the relative simplicity of the calculations involved, the duality thus bestows us

with a powerful tool to explore strongly coupled quark matter even at high density. In the

present thesis we shall regard this model in particular when characterizing the inner core of a

hybrid neutron star.

Astrophysical observations of neutron stars with masses up to two solar masses [51,52] imply

that the EoS of the matter inside the stars should be very stiff—a property needed to build

massive stars capable of resisting gravitational collapse into a black hole [53]. The stiffness can

be measured by the thermodynamic derivative2

v2s =

(
∂p

∂ε

)
s

, (2.5)

where vs can be identified as the speed of propagation of sound waves, naturally obeying the

causal bound vs ≤ 1 (and thermodynamic stability guarantees that v2s > 0), but it has been

widely speculated that a more restrictive bound might exist as well. In particular, the lack of

known physical systems in a deconfined phase with a speed of sound exceeding the conformal

value v2s = 1/3 has prompted a conjecture that this might represent a theoretical upper limit

for this quantity [54, 55]. Some support for this argument comes from the fact that both the

inclusion of a nonzero mass to a conformal system as well as the introduction of perturbatively

weak interactions in an asymptotically free theory are known to lead to a speed of sound below

the conformal limit. We should also note that a bound on the speed of sound at fixed chemical

potential has been proposed in [56], and it seems to hold in holographic models that reproduce

thermodynamic properties of QCD computed using lattice techniques at small densities [57].

Moreover, an interesting observation pointing towards neutron star matter indeed behaving

like a strongly coupled system can be seen from the so-called Taub’s inequality [58] (see also [59]),

which states that in a relativistic kinetic theory, causality imposes the condition

ε(ε− 3p) ≥ ρ2 , (2.6)

where ρ stands for the mass density. For instance, it is easy to check that degenerate fermionic

matter satisfies Taub’s inequality for any value of the chemical potential. It is far from being

guaranteed that matter inside neutron stars would admit a quasiparticle description, therefore,

any (holographic) theory candidate to model the interior of a neutron star, would presumably

2The symbol s denotes the entropy density here.
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predict a violation of such bound.

The speed of sound conjecture has been widely discussed in the context of neutron star

physics, and it has been shown to be in rather strong tension with the known existence of two-

solar-mass neutron stars [51,52], which requires a very stiff EoS [53]. This points toward a highly

nontrivial behavior of vs as a function of the baryon chemical potential. Namely, at low densities

the speed of sound is known to have a very small value, while its behavior at asymptotically large

µB is a logarithmic rise toward v2s = 1/3. This implies that should the speed of sound bound

be violated somewhere, vs needs to possess at least two extrema, a maximum and a minimum,

between which the quantity may either behave continuously or jump discontinuously from above

the conformal value to below it.

Despite the many achievements of the gauge/gravity duality applied to QCD, one however

quickly realizes that the speed of sound bound is not easily violated for these models: previously

examples of asymptotically AdS5 geometries predict v2s ≤ 1/3 [55].3 The known violations of

the bound occur in theories that do not flow to a four-dimensional conformal field theory (CFT)

in the UV, and thus do not correspond to ordinary renormalizable field theories in four dimen-

sions. Such examples include the 3 + 1-dimensional brane intersections D4 − D6, D5 − D5,

and D4−D8 (the Sakai-Sugimoto model [62]), corresponding to the respective speeds of sound

v2s = 1/2, 1, 2/5 [63–65]. It is well known that even after a compactification to 3 + 1 dimensions,

it is not possible to disentangle four-dimensional dynamics from the additional degrees of free-

dom that live on the higher-dimensional color branes, and thus the thermodynamic properties

may be very different from a bona fide four-dimensional theory.

For the reasons listed above, it has been very challenging to build a holographic description

for dense strongly interacting quark matter that would allow for the existence of deconfined

matter inside even the heaviest neutron stars observed. One possible resolution to the speed of

sound puzzle is clearly that the quantity rises to a value vs > 1/
√

3 in the nuclear matter phase,

then discontinuously jumps to a low value at a first order deconfinement phase transition, and

finally slowly rises toward the conformal limit in the deconfined phase. One can nonetheless

propose another viable scenario, involving a violation of the speed of sound bound in the de-

confined phase and thereby paving the way to the existence of quark matter in neutron star cores.

3For two exceptions to this that are, however, dynamically unstable, see [60,61].
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[46] A. Adams, L. D. Carr, T. Schäfer, P. Steinberg, and J. E. Thomas, Strongly Correlated

Quantum Fluids: Ultracold Quantum Gases, Quantum Chromodynamic Plasmas, and

Holographic Duality, New J. Phys. 14 (2012) 115009, [arXiv:1205.5180].

[47] J. Casalderrey-Solana, M. P. Heller, D. Mateos, and W. van der Schee, From full stopping

to transparency in a holographic model of heavy ion collisions, Phys. Rev. Lett. 111 (2013)

181601, [arXiv:1305.4919].

[48] H. Bantilan and P. Romatschke, Simulation of Black Hole Collisions in Asymptotically

Anti-de Sitter Spacetimes, Phys. Rev. Lett. 114 (2015), no. 8 081601, [arXiv:1410.4799].

[49] P. M. Chesler and L. G. Yaffe, Holography and off-center collisions of localized shock

waves, JHEP 10 (2015) 070, [arXiv:1501.04644].

[50] A. Karch and E. Katz, Adding flavor to AdS / CFT, JHEP 06 (2002) 043,

[hep-th/0205236].

14

http://arxiv.org/abs/hep-ph/0305183
http://arxiv.org/abs/0912.1856
http://arxiv.org/abs/1603.00750
http://arxiv.org/abs/1301.6377
http://arxiv.org/abs/1303.4662
http://arxiv.org/abs/0711.4467
http://arxiv.org/abs/1205.5180
http://arxiv.org/abs/1305.4919
http://arxiv.org/abs/1410.4799
http://arxiv.org/abs/1501.04644
http://arxiv.org/abs/hep-th/0205236


[51] P. Demorest, T. Pennucci, S. Ransom, M. Roberts, and J. Hessels, Shapiro Delay

Measurement of A Two Solar Mass Neutron Star, Nature 467 (2010) 1081–1083,

[arXiv:1010.5788].

[52] J. Antoniadis et al., A Massive Pulsar in a Compact Relativistic Binary, Science 340

(2013) 6131, [arXiv:1304.6875].

[53] P. Bedaque and A. W. Steiner, Sound velocity bound and neutron stars, Phys. Rev. Lett.

114 (2015), no. 3 031103, [arXiv:1408.5116].

[54] P. M. Hohler and M. A. Stephanov, Holography and the speed of sound at high

temperatures, Phys. Rev. D80 (2009) 066002, [arXiv:0905.0900].

[55] A. Cherman, T. D. Cohen, and A. Nellore, A Bound on the speed of sound from

holography, Phys. Rev. D80 (2009) 066003, [arXiv:0905.0903].

[56] Y. Yang and P.-H. Yuan, Universal Behaviors of Speed of Sound from Holography,

arXiv:1705.07587.

[57] R. Rougemont, R. Critelli, J. Noronha-Hostler, J. Noronha, and C. Ratti, Dynamical vs.

Equilibrium Properties of the QCD Phase Transition, arXiv:1704.05558.

[58] A. H. Taub, Relativistic rankine-hugoniot equations, Phys. Rev. 74 (Aug, 1948) 328–334.

[59] L. Rezzolla and O. Zanotti, Relativistic Hydrodynamics. 2013.

[60] A. Buchel and C. Pagnutti, Exotic Hairy Black Holes, Nucl. Phys. B824 (2010) 85–94,

[arXiv:0904.1716].

[61] A. Buchel and C. Pagnutti, Correlated stability conjecture revisited, Phys. Lett. B697

(2011) 168–172, [arXiv:1010.5748].

[62] T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor.

Phys. 113 (2005) 843–882, [hep-th/0412141].

[63] N. Jokela and A. V. Ramallo, Universal properties of cold holographic matter, Phys. Rev.

D92 (2015), no. 2 026004, [arXiv:1503.04327].

[64] G. Itsios, N. Jokela, and A. V. Ramallo, Collective excitations of massive flavor branes,

Nucl. Phys. B909 (2016) 677–724, [arXiv:1602.06106].

[65] M. Kulaxizi and A. Parnachev, Holographic Responses of Fermion Matter, Nucl. Phys.

B815 (2009) 125–141, [arXiv:0811.2262].

15

http://arxiv.org/abs/1010.5788
http://arxiv.org/abs/1304.6875
http://arxiv.org/abs/1408.5116
http://arxiv.org/abs/0905.0900
http://arxiv.org/abs/0905.0903
http://arxiv.org/abs/1705.07587
http://arxiv.org/abs/1704.05558
http://arxiv.org/abs/0904.1716
http://arxiv.org/abs/1010.5748
http://arxiv.org/abs/hep-th/0412141
http://arxiv.org/abs/1503.04327
http://arxiv.org/abs/1602.06106
http://arxiv.org/abs/0811.2262


[66] C. Hoyos, B. S. Kim, and Y. Oz, Ward Identities for Transport in 2+1 Dimensions, JHEP

1503 (2015) 164, [arXiv:1501.05756].
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1 Introduction

Holography, in the sense of the AdS/CFT correspondence [1–3] and its generalizations, has

been used as a tool to study strongly coupled systems that are otherwise intractable or

notoriously difficult to deal with. An important aspect has been the derivation of fluid

properties, in particular those associated to the transport of conserved currents such as

energy, momentum or charge. Transport is characterized by transport coefficients, that

can be defined from correlators of conserved currents through Kubo formulas, or in other
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ways such as constitutive relations in hydrodynamics. In holography they have been com-

puted both ways, following the seminal works [4, 5]. An alternative way to identify the

coefficients is through the derivative expansion of the equilibrium partition function as

in [6, 7], although dissipative coefficients are not captured with this method. One should

bear in mind that those definitions are not always equivalent, when we discuss transport

coefficients we will be referring to those derived from correlators.

Not all the transport coefficients one can possibly define are independent. For corre-

lators of conserved currents there are Ward identities that impose relations among them,

thus constraining some of the transport coefficients. In some cases these relations lead to

interesting effects, an example is the relation between Hall conductivity and Hall viscosity

found in [8] for Quantum Hall systems. Both coefficients are interesting from the point

of view of the characterization of topological phases. For instance, in a Quantum Hall

system the Hall conductivity is proportional to the filling fraction while the Hall viscosity

depends on the shift [9–11], both of which take discrete values and remain fixed under

small deformations. However, in order to determine the viscosity one in principle needs

to deform the material and measure the resulting stress, while the conductivity can be

determined by a much simpler measurement of an electric current. This situation is helped

by the relation between the two. In the presence of an inhomogeneous electric field, the

Hall current receives a correction, which to leading order in derivatives is

J i
H ≃ σ

(0)
H Ei + σ

(2)
H ∇2Ei (1.1)

The coefficient σ
(2)
H depends on the Hall viscosity and other quantities that can be de-

termined independently. This in principle allows to measure the Hall viscosity via in-

homogeneous electric fields, which may be easier to realize experimentally than a direct

measurement of the viscosity. Originally the relation was obtained form an effective action

approach, but later it was shown for Galilean invariant systems that the relation can be

derived from Ward identities [12].

These relations were further generalized for any system with rotational invariance

in [13]. For the general case (not Galilean invariant), the transport coefficients that are

directly related are conductivities in the momentum current (or thermal conductivities)

and viscosities. Charge conductivities also enter when the magnetic field is nonzero. In

terms of retarded correlators of the energy-momentum tensor

Γµναβ(x, x̂) =
〈
Tµν(x)Tαβ(x̂)

〉
R
, (1.2)

the relevant Ward identity is, in the absence of external sources (i, j = 1, 2 label the spatial

directions)

∂0∂̂0Γ
0i0j(x, x̂) + ∂k∂̂lΓ

kilj(x, x̂) ≃ 0. (1.3)

The right hand side might contain contact terms but otherwise it’s zero because of the

conservation of the energy-momentum tensor. The identity can be derived combining the

two identities

∂µΓ
µναβ(x, x̂) ≃ 0, ∂̂αΓ

µναβ(x, x̂) ≃ 0. (1.4)
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For readers familiar with the AdS/CFT correspondence it might seem that these identities

have been derived already from the holographic renormalization procedure [14, 15], in

particular the Ward identities for charged 2 + 1 dimensional systems were studied in some

detail in [16–18]. This is partially true, there is a set of Ward identities that hold for the

correlators of the energy-momentum tensor with any other operators O1, . . . ,On

∂µ 〈Tµν(x)O1(x1) · · · On(xn)〉 = 0. (1.5)

In the case of asymptotically AdS spacetimes1 this follows from ‘kinematics’, it is not

necessary to know the full geometry but the identity follows from the asymptotic expansion

and the equations of motion. However, the second identity in (1.4) does not follow directly

from the asymptotic expansion, it requires further input.

So far the relations between viscosities and conductivities in holography could only be

checked by direct computation of the correlators, but a general ‘kinematic’ argument should

exist, since they follow from symmetries and will be valid in any field theory. In this paper

we make a first step towards generalizing Ward identities for two-point functions of the

energy-momentum in 2 + 1 dimensions. We will establish the relation between the parity

even components of the conductivities and the shear and bulk viscosities, our argument

relies on constructing a quantity which is independent of the radial direction in the bulk

geometry and taking advantage of parity symmetry. The radially independent quantity can

be seen as a “probability current” for the solutions to the linear equations of motion. We

give a general prescription on how to construct the probability current for any linear system

of second order ordinary differential equations and apply it to a specific set of theories

consisting of 3+1-dimensional gravity coupled to a scalar field. In the context of scattering

in black hole geometries, the probability current is the flux through a surface at a fixed

value of the radial coordinate, in particular the flux through the horizon, so it determines

the absorption by the black hole. In simple cases, such as a probe scalar field, one can see

that the probability current is proportional to the spectral function of the dual operator.

In more general cases it is still a combination of correlators, but we do not have a clean

interpretation for it, we will use it as a mathematical device to derive the Ward identities.

The paper is organized as follows: in section 2 we derive the identities that relate shear

viscosity and momentum conductivity in a conformal field theory (CFT). In section 3 we

generalize our construction to theories with explicit breaking of conformal invariance via

a relevant deformation and derive identities that relate bulk viscosity and momentum

conductivity. In subsection 3.1 we present the general construction of the probability

current. We discuss the results in section 4 and a possible application of the probability

current to compute the spectrum of normalizable modes. We have gathered a collection of

technical results in the appendices at the end of the paper.

2 Shear identity in a CFT

We will start by working out a simple example that will serve to illustrate the procedure

we are proposing to derive generalized Ward identities, without the technical complications

of more involved cases.
1Generalizations for other geometries have been discussed in [19–24].
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The simplest identity we can check using holography is the relation between shear vis-

cosity and thermal conductivity in a CFT. We will restrict the analysis to (2+1)-dimensions,

although it can be generalized to any number of dimensions. We will assume that the CFT

has a gravity dual and that quantum and higher derivative corrections on the gravity side

are small,2 so it can be well approximated by classical Einstein gravity coupled to matter.

For simplicity we will consider states where the CFT is at finite temperature but there are

no other sources of breaking of conformal invariance (explicit or spontaneous). This implies

that the effect of matter is simply to introduce a negative cosmological constant Λ = −3/L2

S =
1

16πGN

∫
d4x

√−g (R− 2Λ) , (2.1)

where GN is the four-dimensional Newton’s constant. The geometry dual to the thermal

state of a CFT is the AdS4 black brane

ds2 =
L2

z2

(
−f(z)dx20 + dx21 + dx22 +

dz2

f(z)

)
, f(z) = 1− z3

z3H
. (2.2)

Where L is the AdS radius. The conformal AdS boundary is at z = 0, while z = zH is the

position of the black brane horizon. We can set zH = 1 by rescaling the coordinates

z → zHz, xµ → zHxµ. (2.3)

All dimensionful quantities will be given in units of zH . Physical units can be restored by

introducing zH factors using dimensional analysis and then replacing the zH dependence

by a dependence on the temperature of the black brane

T =
3

4πzH
. (2.4)

Two-point retarded correlation functions of the energy-momentum tensor can be com-

puted using AdS/CFT by solving for linearized fluctuations of the metric around the black

brane background and imposing ingoing boundary conditions at the horizon [25]. We

will work in the radial gauge where δgMz = 03 and we will expand in plane waves with

momentum along the x1 direction

δgµν = −L2

z2

∫
d3k

(2π)3
eikµx

µ

hµν(z). (2.5)

For the calculation of the shear viscosity we only need to turn on the h12 and h02 compo-

nents, and in the calculations we will fix the momentum to be kµ = (ω, k, 0) without loss

of generality.

Varying the action (2.1) with respect to the metric gMN yields Einstein’s equations

RMN − 1

2
gMNR− 3

L2
gMN = 0. (2.6)

2On the field theory side this means a large-N and strong coupling approximation.
3We will employ capital latin indexes for the bulk coordinates, greek indexes for the boundary coordi-

nates. Latin lower case indexes will run for the spatial x1, x2 components.
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Expanding to linear order in the fluctuations, we find three equations, two dynamical and

one constraint

0 = h′′12 −
(
2

z
− f ′

f

)
h′12 +

ω2

f2
h12 +

ωk

f2
h02,

0 = h′′02 −
2

z
h′02 −

k2

f
h02 −

ωk

f
h12,

0 = ωh′02 + kfh′12.

(2.7)

Where primes denote derivatives with respect to the radial direction z.

An important ingredient in our derivation is parity symmetry. The equations are

invariant under the transformation

k −→ −k, h12 −→ −h12. (2.8)

Therefore, for every solution h02, h12 of the equations with frequency ω and momentum k,

there is another solution for the opposite momentum with the same radial profile, up to

the overall sign in h12

h̃02(ω,−k, z) = h02(ω, k, z), h̃12(ω,−k, z) = −h12(ω, k, z). (2.9)

Note that generically introducing sources in the field theory will break parity, this will be

reflected in the boundary conditions h12(ω, k, z = 0) 6= −h12(ω,−k, z = 0) and h02(ω, k, z =

0) 6= h02(ω,−k, z = 0). Nonetheless, the spectrum is determined by normalizable solutions

h12(z = 0) = h02(z = 0) = 0, which will show parity invariance.

2.1 Probability current and parity

The equations of motion (2.7) can be cast in the form of coupled Schröedinger equations

(plus a constraint) by changing to the following variables

h02 = zψ0, h12 =
z√
f
ψ1. (2.10)

Then, the dynamical equations have the form

0 = ψ′′
1 − V1ψ1 +

ωk

f3/2
ψ0,

0 = ψ′′
0 − V0ψ0 −

ωk

f3/2
ψ1.

(2.11)

Where

V1 = −ω2

f2
+

f ′

fz
− (f ′)2

4f2
+

3

fz2
− 1

z2
, V0 =

k2

f
+

2

z2
. (2.12)

For k = 0 the two modes decouple and one can naturally define probability currents

for each of the fluctuations (bar denotes complex conjugation)

j0,1 = ψ0,1ψ0,1
′ − ψ0,1

′
ψ0,1. (2.13)
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Since the potentials are real, these currents are independent of the radial coordinate

d

dz
j0,1 = ψ0,1ψ0,1

′′ − ψ0,1
′′
ψ0,1 = ψ0,1(V0,1ψ0,1)− (V0,1ψ0,1)ψ0,1 = 0. (2.14)

However, when the momentum is non-zero the currents j0 and j1 are not independent of

the radial direction anymore. Instead, we find

d

dz
j1 = − ωk

f3/2
(ψ1ψ0 − ψ0ψ1),

d

dz
j0 =

ωk

f3/2
(ψ0ψ1 − ψ1ψ0). (2.15)

Even though separately the radial derivative of each current is non-zero we see that they

are proportional to the same function. The combination J = j1−j0 is actually independent

of the radial direction. Note that J is invariant under the parity transformation (2.8), since

it depends quadratically on h12 and the radial profile of the fluctuations does not change.

We will use this fact to derive the generalized Ward identity by comparing the value of the

current J at the horizon and at the boundary.

To leading order, the ingoing solutions near the horizon z → 1 can be expanded as

ψ1 = (1− z)
1
2
−iω

3 (A1 + · · · ) +
√
1− z

(
−
√
3k

ω
B + · · ·

)
,

ψ0 = (1− z)1−iω
3

(
i
√
3k

3− iω
A1 + · · ·

)
+ B (1 + (1− z) + · · · ) .

(2.16)

The solution for ψ0 when the momentum is zero and the two modes are decoupled is the

one with coefficient B. In that situation, there are no ingoing solutions for the vector mode.

This solution actually does not contribute to the current, whose value at the horizon is

JH = i
2

3
ω |A1|2 . (2.17)

Invariance of the current under parity implies that JH(−A1,−k) = JH(A1, k). But

JH(−A1,−k) = i
2

3
ω |−A1(−k)|2 = i

2

3
ω |A1(−k)|2 = JH(A1,−k). (2.18)

Therefore, JH(k) = JH(−k) and since J is independent of the radial coordinate, we deduce

that

J(k) = J(−k). (2.19)

2.2 Ward identities

To leading order, the solutions near the boundary z → 0 can be expanded as

ψ0,1 =
1

z

(
H

(0)
0,1 +H

(2)
0,1z

2 + · · ·
)
+ z2

(
T
(0)
0,1 + · · ·

)
. (2.20)

The coefficients of the non-normalizable modes H
(0)
0,1 are proportional to the Fourier trans-

form of the sources of the energy-momentum tensor, i.e. the boundary metric

g(0)µν = ηµν + δg(0)µν . (2.21)
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The coefficients of the normalizable modes T
(0)
0,1 are related to the Fourier transform of the

expectation value in the dual field theory

〈Tµν〉 = 〈Tµν〉thermal + δ 〈Tµν〉 . (2.22)

The exact relation follows from holographic renormalization [14]

δg
(0)
a2 = −H(0)

a , a = 0, 1. δ 〈T02〉 = − 3L2

16πGN
T
(0)
0 , δ 〈T12〉 = − 3L2

16πGN

[
T
(0)
1 +

1

2
H

(0)
1

]
.

(2.23)

The two-point correlation functions of the energy-momentum tensor can be computed by

doing a variation of the expectation value with respect to the source

Γa2b2 =
∂ 〈Ta2〉
∂gb2

∣∣∣
δgµν=0

. (2.24)

Note that the normalizable solution is not independent, ingoing boundary conditions at

the horizon impose a relation between the boundary normalizable and non-normalizable

solutions, with some coefficients depending on the frequency and the momentum

T
(0)
1 = C11(ω, k)H

(0)
1 + C10(ω, k)H

(0)
0 ,

T
(0)
0 = C01(ω, k)H

(0)
1 + C00(ω, k)H

(0)
0 .

(2.25)

From (2.23) and (2.24), the correlation functions associated to the shear and transverse

thermal conductivity are

Γ0202 = − 3L2

16πGN
C00, Γ1202 = − 3L2

16πGN
C10,

Γ0212 = − 3L2

16πGN
C01, Γ1212 = − 3L2

16πGN

[
C11 +

1

2

]
.

(2.26)

The coefficients H
(2)
0,1 are fixed by the corresponding dynamical equations in (2.7). If

we also take into account the constraint equation, we find the following conditions

H
(2)
1 =

ω2

2
H

(0)
1 +

ωk

2
H

(0)
0 ,

T
(0)
0 = − k

2ω
H

(0)
1 − k

ω
T
(0)
1 ,

H
(2)
0 = − k

ω
H

(2)
1 = −ωk

2
H

(0)
1 − k2

2
H

(0)
0 .

(2.27)

Using all these results, the probability current evaluated at the boundary has the following

form

JB = 3
(
H

(0)
1 T

(0)
1 −H

(0)
1 T

(0)
1

)
+

3k

2ω

(
H

(0)
0 H

(0)
1 −H

(0)
0 H

(0)
1

)
+

3k

ω

(
H

(0)
0 T

(0)
1 −H

(0)
0 T

(0)
1

)
.

(2.28)
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We see that indeed JB is invariant under parity, since JB(−H1,−T1,−k) = JB(H1, T1, k).

However, in order for the condition (2.19) to hold, an additional constraint should be

satisfied (“even” and “odd” is respect to k → −k)

ω
(
H

(0)
1 T

(0)
1 −H

(0)
1 T

(0)
1

)
odd

+
k

2

(
H

(0)
0 H

(0)
1 −H

(0)
0 H

(0)
1

)
+k

(
H

(0)
0 T

(0)
1 −H

(0)
0 T

(0)
1

)
even

= 0.

(2.29)

We will use this relation to derive Ward identities for correlators in the dual field theory.

Using (2.27), we see that not all those coefficients are independent, but

ωC01(ω, k) + kC11(ω, k) +
k

2
= 0, ωC00(ω, k) + kC10(ω, k) = 0. (2.30)

This implies the following Ward identities

ωΓ0212 + kΓ1212 = 0, ωΓ0202 + kΓ1202 = 0, (2.31)

which correspond to the usual conservation of the energy-momentum tensor.

On the other hand, (2.29) for arbitrary sources leads to the conditions

(
C11 − C11

)
odd

= 0, (2.32)

ωC10 odd −
k

2
− k C11,even = 0. (2.33)

This implies the following Ward identities

(
Γ1212 − Γ1212

)
odd

= 0, ωΓ1202 odd − kΓ1212 even = 0. (2.34)

Combining the two second identities in (2.31) and (2.34), we get

[
ω2Γ0202 + k2Γ1212

]
even

= 0. (2.35)

From this expression we can derive the relation between shear viscosity and transverse

thermal conductivity.

3 Bulk identity in a non-CFT

We would like now to study a more involved case, the relation between bulk viscosity

and longitudinal thermal conductivity. Although the derivation is similar to the one we

have used for the shear identity in a CFT, there are some features that cannot be easily

generalized, in particular finding a constant probability current for a larger number of

coupled fluctuations. We will show how this can be done using a particular example.

In a CFT the bulk viscosity is zero, so we should introduce a breaking of conformal

invariance. This can be achieved by introducing additional couplings for relevant operators

or giving them an expectation value. On the gravity side, this is translated into turning on

scalar fields. In the simplest scenario there will be just one scalar coupled to Einstein gravity

S =
1

16πGN

∫
d4x

√−g
(
R− (∂φ)2 − 2V (φ)

)
. (3.1)
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The potential has a critical point at φ = 0 corresponding to AdS with Λ = V (0). In order

for the dual operator O to be relevant, the mass of the scalar field should be negative

m2L2 = ∂2V (0) < 0, so the critical point is a maximum of the potential. The mass of the

field is related to the conformal dimension of the dual operator ∆ as m2L2 = ∆(∆− 3).

The equations of motion are

RMN − 1

2
RgMN = ∂Mφ∂Nφ− 1

2
gMN

(
∂Kφ∂Kφ+ 2V (φ)

)
, (3.2)

0 = �φ− ∂V (φ) .

We will consider a generic background black brane solution with the scalar field turned on

ds2 = dr2 + e2A(r)
(
−e2B(r)dx20 + dx21 + dx22

)
, φ = φ0(r). (3.3)

The boundary is at r → ∞, where the solution is asymptotically AdS. Asymptotically close

to the boundary the scalar field and the blackening function of the metric vanish φ0, B → 0,

while the warp factor becomes linear in the radial coordinate A(r) ≃ r
L . The horizon is

at r = rH , where the g00 component of the metric vanishes B(r) ≃ log(r − rH). For

convenience we will set L = 1 in the calculations, so all dimensionful quantities are given

in units of the AdS radius. We will restore the dependence on L in the final expressions

for one-point functions and correlators. To leading order,4 the expansion of the solutions

close to the boundary are

A ∼ r − λ2

8
e−2(3−∆)r − 1

9
(3B0 −∆(∆− 3)λv) e−3r + · · · ,

B ∼ e−3rB0 + · · · , φ0 ∼ λe−(3−∆)r + ve−∆r + · · · .
(3.4)

The coefficients λ and v are proportional to the source and the expectation value of the

dual scalar operator respectively. The coefficient B0 is proportional to the thermal con-

tribution to the energy density. We have computed the renormalized expectation values

in appendix A using the holographic renormalization procedure. We find that the total

energy density ε and pressure P are

ε = 〈T00〉 =
1

8πGNL

[
−2B0 −

1

3
(∆− 3)(3− 2∆)λv

]
,

P = 〈Tii〉 =
1

8πGNL

[
−B0 +

1

3
(∆− 3)(3− 2∆)λv

]
,

(3.5)

while the expectation value of the dual scalar operator is

〈O〉 = µ∆−3

8πGNL
(3− 2∆)v. (3.6)

Where µ is an arbitrary scale that enters in the definition of the source for the dual operator

λ = µ∆−3J (0).

4We are presenting the expansions as if 3/2 < ∆ < 5/2 , but they are valid for any 1/2 < ∆ < 3, except

for special values, when 2∆− 3 is an integer.
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The trace of the energy-momentum tensor satisfies the Ward identity

〈
Tµ
µ

〉
=

1

8πGNL
(∆− 3)(3− 2∆)λv = (∆− 3)J (0) 〈O〉 . (3.7)

In order to compute correlation functions in the dual field theory we follow the usual

analysis of linearized fluctuations of the metric and scalar field δgMN , δφ. We will work in

the radial gauge δgrM = 0 and expand in plane waves along the field theory directions

δgµν =

∫
d3k

(2π)3
eikµx

µ

hµν(r), δφ = e

∫
d3k

(2π)3
eikµx

µ

ϕ(r). (3.8)

It is possible to repeat the derivation of the shear identity in this background by turning on

only the h12 and h02 components of the metric. The structure of the equations is the same,

with the only difference being that when the equations are written in the Schröedinger

form the potentials depend on the background scalar.

For the present analysis we will turn on the minimal set of modes of the metric coupled

to the scalar ϕ: h00, h01, h11 and h22 and we will fix the momentum to be kµ = (ω, k, 0)

without loss of generality. It will be convenient to use a different basis of modes

y1 =
1

2
e−

A
2
(
e−2Bh00 + h11 + h22

)
,

y2 =
1

2
eA

(
−e−2Bh00 + h11 + h22

)
,

y3 = e
3
2
Aϕ,

y4 =
1

2
e−

A
2 (h11 − h22) ,

y5 = e−
A
2
−2Bh01.

(3.9)

The dynamical equations of motion and the constraints are

y′′i + aij y
′
j + bij yj = 0, cai y

′
i + dai yi = 0, a = 1, 2, 3. (3.10)

Where the coefficients are given in the appendix B.2. The structure is such that, for i 6= 5

a5i = ai5 = 0, bi5, b5i ∝ k, c15, c
3
5, c

2
i ∝ k, d55, d

3
5, d

2
i ∝ k. (3.11)

While all the other coefficients are proportional to even powers of k. One can easily check

that the equations are invariant under the parity transformation

k −→ −k, h01 −→ −h01 (y5 −→ −y5). (3.12)

3.1 Constructing a probability current

For the shear modes it was quite easy to construct a constant probability current. This was

actually possible because the structure of the equations is quite special. The existence of a

constant probability current was pointed out before in other simple cases, such as a probe

scalar field in the BTZ black hole [25] and for longitudinal fluctuations of a gauge field in

a charged asymptotically AdS4 black hole [26]. In those cases it is roughly proportional to

– 10 –



J
H
E
P
0
1
(
2
0
1
6
)
0
1
3

the on-shell action. As we will see, in the more complicated case of a scalar field coupled

to the metric, the special structure of the vector modes is absent and in order to construct

a constant current we need to introduce additional ingredients. Let us mention that it is

possible to define in general a conserved ‘symplectic current’ wµ [27, 28] that is useful to

prove the conservation of Noether charges in the bulk and the first law of thermodynamics

in holography (see [29, 30]). Similarly to the probability current, it is a bilinear functional

of the fluctuations of the fields wµ = wµ(δ1Φ, δ2Φ). However, in contrast to the probability

current defined from the on-shell action, it vanishes for δ1Φ = δ2Φ. It would be interesting

to see if the probability current we define below and the symplectic current are related.

Let us first consider zero momentum k = 0 with the background scalar field turned

off φ0 = 0. The dynamical equations take a simpler form, with all the modes decoupled

except for y1 and y2. For each of the decoupled modes the equations are

y′′i + aiiy
′
i + biiyi = 0, i = 3, 4, 5. (3.13)

We can define new variables such that the equations take the form of Schröedinger equa-

tions. The new variables are

yi(r) = e−
1
2

∫ r aiiψi(r), (3.14)

and the equations become

ψ′′
i − Viψi = 0, Vi = −bii +

1

2
a′ii −

1

4
a2ii. (3.15)

Therefore, there is a constant probability current for each of these modes

ji = ψi
′
ψi − ψiψi

′. (3.16)

For the coupled modes, the coefficients of the dynamical equations are

alm =

(
B′ e−

3A
2 (A′ −B′)

0 2B′

)
, (3.17)

and

blm =

(
−3

4A
′ (3A′ + 4B′) −3e−

3A
2 A′ (A′ −B′)

e−
A
2
−2Bω2 e−2A−2Bω2 − 9A′ (A′ +B′)

)
, l,m = 1, 2 . (3.18)

We can also put this equation in Schröedinger form by defining new variables

yl = Ωlmψm, l,m = 1, 2. (3.19)

The matrix Ω has to satisfy the differential equation

Ω′ = −a

2
Ω, (3.20)

for which there is a formal solution

Ω = 1 +
∞∑

n=1

(−1)n

2n

∫ r

dr1

∫ r1

dr2 · · ·
∫ rn−1

drn a(r1)a(r2) · · · a(rn). (3.21)
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The equations become, in matricial form

ψ′′ − Vψ = 0, V = Ω−1

[
a2

4
+

a′

2
− b

]
Ω. (3.22)

However, in this case we cannot construct a simple probability current. Näıvely the general

form would be

J = ψ†′Qψ − ψ†Q†ψ′, (3.23)

with Q a constant matrix. In order for the current to be constant it is necessary that the

matrix Q satisfies the algebraic equations

V†Q−Q†V = 0, Q = Q†. (3.24)

For the shear mode this was the case because V can be expanded in Pauli matrices

{1, σ3, iσ2} with real coefficents, so the algebraic relations are satisfied for Q = σ3. How-

ever, for the scalar modes there is also a term in the potential proportional to σ1, so the

algebraic constraints cannot be satisfied in general.

A possible way to generalize the probability current would be to allow non-constant

coefficients, and define the current as

J = ψ†′Aψ′ + ψ†′Bψ − ψ†B†ψ′ + ψ†Cψ, (3.25)

with A† = −A, C† = −C. The condition that the current is constant J ′ = 0 together with

the equations of motion (3.22) gives differential equations for the coefficents. A current

of this form could also be defined for the original system of equations (even if k 6= 0 and

φ0 6= 0), without having to write the equations in Schröedinger form. The current would be

J = y†
′Ay′ + y†

′By − y†B†y′ + y†Cy. (3.26)

Rather than constructing J in this way and solving the differential equations for the coeffi-

cients, we will try a different approach. We will add additional fields so the probability cur-

rent becomes a Noether current with known coefficients and then we will fix the boundary

conditions of the auxiliary fields in terms of the boundary conditions of the original modes.

First let us introduce a matrix K such that the equations can be written in the form

K−1
(
Ky′

)′
+ by = 0, K−1K ′ = a ⇒ K ′ = Ka. (3.27)

A formal solution is

K = 1 +
∞∑

n=1

∫ r

dr1

∫ r1

dr2 · · ·
∫ rn−1

drn a(rn) · · · a(r2) a(r1). (3.28)

If we multiply by K on the left we get

(
Ky′

)′
+Kby = 0. (3.29)
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We can derive this from a Lagrangian by introducing new fields η. The number of auxiliary

fields is the same as the number of original fluctuations and can be grouped in a vector of

the same length. The Lagrangian that gives the equations for y is

L = (η†)′Ky′ − η†Kby + (y†)′K†η′ − y†b†K†η. (3.30)

(
K†η′

)′

+ b†K†η = 0 . (3.31)

Note also that the equations are invariant under the parity transformation

k −→ −k, η5 −→ −η5, (3.32)

this will be important in the derivation of the new identities.

The equations for y and η become the same if K = K† and Kb = b†K, in which case

one can set η = y and L can be used as a Lagrangian for the original system of equations.

The action of the extended system has a U(1) global symmetry

y −→ eiαy, η −→ eiαη, (3.33)

whose (anti-Hermitian) Noether current is

J = (η†)′Ky − η†Ky′ + (y†)′K†η − y†K†η′. (3.34)

The equations of motion imply that J ′ = 0. The current is invariant under the full parity

symmetry acting on both y and η.

3.1.1 Current at the boundary

Our first goal is to compute the probability current at the boundary. For simplicity we will

restrict to a quadratic potential for the scalar field V (φ) = 1
2m

2φ2, with m2 < 0 but above

the Breitenlohner-Freedman bound, as is appropriate for a field dual to a relevant operator.

For arbitrary potentials V (φ) with a maximum at φ = 0 we have checked that there are no

qualitative changes in the boundary expansions, although coefficients do depend on third

and fourth derivatives of the potential.

The expansions of the background and the matrixK can be found in appendix C.1, and

the one for the auxiliary fields in appendix C.4. Since the equations are second order, there

are in principle two independent solutions for each of the yi and ηi. One corresponds to

the non-normalizable solution, which for the original fluctuations maps to the metric or to

a source for the scalar operator in the dual field theory. The other solution is normalizable

and for the original fluctuations maps to the expectation value of the energy-momentum

tensor and the scalar operator. Let us compare the leading terms of each of the independent

solutions in the expansions of the auxiliary fields to those of the original fluctuations.

y1 ∼ e
3
2
ry

(0)
1 + e−

3
2
ry

(3)
1 ,

η1 ∼ e
3
2
rη

(0)
1 + e−

3
2
rη

(3)
1 − 1

8
(k2 + 2ω2)e

5
2
rη

(0)
2 + · · · ,
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y2 ∼ e3ry
(0)
2 + e−3ry

(6)
2 ,

η2 ∼ e3rη
(0)
2 + e−3rη

(6)
2 ,

y3 ∼ e−(
3
2
−∆)ry

(3−∆)
3 + e(

3
2
−∆)ry

(∆)
3 ,

η3 ∼ e−(
3
2
−∆)rη

(3−∆)
3 + e(

3
2
−∆)rη

(∆)
3 +

∆− 3

2
e(

3
2
+∆)rλη

(0)
2 + · · · ,

y4 ∼ e
3
2
ry

(0)
4 + e−

3
2
ry

(3)
4 ,

η4 ∼ e
3
2
rη

(0)
4 + e−

3
2
rη

(3)
4 − k2

4
e

5
2
rη

(0)
2 + · · · ,

y5 ∼ e
3
2
ry

(0)
5 + e−

3
2
ry

(3)
5 ,

η5 ∼ e
3
2
rη

(0)
5 + e−

3
2
rη

(3)
5 − kω

2
e

5
2
rη

(0)
2 + · · · .

The independent terms are the same, but the leading terms in the auxiliary fields start with

a larger exponent due to the mixing with η2. This can be understood as follows, close to the

boundary the coefficients a → 0, making K → 1 and b becomes diagonal. If all the modes

had the same asymptotics, then we will be in the case where we can set η = y. However,

this is not exactly true because η2 grows faster than the other modes and even though

the off-diagonal components of b and a go to zero at the boundary, they do not decay fast

enough to avoid the mixing. Nonetheless, while we cannot impose the condition η = y, we

can fix some relation between the leading coefficients of the independent solutions. There

is an ambiguity in this choice, since different combinations may be formed. The simplest

option is simply to match the leading coefficients of each of the independent solutions for

y with the leading coefficients of the independent solutions for η

η
(0)
i = y

(0)
i , η

(3)
i = y

(3)
i , i = 1, 4, 5,

η
(0)
2 = y

(0)
2 , η

(6)
2 = −y

(6)
2 ,

η
(3−∆)
3 = y

(3−∆)
3 , η

(∆)
3 = y

(∆)
3 .

(3.35)

This fixes completely the auxiliary modes in terms of the original fluctuations.5 We

can group the non-normalizable coefficients in a vector H and the normalizable coefficients

in another vector T ,

HT =
(
y
(0)
1 y

(0)
2 y

(3−∆)
3 y

(0)
4 y

(0)
5

)
, T T =

(
y
(3)
1 y

(6)
2 y

(∆)
3 y

(3)
4 y

(3)
5

)
. (3.36)

5The choice of sign for η
(6)
2 gives simpler expressions.
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In the following we will use the vector components Hi and Ti to refer to the normalizable

and non-normalizable coefficients. The current evaluated at the boundary has the form

JB = H†CH +H†DT − T †D†H, (3.37)

where C† = −C. The non-zero elements of C are

C12 = −C21, C13 = −C31, C23 = −C32, C24 = −C42, C25 = −C52. (3.38)

They have even powers of k except for C25, which is proportional to odd powers. The

explicit value of the coefficients is given in appendix B.3. The non-zero elements of D are

D11, D22, D33, D44, D55, D13, D21, D23, (3.39)

all of which only have even powers of k. The explicit value is also in appendix B.3. One

can easily check that current is explicitly invariant under the parity transformation

k −→ −k, H5 −→ −H5, T5 −→ −T5. (3.40)

In order to compute correlators we impose ingoing boundary conditions at the horizon.

At the boundary this means that the coefficients of the normalizable solutions are not

independent, but they are proportional to the coefficients of the non-normalizable solutions:

Ti = Cij(ω, k)Hj , (3.41)

or, in matrix notation, T = CH. Then, the current evaluated at the boundary can be

written as

JB = H†GH, G = C +DC − C†D†. (3.42)

3.1.2 Current at the horizon

We now proceed to compute the probability current at the horizon. The background is

taken to be regular at the horizon, with g00 having a simple zero at r = rH .

A = AH +O((r − rH)2) , B = log (r − rH) +BH +O((r − rH)2) , φ = φH +O((r − rH)2).

(3.43)

To leading order, the matrix K close to the horizon takes the following form

K = (r − rH)




KH
11 KH

12(r − rH) + e−
3
2
AHKH

11

KH
22(r − rH)

KH
32(r − rH) KH

33

KH
44

KH
55(r − rH)2




. (3.44)

The expansions of the background and the matrix K can be found in appendices C.2. The

coefficients KH
ij are not determined by the expansion close to the horizon. Their value

can be determined by solving the differential equation for K imposing the condition at the

boundary that K → 1.
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Since the equations for the fluctuations are of second order, there are in principle two

independent solutions for each of the yi and ηi, generically of the form ∼ (r − rH)α. The

exponent α can be complex. For the fluctuations yi we impose regularity (if α is real)

or ingoing boundary conditions (if α is complex). Since we have already imposed the

conditions (3.35), there is no freedom left to fix the behavior of the auxiliary fields ηi at

the horizon. The leading order terms of each of the independent solutions are

y1 ∼ yH1 ,

η1 ∼ (r − rH)−icH ωηH1 + (r − rH)icH ωη̃H1 ,

y2 ∼ (r − rH)−icH ωyH2 ,

η2 ∼ ηH2 +
η̃H2

r − rH
,

y3 ∼ (r − rH)−icH ωyH3 ,

η3 ∼ (r − rH)−icH ωηH3 + (r − rH)icH ωη̃H3 ,

y4 ∼ (r − rH)−icH ωyH4 ,

η4 ∼ (r − rH)−icH ωηH4 + (r − rH)icH ωη̃H4 ,

y5 ∼ yH5

η5 ∼ ηH5 +
η̃H5

(r − rH)2
.

Where we have defined cH = e−(AH+BH). All the fluctuations are actually mixed, the

expansion of the fluctuations and the auxiliary fields can be found in appendix C.5.

Let us group the coefficients of the solutions in the vectors yH , ηH and η̃H with

components

(yH)i = yHi , (ηH)i = ηHi , (η̃H)i = η̃Hi . (3.45)

The probability current evaluated at the horizon takes the form

JH = η†HMyH − y†HM†ηH + η̃†HN yH − y†HN †η̃H . (3.46)

Where the non-zero entries of each matrix are

M12 = 2e−
3
2
AH (icH ω − 1)KH

11, M33 = 2icH ωKH
33, M44 = 2icH ωKH

44,

N21 = e
3
2
AHKH

22, N55 = −2KH
55.

(3.47)

When we solve the linear equations of motion, we can write a general solution in terms

of the boundary values using a boundary-to-bulk propagator

yi = Gij(r, ω, k)y
(0)
i , ηi = G̃ij(r, ω, k)η

(0)
i . (3.48)
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The parity symmetry of the equations of motion imply that the components

G5i, Gi5, G̃5i, G̃i5 for i 6= 5 are odd in momentum, while the rest of components are even.

Since the elements Mi5, M5i, Ni5 and N5i are all zero for i 6= 5, the current evaluated at

the horizon will be even in momentum when the parity odd sources are zero y
(0)
5 = η

(0)
5 = 0

or when the parity even sources are zero y
(0)
i 6=5 = η

(0)
i 6=5 = 0. In these two cases the current

should be invariant under k → −k:

J(k) = J(−k). (3.49)

However, if both parity even and parity odd sources are nonzero, in general the current

will have contributions that are odd in momentum, in contrast to the case of the shear

viscosity. We will denote the odd part of the horizon current as

[JH ]odd =
1

2
(JH(k)− JH(−k)) . (3.50)

3.2 Boundary coefficients and correlators

The asymptotic expansion of metric and scalar fluctuations takes the form

hµν = e2r
(
h(0)µν + e−3rGT

µν + · · ·
)
, δφ = e−(3−∆)rδλ+ e−∆rGO + · · · . (3.51)

We can identify h
(0)
µν with a change of the metric in the dual field theory g

(0)
µν = ηµν + h

(0)
µν ,

that acts a as a source for the energy-momentum tensor. Similarly, δλ = µ∆−3δJ (0) is a

change of the coupling that acts as a source for the scalar operator. The changes in the

expectation values of the energy-momentum tensor δ 〈Tµν〉 and scalar δ 〈O〉 are proportional
to the coefficients GT

µν and GO respectively. We have used the holographic renormalization

procedure to compute the change in the one-point functions relative to the background

values given in (3.5) and (3.6)

δ 〈O〉 = µ∆−3

8πGNL
(3− 2∆)GO, (3.52)

δ 〈Tµν〉 =
3

16πGNL
GT

µν +
(∆− 3)(∆− 1)

2∆− 3

[
〈O〉

(
J (0)h(0)µν + δJ (0)ηµν

)
+ J (0)δ 〈O〉 ηµν

]
.

The coefficients G are not independent, but they will be fixed in terms of the sources once

regularity or ingoing boundary conditions are imposed on the solutions. In general they

will have an expansion

GT
µν = GTT αβ

µν h
(0)
αβ +GTO

µν δλ,

GO = GOT αβh
(0)
αβ +GOOδλ.

(3.53)

Where the coefficients GTT , GTO, GOT and GOO are functions of the frequency and the

momentum.

We can derive the correlators of the energy-momentum tensor and scalar by taking

variations with respect to the one-point functions

ΓTT
µναβ = −ηασηβρ

δ 〈Tµν〉
δh

(0)
σρ

, ΓTO
µν =

δ 〈Tµν〉
δJ (0)

,

ΓOT
αβ = −ηασηβρ

δ 〈O〉
δh

(0)
σρ

, ΓOO =
δ 〈O〉
δJ (0)

.

(3.54)
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3.3 Ward identities

We have now all the ingredients to derive Ward identities. Let us start with the usual Ward

identities for the conservation and the trace of the energy-momentum tensor. When we

compute the solutions we find that not all the coefficientsGT
µν are independent. They satisfy

a linear relation, that in terms of the one-point functions becomes the trace Ward identity

ηµνδ 〈Tµν〉 − h(0)µν 〈Tµν〉T = (∆− 3)
[
δJ (0) 〈O〉+ J (0)δ 〈O〉

]
. (3.55)

Where 〈Tµν〉T is the thermal energy-momentum tensor determined in (3.5).

The momentum constraint equations give two more Ward identities related to the

conservation of the energy-momentum tensor

0 = ωδ 〈T00〉+ kδ 〈T10〉+ ε(ωh
(0)
00 + kh

(0)
01 ) +

ε+ P

2
ω(h

(0)
11 + h

(0)
22 )− ωδJ (0) 〈O〉 ,

0 = ωδ 〈T01〉+ kδ 〈T11〉 − P (ωh
(0)
01 + kh

(0)
11 )−

ε+ P

2
kh

(0)
00 + kδJ (0) 〈O〉 .

(3.56)

These are consistent with the covariant form of the Ward identity expanded to linear order

∂µ

(
δ 〈Tµ

ν〉 − h(0)µα 〈Tαν〉T
)
+ Γ(0)µ

µα 〈Tα
ν〉T − Γ(0)α

µν 〈Tµ
α〉T = −∂µδJ

(0) 〈O〉 . (3.57)

In order to derive a generalized Ward identity for the scalar modes we can use the

same argument we used for the shear modes. The current evaluated at the horizon has

a contribution [JH ]odd odd under k → −k. Since the current is constant in the radial

direction J ′ = 0, the current evaluated at the boundary must have the same property.

This gives the conditions

[G]odd =
δ2

δH†δH
[JH ]odd. (3.58)

Where G was defined in (3.42).

We use the basis of fluctuations yi to compute the current, but then we change to

the usual basis of metric and scalar fluctuations hµν , δφ to extract G and derive the Ward

identities. The map between the leading order terms is

y1
(0) =

1

2

(
h
(0)
11 + h

(0)
22 + h

(0)
00

)
, y2

(0) =
1

2

(
h
(0)
11 + h

(0)
22 − h

(0)
00

)
, y3

(3−∆) = δλ ,

y4
(0) =

1

2

(
h
(0)
11 − h

(0)
22

)
, y5

(0) = h
(0)
01 .

(3.59)

If we turn on only the parity odd source y5
(0), then [JH ]odd = 0 and the Ward identity is

simply [
ΓTT
0101 − Γ

TT
0101

]
odd

= 0. (3.60)

If we turn on only the parity even sources, we get a quite complicated expression. It becomes

somewhat simpler if we impose on the source the tracelessness condition ηµνh
(0)
µν = 0 ⇒

y2
(0) = 0 and set the source for the scalar field to zero y3

(3−∆) = 0, but it does not lead to

any expression that relates to the Ward identity we are interested in.
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We have to allow for both parity odd an parity even sources. We find the following

condition [
ΓTT
1101 + Γ

TT
0111

]
odd

= −Wodd, (3.61)

where the term that appears on the right hand side is schematically

Wodd = −αJ
δ2[JH ]odd

δh
(0)
01 δh

(0)
11

+ λ
[
α01Γ

OT
01 + α00Γ

OT
00

]
odd

+ αkω(ω2 − k2)2. (3.62)

α01 is a constant and α00 depends on the pressure and the expectation value of the scalar

operator. The coefficients αJ and α are dimensionful constants determined by the overall

factors that appear in the definition of the correlators Γ when we compute them using

holographic renormalization.

If we multiply by k this equation and use the Ward identity (2.31) (with the source

for the scalar fluctuation set to zero), such that kΓTT
1101 = −ωΓTT

0101 + ωP , then

[
kΓ

TT
0111 − ωΓTT

0101

]
even

= −ωP − kWodd . (3.63)

Multiplying by ω and using (2.31), such that ωΓ
TT
0111 = −kΓ

TT
1111 + kP , we obtain the

expected form of the Ward identity

[
ω2ΓTT

0101 + k2Γ
TT
1111

]
even

= (ω2 + k2)P + kωWodd . (3.64)

This establishes a relation between the momentum or thermal conductivity and the bulk

viscosity. However, in contrast to the identity for the shear, we do not know how to

completely determine the relation without first solving the equations for the fluctuations.

4 Discussion

In order to derive relations of the form (1.4) in holography we have constructed a probability

current J from linear fluctuations of the metric and a scalar field in an asymptotically AdS

spacetime. This current is independent of the radial coordinate and invariant under parity.

Using these properties and comparing the value of the current at the AdS boundary and

at the horizon, we found the Ward identities (2.35) and (3.64)

[
ω2Γ0202 + k2Γ1212

]
even

= 0,
[
ω2ΓTT

0101 + k2Γ
TT
1111

]
even

= (ω2 + k2)P + kωWodd . (4.1)

An expression for Wodd is given in (3.62). In order to derive the second identity we had

to introduce auxiliary fields that allowed us to construct a constant probability current.

This introduces an ambiguity, we can choose arbitrarily the boundary conditions of the

auxiliary fields. We impose the same boundary conditions for the original fluctuations and

the auxiliary fields at the AdS boundary, so the current is completely determined by the

solutions to the original fluctuations.
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We can define the real part of the momentum conductivity κ and the shear and bulk

viscosities η, ζ from the Kubo formulas6

κij = − 1

ω
ImΓ0i0j(ω, k),

η = − 1

ω
ImΓ1212(ω, k),

η + ζ = − 1

ω
ImΓ1111(ω, k).

(4.2)

For low momentum k, we can expand each of the transport coefficients in powers of k

κij ≃ κ
(0)
ij +(k2δij −kikj)κ

(2)
T +kikjκ

(2)
L + · · · , η = η(0)+O(k2), ζ = ζ(0)+O(k2). (4.3)

We can also expand Wodd ≃ kW
(1)
odd + · · · . From the Ward identities we get the relations

κ
(2)
T =

1

ω2
η(0), κ

(2)
L =

1

ω2

(
η(0) + ζ(0) − ImW

(1)
odd

)
. (4.4)

The first relation between the transverse component of the conductivity and the shear

viscosity agree with field theory results. The second relation between the longitudinal

conductivity and the bulk viscosity has the right structure, but we do not know from

general arguments what is the contribution from Wodd. In general, Wodd is an asymmetry

in the mixed correlators of momentum and stress. From (3.61)

ImWodd = [ImΓ0111 − ImΓ1101]odd . (4.5)

A näıve comparison with the Ward identity (2.23) at zero magnetic field in [13] would

fix ImW
(1)
odd = 0. Although this probably holds in the holographic model, the correlators

computed using holographic renormalization can differ by contact terms from the corre-

lators that enter in the Ward identity in [13], so there might be additional contributions.

It would be interesting to look for a general argument that fixes the asymmetry in

holographic models.

In the calculation using the probability current Wodd contains two kind of contribu-

tions, one is coming from the evaluation of the probability current at the boundary and

it is ambiguous because the probability current we have constructed depends on auxiliary

fields whose boundary conditions can be fixed in different ways. The second kind of con-

tribution depends on the value of the current at the horizon and it cannot be determined

without explicitly solving the equations of motion. Since the correlators Γ are defined only

in terms of the original fluctuations, the horizon and boundary ambiguities should cancel

each other, but we cannot determine completely the Ward identity from parity invariance

of the current alone. The situation is somewhat improved when only parity even or parity

odd sources are turned on, in this case there are no spurious contributions from the horizon.

Even if we focus on the identity for the transverse component (2.35) our derivation of

the Ward identity is not complete, it is restricted to terms that are even in momentum in the

correlators. In principle we do not expect odd terms appearing in this identity when parity

6We expand the viscosity tensor as ηijkl = η(δikδjl + δilδjk − δijδkl) + ζδijδkl.
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is not broken, but the argument we used for the even terms does not apply to odd terms.

This suggests that there must be a different, more general, derivation of the Ward identities.

A natural generalization of this work would be to derive similar Ward identities in

holographic models with broken parity, in particular the relation between Hall viscosity

and Hall conductivity. This is a direction that has not been explored much, even though

there are a large variety of models that exhibit a non-zero Hall conductivity: dyonic black

holes [18, 31–35], D-brane intersections of different types [36–40] and others [41, 42]. How-

ever, the value of the Hall viscosity has been determined in a different class of holographic

models dual to parity breaking superfluids [43–46]. It would be interesting to check if

and when the models that have a Hall conductivity also have a Hall viscosity, since this is

mostly the case in Quantum Hall systems and other topological states in condensed matter.

Besides the use we have made of it, the probability current might prove to be useful for

other tasks. A possible application is to compute the spectrum of normalizable modes, as

are for instance quasinormal modes in a black hole geometry. Let us consider a system with

n coupled fluctuations yi, i = 1, . . . , n and the related auxiliary fields ηi. The expansion

close to the AdS boundary will include the leading terms of the non-normalizable y
(d−∆i)
i

(sources) and normalizable y
(∆i)
i (vev) solutions of the fluctuations, and similar terms ap-

pear in the auxiliary fields (even though the leading terms might be different due to mixing)

yi ≃ y
(d−∆i)
i e−(d−∆i)r + y

(∆i)
i e−∆ir, ηi ≃ η

(d−∆i)
i e−(d−∆i)r + η

(∆i)
i e−∆ir + · · · . (4.6)

If the sources are zero y
(d−∆i)
i = η

(d−∆i)
i = 0, the probability current will vanish. This

will be independent of the value of the auxiliary fields at the horizon. The solutions for

auxiliary fields can be computed by shooting from the AdS boundary with normalizable

boundary conditions and do not have to satisfy any regularity conditions at the horizon.

We will have n independent solutions that we can construct by imposing η(∆i) = 0 for all

modes but one. Then, the condition that the probability current is zero at the horizon for

each case will lead to n linear equations for the values of the fluctuations at the horizon

yHi . In order to have a non-trivial solution the system must be degenerate, which will give

a condition on the spectrum. This method is somewhat similar to the determinant method

of [26], but there the system of linear equations is found by evaluating the solutions yi
with ingoing boundary conditions at a cutoff close to the boundary.
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A Holographic renormalization

In order to compute expectation values and correlation functions of operators in the field

theory dual, we follow the holographic renormalization prescription [14, 15]. We will write
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the metric as

ds2 = dr2 + gµνdx
µdxν . (A.1)

The metric asymptotes an AdS space of radius L, gµν ∼ e2r/L when r → ∞.

We can obtain the one-point functions of the scalar operator and the energy-momentum

tensor by taking variation of the action with respect to the metric and the scalar field. Since

the action is divergent we need to regularize it, this can be done by introducing a radial

cutoff rΛ. In order to have a well-defined variation with respect to the metric we have to

add a Gibbons-Hawking term at the cutoff

S =
1

16πGN

∫
d4x

√−g
(
R− (∂φ)2 − 2V (φ)

)
+

1

8πGN

∫

r=rΛ

d3x
√−gK. (A.2)

Where K = gµνKµν and Kµν is the extrinsic curvature on radial slices

Kµν =
1

2
∂rgµν . (A.3)

The variation of the on-shell bulk action plus Gibbons-Hawking term is

δSon-shell =
1

16πGN

∫

r=rΛ

d3x
√−g [(Kµν − gµνK) δgµν − 2∂rφδφ] . (A.4)

The on-shell action has divergent terms when rΛ → ∞. They can be removed by adding a

counterterm action at the cutoff

Sc.t. =
L

8πGN

∫

r=rΛ

d3x
√−g

(
− 2

L2
+

∆− 3

2L2
φ2 − 1

2
R̂

)
, (A.5)

where R̂ is the Ricci scalar of the induced metric on the radial slice. The variation of the

sources for the dual operators δg(0)µν , δJ (0) are identified as

δgµν = e−2r/Lδg(0)µν , δφ = µ∆−3δJ (0)e−(3−∆)r/L. (A.6)

The one-point functions are computed from the variation of the action with respect to the

sources

〈Tµν〉 = − lim
rΛ→∞

2√
−g(0)

δS

δg(0)µν
, 〈O〉 = − lim

rΛ→∞

1√
−g(0)

δS

δJ (0)
. (A.7)

The finite one-point functions are defined as

〈Tµν〉 = − lim
rΛ→∞

1

8πGN
e−2rλ/L

√−g√
−g(0)

×

×
[
Kµν − gµνK +

1

L
gµν

(
2− ∆− 3

2
φ2

)
− L

(
R̂µν −

1

2
gµνR̂

)]

r=rΛ

,

〈O〉 = lim
rΛ→∞

µ∆−3

8πGN
e−(3−∆)rΛ/L

√−g√
−g(0)

[
∂rφ− ∆− 3

L
φ

]

r=rΛ

.

– 22 –



J
H
E
P
0
1
(
2
0
1
6
)
0
1
3

B Equations of motion

In this appendix, we write down the equations of motion derived from the action (2.1). In

principle, we are not interested on the full solution of neither the metric functions A ,B,

nor of the scalar field φ, since the form of the asymptotic expansions suffices in this work.

The same applies to the fluctuations {yi}, {ηi} , i = 1, · · · , 5.

B.1 Background equations

For the black brane background (3.3) plus scalar field φ = φ0(r) coupled to gravity, in

absence of fluctuations the background equations of motion read (the r dependence is

implicit)

0 = φ′
0

[
3A′ +B′

]
− V ′ (φ0) + φ′′

0 , (B.1)

0 = A′′ −A′B′ +
1

2
φ′
0
2 , (B.2)

0 = B′
[
3A′ +B′

]
+B′′ , (B.3)

V (φ0) =
1

2
φ′
0
2 −A′

[
2B′ + 3A′

]
, (B.4)

where the constraint was employed to set the potential as a function of the derivatives of

A ,B and φ0 alone.7 Although we have freedom to choose the potential V , for the sake of

simplicity we will restrict ourselves to a quadratic potential on the field φ, i.e., V (φ) ∝ φ2.

This choice does not affect the results but simplifies somewhat the formulas.

B.2 Fluctuation equations

The equations of fluctuations are

y′′i + aij y
′
j + bij yj = 0, cai y

′
i + dai yi = 0, a = 1, 2, 3. (B.5)

Where the coefficients of the dynamical equations are

aij =




B′ e−
3A
2 (A′ −B′)

2B′

e−
3A
2 φ′

0 B′

B′

3B′




, (B.6)

b12 = −e−
7
2
A

[
k2

2
+ 3e2AA′

(
A′ −B′

)]
, b13 = V ′ (φ0) ,

b14 = e−2Ak2 , b21 = e−
A
2

(
k2

2
+ e−2Bω2

)
,

b23 = 3e
3A
2 V ′ (φ0) , b24 = e−

A
2 k2 ,

7The prime will denote derivative with respect to the radial coordinate, except for the potential V (φ0)

where it denotes derivative with respect to the field φ0.
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b25 = 2e−
A
2 kω , b32 = −3e−

3A
2 A′φ′

0 ,

b41 =
k2

2
e−2A , b42 = −k2

2
e−

7A
2 ,

b45 = e−2Akω , b51 =
1

2
e−2(A+B)kω ,

b52 =
1

2
e−

7A
2
−2Bkω , b54 = −e−2(A+B)kω ,

b11 = −1

2
e−2Ak2 +

3

4

[
φ′
0
2 −A′

(
3A′ + 4B′

)]
,

b22 =
3

2
φ′
0
2 + e−2A

(
e−2Bω2 − 3k2

2

)
− 9A′

(
A′ +B′

)
,

b33 = −3A′

(
B′ +

3

4
A′

)
+

3

4
φ′
0
2 + e−2A

(
e−2Bω2 − k2

)
− V ′′ (φ0) ,

b44 = e−2(A+B)ω2 +
3

4
φ′
0
2 − 3A′

(
B′ +

3

4
A′

)
,

b55 =
3

4

[
φ′
0
2 −A′

(
3A′ + 8B′

)]
.

The coefficients of the constraints are

c1i = −ω

2




1

1

0

0
k
ωe

2B(r)




, c2i = −k

4




1

−3

0

2
2ω
k




, c3i =




B′

2
1
2 (4A

′ +B′)

−φ′
0

0

0




, (B.7)

and

d1i =
ω

2




B′(r)

B′(r)

−2ωφ′
0

0

0




, d2i =
k

2




−B′

B′

2φ′
0

0

−2ω
k B′




, d3i = 4e−2A




2ω2e−2B + k2

2ω2e−2B − 3k2

4e2AV ′(φ)

2k2

kω




. (B.8)

B.3 Coefficients in the boundary current

The current evaluated at the boundary has the form

JB = H†CH +H†DT − T †D†H, (B.9)

where C† = −C. The non-zero coefficients of C are

C12 = −C21 =
1

64
(k2 + 2ω2)(ω2 − k2)2 +

13

6
B0 −

1

2
∆(∆− 3)λv,

C13 = −C31 = −1

3
∆(∆− 3)v,

C23 = −C32 = −∆(2∆− 9)

2∆ + 3
v +

3

4
∆(2∆− 7)B0v −

1

32
(∆(2∆− 3)2 − 81)λv2,

C24 = −C42 = − 1

32
k2(ω2 − k2)2,

C25 = −C52 = − 1

16
kω(ω2 − k2)2.

(B.10)
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The non-zero components of D are

2D11=D22 = 2D44 = 2D55 = −4D21 = 12,

D33=2(2∆− 3),

D13=−1

3
∆(∆− 3)λ, (B.11)

D23=
3

4
(∆−3)(2∆+1)λB0+

(∆−3)(2∆+2)

2∆− 9
λ+

1

32
(∆(2∆−3)(2∆−9)+18(∆+3))λ2v.

B.4 Coefficients in constraints

The components of Ca and Da are

C1
i = −ω

{
1

6
[3B0 + (∆− 3)∆λv] , B0,−

∆v

3
(∆− 1), 0,

k

6ω
[(∆− 3)∆λv − 3B0]

}
,

D1
i =

{
ω, 0,

1

3
(∆− 3)(∆− 2)λω, 0, k

}
,

C2
i = −k

{
1

12
[(∆− 3)∆λv − 15B0] , B0,

1

6
∆(3∆− 5)v,

1

6
[(∆− 3)∆λv − 3B0] ,

ω

6k
[(∆− 3)∆λv − 15B0]

}
,

D2
i =

{
k

2
, 0,−

1

6
(∆− 3)(3∆− 4)kλ, k, ω

}
,

C3
1 = B2

0

(
k2 + ω2) , C3

4 =
1

6
B0k

2 (3B0 − (∆− 3)∆λv) , C3
5 = 2B2

0kω ,

C3
2 =

B0

2(∆− 3)∆λv (k2 − 2ω2)

[
2 +

3B0

(
5ω2 − 4k2

)

(∆− 3)∆λv (k2 − 2ω2)
−

(2(∆− 3)∆ + 9)(8(∆− 3)∆− 9)λv

48B0(∆− 3)∆

]
,

C3
3 = −

v

3

{
2B0∆

[
(2∆− 5)ω2 + k2

]

(k2 − 2ω2)
+

1

72
(2(∆− 3)∆ + 9)(8(∆− 3)∆− 9)λv

}
,

D3
1,5 = 0 , D3

2 =
4

3

(
k2 − 2ω2) , D3

4 = B0k
2 ,

D3
3 =

1

3
(∆− 3)λ

(
k2 − 2ω2)

{
2B0

[
(1− 2∆)ω2 + k2

]

k2 − 2ω2
−

(2(∆− 3)∆ + 9)(8(∆− 3)∆− 9)λv

72(∆− 3)

}
.

C Series expansions

In this appendix, we will detail the form of the on-shell series expansions which have

been used in this work, both for the background functions and for the (original-auxiliary)

fluctuations.

C.1 Background at the boundary

Since AdS is an asymptotic fixed point when r → ∞, we must impose that at leading order

A ∼ r ,B ∼ 0 , φ0 ∼ 0 at the boundary. We express the subleading contribution as the sums

Ã(r) ∼
∑

n,m

a(n,m)e
−(n+m∆)r , (C.1)
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B(r) ∼
∑

n,m

b(n,m)e
−(n−∆)r , (C.2)

φ0(r) ∼
∑

n,m

φ(n,m)e
−(3n+∆m)r (C.3)

where A(r) = r + Ã(r). a, b, φ(n,m) are real-valued coefficients and φ(1,−1) = λ, φ(0,1) =

v, b(1,0) = B0. Combining (C.1)–(C.3) with (B.1)–(B.5) we find

Ã(r) = a(2,−2)e
−2(3r−∆)r + a(1,0)e

−3r + a(0,2)e
−2∆r + · · · , (C.4)

B(r) = B0e
−3r + b(3,−2)e

−(9−2∆)r + b(2,0)e
−6r + b(1,2)e

−(3+2∆)r + · · · , (C.5)

φ0(r) = λe−(3−∆)r + ve−∆r + φ(3,−3)e
−3(3−∆)r + φ(2,−1)e

−(6−∆)r +

+φ(1,1)e
−(3+∆)r + φ(0,3)e

−3∆r + · · · , (C.6)

a(2,−2) = −λ2

8
, a(1,0) =

1

9
[(∆− 3)∆λv − 3B0] ,

a(0,2) = −v2

8
, b(3,−2) =

9B0λ
2

72− 16∆
,

b(2,0) = −1

6
B0(∆− 3)∆λv, b(1,2) =

9B0v
2

8(2∆ + 3)
,

φ(3,−3) =
3(∆− 3)λ3

8(4∆− 9)
, φ(2,−1) =

∆(4∆− 15)λ2v

24
,

φ(1,1) = −λv2

24
(∆− 3)(4∆ + 3), φ(0,3) =

3∆v3

8(4∆− 3)
, (C.7)

with V (φ) ∼ ∆(∆− 3)φ2.

C.2 Background at the horizon

As it was stated in section 3.1.2, we impose regularity of each of the background functions

A , φ0 but B, which diverges logarithmically at the horizon

A(r) =
∑

n=0

A
(n)
H (r− rH)n , B(r) = log(r− rH)+

∑

n=0

B
(n)
H (r− rH)n , φ0(r) =

∑

n=0

φ
(n)
H (r− rH)n .

(C.8)

Plugging these expansions into the equations of motion,

A(r) = AH + (r − rH)2A
(2)
H + (r − rH)4A

(4)
H + (r − rH)6A

(6)
H + · · · , (C.9)

B(r) = log(r − rH) +BH + (r − rH)2B
(2)
H + (r − rH)4B

(4)
H +

+(r − rH)6B
(6)
H + · · · , (C.10)

φ0(r) = φH + (r − rH)2 φ
(2)
H + (r − rH)4 φ

(4)
H + (r − rH) 6φ

(6)
H + · · · , (C.11)

up to O(r − rH)7, A
(0)
H = AH , B

(0)
H = BH , φ

(0)
H = φH in eq.(3.43) and

A(4) = −
(
1

2
A

(2)
H

2 +
1

64
V ′ (φH)

2

)
, A

(6)
H =

3

160
V ′ (φH) 2A

(2)
H +

2

5
A

(2)
H

3 − 1

768
V ′ (φH)

2
V ′′ (φH) ,
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B
(2)
H = −A

(2)
H , B

(4)
H =

7

10
A

(2)
H

2 +
3

320
V ′ (φH)

2
,

φ
(2)
H =

1

4
V ′ (φH) , φ

(4)
H =

1

64
V ′ (φH)

(
V ′′ (φH)− 8A

(2)
H

)
,

B
(6)
H = − 3

160
V ′ (φH)

2
AH

(2) − 62

105
A

(2)
H

3 +
V ′ (φH) 2V ′′ (φH)

1792
,

φ
(6)
H = V ′ (φH)

(
1

10
AH

(2)2 − 1

96
V ′′ (φH)A

(2)
H +

1

480
V ′ (φH) 2 +

V ′′ (φH) 2

2304

)
. (C.12)

C.3 Matrix K

Near the horizon, since eB ∼ (r − rH), we take

K11,33,44 =
∑

n=0

K̂
(n)
11,33,44(r − rH)2n+1, K22 =

∑

n=0

K̂
(n)
22 (r − rH)2n+2,

K55 =
∑

n=0

K̂
(n)
55 (r − rH)2n+3 , K12 =

∑

n=0

K̂
(n)
12 (r−rH)2n+1+K̂

(n,1)
12 (r−rH)2n+2 ,

KH
32 =

∑

n=0

K̂
(n)
32 (r − rH)2n+2 + K̂

(n,1)
32 (r − rH)2n+3 ,

Truncating these expansions at fair enough order,

K11 ∼ (r − rH)KH
11 + (r − rH)3 K̂

(1)
11 + (r − rH)5K̂

(2)
11 + · · · ,

K12 ∼ (r − rH)KH
12 + (r − rH)2 K̂

(0,1)
12 + (r − rH)3 K̂

(1)
12 + (r − rH)4 K̂

(1,1)
12 + (r − rH)6K̂

(2,1)
12 · · · ,

K22 ∼ (r − rH)2 KH
22 + (r − rH)4 K̂

(1)
22 + (r − rH)6K̂

(2)
22 + · · · ,

K32 ∼ (r − rH)2 KH
32 + (r − rH)3 K̂

(0,1)
32 + (r − rH)4 K̂

(1)
32 + (r − rH)5K̂

(1,1)
32 + (r − rH)6K̂

(2)
32 · · · ,

K33 ∼ (r − rH)KH
33 + (r − rH)3 K̂

(1)
33 + (r − rH)5K̂

(2)
33 + · · · ,

K44 ∼ (r − rH)KH
44 + (r − rH) 3K̂

(1)
44 + (r − rH)5K̂

(2)
44 + · · · ,

K55 ∼ (r − rH)3 KH
55 + (r − rH)5K̂

(2)
55 + · · · ,

with

K̂
(1)
11 = −A

(1)
H KH

11 , K̂
(1,1)
12 = −2A

(1)
H K̂

(0,1)
12 ,

K̂
(1)
12 =

5

2
KH

11e
− 3

2
A

(0)
H A

(1)
H , K̂

(0,1)
12 = e−

3
2
A

(0)
H KH

11 ,

K̂
(1)
22 = −2A

(1)
H KH

22 , K̂
(1)
32 = −2A

(1)
H KH

32 ,

K̂
(0,1)
32 =

1

2
KH

33V
′(φH)e−

3
2
A

(0)
H , K̂

(1)
33,44 = −A

(1)
H KH

33,44 ,

K̂
(1,1)
32 =

KH
32

48
V ′ (φH) e−

3A
(1)
H
2

(
V ′′ (φH)− 60A

(2)
H

)
, K̂

(2)
55 = −3A

(1)
H KH

55 ,

K̂
(2)
22

KH
22

=
K̂

(2,1)
12

KH
12

=
K̂

(2)
32

KH
32

=
1

160

[
544A

(1)
H

2 + 3V ′(φH)2
]
,

K̂
(2)
ii

KH
ii

=
3

320

[
128A

(2)
H

2 + V ′ (φH)2
]
, i = 1, 3, 4 . (C.13)
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up to O(r − rH)7. On the other hand, near the boundary,

KB
ij = δij +

∑

n,m

K̃
(n,m)
ij e−(3n+∆m)r , KB

12,32 = e−
3r
2

∑

n,m

K̃
(n,m)
12,32 e

−(3n+∆m)r . (C.14)

The on-shell series expansions read

KB
11 = 1 + e−3rK̃

(1,0)
11 + e−(9r−2∆)rK̃

(3,-2)
11 + e−6rK̃

(2,0)
11 + e−(3r−2∆)rK̃

(1,2)
11 + · · · ,

KB
12 = e−

3r
2

[
K̃

(0,0)
12 + e−2(3−∆)rK̃

(2,-2)
12 + e−3rK̃

(1,0)
12 + e−2∆rK̃

(0,2)
12 + · · ·

]
,

KB
22 = 1 + e−3rK̃

(1,0)
22 + · · · ,

KB
32 = e−

3r
2

[
e−(3−∆)rK̃

(1,-1)
32 + e−∆rK̃

(0,1)
32 + · · ·

]
,

KB
ii = 1 + e−3rK̃

(1,0)
ii + · · · , i = 3, 4, 5

with

K̃
(1,0)
11 = B0 , K̃

(3,-2)
11 =

9B0λ
2

8(9− 2∆)
, K̃

(2,0)
11 =

1

6
B0 [3B0 − (∆− 3)∆λv] ,

K̃
(1,2)
11 =

9B0v
2

8(2∆ + 3)
, K̃

(0,0)
11 = −

2

3
, K̃
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plus higher order terms.

C.4 Fluctuations at the boundary

The near boundary series expansion of the fluctuations is proposed analogously as for the

background functions. However, in this case, in order to capture all possible contributions

from backreaction and gravity, we will assume a more complex series expansion than the

one considered for a CFT. This time,

y1,4,5(r) = e
3r
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4∑
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y
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1,4,5 e−l(3−∆)r +
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y
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1,4,5 e−l∆r

)
e−(2n+ 3

2
m)r , (C.16)

y2(r) = e3r
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
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m)r, (C.17)

y3(r) = e−
3r

2
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n,m>0

(
y
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3 + e3r
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l=1

y
(n,m,−l)
3 e−l(3−∆)r + y

(n,m,l)
3 e−l∆r

)
e−(2n+ 3

2
m)r, (C.18)

where the exponential pre-factors are due to the changes of variables (3.9). The non-

normalizable modes are identified as {y(0,0,−1)
3 , y

(0,0,0)
1,2,4,5}, whereas the normalizable as

{y(0,2,0)1,4,5 , y
(0,4,0)
2 , y

(0,0,1)
3 }. Up to the non-normalizable mode for each fluctuation,

y1 = e
3
2
r
{
y
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}
,

y2 = e3r
{
y
(0)
2 + y

(2)
2 e−2r + y

(∆)
2 e−2(3−∆)r + y

(3)
2 e−3r + y

(2∆)
2 e−2(4−∆)r + y

(3∆)
2 e−2(1+∆)r +
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y3 = e−
3
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}
,
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}
,

where we have replaced the (n,m, l) numeration by other suited to the one employed along

the work
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For the auxiliary fields {ηi}, we write
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with (after imposing the boundary conditions (3.35))
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C.5 Fluctuations at the horizon

From the indicial polynomials of the dynamical equations for each fluctuation, we infer 3

roots,

P0 = 0 , P± = ±iωcH , cH = e−(AH+BH) . (C.24)

We demand regularity if the roots are real and ingoing condition if they are com-

plex. Therefore, near the horizon, the original fluctuations may admit the general series

expansion
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with i = 1 , · · · , 5 and we have ruled out the P+ root. As stated in section 3.1.2, the

choice of the boundary conditions (3.35) fixes the series expansions of the auxiliary fields,

regardless if the {yi} fields have a well defined near-horizon behavior. Therefore, we shall

consider
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The on-shell series expansions read
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where most of the coefficients are not independent from each other. For the main fluctua-

tions,
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)

4
c2
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+ ω2
,

y4
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1
8ω
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(1,0)k2eBH−
3AH

2

(
−ωe−AH + ieBH

)
+ 2kω2y5
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+y4
(1,0)

(
12ωAH

(1)

cH
− 4iω2AH

(1)

)]
,

y
(0,1)
5 =

3

2
y5

(0,0)AH
(1) ,

y5
(1,0) =

k

2ω
(
ω + 2i

cH

)
[
y2

(1,0)e−
AH
2

(
ωe−AH + ieBH

)
− 2ωy4

(1,0)

]
, (C.29)

– 32 –



J
H
E
P
0
1
(
2
0
1
6
)
0
1
3

whilst for the auxiliary fluctuations,

η
(0,2)
1 = −

kη̃H
5 KH

55 + 2ωe
3AH

2 η̃H
2 KH

22

2ωKH
11

,

η
(0,3)
1 =

ωe
3AH

2

2
(

1
c2
H

+ ω2
)
(KH

11)
2

[
kη̃H

5 KH
12K

H
55 + 2ωKH

22

(
e

3AH
2 η̃H

2 KH
12 − ηH

2 KH
11

)]
,

η
(1,0)
2 = −

ηH
1 KH

12 + ηH
3 KH

32

KH
22

,

η
(2,0)
2 = −

η̃H
1 KH

12 + η̃H
3 KH

32

KH
22

,

η
(0,3)
2 =

e−
3AH

2

2ωKH
22

{
AH

(1)

(
8ωe

3AH
2 η̃H

2 KH
22 − 3kη̃H

5 KH
55

)

−
ω2e3AHKH

12

[
KH

12

(
kη̃H

5 KH
55 + 2ωe

3AH
2 η̃H

2 KH
22

)
− 2ωηH

2 K11
HKH

22

]

(KH
11)

2
(

1
c2
H

+ ω2
)

}
,

η
(1,2)
2 =

e−
3AH

2

2KH
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(
− 3iω
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+ 2

c2
H

− ω2
)
{
2ηH

1 KH
11
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2k2e2BH +AH

(1)

(
7iω
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+

6
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+

+ηH
3 ωKH

33V
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(
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44e

2BH
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1 KH
11

[
2k2e2BH +AH
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η
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44
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) ,
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ike2BH

(
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11 + η̃H
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plus higher order terms. η
(1,0)
1,3,4 = ηH1,3,4 , η

(2,0)
1,3,4 = η̃H1,3,4 , η

(0,2)
2 = ηH2 , η

(0,1)
2 = η̃H2 , η

(0,2)
5 = ηH5

and η
(0,0)
5 = η̃5

H , as it appears in section 3.1.2.
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We use a top-down holographic model for strongly interacting quark matter to study the properties of
neutron stars. When the corresponding equation of state (EOS) is matched with state-of-the-art results for
dense nuclear matter, we consistently observe a first-order phase transition at densities between 2 and 7
times the nuclear saturation density. Solving the Tolman-Oppenheimer-Volkov equations with the resulting
hybrid EOSs, we find maximal stellar masses in excess of two solar masses, albeit somewhat smaller than
those obtained with simple extrapolations of the nuclear matter EOSs. Our calculation predicts that no
quark matter exists inside neutron stars.

DOI: 10.1103/PhysRevLett.117.032501

Quantitatively predicting the thermodynamic properties of
dense nuclear and quark matter is one of the main challenges
of modern nuclear theory. The complexity of the task
originates from the need to nonperturbatively solve the
theory of strong interactions, QCD, at finite baryon chemical
potential μB. This combination of requirements is problem-
atic, as it makes all the usual first-principles tools fail: Lattice
simulations suffer from the infamous sign problem at a finite
baryon chemical potential [1], while perturbative QCD is
invalidated by the sizable value of the gauge coupling at
moderate densities [2]. At present, the equation of state
(EOS) of cold strongly interacting matter is under quanti-
tative control at baryon densities below the nuclear saturation
limit, nB ≤ ns ≈ 0.16=fm3, where the chiral effective theory
(CET) works [3,4], as well as at a baryon chemical potential
above roughly 2.5 GeV, where the perturbative EOS con-
verges [5–8]. These limits unfortunately exclude the den-
sities ns ≤ nB ≤ 10ns, where a deconfining phase transition
to quark matter is expected to occur [9].
Remarkably, baryon densities well beyond the saturation

limit are realized inside the most massive neutron stars [10].
Because of the difficulties alluded to above, a microscopic
description of these objects necessitates bold extrapolations
of the CET results, typically relying on a systematic use
of so-called polytropic EOSs [11]. The polytropic EOSs
have as such no physical content but simply parameterize
our current ignorance of the high-density EOS in a way that
allows constraining from both the low- and high-density
sides [12]. The fact that no first-principles results are
available for ultradense nuclear matter or strongly coupled
quark matter makes progress towards a quantitatively
reliable neutron star matter EOS excruciatingly slow.
Clearly, there is a need for fundamentally new approaches

to the physics of strongly coupled quark matter—a challenge
not unlike understanding the dynamics of hot quark-gluon
plasma [13]. In this context, a very promising approach has
turned out to be to apply the holographic duality [14–16].

It has been successfully used to study the deconfined
phases of QCD matter [17,18] and to probe very nontrivial
equilibration dynamics [19–21], teaching the heavy ion
community many qualitative and even quantitative lessons
about the behavior of strongly coupled QCD matter.
So far, holography has been used to study the cold and

dense part of the QCD phase diagram only to a limited
extent (see, however, [22–26]). The reason for this is that,
in its best understood limit, the duality deals with super-
symmetric conformal field theories, which are fundamen-
tally different than QCD. In particular, they typically
contain only adjoint representation fields and have there-
fore no analog of the fundamental representation quarks
that dominate the properties of cold and dense QCD matter.
Despite the above issues, the situation is not hopeless:

In the ’t Hooft limit of λYM ≡ g2YMNc ≫ 1 and Nc ≫ Nf,
the dynamics of fundamental flavors can be captured by
degrees of freedom carried by probe D-branes, while the
gluon sector continues to be described by classical super-
gravity (SUGRA) [27]. States with finite baryon density in
the gauge theory correspond to gravity configurations with a
gauge field turned on in the D-brane worldvolume. The free
energy can then be computed by evaluating the classical
on-shell action of SUGRA together with theD-brane action.
Given the relative simplicity of the calculations involved, the
duality thus bestows us with a powerful tool to explore
strongly coupled quark matter even at high density.
Our goal in this Letter is to take the logical step from the

D3-D7 construction of Ref. [27] to phenomenological
neutron star physics by investigating the implications of
using a holographic EOS for cold quark matter just above
the deconfinement transition. Because of technical restric-
tions discussed in the following section, completing this
task requires some bold extrapolations. It will, however,
lead us to results in excellent accordance with current
phenomenological expectations, with only one parameter
fitted to experiments.
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The Letter is organized as follows: Our construction is
thoroughly explained in the second section, while the
resulting EOS and its relation to that of nuclear matter is
analyzed in the third section. The implications of the hybrid
EOS for the properties of neutron stars are then displayed in
the fourth section, while conclusions are drawn and an
outlook presented in the fifth section.
Holographic model.—In order to describe quark matter at

nonzero density, let us consider a D3-D7 brane intersection.
The field theory is then theN ¼ 2 super Yang-Mills (SYM)
theory with the matter content of the N ¼ 4 SUðNcÞ SYM
theory in the adjoint sector and Nf matter hypermultiplets in
the fundamental representation. Thus, in addition to the
QCD quarks and gluons, there are squarks and several
species of adjoint fermions and scalars. The theory has a
global UðNfÞ ∼Uð1ÞB × SUðNfÞ flavor symmetry, the
Uð1ÞB part of which we identify as the baryon symmetry.
For two flavors, i.e., Nf ¼ 2, isospin is the Abelian sub-
group Uð1ÞI ⊂ SUð2Þ. Note that both quarks and squarks
are charged under the flavor symmetry, so a typical state will
have a finite density of both types of particles. Also, we do
not expect our model to capture the correct gluon dynamics,
as it has exact superconformal invariance.
In the large-Nc limit and at strong ’t Hooft coupling, the

N ¼ 4 SYM theory has a holographic description in terms
of classical type IIB SUGRA in an AdS5 × S5 geometry
[14]. In the ’t Hooft limit Nf ≪ Nc, the flavor sector can
be introduced as Nf probe D7-branes extended along the
AdS5 directions and wrapping an S3 ⊂ S5 [27]. The
thermodynamic properties of the model have been studied
in great detail at nonzero temperature and charge density
[28–40]. The free energy can be split into the contributions
of adjoint and flavor fields:

F ¼ FN¼4 þ Fflavor; ð1Þ

where the first term is independent of the charge density
and does not play a very important role for us.
We work in the grand canonical ensemble, so that the

free energy is a function of the temperature T as well
as chemical potentials corresponding to the conserved
charges. Barring the presence of a mixture of two phases,
possible in a first-order transition, the matter inside neutron
stars is typically taken to be locally charge neutral and in
beta equilibrium. This can be realized by taking the
chemical potentials and densities of the u, d, and s quarks
to agree [41], which implies neglecting the differences in
their bare masses and setting both the isospin chemical
potential and electron density to zero. In the zero-
temperature limit, relevant for quiescent neutron stars,
the EOS can then be parameterized by the baryon chemical
potential μB ¼ Ncμq alone. In this case, the holographic
setup simplifies somewhat, as there is no spontaneous
breaking of flavor symmetry in the ’t Hooft limit [35–39].

In the limit explained above, the flavor contribution to
the grand canonical free energy density reads [31,42–45]

F flavor ¼ −
NcNf

4γ3λYM
ðμ2q −m2Þ2 þOðμ3qT; T4Þ; ð2Þ

where γ ≡ Γð7=6ÞΓð1=3Þ= ffiffiffi
π

p
and m is a mass parameter

associated with the fermions. The model has thus four
parameters: the number of colors Nc, the number of flavors
Nf, the ’t Hooft coupling λYM, and the massm appearing in
the dimensionless ratio μq=m. We choose them according
to the properties of deconfined QCD matter at the relevant
densities, which implies setting Nc ¼ Nf ¼ 3. The con-
tribution of the adjoint sector to the free energy FN¼4 ∼
N2

cT4 becomes of the same order as the OðT4Þ corrections
to the flavor free energy and can thereby be neglected.
Upon choosing the above values for Nc and Nf, we are

extrapolating our model to a regime where finite Nc and
Nf=Nc corrections are expected to become important
[46–50]. For practical reasons, we however neglect them
in the following, which implies that we treat the model as
phenomenologically motivated by the original string theory
construction. We also allow λYM and m to take values
appropriate for the physical system under consideration,
expecting them to lie in a region where the holographic
approach remains at least qualitatively valid (for a recent
discussion of the convergence of strong coupling expan-
sions, see [51]).
With the above reservations, we proceed to note that, in

the limit of large chemical potentials, the free energy
density of our model approaches the value

F flavor → −
NcNf

4γ3λYM
μ4q; ð3Þ

the form of which is fixed by conformal invariance in the
UV. In QCD, the corresponding quantity is known to
approach the Stefan-Boltzmann value [5]

FQCD → −
NcNf

12π2
μ4q; ð4Þ

so imposing the requirement that our model has the correct
limiting behavior at large density fixes the value of the
’t Hooft coupling as λYM ¼ 3π2=γ3 ≃ 10.74. With this
choice, our model can be seen to match the perturbative
EOS of Ref. [7] already at moderate densities.
Finally, we discuss the choice of the mass parameter m.

We expect that in the strongly coupled region the effective
masses of the quarks receive large nonperturbative correc-
tions, so relating this last remaining parameter of our model
to the (differing) bare masses of the u, d, and s quarks
would be largely nonsensical. Rather, we fixm through the
value of μq, where the pressure of our model vanishes,
requiring it to agree with the value obtained from the EOS
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of nuclear matter [52]. This gives m ≈ 308.55 MeV, just
below one-third of the nucleon mass.
As argued above, at large densities and vanishing

temperature, the pressure p and the energy density ε of
our model can be determined from Eq. (2) as p ¼ −F flavor
and ε ¼ μqð∂p=∂μqÞ − p, respectively. The EOS thus takes
the simple form

ε ¼ 3pþm2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NcNf

4γ3λYM
p

s
¼ 3pþ

ffiffiffi
3

p
m2

2π

ffiffiffiffi
p

p
; ð5Þ

while the speed of sound squared reads c2s ¼ ð∂p=∂εÞ.
From (5), c2s always resides below the conformal value of
1=3, making our EOS comparatively soft, seemingly at
odds with the conclusions of Ref. [53]. It should, however,
be noted that in Ref. [53] the transition between the nuclear
and quark matter phases was fixed to occur at twice the
nuclear saturation density. In our case, this parameter is one
of the predictions of the model, and its value turns out to be
always somewhat larger than 2ns.
Matching to nuclear matter.—Having obtained a candi-

date EOS for strongly coupled dense quark matter, the
natural question arises, how to best use it in applications
within neutron star physics. At low densities, we expect the
matter to reside in the confined phase and, as the density is
increased, find a transition to deconfined matter. This
transition cannot be realized purely within the D3-D7
model, because at nonzero baryon density quarks are always
in a deconfined phase, at least in the large-Nc limit [54]. The
most natural strategy is therefore to describe the low-density
phase using state-of-the-art results from the CET of nuclear
interactions below the saturation density, extrapolated to
higher densities with polytropic EOSs [11]. We then
compare the corresponding pressure, i.e., minus the free
energy density, to that of our holographic system, thereby
determining the dominant phase at each quark chemical

potential. Because of the uncertainty related to the low-
density result, the matching should not be performed using a
single confining EOS; instead, we apply the three EOSs
given in Table 5 of Ref. [11], dubbed “soft,” “intermediate,”
and “stiff,” to represent different possible behaviors of the
nuclear matter EOS. Of the three, the soft and stiff EOSs
correspond to extreme cases, while the intermediate one can
be considered a typical low-density EOS.
Our detailed construction is shown in Fig. 1, where on

the left side we display the three low-density EOSs together
with our quark matter EOS in the form of pressure vs quark
chemical potential. As can be seen from here, there is a
critical chemical potential μcrit for each of the three low-
density EOSs, at which a phase transition to deconfined
quark matter occurs. In all cases, the transition is of first
order, which can be verified from the right figure that
displays the hybrid EOSs on a logarithmic pressure vs
energy density plane. Notice that the holographic quark
matter EOS smoothly connects to the perturbative one of
Ref. [7] at high density.
It is interesting to note that the densities, at which the first-

order phase transitions occur, are consistently in a phenom-
enologically viable region: For the soft nuclear matter EOS
we get ncrit¼6.92ns, for the intermediate one ncrit ¼ 3.79ns,
and for the stiff case ncrit ¼ 2.37ns. This strengthens our
conclusion that the holographic description is consistent with
the expected properties of strongly coupled quark matter at
least on a qualitative level. The order of the transition is,
however, highly sensitive to the details of the EOS near the
transition and may, therefore, be smoother than we predict.
Neutron star structure.—The EOS of strongly interact-

ing matter is in a one-to-one correspondence with the mass-
radius relation of neutron stars. This link is provided by the
Tolman-Oppenheimer-Volkov (TOV) equations that govern
hydrostatic equilibrium inside the stars. The equations take
as input the relation between the energy density ε and
pressure P of the matter, i.e., its EOS, as well as the central
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FIG. 1. (Left) The holographic quark matter EOS (black curve) together with the nuclear matter EOSs of Ref. [11]: soft (green line),
intermediate (orange line), and stiff (red line). (Right) The matching procedure from the low-energy EOSs to the quark matter one, with
the dashed black lines showing the jump in the energy density, characteristic of a first-order transition. Shown are also the CET results of
Refs. [3,4] (blue curve), the conformal limit (brown curve), and the perturbative result of Ref. [7] (light blue band, generated by varying
the renormalization scale).
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energy density εðr ¼ 0Þ, and produce the mass and radius
of the corresponding star. Varying εðr ¼ 0Þ, we then obtain
a well-defined curve on the MR plane.
A subtlety related to systems where a first-order phase

transition occurs is the possible existence of mixed phases.
This, however, strongly depends on the value of the
microscopic surface tension between the nuclear and quark
matter phases. As this parameter is beyond the validity of
our description, and only crude estimates for the quantity
exist in QCD, we have chosen to neglect this scenario and
consider only stars made of pure phases.
Plugging the three EOSs of Fig. 1 into the TOV

equations, we obtain the mass-radius curves displayed in
Fig. 2. They follow the corresponding curves of Ref. [11]
until they abruptly come to an end at points that mark
the densities of our first-order phase transition. Here, the
solutions to the TOV equation take a sharp turn towards
smaller masses and radii, signaling an instability with
respect to radial oscillations [41]. This behavior follows
from the sizable latent heat ΔQ ¼ μcritΔn at our first-order
transition, i.e., the fact that the transitions are relatively
strong for all three nuclear matter EOSs due to the softness
of the holographic EOS (cf. [12] and Fig. 6 therein). The
values we find for ΔQ are ð331 MeVÞ4 (soft), ð265 MeVÞ4
(intermediate), and ð229 MeVÞ4 (stiff).
The main conclusion to be drawn from our results is that,

with quark matter following a holographic EOS, it is
unlikely that any deconfined matter could be found inside
neutron stars. The maximal masses of the stars are dictated
by the densities at which a phase transition from nuclear to
quark matter occurs, with the most massive star having a
central density at exactly this value. For the three nuclear
matter EOSs of Ref. [11], we find maximal masses of 2.01,
2.32, and 2.50 times the solar mass M⊙, corresponding to
radii of 9.7, 12.4, and 14.5 km.
Conclusions and outlook.—Neutron stars provide a

unique laboratory for the study of cold ultradense nuclear

matter—and possibly even deconfined quark matter. Recent
years have witnessed remarkable progress in their observa-
tional study, with the detection of the first two solarmass stars
already ruling out several models of dense nuclearmatter [64]
and the recent discovery of gravitational waves by the LIGO
and Virgo Collaborations raising hopes of a dramatic
improvement in the accuracy of radius measurements [65].
This poses a prominent challenge for the theory community
and highlights the need to understand the properties of dense
nuclear and quark matter from first principles.
In this Letter, we have taken first steps towards the goal

of building a phenomenological description for real world
quark matter using holography. Under the usual large-Nc
and strong coupling assumptions, it is possible to find a
simple analytic expression for the EOS, which we, how-
ever, need to extrapolate to a regime where sizable
corrections are to be expected. An important additional
caveat is that the phase diagram of the theory may possess
nontrivial structure; for instance, it was argued in Ref. [66]
that at low temperatures squarks may condense and the
system resides in a Higgs phase. No other instabilities have
been found [50], but the appearance of spatially modulated
phases is not ruled out [67–70].
Despite the above limitations, the predictions of our

model display remarkably good agreement with those of
complementary approaches (see, e.g., [11,12], and refer-
ences therein). After fixing the parameters of our setup in a
simple way, we obtained results that consistently indicate
the presence of a strong first-order deconfinement transition
between the nuclear and quark matter phases at baryon
densities between roughly 2 and 7 times the nuclear
saturation density. Because of the sizable latent heat
associated with the transition, we predict that no stars with
quark matter cores exist: As soon as there is even a small
amount of quark matter in the center of a neutron star, it
becomes unstable with respect to radial oscillations.
There exist a number of directions in which our current

work can be generalized. The obvious extension would be to
allow a mixed phase of nuclear and quark matter, assuming a
given value for the surface tension between the two phases
[71]. In addition, one may consider corrections due to the
different bare masses of the quark flavors, as well as to
nonzero temperature or background magnetic fields. With
moderate effort, one may also consider the effects of finite
Nc and λYM corrections on the EOS, utilizing existing results
at the next-to-leading-order level. Finally, an important
strength of holography lies, of course, in its applicability
to the determination of quantities that are very challenging
for traditional field theory techniques. These include, e.g.,
transport constants and emission rates, which could both be
considered within our present model.
An interesting, albeit also challenging, direction to pursue

would be to consider more refined top-down holographic
models of QCD. One of the most appealing candidates is the
Sakai-Sugimoto model [55], which has the same matter
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FIG. 2. The mass-radius relations corresponding to the three
matched EOSs of Fig. 1 (right). The black lines correspond to an
unstable branch of stars containing quark matter. The forms of the
M-R relations are fairly generic; see, e.g., [41].
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content as QCD at low energies and furthermore realizes
confinement and chiral symmetry breaking in a natural way.
As there are indications that this model exhibits a phase
transition between baryonic and deconfined matter [26], it
might enable performing the matching to the CET EOS at
much lower densities where the uncertainty of the latter
result is smaller. In the deconfined phase, the corresponding
EOS is, in addition, significantly stiffer that of a conformal
theory [72,73], which may lead to the existence of stable
stars with quark matter cores. A potential drawback of this
approach is, however, that at very large densities it deviates
from QCD due to the lack of a UV fixed point.
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It has been conjectured that the speed of sound in holographic models with UV fixed points has an upper
bound set by the value of the quantity in conformal field theory. If true, this would set stringent constraints
for the presence of strongly coupled quark matter in the cores of physical neutron stars, as the existence of
two-solar-mass stars appears to demand a very stiff equation of state. In this article, we present a family of
counterexamples to the speed of sound conjecture, consisting of strongly coupled theories at finite density.
The theories we consider include N ¼ 4 super Yang-Mills at finite R-charge density and nonzero gaugino
masses, while the holographic duals are Einstein-Maxwell theories with a minimally coupled scalar in a
charged black hole geometry. We show that for a small breaking of conformal invariance, the speed of
sound approaches the conformal value from above at large chemical potentials.

DOI: 10.1103/PhysRevD.94.106008

I. INTRODUCTION

Quantitatively understanding the properties of strongly
interacting matter in the cold and extremely dense region
realized in the cores of neutron stars constitutes a long-
standing problem in nuclear physics [1,2]. The situation is
complicated by a lack of first principles field theory tools;
perturbative QCD is only applicable at extremely high
densities [3,4], while lattice Monte Carlo simulations are
altogether prohibited due to the sign problem [5]. Add
to this the fact that robust nuclear physics methods—
including their modern formulations, such as the Chiral
Effective Theory [6]—are only reliable below the nuclear
saturation density ns ≈ 0.16=fm3 [7]. It becomes clear that
fundamentally new approaches to the problem are urgently
needed. In this context, a highly promising avenue is the
application of the holographic duality [8], which has indeed
been lately applied to the description of both the nuclear
[9–16] and quark matter [17–19] phases inside a neutron
star.
The most fundamental quantity that governs the thermo-

dynamic behavior of neutron star matter is its equation of
state (EoS), i.e. the functional dependence of its energy
density ε on the pressure p. Oftentimes, it is, however, more
illuminating to inspect the derivative ∂p=∂ε, which equals
the speed of sound squared in the system, v2s . This quantity
namely describes the stiffness of the matter—a property
needed to build massive stars capable of resisting gravi-
tational collapse into a black hole. Causality restricts this
parameter to obey the relation v2s < 1 (and thermodynamic

stability guarantees that v2s > 0), but it has been widely
speculated that a more restrictive bound might exist as well.
In particular, the lack of known physical systems in a
deconfined phase with a speed of sound exceeding the
conformal value v2s ¼ 1=3 has prompted a conjecture that
this might represent a theoretical upper limit for the
quantity [20,21] in the same spirit that η=s ¼ 1=ð4πÞ
was initially thought to represent a lower limit for the
shear viscosity to entropy ratio in any strongly coupled
fluid [22]. Some support for this argument comes from the
fact that both the inclusion of a nonzero mass to a
conformal system as well as the introduction of perturba-
tively weak interactions in an asymptotically free theory are
known to lead to a speed of sound below the conformal
limit.
The speed of sound conjecture has been widely dis-

cussed in the context of neutron star physics, and it has
been shown to be in rather strong tension with the known
existence of two-solar-mass neutron stars [23,24], which
requires a very stiff EoS [25]. This points toward a highly
nontrivial behavior of vs as a function of the baryon
chemical potential. Namely, at low densities, the speed
of sound is known to have a very small value, while its
behavior at asymptotically large μB is a logarithmic rise
toward v2s ¼ 1=3. This implies that, should the speed of
sound bound be violated somewhere, vs needs to possess at
least two extrema, a maximum and a minimum, between
which the quantity may either behave continuously or jump
from the maximum to the minimum value.
Recalling the success of holographic methods in the

description of strongly coupled quark gluon plasma pro-
duced in heavy ion collisions [2,26], it is clearly worth-
while to study the behavior of the speed of sound in
holographic models of quark matter. Here, one, however,
quickly realizes that the speed of sound bound is not easily
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violated; all known examples of asymptotically five-
dimensional Anti-de Sitter spacetime (AdS5) geometries
predict v2s ≤ 1=3 [21].1 The known violations of the bound
occur in theories that do not flow to a four-dimensional
conformal field theory (CFT) in the UV and thus do not
correspond to ordinary renormalizable field theories in four
dimensions. Such examples include the 3þ 1-dimensional
brane intersections D4 −D6, D5 −D5, and D4 −D8 (the
Sakai-Sugimoto model [29]), corresponding to the respec-
tive speeds of sound v2s ¼ 1=2; 1; 2=5 [30–32]. It is well
known that, even after a compactification to 3þ 1 dimen-
sions, it is not possible to disentangle four-dimensional
dynamics from the additional degrees of freedom that live
on the higher-dimensional color branes, and thus the
thermodynamic properties may be very different from a
bona fide four-dimensional theory. Another class of exam-
ples that violate the bound are nonrelativistic geometries,
such as the Lifshitz ones [33–36], for which a scaling
symmetry fixes ∂p=∂ε ¼ z=3, with z the dynamical expo-
nent of the dual nonrelativistic theory. For any z > 1, the
EoS of the nonrelativistic theory is stiffer than the con-
formal one. In this case, the violation of the bound is in
some sense trivial, since the dual theory is nonrelativistic.
For the reasons listed above, it is very challenging to

build a holographic description for dense strongly inter-
acting quark matter that would allow for the existence of
deconfined matter inside even the heaviest neutron stars
observed. Indeed, in a recent study of hybrid neutron
stars by the present authors [19], where a holographic
EoS was constructed for the quark matter phase, it was
discovered that the stars became unstable as soon as even
a microscopic amount of quark matter was present in
their cores. This was attributed to a very strong first order
deconfining phase transition in the model, which was
ultimately due to the relatively low stiffness of the
conformal quark matter EoS, corresponding to
v2s ¼ 1=3. These findings are in line with the analysis
of Ref. [37], where it was seen that large speeds of sound
were necessary to obtain stars containing nonzero
amounts of quark matter in their cores.
One possible resolution to the speed of sound puzzle is

clearly that the quantity rises to a value vs > 1=
ffiffiffi
3

p
in the

nuclear matter phase, then discontinuously jumps to a
low value at a first order deconfinement phase transition,
and finally slowly rises toward the conformal limit in the
deconfined phase. In the paper at hand, we propose
another viable scenario, involving a violation of the speed
of sound bound in the deconfined phase and thereby
paving the way to the existence of quark matter in
neutron star cores. We do this by constructing a holo-
graphic EoS for dense deconfined matter that not only
exhibits a speed of sound above the conformal limit but

in addition involves an asymptotically anti-de Sitter
(AdS) spacetime. This provides an explicit counterexam-
ple to the common lore that asymptotically AdS space-
times necessitate vs < 1=

ffiffiffi
3

p
,2 and suggests that there

may exist a large class of realistic holographic models for
dense deconfined QCD matter that involve speeds of
sound significantly above this bound.
Our paper is organized as follows. In Sec. II, we

consider a class of models involving an Einstein-Maxwell
action with a minimally coupled charged bulk scalar and
show that the speed of sound bound is violated in it for
different values of the charge and the mass of the scalar.
In Sec. III, we consider a top-down string theory setup in
this class, dual to N ¼ 4 super–Yang-Mills theory at
nonzero R-charge density and confirm that the speed of
sound is larger than the conformal value before the
system becomes unstable toward the formation of a
homogeneous condensate. In Sec. IV, we finally discuss
the implications of our findings, while Appendixes A, B,
and C are devoted to a closer look at some technical
details of our computation.

II. SPEED OF SOUND AT FINITE DENSITY

In order to construct a holographic model for a finite
density system, in which the speed of sound bound might
be violated, we should clearly incorporate both a nonzero
charge density and a breaking of conformal invariance. The
simplest such model is Einstein-Maxwell gravity mini-
mally coupled to a scalar field (charged or not), for which
the action reads

S ¼ 1

16πG5

Z
d5x½R − L2F2 − jDϕj2 − Vðjϕj2Þ�; ð2:1Þ

where L will be fixed to be equal to the AdS radius. The
field ϕ appearing here is a complex scalar with charge q,
such that the covariant derivative acting on it reads

Dμϕ ¼ ∂μϕ − iqAμϕ: ð2:2Þ

The potential V can, on the other hand, be expanded to
quadratic order as

Vðjϕj2Þ≃ −
12

L2
þm2jϕj2; m2L2 ¼ ΔðΔ − 4Þ: ð2:3Þ

Following the usual AdS/CFT dictionary, we take the scalar
field to be dual to a relevant operator of dimension
1 < Δ < 4, while the gauge field Aμ is dual to a Uð1Þ
conserved current. The equations of motion following from
this action are

1For two exceptions to this that are, however, dynamically
unstable, see Refs. [27,28].

2Note, however, that there is no apparent reason on the field
theory side to suspect that the speeds of sound in theories that are
UV complete would exhibit a universal upper bound.
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DMð
ffiffiffiffiffiffi
−g

p
gMNDNϕÞ −m2 ffiffiffiffiffiffi

−g
p

ϕ ¼ 0

4L2∂Mð
ffiffiffiffiffiffi
−g

p
FMNÞ ¼ iq

ffiffiffiffiffiffi
−g

p
gMN ½ϕ�ðDMϕÞ − ðDMϕÞ�ϕ�

TðAÞ
MN þ TðϕÞ

MN ¼ RMN −
1

2
RgMN

TðAÞ
MN ¼ 2L2

�
FMAFN

A −
1

4
F2gMN

�

Tϕ
MN ¼ 1

2
½ðDMϕÞ�DNϕþ ðDNϕÞ�DMϕ

− ðjDϕj2 þ VÞgMN �: ð2:4Þ

If the scalar field is turned off, i.e. ϕ ¼ 0, a homo-
geneous and isotropic charged state in the field theory has a
gravity dual description given by the AdS Reissner-
Nordström (AdSRN) metric

ds2 ¼ L2
dr2

r2fðrÞ þ
r2

L2
½−fðrÞdt2 þ d~x2�;

fðrÞ ¼ 1þQ2

r6
−
M
r4

: ð2:5Þ

The gauge potential in the AdSRN solution is

A0 ¼ μ

�
1 −

�
rH
r

�
2
�
; ð2:6Þ

where rH is the position of the black hole horizon and

M ¼ r4H þQ2

r2H
; μ ¼

ffiffiffi
3

p Q
2L2r2H

: ð2:7Þ

The Hawking temperature is then

T ¼ rH
2πL2

ð2 − r−6H Q2Þ: ð2:8Þ

At the critical value Qc ¼
ffiffiffi
2

p
r3H, the solution becomes

extremal (T ¼ 0). The horizon radius can be determined by
the temperature and the chemical potential to be

rH
L2

¼ T
6

 
3π þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9π2 þ 24μ2

T2

r !
: ð2:9Þ

The AdSRN solution is dual to a charged state in
a CFT, and therefore the speed of sound is fixed to the
conformal value v2s ¼ 1=3. In order to deviate from this
value, we need to break conformal invariance. For this, we
will consider a nonvanishing scalar field ϕ ≠ 0. The
asymptotic expansion of the scalar close to the AdS
boundary is

ϕ≃
�
L
r

�
4−Δ

L4−Δ ~ϕð0;0Þ þ
�
L
r

�
Δ
LΔϕð0;0Þ: ð2:10Þ

In this expansion, the first term has the interpretation as a
deformation of the CFT by the relevant operator with a
coupling J ≡ ~ϕð0;0Þ, while ϕð0;0Þ determines the expectation
value of the dual operator. An explicit breaking of conformal
invariance then corresponds to solutions for which J ≠ 0.
In order to simplify the analysis, we will restrict to a

small breaking of conformal invariance J=μ4−Δ ≪ 1 and/or
J=T4−Δ ≪ 1. In this case, the amplitude of the scalar field
will be small and can be treated as a probe in the AdSRN
geometry. Furthermore, we can approximate the potential
by the quadratic and constant term, as in (2.3), and reduce
the problem to solving the linearized equations of motion
for the scalar field

1ffiffiffiffiffiffi−gp ∂Mð
ffiffiffiffiffiffi
−g

p
gMNð∂Nϕ − iqANϕÞÞ

− iqAMgMNð∂Nϕ − iqANϕÞ −m2ϕ ¼ 0: ð2:11Þ

Taking ϕ ¼ ϕðrÞ and defining Δ ¼ 2þ ν, the equation
of motion in the AdSRN background reduces to

ϕ00 þ
�
5

r
þ f0

f

�
ϕ0 þ

�
4 − ν2

r2f
þ q2L4

r4f2
A2
0

�
ϕ ¼ 0: ð2:12Þ

For computational purposes, it will be convenient to work
with a different radial coordinate u ¼ r2H=r

2 and introduce
a parameter Q such that Q ¼ r3HQ. In this coordinate, the
equation of motion takes the form

0 ¼ ϕ00 þ ζ1ðuÞ
u

ϕ0 þ ζ2ðuÞ
u2

ϕ; ð2:13Þ

where

ζ1 ¼
uþ 2

Q2u2 − u − 1
þ 1

u − 1
þ 2

ζ2 ¼
u½3q2Q2ðu − 1Þ − 4ðν2 − 4ÞðQ2u − 1Þ� þ 4ðν2 − 4Þ

16ðu − 1ÞðQ2u2 − u − 1Þ2 :

ð2:14Þ

In these coordinates, the horizon is at u ¼ 1, while the
asymptotic AdS boundary is at u ¼ 0. The expansion close
to the boundary is

ϕ≃ α−u1−
ν
2 þ αþu1þ

ν
2; ð2:15Þ

where α− and αþ are the coefficients of the non-
normalizable and normalizable modes, respectively. They
are related to the coefficients in the expansion (2.10) as

J¼ ~ϕð0;0Þ ¼ α−

�
rH
L2

�
2−ν

; ϕð0;0Þ ¼ αþ

�
rH
L2

�
2þν

: ð2:16Þ
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A. Near-extremal solutions

Our first goal will be to determine the behavior of the
speed of sound in the limit of large densities μ ≫ T. The
AdSRN geometry will be very close to the extremal
solution, and it will deviate only in the neighborhood of
the black hole horizon, where in the extremal case the
geometry becomes AdS2 × R3 while in the nonextremal
case there is an ordinary black hole horizon.
Let us introduce a small parameter ϵ ≪ 1, such that the

solution becomes extremal when ϵ → 0:

Q ¼
ffiffiffi
2

p
ð1 − ϵÞ: ð2:17Þ

In the region away from the horizon, 1 − u ≫ ϵ, we can
simply set ϵ ¼ 0 to leading order and solve the equations
of motion. Deviations from the extremal limit can be
computed in a systematic way by means of a perturbative
expansion in ϵ.
In the region close to the horizon 1 − u ∼ ϵ the naive

expansion in ϵ breaks down, since the geometry deviates
from the extremal AdSRN. Instead, one can take a near-
horizon expansion by introducing a new radial coordinate v
defined as

u ¼ 1 −
4

3
ϵv ð2:18Þ

and expanding the equations to leading order in ϵ. The
resulting solution will be a good approximation in the near-
horizon region 1 ≫ 1 − u. We impose the condition that the
solution is regular at the horizon, which completely
determines it up to an overall constant.
A full solution valid throughout the full geometry can be

constructed by matching both kinds of expansions in the
overlapping region 1 ≫ 1 − u ≫ ϵ. We give the full details
of the calculation and the matching in Appendix A 1.
The ratio between the coefficients of the normalizable and
non-normalizable modes in the boundary expansion (2.15)
is given in (A11), reading schematically

αþ
α−

¼ Zν;q
1þ β1ð4ϵ9 Þλ=

ffiffi
3

p

1þ β2ð4ϵ9 Þλ=
ffiffi
3

p ; ð2:19Þ

where

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 −

q2

2
− 1

r
: ð2:20Þ

We see that, depending on whether λ is real or imaginary,
there can be two qualitatively different behaviors. For
imaginary λ, the ratio will have an oscillatory behavior
with a period that depends logarithmically on ϵ. On the
other hand, if λ is real, the terms depending on ϵ can be
neglected in a first approximation. For the rest of this
section, we will take λ to be real, which imposes a lower
bound on the conformal dimension of the scalar,

ν2 > 1þ q2

2
⇒ Δ > 2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

2

r
≥ 3: ð2:21Þ

This agrees with the condition that the effective mass of the
scalar field is above the Breitenlohner-Freedman bound in
the two-dimensional Anti-de Sitter spacetime (AdS2)
region of the extremal black hole [38,39]:

m2
effR

2
AdS2

≥ −
1

4
; R2

AdS2
¼ R2

12
; m2

eff ¼ m2 −
q2

2R2
:

ð2:22Þ

Assuming the bound is satisfied, the ratio between the two
coefficients is, to leading order in ϵ,

αþ
α−

¼ −3ν
Γð1 − νÞΓð1þν

2
þ λþq

2
ffiffi
3

p ÞΓð1þν
2

þ λ−q
2
ffiffi
3

p Þ
Γð1þ νÞΓð1−ν

2
þ λþq

2
ffiffi
3

p ÞΓð1−ν
2
þ λ−q

2
ffiffi
3

p Þ : ð2:23Þ

B. Nonextremal solutions

If the bound of the speed of sound is violated at large
densities, it will approach the conformal value from above.
At zero density, the results of Refs. [20,21] tell us that at
zero density and large temperatures the conformal value is
approached from below. Therefore, one expects an inter-
polation between the two behaviors as the ratio μ=T is
varied from infinity to zero, and in particular there should
be a maximal value of the speed of sound at some
intermediate value. In order to study this behavior, we
need to go beyond the near-extremal limit. Another
important reason to do it is that it will allow us to study
the stability of the solutions against a condensation of the
scalar.
In order to construct the nonextremal solutions, we will

resort to numerics to solve the equation (2.13). We impose
regularity of the scalar field at the horizon and shoot toward
the boundary, where we read the values of the coefficients
for the normalizable and non-normalizable modes. The
parameters of the numerical calculation that we can vary are
Q in the equations (2.13) and the amplitude of the scalar
solution, α−, in the boundary expansion (2.15). They can be
used to determine the value of the chemical potential and
the temperature normalized by the coupling of the relevant
deformation,

μr ≡ μ

J
1

4−Δ
¼

ffiffiffi
3

p

2
Qα

1
ν−2− ;

tr ≡ T

J
1

4−Δ
¼ 2 −Q2

2π
α

1
ν−2− : ð2:24Þ

The value of the normalizable coefficient αþ is extracted
from the numerical solution and can be used to determine
the expectation value of the dual operator and the compo-
nents of the energy-momentum tensor.
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The way we proceed is the following. We first expand
close to the horizon u ¼ 1 and impose regularity. The scalar
field has a Taylor expansion that we truncate at, say, the
fifth order,

ϕhðuÞ ¼
X5
n¼0

ϕH
ðnÞð1 − uÞn: ð2:25Þ

The coefficients ϕH
ðnÞ for n > 0 are determined by ϕH

ð0Þ and
ν, q, andQ in (2.14). We fix ϕH

ð0Þ ¼ 1 and use the truncated
expansion to give initial conditions for the numerical
calculation

ϕnð1 − ϵ0Þ ¼ ϕhð1 − ϵ0Þ;
ϕ0
nð1 − ϵ0Þ ¼ ϕ0

hð1 − ϵ0Þ; ð2:26Þ

where ϕn is the numerical solution and we take ϵ0 ¼ 10−5

as the cutoff in the radial direction. We shoot toward
the boundary using NDSolve in Mathematica 10 and
find a numerical solution ϕn defined in the interval
ϵ0 ≤ u ≤ 1 − ϵ0. We do this for ν ¼ 1, q ¼ 10−5 to study
the speed of sound and for ν ¼ 1, 1.1, 1.3, 1.6 and q ¼ 0.5,
1, 4, 5 and the critical values q� ¼ 1.47, 1.64, 1.97, 2.44 for
the stability analysis. In all cases, we vary Q starting at
Q ¼ 10−5 with a step ΔQ ¼ 0.005 and keeping Q <

ffiffiffi
2

p
.

Once we have obtained the numerical solution, we
extract the values of the coefficients of the normalizable
and non-normalizable modes by evaluating the solution at
the boundary cutoff u ¼ ϵ0. For ν > 1, we define the
numerical values as

ðα−Þn ¼ u
ν
2
−1ϕnðuÞju¼ϵ0

ð2:27Þ

ðαþÞn ¼
1

ν
u1−ν∂u½uν

2
−1ϕnðuÞ�j

u¼ϵ0
: ð2:28Þ

These values are determined by Q, ν, and q. In the
numerical calculation, we have fixed the amplitude of
the scalar field. Since the equations of motion are linear, we
can generate a full set of values by doing a trivial rescaling,

α− ¼ aðα−Þn; αþ ¼ aðαþÞn; ð2:29Þ

for some real number a. We determine the value of a by
fixing the temperature in units of the relevant coupling
(2.24) for each value of Q.

C. Thermodynamics

Following the usual AdS=CFT dictionary, the free
energy (grand canonical potential) is proportional to the
renormalized on-shell action in Euclidean signature
F ¼ TSEren. Since there is a nonzero chemical potential,
it will be convenient to work in Lorentzian signature, such
that the renormalized on-shell action reads

Sren ¼
Z

dtLren ¼ V3

Z
dtLren: ð2:30Þ

In (2.30), we have used the fact that the backgrounds we
study are homogeneous, and V3 is the corresponding
spatial volume along the boundary directions. The free
energy density becomes then

F ¼ −Lren; ð2:31Þ

which we have computed in (C4) in terms of the coef-
ficients of the asymptotic expansions given in (B8).
Comparing with the pressure p ¼ hTiii, given in (C9),
we see that the free energy is equal to minus the pressure
F ¼ −p. The expressions for the energy density ε ¼ hT00i
and the charge density n ¼ hJ0i can be found in (C8)
and (C11), respectively. Using these expressions as well as
(B45) and (B43), one finds the usual thermodynamic
relation

εþ p ¼ μnþ Ts: ð2:32Þ

It will be convenient to use dimensionless quantities
given in units of the scale introduced by the coupling for the
scalar operator J. We will also omit a common factor that
depends on the AdS radius L.3 We then define the reduced
quantities:

εr ¼
ε

L3

16πG5
J

4
2−ν

; pr ¼
p

L3

16πG5
J

4
2−ν

;

vr ¼
hOi

L3

16πG5
J

2þν
2−ν

; nr ¼
n

L3

16πG5
J

3
2−ν

: ð2:33Þ

The energy density and pressure depend on the enthalpy
w ¼ εþ p and the expectation value of the scalar
operator as

εr ¼
3

4
wr þ

1

2
ð2 − νÞvr ð2:34Þ

pr ¼
1

4
wr −

1

2
ð2 − νÞvr ð2:35Þ

vr ¼ −2ν
αþ
α−

α
2ν
ν−2− : ð2:36Þ

Note that in the linearized approximation the ratio αþ=α−
is independent of α−.
Comparing the Reissner-Nordström solution for the back-

ground metric (2.5) with the expansions (B8) and renormal-
ized values (C8), (C9), one can write the enthalpy as

3L3=G5 ∝ N2
c following the usual AdS=CFT dictionary, so this

just amounts to omitting a constant factor proportional to the
number of degrees of freedom of the theory.
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wr ¼
4M

J
4

2−νL8
¼ 4r4H

J
4

2−νL8
ð1þQ2Þ þO

�
J2

J
4

2−ν

�
: ð2:37Þ

Neglecting the subleading terms and using (2.24), this can be
written as

wr ≃ 4α
4

ν−2− ð1þQ2Þ: ð2:38Þ

D. Speed of sound

There are several possible definitions of the speedof sound
in a charged system, depending on which thermodynamic
quantities are held fixed. The speed of the sound waves is
usually associated with a quantity called the adiabatic speed
of sound, but for us it will be easier to compute the isothermal
speed of sound. The difference between the two is propor-
tional to the ratio T=μ, so the distinction is unimportant for
large values of the chemical potential. In our calculation, we
can vary the relative values of the temperature and chemical
potential with respect to the scale fixed by the symmetry
breaking coupling J. Through (2.24), those can be para-
metrized by variations of α− andQ. An isothermal variation
tr ¼ constant will satisfy

α−ðQÞ ¼ ðπtrÞν−2
�
1 −

Q2

2

�
2−ν

: ð2:39Þ

The changes in the enthalpy and the vacuum expectation
value (VEV) for large values of the chemical potential are

dwr ≃ 24α
4

ν−2− Q
2þQ2

2 −Q2
dQ ð2:40Þ

dvr ≃ −2να
2ν
ν−2−

�
4ν

Q
2 −Q2

αþ
α−

þ d
dQ

�
αþ
α−

��
dQ; ð2:41Þ

leading to the ratio

dvr
dwr

¼−
ν

3ð2þQ2Þα
2
−

�
ν
αþ
α−

þ2−Q2

4Q
d
dQ

�
αþ
α−

��
: ð2:42Þ

The isothermal speed of sound becomes in turn

v2s ¼
�∂pr

∂ϵr
�

tr

¼ 1

3

1 − 2ð2 − νÞ dvr
dwr

1þ 2
3
ð2 − νÞ dvr

dwr

≃ 1

3

�
1 −

8

3
ð2 − νÞ dvr

dwr

�
: ð2:43Þ

At large values of the chemical potential, the solution is
near extremal, Q≃ ffiffiffi

2
p

, and

α2− ≃
� ffiffiffi

2

3

r
μr

�2ν−4

≪ 1; ð2:44Þ

while the speed of sound becomes

v2s ≃ 1

3
ð1þ 4Cνμ

2ν−4
r Þ: ð2:45Þ

The coefficient that appears in the correction to the
conformal value is

Cν ¼
1

8

�
2

3

�
ν

ν2ð2 − νÞ αþ
α−

; ð2:46Þ

where the value of the ratio αþ=α− is given in (2.23). The
sign of Cν determines whether the speed of sound is above
the conformal value (positive Cν) or below (negative). As
one can see in Fig. 1, there are values of ν and q for which
Cν > 0 is possible. In particular, for q ¼ 0 the speed of
sound is above the conformal value for any ν.
We have determined the asymptotic form of the speed of

sound at very large densities. When μr=tr is finite, there
will be temperature-dependent corrections, and eventually,
for μr=tr ≪ 1, one should recover the results of
Refs. [20,21] and find that the speed of sound is always
below the conformal value. Using our numerical solutions,
we plot the speed of sound as a function of the chemical
potential for fixed values of the temperature in Fig. 2. We
have chosen q and Δ in such a way that the near-extremal
analysis predicts an asymptotic speed of sound above the
conformal value, which can be appreciated in the large-μr
part of the plot. For small values of μr, we observe that
indeed the speed of sound falls below the conformal value.
One also notices that as tr is increased, the speed of sound
becomes globally closer to the conformal value, as
expected. The position of the maximum in the speed of
sound depends strongly on the temperature, and, not
surprisingly, it gets pushed to larger values of the chemical
potential as the temperature is increased. The maximum
amplitude seems to become steeper as the temperature is

1.2 1.4 1.6 1.8 2.0

0.10

0.05

0.05

C

FIG. 1. Cν vs ν (1 ≤ ν ≤ 2) for different values of 0 ≤ q <
ffiffiffi
6

p
.

For q ¼ 0 (the upper curve), Cν > 0∀ν, but as q increases, a
range of values of ν exists for which Cν < 0. If q is close to

ffiffiffi
6

p
,

then Cν becomes positive again.
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lowered, which suggests that the stiffest equations of state
would be realized at very low temperatures and chemical
potentials of order of the scale set by the relevant coupling.

E. Stability

We have confirmed the existence of finite density states
for which the bound on the speed of sound is violated in
holographic models with a UV fixed point. Note that
violations were also observed in Ref. [27] at zero density,
but the states for which this happened are unstable [28], so
they may be discarded as unphysical. In principle, the same
could happen for the states we are considering here, so it is
important to check the stability of our solutions. A full-
fledged analysis would require a study of the full spectrum
of quasinormal modes at finite frequency and momentum.
This is beyond the scope of the present paper, but we will
analyze stability against the formation of a homogeneous
condensate, which is usually the first kind of instability one
encounters as the density is increased. This implies that we
will restrict the discussion to zero momentummodes. Other
instabilities may occur for nonzero momentum that would
involve the breaking of translational and/or rotational
symmetries; see e.g. Refs. [40–42].
At zero chemical potential and finite temperature, the

state will be dual to a thermal state of a CFT. If the relevant
coupling is zero, J ¼ 0, the expectation value of the scalar
operator will vanish. Technically, there is no solution to the
equations of motion for the scalar such that one has a
solution which is both normalizable and regular at the black
hole horizon at zero frequency (we should remark that we
are discussing configurations for which the scalar is close to
the critical point of the potential, ϕ ¼ 0). There are
normalizable and regular solutions that correspond to the
quasinormal modes of the scalar field for complex values of
the frequency. Stability of the large temperature state
implies that those modes are located on the lower complex
frequency plane.

If we turn on the chemical potential and start increasing
its value, eventually there could be a point where a zero
frequency normalizable and regular solution exists for the
scalar. This can be seen as having a quasinormal mode that
moves on the complex frequency plane as the chemical
potential is varied and reaches the origin. Further increasing
the chemical potential typically makes the quasinormal
mode migrate to the upper complex frequency plane, thus
becoming an instability. Therefore, one can determine the
onset of the instability as the point where a regular and
normalizable solution appears for the first time. From the
field theory perspective, this is the critical point that marks
the onset of spontaneous symmetry breaking and the
formation of a condensate.
The form of the near-extremal solutions suggests that if

the bound (2.21) is not satisfied, the oscillatory behavior of
the coefficients will probably lead to the appearance of zero
frequency quasinormal modes and hence instabilities, so
this puts a bound on the charge of the scalar relative to its
dimension. However, this does not show whether an
instability appeared before the near-extremal regime was
reached, and so we need to resort to the numerical solutions
to shed some light on this issue. In Fig. 3, we plot the
dimensionless ratio of the expectation value and the
relevant coupling, in terms of the normalizable and non-
normalizable coefficients of the numerical solutions, for
different values of Q ∝ μr=tr. At the points where the ratio
becomes zero, there is a zero frequency quasinormal mode,
and most likely there will be an instability at larger values
of Q. In all cases, the plots show that the onset of the
instability ventures into the nonextremal region only for
values of the charge of the scalar q that are above the bound
(2.21). Therefore, as long as the values of the dimension
and the charge are such that the near-extremal solution is
stable, we do not expect the solution to be unstable against
condensation. Keeping in mind the possibility of having
other instabilities, we conclude that the speed of sound
bound can be violated in physical states at large densities.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.10

0.08

0.06

0.04

0.02

0.00

1 5 10 50 100
10 6

10 5

10 4

0.001

FIG. 2. Left figure: 3v2s − 1 as a function of chemical potential for fixed values of the temperature. The black curve (lowest at μr ¼ 0)
is for tr ¼ 0.1, and the orange curve (highest at μr ¼ 0) is for tr ¼ 1. Curves in between have intermediate values separated byΔtr ¼ 0.1
steps. We have taken q ≈ 10−5, ν ¼ 1.1. Right figure: the same plot in logarithmic scale, from where one can see the maximum more
clearly.
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III. SPEED OF SOUND IN R-CHARGED STATES

In the previous section, we found a family of models for
which the bound on the speed of sound was violated. Our
approach in this was bottom up; we considered a generic
Einstein-Maxwell action with a minimally coupled charged
scalar, but we did not try to embed it in any string theory
construction. A natural concern is whether the results we
obtained also apply in a bona fide gravity dual or whether
the additional structures in string theory will always restrict
parameters in such a way that the bound is preserved.
In order to answer this question, we will study a closely

related string theory model. The field theory is N ¼ 4
SUðNcÞ super–Yang-Mills at nonzero R-charge density.
There are a variety of charged states that have a holographic
dual description in terms of rotating branes and giant
gravitons [43–45] in an asymptotically AdS5 × S5 space.
A subclass is captured by the consistent truncation of five-
dimensional N ¼ 8 SUGRA found in Ref. [46] (the

truncation is nicely presented in Ref. [47], which we

follow closely). There are three Uð1Þ gauge fields AðIÞ
μ ,

I ¼ 1, 2, 3 corresponding to the three commuting R-
charges in the Cartan subgroup of the SUð4Þ R-symmetry
group. There are also four complex scalars
ζi ¼ tanhðφiÞeiθi , i ¼ 1, 2, 3, 4 dual to the gaugino
bilinears

φi ↔ trλiλi þ H:c:; ð3:1Þ

and two real scalars α, β dual to the N ¼ 4 scalar bilinears

α ↔ trðX2
1 þ X2

2 þ X2
3 þ X4

4 − 2X2
5 − 2X2

6Þ;
β ↔ trðX2

1 þ X2
2 − X2

3 − X2
4Þ: ð3:2Þ

For convenience, we define ρ ¼ eα and ν ¼ eβ, whereby
the Lagrangian density becomes

FIG. 3. Ratio of non-normalizable over normalizable coefficients of zero frequency regular solutions Rα ¼ α−=αþ as a function of
Q ∝ μr=tr. The curves represent different values of the charge of the scalar: q ¼ 0.5 (orange), q ¼ 1 (green), q ¼ 4 (black), and q ¼ 5
(blue). For ν ¼ 1, we have plotted in addition the curve for q ¼ 2 (purple), corresponding to the string theory model introduced in
Sec. III. The red dashed curve denotes the approximate value of the charge q� at which the first instability appears at Q ¼ ffiffiffi

2
p

− 10−3.
Each plot corresponds to a different value of the conformal dimensions of the scalar. From left to right and top to bottom: ν ¼ 1,
q� ≃ 1.47; ν ¼ 1.1, q� ≃ 1.64; ν ¼ 1.3, q� ≃ 1.97; and ν ¼ 1.6, q� ≃ 2.44. As the conformal dimension is increased, the onset of the
instability for a fixed q happens at larger values of μr=tr.
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e−1L ¼ 1

4
R −

1

4g2
½ρ4ν−4Fð1Þ

μν Fð1Þμν þ ρ4ν4Fð2Þ
μν Fð2Þμν

þ ρ−8Fð3Þ
μν Fð3Þμν� þ 1

2

X4
i¼1

ð∂μφiÞ2 þ 3ð∂μαÞ2

þ ð∂μβÞ2 þ
1

8

X
i

sinh2ð2φiÞð∂μθi þ ciIA
ðIÞ
μ Þ2 − V;

ð3:3Þ

where

ciI ¼

0
BBB@

1 1 −1
1 −1 1

−1 1 1

−1 −1 −1

1
CCCA: ð3:4Þ

The scalar potential is determined by a superpotentialW as
follows [48],

V ¼ g2

8

�
1

6

�∂W
∂α
�

2

þ 1

2

�∂W
∂β
�

2

þ
X4
i¼1

�∂W
∂φi

�
2
�
−
g2

3
W2;

ð3:5Þ

where

W ¼ −
1

4ρ2ν2
½ð1þ ν4 − ν2ρ6Þ coshð2φ1Þ

þ ð−1þ ν4 þ ν2ρ6Þ coshð2φ2Þ
þ ð1 − ν4ν2ρ6Þ cosð2φ3Þ
þ ð1þ ν4 þ ν2ρ6Þ cosð2φ4Þ�: ð3:6Þ

When the three charges are equal, AðIÞ
μ ¼ 2Aμ=

ffiffiffi
3

p
, and

the scalars are turned off, the SUGRA action reduces to
Einstein-Maxwell with a cosmological constant, and AdS
Reissner-Nordström is a solution to the equations of motion
[49,50] (see also Ref. [47] for more general charged black
hole solutions).
If we take the scalars into account but remain in the equal

charge case, then it is consistent with the equations of
motion to set α ¼ β ¼ 0. By setting φi ¼ φ=ð2 ffiffiffi

2
p Þ and

θ1 ¼ θ2 ¼ θ3 ¼ −θ=
ffiffiffi
3

p
; θ4 ¼

ffiffiffi
3

p
θ; ð3:7Þ

the action becomes

e−1L ¼ 1

4
R −

1

g2
FμνFμν þ 1

4
ð∂μφÞ2

þ 1

2
sinh2

�
φffiffiffi
2

p
�
ð∂μθ − 2AμÞ2 − Vφ; ð3:8Þ

where

Vφ ¼ −
3g2

16
ð3þ coshð

ffiffiffi
2

p
φÞÞ: ð3:9Þ

The coupling constant g is related to the AdS radius as
g ¼ 2=L. If we expand to quadratic order in φ, we get that
the scalar terms of the action are

e−1Lφ ≃ 1

4

�
ð∂μφÞ2 þ φ2ð∂μθ − 2AμÞ2 −

12

L2
−

3

L2
φ2

�

¼ 1

4

�
jDμϕj2 −

12

L2
−

3

L2
jϕj2
�
: ð3:10Þ

In this Lagrangian, we have defined the complex scalar
field ϕ ¼ φeiθ and the covariant derivative Dμϕ ¼
∂μϕ − 2iAμϕ. Therefore, for a small amplitude of the
scalar field, the dynamics reduce to those of a field of
charge q ¼ 2 and mass m2L2 ¼ −3, dual to a Δ ¼ 3 scalar
operator which is a combination of components of the
gaugino bilinears. The coefficient of the quartic term as
in (B11) is V4 ¼ −1. This is within the class of models we
are considering, but the dimension is integer, and the
relation between the dimension and the charge does not
satisfy the bound (2.21). This introduces some technical
complications, as the asymptotic expansion of the scalar
close to the AdS boundary is modified by the introduction
of logarithmic terms

ϕ≃ L2

r
~ϕð0;0Þ þ

L6

r3
~ϕð2;1Þ log

r
L
þ
�
L
r

�
3

L3ϕð0;0Þ: ð3:11Þ

We will redo the analysis for this special case in the
following.

A. Solutions

The equations of motion for the scalar field can be
obtained from (2.13) by setting ν ¼ 1 in (2.14). The leading
terms in the expansion close to the AdS boundary are

ϕ≃ α−u1=2 þ ~αþu3=2 loguþ αþu3=2; ð3:12Þ

where ~αþ is determined by α−. We can find an analytic
near-extremal solution following the same procedure dis-
cussed in the previous section, although the details are
slightly different because the dimension of the scalar
operator is an integer number. The full calculation can
be found in Appendix A 2. The ratio between normalizable
and non-normalizable coefficients takes the same form as in
the previous examples (2.19), but in this case λ ¼ i=

ffiffiffi
2

p
is

complex [the bound (2.21) is not satisfied]. To go beyond
the near-extremal limit, we use numerics, and the solutions
are computed in the same way as in the previous section.
Once we have obtained the numerical solution, we

extract the values of the coefficients of the normalizable
and non-normalizable modes by evaluating the solution at
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the boundary cutoff u ¼ ϵ0. For ν ¼ 1, we define the
numerical values as

ðα−Þn ¼ u−1=2ϕnðuÞju¼ϵ0
ð3:13Þ

ð ~αþÞn ¼ u∂2
u½u−1=2ϕnðuÞ�ju¼ϵ0

ð3:14Þ

ðαþÞn ¼ ∂u½u−1=2ϕnðuÞ� − ð ~αþÞnðlog uþ 1Þju¼ϵ0
: ð3:15Þ

These values are determined by Q and q. In the numerical
calculation, we have fixed the amplitude of the scalar field.
Since the equations of motion are linear, we can again
generate a full set of values by doing a trivial rescaling,

α−¼aðα−Þn; ~αþ¼að ~αþÞn; αþ¼aðαþÞn; ð3:16Þ

for some real number a. We determine the value of a by
fixing the temperature in units of the relevant coupling
(3.18) for each value of Q.

B. Thermodynamics

We have computed the free energy density in (C14), in
terms of the coefficients of the asymptotic expansions
given in (B12). Comparing with the pressure p ¼ hTiii,
given in (C16), we see that it is equal to minus the pressure
F ¼ −p. The expressions for the energy density ε ¼ hT00i
and the charge density n ¼ hJ0i can be found in (C15)
and (C18), respectively. Using these expressions as well as
(B48) and (B43), one finds the usual thermodynamic
relation

εþ p ¼ μnþ Ts: ð3:17Þ

We again introduce the reduced quantities (2.24) and (2.33)
with ν ¼ 1; in particular, the reduced temperature and
chemical potential read

μr ≡ μ

J
¼

ffiffiffi
3

p

2

Q
α−

; tr ≡ T
J
¼ 2 −Q2

2πα−
: ð3:18Þ

The energy density and pressure depend on the enthalpy
w ¼ εþ p and the expectation value of the scalar
operator as

εr ¼
3

4
wr þ

1

2
~vr ð3:19Þ

pr ¼
1

4
wr −

1

2
~vr ð3:20Þ

~vr ¼ vr −
1

2
q2μ2r þ

�
1

6
þ V4

4

�
: ð3:21Þ

Comparing with the Reissner-Nordström solution for the
background metric (2.5) with the expansions (B12) and

using the expressions for the renormalized values (C22)
and (C23) and the relation with the coefficients in the u
expansion (B22), the leading order contributions are

wr ¼ 4
1

α4−
ð1þQ2Þ þO

�
log α−
α2−

�
ð3:22Þ

~vr ¼ −2
αþ
α−

1

α2−
þ q2μ2r log α− þ κ1q2μ2r þOðlog α−Þ:

ð3:23Þ

C. Speed of sound and stability

Through (3.18), an isothermal variation will satisfy

α−ðQÞ ¼ 1

πtr

�
1 −

Q2

2

�
: ð3:24Þ

For asymptotically large values of the chemical potential,
the changes in enthalpy and the term associated to the
breaking of conformal invariance are, to leading order,

dwr ≃ 24
Q
α4−

2þQ2

2 −Q2
dQ ð3:25Þ

d~vr ≃ 3

2
q2Q

2þQ2

2 −Q2

logα−
α2−

dQ; ð3:26Þ

giving

dvr
dwr

≃ q2

16
α2− log α−: ð3:27Þ

Similarly, the isothermal speed of sound is

v2s ¼
�∂pr

∂ϵr
�

tr

≃ 1

3

�
1 −

8

3

dvr
dwr

�
: ð3:28Þ

At large values of the chemical potential, the solution is
near-extremal Q≃ ffiffiffi

2
p

and

α2− ≃ 3

2μ2r
≪ 1; ð3:29Þ

while the speed of sound becomes

v2s ≃ 1

3

�
1þ 1

4
q2

log μr
μ2r

�
: ð3:30Þ

The speed of sound will approach the conformal value
from above at asymptotically large densities. However, we
expect to have instabilities in the extremal limit, and in
order to go beyond this limit, we will resort to numerics.
The result will depend on the choice of a finite counterterm
κ1 that is shown explicitly in (C22) and (C23). We will set
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κ1 ¼ 0, noting that as long as this parameter is not large, it
will not qualitatively affect to the results. We present the
deviation of the isothermal speed of sound from the
conformal value, 3v2s − 1, in Fig. 4 for different values
of the temperature. We see that the speed of sound remains
above the conformal value until relatively low values of the
chemical potential. The value μr ¼ 1 corresponds to Q≃
0.83

ffiffiffi
2

p
; 0.43

ffiffiffi
2

p
; 0.24

ffiffiffi
2

p
for tr ¼ 0.1, 0.5, 1, respectively.

As we found in the previous section (see Fig. 3 for
ν ¼ 1), we expect the instability that will trigger the
formation of a homogeneous condensate to appear close
to the near-extremal regime, since we found a critical
charge of q� ≃ 1.47 for Q ¼ ffiffiffi

2
p

− 10−3, which is close to
the value we have in the R-charged solution q ¼ 2. For
q ¼ 2, we find that the instability appears at Q� ≃ 1.396
(purple curve in Fig. 3). This corresponds to values of the
chemical potential μr ≃ 14.8; 74.2; 148.4 for tr ¼ 0.1, 0.5,
1, respectively. We have thus shown that the speed of sound
can be violated in the R-charged state with no obvious
instabilities.

IV. CONCLUSIONS AND OUTLOOK

According to current understanding, it appears likely that
the speed of sound in neutron star matter exceeds the
conformal value vs ¼ 1=

ffiffiffi
3

p
in the dense nuclear matter

phase [25]. Knowing that for ultradense quark matter, the
speed of sound approaches this value from below, we are
in practice left with two possibilities: either the quantity
exhibits a discontinuous jump in a first order phase
transition or it must continuously first decrease and then
increase its value in the quark matter phase. The latter
scenario has, however, been disfavored due to the lack of
first principles calculations exhibiting speeds of sound
larger than the conformal value in deconfined matter. In
addition to perturbative calculations, this statement holds

true for all known holographic setups that flow to a
four-dimensional CFT in the UV, which has prompted
speculation of a more fundamental speed of sound
bound [20,21].
In the paper at hand, we have shown that the conjectured

bound on the speed of sound in holographic models with
UV fixed points is violated for a simple class of models
involving RG flows triggered by relevant scalar operators
charged under a global Abelian symmetry. Within this
class, we were able to find a string theory example: a
charged black hole dual to N ¼ 4 theory at finite R-charge
density, deformed by a gaugino mass term. Since at very
large densities an instability toward the formation of a
homogeneous condensate will develop, we made sure that
the violation occurs in the stable regime. We may conclude
that there is no universal bound for the speed of sound in
holographic models dual to ordinary four-dimensional
relativistic field theories. This comes as good news for
everyone wishing to build realistic holographic models for
high-density nuclear or quark matter.
A natural extension of our work is clearly to go

beyond the approximation of a small breaking of conformal
invariance and study how high values the speed of sound
can be maximally obtained. Of particular interest is to
investigate whether large enough speeds can be obtained
that would allow the building of stable hybrid stars with
holographic quark matter in their cores. Continuing along
these lines, it might be interesting to study the behavior of
bottom-up models designed to match the properties of
QCD at zero [51–55] and finite density [56] and to see if
they give phenomenologically sensible results at very small
temperatures.
A different but equally interesting challenge to pursue

would be to find a top-down model with finite baryon
(rather than R-charge) density. Quark matter is typically
introduced by embedding probe branes in the geometry,
and in the known examples where the theory is truly
(3þ 1)-dimensional, the bound is satisfied even at finite
density. This might change upon considering the back-
reaction of the branes. Solutions with backreacted flavors
at finite density have been recently constructed in
Refs. [57–60]. Another possibility is to take an alternative
large-N limit where (anti)fundamental fields are extrapo-
lated to two-index antisymmetric representations [61] and
where operators with baryon charge map to gravitational
modes. We leave these investigations for future work.
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APPENDIX A: NEAR-EXTREMAL SOLUTIONS

1. Noninteger Δ
a. Near-horizon solution

First, we expand (2.13) in the region close to the horizon.
It is convenient to introduce a new radial coordinate v,
defined as

u ¼ 1 −
4

3
ϵv: ðA1Þ

We then expand (2.13) to leading order in ϵ. In this new
coordinate, the horizon is located at v ¼ 0, and the
asymptotic region gets pushed to v > 1=ϵ → ∞. The
solution to the equation of motion that is regular as
v → 0 is

ϕ ¼ ϕHð1þ vÞ−i q
2
ffiffi
6

p
2F1

�
1

2
− i

q

2
ffiffiffi
6

p −
λ

2
ffiffiffi
3

p ;
1

2

− i
q

2
ffiffiffi
6

p þ λ

2
ffiffiffi
3

p ; 1;−v
�
þ c:c:; ðA2Þ

where we have defined λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 − q2

2
− 1

q
and where

ϕð0Þ ¼ ϕH is the value of the scalar field at the horizon.
The expansion as v → ∞ gives, to leading order,

ϕ ∼ ϕH

�
C−v

−1
2
− λ
2
ffiffi
3

p þ Cþv
−1
2
þ λ

2
ffiffi
3

p
�
; ðA3Þ

where

C� ¼
Γ
�
� λffiffi

3
p
�

			Γ�12 − i q
2
ffiffi
6

p � λ
2
ffiffi
3

p
�			2 : ðA4Þ

b. Asymptotic solution

We can find the leading order solution simply setting
ϵ → 0 in the equation, giving the solution in the extremal
Reissner-Nordström geometry

ϕ ¼ αþφþ þ α−φ−; ðA5Þ

where α� are arbitrary coefficients and

φ� ¼ u1�ν
2ð1 − uÞ−1

2
−jq−λj

q−η
λ

2
ffiffi
3

p ð1þ 2uÞ−1�ν
2
þjq−λj

q−λ
λ

2
ffiffi
3

p ðA6Þ

× 2F1

�
1�ν

2
þjq−λj

2
ffiffiffi
3

p ;
1�ν

2
−
qþλ

q−λ

jq−λj
2
ffiffiffi
3

p ;1�ν;
3u

1þ2u

�
:

ðA7Þ
Expanding close to the boundary u → 0, the coefficients
behave as

φ� ∼ u1�ν
2: ðA8Þ

Therefore, φþ is the normalizable mode, and φ− is the
non-normalizable mode. We now evaluate the solution at
u ¼ 1 − 4

3
ϵv and expand for ϵ → 0. The expansion takes

the same form as for the near-horizon solution

φ� ∼
�
D�−v

−1
2
− λ
2
ffiffi
3

p þD�þv
−1
2
þ λ

2
ffiffi
3

p
�
: ðA9Þ

The coefficients and exponents depend on the sign of q − λ,
but the final result is the same for both q > λ and λ < q.

c. Matching

We have to match the coefficients of the near-horizon
and asymptotic solutions in such a way that the leading
order terms in the overlapping region (A3) and (A9) are the
same. This gives the conditions

αþD�þ þ α−D�− ¼ ϕHC�; ðA10Þ

thus fixing αþ and α− in terms of ϕH and the coefficients of
the expansion. In the end, we should fix the coefficient of
the non-normalizable mode to be equal to the source of the
dual operator. That fixes the value of the scalar at the
horizon and the coefficient of the normalizable mode, both
of which are also proportional to the source. The propor-
tionality coefficient of the normalizable mode that deter-
mines the VEV of the dual operator is proportional to

αþ
α−

¼ −3ν
Γð1 − νÞΓ

�
1þν
2

þ λþq
2
ffiffi
3

p
�
Γ
�
1þν
2

þ λ−q
2
ffiffi
3

p
�

Γð1þ νÞΓ
�
1−ν
2
þ λþq

2
ffiffi
3

p
�
Γ
�
1−ν
2
þ λ−q

2
ffiffi
3

p
�

×
1þ β1ð4ϵ9 Þλ=

ffiffi
3

p

1þ β2ð4ϵ9 Þλ=
ffiffi
3

p ; ðA11Þ

where

β1¼
Γ
�
− λffiffi

3
p
�
Γ
�
1− λffiffi

3
p
�

Γ
�

λffiffi
3

p
�
Γ
�
1þ λffiffi

3
p
� Γ

�
1
2
− i q

2
ffiffi
6

p þ λ
2
ffiffi
3

p
�
Γ
�
1
2
þ i q

2
ffiffi
6

p þ λ
2
ffiffi
3

p
�

Γ
�
1
2
− i q

2
ffiffi
6

p − λ
2
ffiffi
3

p
�
Γ
�
1
2
þ i q

2
ffiffi
6

p − λ
2
ffiffi
3

p
�

×
Γ
�
1−ν
2
þ λþq

2
ffiffi
3

p
�
Γ
�
1−ν
2
þ λ−q

2
ffiffi
3

p
�

Γ
�
1−ν
2
− λþq

2
ffiffi
3

p
�
Γ
�
1−ν
2
− λ−q

2
ffiffi
3

p
� ðA12Þ

and
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β2 ¼
cos
�
qπffiffi
3

p
�
þ cos

h
π
�

λffiffi
3

p − ν
�i

cos
�
qπffiffi
3

p
�
þ cos

h
π
�

λffiffi
3

p þ ν
�i β1: ðA13Þ

The terms that go as ∼ϵλ=
ffiffi
3

p
can be neglected only if λ > 0.

This requires

ν2 > 1þ q2

2
⇒ Δ > 2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

2

r
: ðA14Þ

If q2 ≥ 6, this is not possible for Δ < 4.

2. Solutions for Δ= 3

We can set ν ¼ 1 in Eq. (2.14) and follow the same
procedure.

a. Near-horizon solution

We can convert the equation of motion in a hyper-
geometric equation by extracting a factor from the scalar
field ϕ ¼ ð1þ vÞ−i q

2
ffiffi
6

p
X. The resulting equation is (we keep

q as a parameter)

vð1þ vÞX00 þ
�
1þ

�
2 − i

qffiffiffi
6

p
�
v

�
X0

þ
�
1

4
− i

q

2
ffiffiffi
6

p
�
X ¼ 0: ðA15Þ

The regular solution is

X ¼ 2F1

�
1

2
;
1

2
− i

qffiffiffi
6

p ; 1;−v
�
: ðA16Þ

In order to make the solution real, we combine it with the
complex conjugate:

ϕ ¼ ϕH

2

�
ð1þ vÞ−i q

2
ffiffi
6

p
2F1

�
1

2
;
1

2
− i

qffiffiffi
6

p ; 1;−v
�

þ ð1þ vÞi q
2
ffiffi
6

p
2F1

�
1

2
;
1

2
þ i

qffiffiffi
6

p ; 1;−v
��

: ðA17Þ

The expansion as v → ∞ is

ϕ ∼
ϕH

2

�
C−v

−1
2
−i q

2
ffiffi
6

p þ Cþv
−1
2
þi q

2
ffiffi
6

p
�
; ðA18Þ

where

C� ¼
Γ
�
�i qffiffi

6
p
�

ffiffiffi
π

p
Γ
�
1
2
� i qffiffi

6
p
� : ðA19Þ

b. Asymptotic solution

We can find the leading order solution simply setting
ϵ → 0 in (2.13):

ϕ00 −
1þ uþ 4u2

uð1 − uÞð2uþ 1Þϕ
0 þ 3

8

2þ ð4þ q2Þu
u2ð1 − uÞ2ð1þ 2uÞ2 ϕ ¼ 0:

ðA20Þ
We can convert this in a hypergeometric equation by
defining

φ̂∓ ¼ ð2uþ 1Þ�i q
2
ffiffi
6

p ð1 − uÞ−1
2
∓i q

2
ffiffi
6

p
u

1
2X∓

�
3u

2uþ 1

�
ðA21Þ

and changing variables to

z ¼ 3u
2uþ 1

; u ¼ z
2z − 3

: ðA22Þ

Equation (A20) becomes

zð1 − zÞX00∓ þ
�
�i

qffiffiffi
6

p
�
zX0∓ þ q2

8
X∓ ¼ 0: ðA23Þ

The two independent solutions are

X∓ ¼ 2F1

�
q

2
ffiffiffi
3

p
�
1 ∓ iffiffiffi

2
p
�
;

−
q

2
ffiffiffi
3

p
�
1� iffiffiffi

2
p
�
; 1 ∓ i

qffiffiffi
6

p ; 1 − z

�
: ðA24Þ

The general scalar solution is thus

ϕ ¼ α̂þφ̂þ þ α̂−φ̂−; ðA25Þ

where α̂� are arbitrary coefficients.
Expanding close to the boundary u → 0,

φ̂∓ ∼ A∓u1=2 þ B∓u3=2: ðA26Þ

The coefficients A∓ correspond to the non-normalizable
mode, and the coefficients B∓ correspond to the normal-
izable mode. We define the non-normalizable φ− and
normalizable φþ modes as

φ− ¼ B−φ̂þ − Bþφ̂−

B−Aþ − BþA−
ðA27Þ

φþ ¼ A−φ̂þ − Aþφ̂−

A−Bþ − AþB−
: ðA28Þ

The general solution is

φ ¼ αþφþ þ α−φ−: ðA29Þ
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We now evaluate the solution at u ¼ 1 − 4
3
ϵv and expand

for ϵ → 0. The expansion takes the same form as for the
near-horizon solution

φ� ∼
�
D�−v

−1
2
−i q

2
ffiffi
6

p þD�þv
−1
2
þi q

2
ffiffi
6

p
�
: ðA30Þ

c. Matching

We have to match the coefficients of the near-horizon
and asymptotic solutions in such a way that the leading
order terms in the overlapping region (A18) and (A30) are
the same. This gives the conditions

α−D�− þ αþD�þ ¼ ϕHC�: ðA31Þ

This fixes α− and αþ in terms of ϕH and the coefficients of
the expansion. In the end, we should fix the coefficient of
the non-normalizable mode to be equal to the source of the
dual operator. That fixes the value of the scalar at the
horizon and the coefficient of the normalizable mode, both
of which are also proportional to the source. The propor-
tionality coefficient of the normalizable mode that deter-
mines the VEV of the dual operator is proportional to

αþ
α−

¼
�
1

2
− i

ffiffiffi
6

p
q

4
−
3

8
q2ðH2þi

ffiffi
2

p
4
ffiffi
3

p q
þH−2þi

ffiffi
2

p
4
ffiffi
3

p q
þ log 3Þ

�

×
1þ β1ð4ϵ9 Þiq=

ffiffi
6

p

1þ β2ð4ϵ9 Þiq=
ffiffi
6

p ; ðA32Þ

where

β2 ¼
−3þ i

ffiffiffi
6

p
q

q2ΓðqcÞ
�Γð1 − i qffiffi

6
p Þ

Γði qffiffi
6

p Þ
�2

×
Γ
�
− 1

2
þ i qffiffi

6
p
�

Γ
�
1
2
− i qffiffi

6
p
� Γ

�
2þi

ffiffi
2

p
4
ffiffi
3

p q
�
Γ
�
−2þi

ffiffi
2

p
4
ffiffi
3

p q
�

Γ
�
2−i

ffiffi
2

p
4
ffiffi
3

p q
� : ðA33Þ

Here,

c ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ i2

ffiffiffi
2

pp
2
ffiffiffi
6

p ≃ −0.29 − 0.2i: ðA34Þ

The other coefficient is

β1 ¼
1þ i

ffiffi
3
2

q
q − 3

4
q2
�
−1þH2−i

ffiffi
2

p
4
ffiffi
3

p q
þHcq þ log 3

�
1 − i

ffiffi
3
2

q
q − 3

4
q2
�
−1þH2þi

ffiffi
2

p
4
ffiffi
3

p q
þH−2þi

ffiffi
2

p
4
ffiffi
3

p q
þ log 3

� β2:
ðA35Þ

Note that the terms that go as ∼ϵiq=
ffiffi
6

p
cannot be neglected.

APPENDIX B: USEFUL FORMULAS

1. Equations of motion and boundary expansions

In the presence of a nonzero scalar ϕðrÞ and gauge
field A0ðrÞ, we consider an ansatz for the metric of the
form

ds2 ¼ L2

r2fðrÞ dr
2 þ r2

L2
e2AðrÞð−fðrÞdt2 þ dx2Þ: ðB1Þ

The equations of motion (2.4) become

0 ¼ f00 þ
�
4A0 þ 5

r

�
f0 − L4e−2A

�
4

r2
A02
0 þ 2q2

r4f
A2
0ϕ

2

�
ðB2Þ

0 ¼ A00
0 þ

�
2A0 þ 3

r

�
A0
0 − q2

ϕ2

2r2f
A0 ðB3Þ

0 ¼ A00 þ 1

r
A0 þ 1

3

�
ϕ02 þ L4q2e−2A

A2
0ϕ

2

r4f2

�
ðB4Þ

0 ¼ ϕ00 þ
�
4A0 þ f0

f
þ 5

r

�
ϕ0

þ
�
L4q2e−2A

A2
0

r4f2
−
ΔðΔ − 4Þ

r2f

�
ϕ ðB5Þ

0 ¼ L4e−2A
A02
0

r2f
þ A0

�
12

r
þ 3

2

f0

f
þ 6A0

�
þ 6

r2

�
1 −

1

f

�

þ 3f0

2rf
−
1

2
ϕ02 þ ϕ2

�
ΔðΔ − 4Þ
2r2f

− L4q2e−2A
A2
0

2r4f2

�
:

ðB6Þ

Assuming the mass of the scalar is such that there are no
logarithmic terms (noninteger Δ), the gravity solution
admits the series expansion

f ¼ 1þ
X
n;m

fðn;mÞ
rnþmΔ ; A0 ¼ μþ

X
n;m

A0ðn;mÞ
rnþmΔ ;

A ¼
X
m;n

Aðn;mÞ
rnþmΔ

ϕ ¼ L2ð4−ΔÞ

r4−Δ
X
n;m

~ϕðn;mÞ
rnþmΔ þ L2Δ

rΔ
X
n;m

ϕðn;mÞ
rnþmΔ ; ðB7Þ

where we will identify ~ϕð0;0Þ as the source and ϕð0;0Þ as the
VEV, with dimensions 4 − Δ andΔ, respectively. Using the
equations of motion, we fix the leading coefficients to be
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ϕ ∼
L2ð4−ΔÞ

r4−Δ
~ϕð0;0Þ þ

L2Δ

rΔ
ϕð0;0Þ þ

L6ð4−ΔÞ

r3ð4−ΔÞ
Δ − 4

12ðΔ − 3Þ
~ϕ3
ð0;0Þ þ

L2ð6−ΔÞ

r6−Δ
μ2q2

4ðΔ − 3Þ
~ϕð0;0Þ þ � � �

A ∼ −
1

12

L4ð4−ΔÞ

r2ð4−ΔÞ
~ϕ2
ð0;0Þ −

L8ð4−ΔÞ

r4ð4−ΔÞ
Δ − 4

96ðΔ − 3Þ
~ϕ4
ð0;0Þ −

L5ð4−ΔÞ

r2ð5−ΔÞ
μ2q2ðΔ2 − 8Δþ 18Þ
24ðΔ − 3ÞðΔ − 5Þ2

~ϕ2
ð0;0Þ þ

L8

r4
ΔðΔ − 4Þ

24
~ϕð0;0Þϕð0;0Þ þ � � �

f ∼ 1þ L8

r4
fð4;0Þ þ

L4ð5−ΔÞ

r2ð5−ΔÞ
μ2q2

2ðΔ − 3ÞðΔ − 5Þ
~ϕ2
ð0;0Þ þ � � �

A0 ∼ μþ L4

r2
A0ð2;0Þ þ

L4ð4−ΔÞ

r2ð4−ΔÞ
μq2

8ðΔ2 − 7Δþ 12Þ
~ϕ2
ð0;0Þ þ � � � : ðB8Þ

For Δ ¼ 3, the expansions are modified due to the presence of logarithmic terms, and the asymptotic behavior of the scalar
field becomes

ϕr→∞ ∼
L2

r
~ϕð0;0Þ þ

L6

r3

�
~ϕð1;1Þ log

r
L
þ ϕð0;0Þ

�
þ � � � ; ðB9Þ

where again we identify ~ϕð0;0Þ as the source and ϕð0;0Þ as the VEV. Due to the presence of the logarithmic term, which is
leading, the near-boundary series expansions for the gauge field and warp factors differ this time from (B8),

f ¼ 1þ
X
n≥m

fðn;mÞ
rn

�
log

�
r
L

��
m
; A0 ¼ μþ

X
n≥m

A0ðn;mÞ
rn

�
log

�
r
L

��
m
; A ¼

X
n≥m

Aðn;mÞ
rn

�
log

�
r
L

��
m
: ðB10Þ

We will also allow a potential that is not purely quadratic but has an expansion

VðΦ†ΦÞ ¼ −
12

L2
−

3

L2
Φ†Φþ V4

2L2
ðΦ†ΦÞ2 þ � � � : ðB11Þ

Inserting these series into the equations of motion, we fix the leading coefficients to be

ϕ ∼
L2

r
~ϕð0;0Þ þ

L6

r3

�
~ϕð0;0Þ

�
1

2
μ2q2 −

�
1

3
þ V4

2

�
~ϕ2
ð0;0Þ

�
log

r
L
þ ϕð0;0Þ

�
þ � � �

A ∼ −
L4

r2
~ϕ2
ð0;0Þ
12

þ L8

r4
~ϕ2
ð0;0Þ
48

�
1

6

�
−9μ2q2 þ ð2þ 3V4Þ ~ϕ2

ð0;0Þ − 36
ϕð0;0Þ
~ϕð0;0Þ

�
þ ðð2þ 3V4Þ ~ϕ2

ð0;0Þ − 3μ2q2Þ log r
L

�
þ � � �

f ∼ 1þ L8

r4

�
fð4;0Þ −

1

2
ðμq ~ϕð0;0ÞÞ2 log

r
L

�
þ � � �

A0 ∼ μþ L4

r2

�
A0ð2;0Þ −

1

4
q2μ ~ϕ2

ð0;0Þ log
r
L

�
þ � � � : ðB12Þ

The expansion in the u ¼ r2H=r
2 coordinate will take the form

ϕ ∼ α−u1=2 þ u3=2ðαþ ~αþ log uÞ þ � � �
f ∼ 1þ u2ðf4 þ ~f4 log uÞ þ � � �
A0 ∼ μþ μuðA02 þ ~A02 log uÞ þ � � � : ðB13Þ

Comparing the two expansions, one finds the following relations between the coefficients:

α− ¼ L2

rH
~ϕð0;0Þ ðB14Þ
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~αþ ¼ −
1

2

L6

r3H

�
~ϕð0;0Þ

�
1

2
μ2q2 −

�
1

3
þ V4

2

�
~ϕ2
ð0;0Þ

��
ðB15Þ

αþ¼L6

r3H

�
ϕð0;0Þ− ~ϕð0;0Þ

�
1

2
μ2q2−

�
1

3
þV4

2

�
~ϕ2
ð0;0Þ

�
log

rH
L

�
ðB16Þ

~f4 ¼
1

4

L8

r4H
ðμq ~ϕð0;0ÞÞ2 ðB17Þ

f4 ¼
L8

r4H

�
fð4;0Þ þ

1

2
ðμq ~ϕð0;0ÞÞ2 log

rH
L

�
ðB18Þ

~A02 ¼
1

8

L4

r2H
q2 ~ϕ2

ð0;0Þ ðB19Þ

A02 ¼
L4

r2

�
1

μ
A0ð2;0Þ þ

1

4
q2 ~ϕ2

ð0;0Þ log
rH
L

�
: ðB20Þ

Since the equations of motion in the u coordinate are
independent of the ratio rH=L, we can extract the loga-
rithmic dependence of the subleading terms explicitly,

ϕð0;0Þ ¼ ϕ̂ð0;0Þ þ ~ϕð0;0Þ

�
1

2
μ2q2 −

�
1

3
þ V4

2

�
~ϕ2
ð0;0Þ

�
log

rH
L

fð4;0Þ ¼ f̂ð4;0Þ −
1

2
ðμq ~ϕð0;0ÞÞ2 log

rH
L

A0ð2;0Þ ¼ Â0ð2;0Þ −
1

4
q2μ ~ϕ2

ð0;0Þ log
rH
L

; ðB21Þ

with

ϕ̂ð0;0Þ ¼αþ
r3H
L6

; f̂ð4;0Þ ¼f4
r4H
L8

; Â0ð2;0Þ ¼μA02

r2H
L4

:

ðB22Þ

2. On-shell action

We can write Einstein’s equations as

RMN ¼ TðAÞ
MN þ Tϕ

MN þ 1

2
gMN

�
L2

3
F2 þ jDϕj2 þ 5

3
V

�
:

ðB23Þ

From the trace of Einstein equations, we find that the Ricci
scalar is

R ¼ L2

3
F2 þ jDϕj2 þ 5

3
V: ðB24Þ

Therefore, the on-shell action (2.1) is evaluated as

Son-shell ¼
1

16πG5

Z
d5x

ffiffiffiffiffiffi
−g

p �
2

3
V −

2

3
L2F2

�
: ðB25Þ

Let us now use that for our solutions

Γα
μν ¼ Γr

rν ¼ Γα
rr ¼ 0;

Γr
μν ¼ −

1ffiffiffiffiffiffi
grr

p Kμν; Γα
μr ¼

ffiffiffiffiffiffi
grr

p
Kα

μ;

Γr
rr ¼

1

2
grr∂rgrr; ðB26Þ

where

Kμν ¼
1

2
ffiffiffiffiffiffi
grr

p ∂rgμν ðB27Þ

is the extrinsic curvature and Kα
μ ¼ gαβKβμ, K ¼ gμνKμν.

We will also use that

∂r
ffiffiffiffiffiffi−gpffiffiffiffiffiffi−gp ¼ Γr

rr þ
ffiffiffiffiffiffi
grr

p
K: ðB28Þ

This allows us to write

gμνRμν ¼ −
1ffiffiffiffiffiffi−gp ∂r

� ffiffiffiffiffiffi−gpffiffiffiffiffiffi
grr

p K

�
¼ −

1ffiffiffiffiffiffi−gp ∂rð ffiffiffiffiffiffi
−γ

p
KÞ:

ðB29Þ

We defined γμν ¼ gμν as the boundary metric and usedffiffiffiffiffiffi−gp ¼ ffiffiffiffiffiffi
grr

p ffiffiffiffiffiffi−γp
. On the other hand, from Einstein’s

equations,

gμνRμν ¼ −
2L2

3
F0rF0r þ 4

3
V þ q2g00A2

0ϕ
2; ðB30Þ

where we only focused on the nonzero components on the
solutions.
Solving for V and introducing the result in the on-shell

action, one gets

Son-shell ¼
1

16πG5

Z
d5x

ffiffiffiffiffiffi
−g

p �
−

1

2
ffiffiffiffiffiffi−gp ∂rð ffiffiffiffiffiffi

−γ
p

KÞ

− L2Fr0Fr0 −
q2

2
g00A2

0ϕ
2

�
: ðB31Þ

Let us now use the equation of motion for the gauge field:

4L2∂rð
ffiffiffiffiffiffi
−g

p
Fr0Þ ¼ 2q2

ffiffiffiffiffiffi
−g

p
g00A0ϕ

2: ðB32Þ

We can then replace the q2 term in the action by a derivative
term and write the action as a total derivative:
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Son-shell ¼
1

16πG5

Z
d5x

�
−
1

2
∂rð

ffiffiffiffiffiffi
−γ

p
KÞ − L2 ffiffiffiffiffiffi

−g
p ∂rA0Fr0

− L2A0∂rð
ffiffiffiffiffiffi
−g

p
Fr0Þ

�

¼ 1

16πG5

Z
d5x∂r

�
−
1

2

ffiffiffiffiffiffi
−γ

p
K − L2 ffiffiffiffiffiffi

−g
p

A0Fr0

�

¼ −
1

16πG5

Z
d4x
�
1

2

ffiffiffiffiffiffi
−γ

p
K þ L2 ffiffiffiffiffiffi

−g
p

A0Fr0

�
r¼rΛ

r¼rH

:

ðB33Þ

3. Connecting boundary and horizon values

We can rewrite the equations for f (B2) and A0 (B3) as

½e4Ar5f0�0 − L4

�
4e2Ar3ðA0

0Þ2 þ 2q2
re2AA2

0ϕ
2

f

�
¼ 0

ðB34Þ

½e2Ar3A0
0�0 −

q2

2

re2AA0ϕ
2

f
¼ 0: ðB35Þ

We can multiply the second equation by −4L4A0 and add it
to the first one, yielding

½e4Ar5f0 − 4L4e2Ar3A0
0A0�0 ¼ 0: ðB36Þ

By introducing the function

σðrÞ ¼
Z

r

rH

dr1
r1e2AA0ϕ

2

f
; ðB37Þ

the equations become

½e4Ar5f0 − 4L4e2Ar3A0
0A0�0 ¼ 0 ðB38Þ

�
e2Ar3A0

0 −
q2

2
σ

�0
¼ 0: ðB39Þ

Let us further define

βðrÞ ¼ e4Ar5f0 − 4L4e2Ar3A0
0A0;

γðrÞ ¼ e2Ar3A0
0 −

q2

2
σ: ðB40Þ

By the equations above, these are independent of the radial
coordinate, and it is convenient to evaluate them at the
horizon r → rH,

βðrHÞ ¼ e4AðrHÞr5Hf
0ðrHÞ≡ βH

γðrHÞ ¼ e2AðrHÞr3HA
0
0ðrHÞ≡ γH: ðB41Þ

Note that the temperature and entropy density are
given by

T ¼ r2Hf
0ðrHÞ

4πL2
eAðrHÞ; s ¼ 1

4G5

r3H
L3

e3AðrHÞ: ðB42Þ

Then,

βH ¼ 16πG5L5Ts: ðB43Þ

The constant γH is related to the charge density. We should
expand now the solutions (B40) close to the boundary and
compare with the values at the horizon (B41). For Δ ≠ 3, σ
has the following expansion,

σ ≃ L16−4Δ μ ~ϕ2
ð0;0Þ

4ðΔ − 3Þ ðr
2Δ−6
H − r2Δ−6Þ þ σb; ðB44Þ

where σb is a constant. The divergent term cancels out in
the boundary expansion of γðrÞ. Then, the matching of the
constant terms at the boundary and the horizon leads to

A0ð2;0Þ ¼ −
γH
2L4

þ q2
�

μ ~ϕ2
ð0;0Þ

8ðΔ − 3Þ
�
rH
L2

�
2ðΔ−3Þ

þ σb
2L4

�

fð4;0Þ ¼ −
1

4

βH
L8

þ 2μA0ð2;0Þ: ðB45Þ

For Δ ¼ 3, the expansion of σ close to the boundary is

σ ≃ μL4 ~ϕ2
ð0;0Þ

�
log

�
r
L

�
− log

�
rH
L

��
þ σb; ðB46Þ

where again σb is a constant. The divergent term cancels
out in the boundary expansion of γðrÞ, and the matching of
the constant terms at the boundary and the horizon leads to

A0ð2;0Þ ¼ −
γH
2L4

− q2
�
1

8
μ ~ϕ2

ð0;0Þ

�
1 − 2 log

rH
L

�
þ σb
4L4

�
ðB47Þ

fð4;0Þ ¼ −
1

4

βH
L8

þ 2μA0ð2;0Þ þ
1

8
q2μ2 ~ϕ2

ð0;0Þ: ðB48Þ

APPENDIX C: HOLOGRAPHIC
RENORMALIZATION

In order to compute renormalized quantities, we follow
the holographic renormalization prescription [62–64]. First,
we introduce a cutoff in the radial direction rΛ such that the
divergences of the bulk action (2.1) are regulated. To this,
we should add the Gibbons-Hawking term in order to have
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a well-defined variational principle for the metric and
boundary counterterms to remove the divergences. We
distinguish between two cases, noninteger Δ and Δ ¼ 3.
We assume that the form of the metric is

ds2 ¼ N2dr2 þ γμνdxμdxν ðC1Þ

and define the extrinsic curvature and Brown-York tensors
in the usual way:

Kμν ¼
1

2N
∂rγμν;

K ¼ γμνKμν;

Πμν
BY ¼ ðKμν − γμνKÞ: ðC2Þ

1. Noninteger Δ
The boundary terms are

SGH ¼ 1

8πG5

Z
r¼rΛ

d4x
ffiffiffiffiffiffi
−γ

p
K

Sc:t: ¼
1

16πG5

Z
r¼rΛ

d4xLc:t:

Lc:t: ¼ ffiffiffiffiffiffi
−γ

p �
−
6

L
þΔ− 4

L
Φ†Φþ L

2ðΔ− 3Þ γ
μνðDμΦÞ†DνΦ

þ 1

12L
ðΔ− 4Þ2
Δ− 3

ðΦ†ΦÞ2
�
:

The renormalized action is then

Sren ¼ lim
rΛ→∞

½Sbulk þ SGH þ Sc:t:�: ðC3Þ

The free energy is determined by the renormalized action
βV3F ¼ −Sren (where β ¼ 1=T and V3 is the spatial
volume). Using the formula for the on-shell action (B33)
and the boundary expansions (B8) and the relation (B45),
we find

F ¼ 1

16πG5

�
−
1

4
e4AðrHÞ

�
rH
L

�
5

f0ðrHÞ þ 2L3μA0ð2;0Þ

þ L3ðΔ − 4ÞðΔ − 2Þ ~ϕð0;0Þϕð0;0Þ

�

¼ −
L3

16πG5

�
−
1

4

βH
L8

þ 2μA0ð2;0Þ

þ ðΔ − 4ÞðΔ − 2Þ ~ϕð0;0Þϕð0;0Þ

�

¼ L3

16πG5

½fð4;0Þ þ ðΔ − 4ÞðΔ − 2Þ ~ϕð0;0Þϕð0;0Þ�: ðC4Þ

Renormalized expectation values can be computed from
variations of the action, using the same boundary terms,

hTμνi ¼ 1

8πG5

lim
r→∞

r2

L2

�
−
ffiffiffiffiffiffi
−γ

p
Πμν

BY þ δLc:t:

δγμν

�
ðC5Þ

hOi ¼ 1

16πG5

lim
r→∞

L2ð4−ΔÞ

r4−Δ

�
−
ffiffiffiffiffiffi
−g

p
grr∂rϕþ δLc:t:

δΦ†

�
ðC6Þ

hJμi ¼ 1

16πG5

lim
r→∞

�
−4L2 ffiffiffiffiffiffi

−g
p

grrgμαFrα þ
δLc:t:

δAμ

�
: ðC7Þ

Introducing (B8) in the formulas (C5)–(C7), we get

hT00i ¼ −
L3

16πG5

½3fð4;0Þ − ðΔ − 4ÞðΔ − 2Þ ~ϕð0;0Þϕð0;0Þ�

ðC8Þ

hTiii ¼ −
L3

16πG5

½fð4;0Þ þ ðΔ − 4ÞðΔ − 2Þ ~ϕð0;0Þϕð0;0Þ�

ðC9Þ

hOi ¼ −
L3

8πG5

ðΔ − 2Þϕð0;0Þ ðC10Þ

hJ0i ¼ −
L3

2πG5

A0ð2;0Þ: ðC11Þ

Note that the Ward identity for the trace holds,

hTμ
μi ¼ hTμνiημν ¼ −ð4 − ΔÞðhOi ~ϕ†

ð0;0Þ þ hO†i ~ϕð0;0ÞÞ:
ðC12Þ

2. Δ= 3

The boundary terms are

SGH¼
1

8πG5

Z
r¼rΛ

d4x
ffiffiffiffiffiffi
−γ

p
K

Sc:t:¼
1

16πG5

Z
r¼rΛ

d4xLc:t:

Lc:t:¼ ffiffiffiffiffiffi
−γ

p �
−
6

L
−
1

L
Φ†ΦþL

�
log

r
L
þW1

�
γμνðDμΦÞ†DνΦ

þ 1

L

��
1

3
þV4

2

�
log

r
L
þW2

�
ðΦ†ΦÞ2

�
;

where W1, W2 are finite contributions. The renormalized
action is then

Sren ¼ lim
rΛ→∞

½Sbulk þ SGH þ Sc:t:�: ðC13Þ

The free energy is determined by the renormalized action
βV3F ¼−Sren (where β¼1=T and V3 is the spatial
volume). Using the formula for the on-shell action (B33)
and the boundary expansions (B12) and the relation (B48),
we find
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F ¼ 1

16πG5

�
−
1

4
e4AðrHÞ

�
rH
L

�
5

f0ðrHÞ þ 2L3μA0ð2;0Þ − L3 ~ϕð0;0Þϕð0;0Þ

þL3

�
1

4
þW1

�
q2μ2 ~ϕ2

ð0;0Þ − L3

�
1

12
þ V4

8
þW2

�
~ϕ4
ð0;0Þ

�

¼ −
L3

16πG5

�
−
1

4

βH
L8

þ 2μA0ð2;0Þ − ~ϕð0;0Þϕð0;0Þ þ
�
1

4
þW1

�
q2μ2 ~ϕ2

ð0;0Þ −
�
1

12
þ V4

8
þW2

�
~ϕ4
ð0;0Þ

�

¼ L3

16πG5

�
fð4;0Þ − ~ϕð0;0Þϕð0;0Þ þ

�
1

8
þW1

�
q2μ2 ~ϕ2

ð0;0Þ −
�
1

12
þ V4

8
þW2

�
~ϕ4
ð0;0Þ

�
: ðC14Þ

Renormalized expectation values can be computed from variations of the action, using the same boundary terms.
Introducing (B12) in the formulas (C5)–(C7) (with Δ ¼ 3), we get

hT00i ¼ −
L3

16πG5

�
3fð4;0Þ þ ~ϕð0;0Þϕð0;0Þ þ

�
3

8
þW1

�
q2μ2 ~ϕ2

ð0;0Þþ
�
1

12
þ V4

8
þW2

�
~ϕ4
ð0;0Þ

�
ðC15Þ

hTiii ¼ −
L3

16πG5

�
fð4;0Þ − ~ϕð0;0Þϕð0;0Þ þ

�
1

8
þW1

�
q2μ2 ~ϕ2

ð0;0Þ−
�
1

12
þ V4

8
þW2

�
~ϕ4
ð0;0Þ

�
ðC16Þ

hOi ¼ −
L3

16πG5

�
2ϕð0;0Þ −

�
1

2
þW1

�
q2μ2 ~ϕð0;0Þ þ

�
1

3
þ V4

2
þ 2W2

�
~ϕ3
ð0;0Þ

�
ðC17Þ

hJ0i ¼ −
L3

16πG5

½8A0ð2;0Þ þ ð1þ 2W1Þq2μ ~ϕ2
ð0;0Þ�: ðC18Þ

The Ward identity for the trace has an anomalous contribution,

hTμ
μi ¼ hTμνiημν ¼ −ðhOi ~ϕ†

ð0;0Þ þ hO†i ~ϕð0;0ÞÞ þA; ðC19Þ

where

A ¼ −
L3

16πG5

�
ημνðDμ

~ϕð0;0ÞÞ†Dν
~ϕð0;0Þ þ

�
1

3
þ V4

2

�
ð ~ϕ†

ð0;0Þ ~ϕð0;0ÞÞ2
�
: ðC20Þ

It will be convenient to extract the explicit logarithmic dependence (B21) and define the finite counterterms as

W1 ¼ log ð ~ϕð0;0ÞLÞ þ κ1; W2 ¼
�
1

3
þ V4

2

�
log ð ~ϕð0;0ÞLÞ þ κ2: ðC21Þ

Then,

hT00i ¼ −
L3

16πG5
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�
μ2q2 ~ϕ2

ð0;0Þ þ
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1
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þ κ1
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�
1

12
þ V4

8
þ κ2

�
~ϕ4
ð0;0Þ

�
ðC22Þ

hTiii ¼ −
L3

16πG5

�
f̂ð4;0Þ −

�
μ2q2 ~ϕ2
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�
1

3
þ V4

2
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~ϕ4
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�
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12
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hOi ¼ −
L3

16πG5

�
2ϕ̂ð0;0Þ þ

�
μ2q2 ~ϕð0;0Þ − 2

�
1

3
þ V4

2

�
~ϕ3
ð0;0Þ
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−
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�
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ðC24Þ

hJ0i ¼ −
L3

16πG5

�
8Â0ð2;0Þ − 2μq2 ~ϕ2

ð0;0Þ log
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1 Introduction

Astrophysical observations of neutron stars with masses up to two solar masses [1, 2]

imply that the Equation of State (EoS) relating the energy density ε and pressure p of

the matter inside the stars should be very stiff [3]. The stiffness can be measured by the

thermodynamic derivative1

v2
s =

(
∂p

∂ε

)
s

, (1.1)

where vs can be identified as the speed of propagation of sound waves, naturally obeying

the causal bound vs ≤ 1. According to our current understanding, the nature of this matter

1The symbol s denotes the entropy density here.
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ranges from a relatively dilute gas of nuclei immersed in a sea of electrons in the crust of

the star to dense nuclear and superdense neutron matter deep inside the star, expected to

reach at least a few times the nuclear saturation density, ns ≈ 0.16/fm3, in the cores of

the most massive stars. With the deconfinement transition of Quantum Chromodynamics

(QCD) expected to take place around these densities, it is at the moment still unclear,

whether quark matter should be present inside the stars or not.

There are a variety of nuclear matter EoSs that predict very high speeds of sound, some

of them even exceeding the speed of light [4]. In all of these cases, the region of validity of the

approach is, however, restricted to densities below (roughly) the nuclear saturation density,

so that a straightforward extrapolation of the results to the large densities met in the cores

of neutron stars is likely to suffer from uncontrollable systematic uncertainties (see [5] for

a discussion of this topic). In particular, there is no hope of extending the description of

these nuclear matter models to the quark matter phase, possibly relevant for the description

of the stellar cores. At the same time, it is equally clear that approaches based on weak

coupling expansions in the quark matter phase, such as perturbative QCD [6–9], cannot

be used to describe the transition region, and therefore the standard approaches for the

description of this regime typically include model calculations (see e.g. [10] and references

therein) and interpolations between the low- and high-density regimes [11].

Considering the above difficulties, there is clearly room for alternative approaches to

describing dense strongly interacting nuclear and quark matter. Such a novel approach

could be provided by the gauge/gravity, or holographic, duality [12–14], which offers a way

to relate problems in strongly coupled field theories in their large-Nc limit to calculations

performed in classical supergravity in a curved spacetime. An interesting observation

pointing towards neutron star matter indeed behaving like a strongly coupled system can

be seen from the so-called Taub inequality [15] (see also [16]),2 which states that in a

relativistic kinetic theory causality imposes the condition

ε(ε− 3p) ≥ ρ2 , (1.2)

where ρ stands for the mass density. For instance, it is easy to check that degenerate

fermionic matter satisfies Taub’s inequality for any value of the chemical potential. The

inequality clearly implies that ε ≥ 3p, which is saturated by conformal theories. As shown

in [3], such an EoS is, however, too soft to support the heaviest observed stars, which

clearly implies that one of the assumptions behind Taub’s inequality must fail. The most

likely culprit is the assumption of the validity of a quasiparticle description, which is far

from being guaranteed for the matter found inside neutron stars. In fact, it may well be

that the correct expansion point would be that of infinite (or very strong) coupling instead

of a system of weakly coupled quasiparticles.

The holographic approach has already been used to describe both the confined [17–24]

and deconfined [25–28] phases of QCD matter through the study of strongly coupled non-

Abelian gauge field theories containing fundamental matter with a global U(1) baryon

symmetry. In [27], we adopted the strategy of describing the low-density phase of QCD

2We thank Luciano Rezzolla for drawing our attention to this inequality.
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matter using the Chiral Effective Theory (CET) results of [29], supplemented by the ex-

trapolations provided in [5], and matching them with the EoS of N = 2 Super Yang-Mills

theory at finite baryon density, corresponding to a D3-D7 brane intersection on the gravity

side. While successful in providing a consistent description of dense QCD matter, this

setup led to the prediction that the deconfinement transition would always be of such a

strong first order type that the resulting hybrid stars become unstable as soon as even a

microscopic amount of quark matter is generated in their cores. The reason for this behav-

ior was found to be the soft nature of the holographic EoS, with v2
s < 1/3, in comparison

with the stiff low-density EoSs of [5].

The softness of the holographic EoS constructed in [27] came as no surprise; in fact,

already in [30, 31] it was conjectured that any field theory with a gauge/gravity dual can

have a speed of sound at most as large as that of a conformal theory, i.e. vs ≤ 1/
√

3.

In [28], we, however, showed that this conjecture is generically not valid at finite density

(even though it might hold in certain theories [31]), and more recently a violation of the

bound has been proposed even at zero density through the introduction of multitrace

deformations in the dual gauge theory [32]. However, in both cases the violation is not

nearly large enough to allow for the existence of quark matter inside neutron stars, and

the question remains, whether at least a moderate softness of the EoS of strongly coupled

deconfined matter is a universal prediction of holography. We should also note that a

bound on the speed of sound at fixed chemical potential has been proposed in [33], and

it seems to hold in holographic models that reproduce thermodynamic properties of QCD

computed using lattice techniques at small densities [34].

In the present work, we shall demonstrate that the speeds of sound obtained in

gauge/gravity models can be arbitrarily close to the speed of light by considering sev-

eral examples where this turns out to be the case. On the gravity side, the models consist

of Einstein-Maxwell theory minimally coupled to a scalar field, which can be either charged

or neutral. These models are dual to a strongly coupled gauge theory in its large-Nc limit.

The bulk gauge field is then dual to a global U(1) current on the field theory side, while

the scalar field is dual to a relevant scalar operator. A relevant deformation breaking

conformal invariance is introduced by turning on a coupling for the scalar operator. The

first example we will study has a string theory (top-down) realization with a known field

theory dual, while the rest of the cases considered form a family of bottom-up models.

Interestingly, we observe that the simplest scenario including a quadratic potential for a

canonically normalized scalar field does not lead to large enough values for the speed of

sound. To reach higher values, it is necessary for the scalar field to possess self-interactions,

which will be reflected in the properties of higher order correlators of the dual operator.

This point should be a very interesting one to investigate further in the future.

Our paper is organized as follows. In section 2 we introduce both the top-down and

bottom-up models we work with, and in section 3 we discuss a subtle issue related to

the spontaneous generation of a scale in the top-down model. After this, we move on

to presenting our main result, the EoS in both types of models, in section 4, which is

followed by a thorough analysis of the stability of our solutions in section 5. Conclusions

are finally drawn in section 6, while a number of computational details will be discussed

in the appendices of the paper.
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2 Holographic models

We will use holographic models as a tool to study the EoS of strongly coupled gauge

theories at finite density and temperature, although we will be more interested in low

temperatures. The models will be chosen in such a way that the theory is well defined in

the UV, in the sense that there is a fixed point at asymptotically large energies. If the

theory was conformal, the EoS would be fixed by symmetry; here, this will be avoided by

introducing a relevant deformation of the UV fixed point that breaks conformal invariance

explicitly. We will consider two cases in parallel: a top-down model with a well defined

string theory construction, and a family of phenomenological bottom-up models that allow

a wider analysis while keeping the main ingredients of the top-down model.

2.1 Top-down model

The first case we are going to consider is a deformation of N = 4 SU(Nc) super Yang-

Mills (SYM). The theory has a global SU(4)R ' SO(6)R R-symmetry group associated to

rotations of the supercharges. N = 4 SYM contains vector bosons, fermions, and scalars,

all in the adjoint representation of the SU(Nc) gauge group. They can be listed as

fields symbol SU(4)R representation

vector gauge bosons Aµ singlet

gauginos (fermions) λa 4

scalars φI 6

There are three mutually commuting U(1)i=1,2,3 ⊂ SU(4)R in the R-symmetry group. We

will study states with charge for the diagonal U(1) (equal charges for all of the U(1)i). Since

N = 4 SYM is a conformal field theory, we will also need to turn on additional couplings

that break explicitly conformal invariance. We will do this by introducing a mass for the

gauginos, i.e. we will add a term to the Lagrangian of the form

L = LN=4 +m0 tr λλ . (2.1)

As we are not adding similar mass terms for the scalars, this also breaks supersymmetry

explicitly.

In the Nc → ∞ limit and for very strong ’t Hooft coupling λYM � 1, the N = 4

SYM theory has a holographic dual description as type IIB string theory in a AdS5 × S5

geometry, at weak string coupling gs ∼ 1/Nc and large curvature radius compared to the

string scale L4/(α′)2 ∼ λYM . The leading order behavior of the theory is thus captured

by classical supergravity (SUGRA) in AdS5×S5 [12]. Turning on a charge density and/or

additional couplings in N = 4 SYM is realized in the holographic dual by turning on dual

fields that modify the background geometry.

Rather than dealing with the full ten-dimensional SUGRA description of the theory, we

will restrict to a subsector that admits a consistent truncation to a simpler five-dimensional

theory. The truncation is explained in more detail in [28]. The action reduces to the one

of Einstein-Maxwell theory coupled to two real scalars

e−1L =
1

4
R− 1

g2
FµνF

µν +
1

4
(∂µφ)2 +

1

2
sinh2

(
φ√
2

)
(∂µθ − 2Aµ)2 − V (φ)

4
, (2.2)
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where e is the volume density and

V (φ) = −3g2

4

(
3 + cosh(

√
2φ)
)
, (2.3)

with the coupling constant g related to the AdS radius as g = 2/L. The bulk gauge field

Aµ is dual to the diagonal U(1) R-current Jµ and sources for the current.

We introduce the complex field,

Φ = tanh

(
φ

2
√

2

)
eiθ , (2.4)

in such a way that the action takes the form

e−1L =
1

4

[
R− L2F 2 −K(Φ)|DΦ|2 − V(Φ)

]
, DµΦ = (∂µ − iqAµ)Φ , (2.5)

with a charge q = 2 and kinetic and potential terms

K(Φ) =
8

(1− |Φ|2)2 , V(Φ) = − 12

L2

1 + |Φ|4

(1− |Φ|2)2 . (2.6)

For small Φ,

K(Φ) ' 8, V(Φ) ' − 12

L2

(
1 + 2|Φ|2

)
. (2.7)

Therefore, the canonically normalized scalar has a mass m2L2 = −3 which corresponds

to a field dual to an operator of conformal dimension ∆ = 3, the gaugino mass operator

O = tr λλ, and the associated coupling m0. Therefore, the five-dimensional action of the

truncated SUGRA subsector contains all the necessary ingredients for our analysis.

2.2 Bottom-up models

Taking the top-down model as a guide, we are going to consider a family of models with a

gravity dual consisting of Einstein-Maxwell theory minimally coupled to a scalar. Thereby,

we will be describing a subsector of the dual field theory including a global U(1) current

Jµ and a relevant scalar operator O. The usual large-Nc and strong coupling limits are

assumed to hold for the classical gravity approximation we take to be valid.

In order to obtain different EoSs, we will allow for some freedom in the choice of the

action for the scalar field. This means that in most cases the field theory dual, if it exists,

is not known. We will use these models as an exploratory mean to determine whether

holographic models can produce a stiff EoS, with the perspective of looking for proper

holographic duals with similar properties in the future. One can in principle allow the

kinetic term and the potential for the scalar to be generic functionals, although we will

fix their form to be able to do explicit calculations. The five-dimensional action for these

models will be as given in (2.5). For the bottom-up models we will take the charge to

be zero q = 0, as eventually we would like to identify the U(1) symmetry with baryon

symmetry, which is unbroken. For simplicity, we will fix the kinetic term to be canonically

normalized K(Φ) = 1 and the potential to be of the form

V(Φ) = − 12

L2
+m2|Φ|2 +

V4

2L2

(
|Φ|2

)2
. (2.8)
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Here, we will allow the masses to lie in the interval 0 > m2L2 ≥ −3, in such a way the

scalar field will be dual to a scalar operator of dimension in the interval 4 > ∆ ≥ 3. We

will study first the case with a purely quadratic potential V4 = 0 and then the behavior

when V4 is changed.

2.3 Charged black hole solutions in the top-down model

We take an Ansatz for the metric of the form

ds2 = L2 dr2

r2f(r)
+
r2

L2
e2A

[
−f(r)dt2 + dx2

1 + dx2
2 + dx2

3

]
, (2.9)

in such a way that it is asymptotically AdS at r → ∞. There is a black hole horizon at

r = rH , where f(rH) = 0. The scalar field and the time component of the gauge field are

also turned on and depend only on the radial coordinate, i.e. Φ0 = Φ0(r), A0 = A0(r).

The equations of motion and the near boundary behavior of the bulk fields are detailed

in appendix A. If the fields were decoupled, their expansion at the boundary would take

the form3

A0∼µ+
L4

r2
A0(0,2), f ∼ 1+

L8

r4
f(0,4), A∼ 0, Φ0∼

L2

r
φ(0,1)+

L6

r3

[
φ(1,3) log

( r
L

)
+φ(0,3)

]
.

(2.10)

We can identify µ with the chemical potential in the dual field theory and φ(0,1) with the

coupling of the dual operator. If it is nonzero, this amounts to introducing a relevant

deformation that breaks explicitly conformal invariance in the dual field theory. In this

case, φ(0,1) gives a mass to the gauginos. For ∆ = 3, φ(0,1) has dimension one, so we can

in fact identify it with a mass scale m0 ≡ φ(0,1). The coefficients A0(0,2), f(0,4), and φ(0,3)

determine the R-charge density, energy, and the expectation value of the scalar operator

(gaugino bilinear), respectively. The coefficient of the logarithmic term φ(1,3) is finally

proportional to m0.

For convenience when obtaining the numerical solutions, we will perform the variable

and gauge field redefinitions

u =
(rH
r

)2
, A0 → A0

rH
L2

, (2.11)

so that the AdS boundary is now at u→ 0 while the horizon is at u→ 1. This change im-

plies that in order to correctly match with the holographic renormalization scheme adopted,

carried out in the r coordinate, one must perform the shift

f(0,4) → f(0,4) + 16µ2m2
0 log

(rH
L

)
φ(0,3) → φ(0,3) −

(
4

3
m2

0 + 2µ2

)
m0 log

(rH
L

)
A0(0,2) → A0(0,2) + 8µm2

0 log
(rH
L

) (2.12)

3We use a notation where X(n,m) is the coefficient of (L2/r)m(log(r/L))n in the expansion of the field X.
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in such a way that the dependence on rH in the near-boundary series solution is absorbed.

Such a shift has to be applied also to the boundary operators (B.18). In the u coordinate,

the near-boundary fields read

Φ0∼αu1/2+
[
β̂ log(u)+β

]
u3/2, f ∼ 1+f̂(0)u

2, A∼ 0, A0∼
rH
L2

(a0+a1u) . (2.13)

The map between the coefficients in both coordinates is

m0 =
rH
L2
α, φ(0,3) =

r3
H

L6
β, µ =

rH
L2
a0, A0(0,2) =

r3
H

L6
a1, f(0,4) =

r4
H

L8
f̂(0) . (2.14)

Near the horizon we will impose regularity of the solution plus vanishing boundary condi-

tions for the warp factor and the gauge field. Then, at leading order, we have

A0 ∼ A0
(1)
H (1− u), f ∼ f (1)

H (1− u), A ∼ A(0)
H +A

(1)
H (1− u), Φ ∼ φ(0)

H , (2.15)

where the subleading terms can be found in appendix A.2.

It is convenient to define our thermodynamic variables (µ, T ) in units of the mass m0

µr =
µ

m0
, tr =

T

m0
, (2.16)

so that a0 = µrα. We will also normalize the thermodynamic potentials and expectation

values of the charge and scalar operators by the mass and a common factor N = L3

16πG5
,

such that

εr =
ε

Nm4
0

, pr =
p

Nm4
0

, vr =
〈O〉
Nm3

0

, nr =
n

Nm3
0

. (2.17)

After defining

W1 = κ1 − 8 log (m0L) , W2 = κ2 +
32

3
log (m0L) , (2.18)

and taking the renormalized expectation values (B.18), detailed in appendix B.2, we

then get

εr = −3f̂0

α4
− 8β

α3
+ log(α)

(
32µ2

r −
32

3

)
− 4µ2

r (κ1 + 3)− κ2 −
16

3

pr = − f̂0

α4
+

8β

α3
+ log(α)

(
32µ2

r +
32

3

)
− 4µ2

r (κ1 + 1) + κ2 +
16

3

vr = 32
β

α3
+

64

3
log(α)

(
3µ2

r + 2
)
− 8(κ1 + 4)µ2

r + 4κ2 +
32

3

nr = −8 [a1 − 8µr log(α) + (κ1 + 4)µr] .

(2.19)

We have computed the solutions by means of the shooting technique, thoroughly explained

in appendix A.3. We plot the results as a function of µr for a fixed temperature tr = 1

in figure 1.
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Figure 1. Coefficients of the numerical solutions defined in eq. (2.14) as functions of the reduced

chemical potential µr. From left to right and top to bottom, −a1, −f̂(0), α, and β.

2.4 Charged black hole solutions in bottom-up models

In the bottom-up models, we will proceed in a similar manner to the top-down one. We

take an Ansatz for the metric of the form given in (2.9), and fix q = 0 for simplicity and

because the potential application to the physics of dense nuclear matter requires the U(1)

symmetry to be unbroken. The equations of motion and the near boundary behavior of the

bulk fields are detailed in the appendices of [28]. For ∆ = 3 the equations and expansions

take a similar form as in the top-down model (2.10). For ∆ 6= 3 only the expansion of the

scalar field at the boundary changes to

Φ0 ∼
L2(4−∆)

r4−∆
φ̃(0,0) +

L2∆

r∆
φ(0,0) . (2.20)

We can identify φ̃(0,0) with the coupling of the dual operator. If it is nonzero, this amounts

to introducing a relevant deformation that breaks explicitly conformal invariance in the

dual field theory. Similarly to the top-down model, we will introduce the mass scale

m0 = (φ̃(0,0))
1/(4−∆).

For convenience when obtaining the numerical solutions, we will perform the change to

the u coordinate (2.11). The near-boundary expansions of the fields are given by eq. (2.13),

except for the scalar field, which now reads

Φ0 ∼ αu(4−∆)/2 + βu∆/2 . (2.21)

The map between the coefficients in both coordinates is given by (2.14), except for the

scalar, which now takes the form

φ̃(0) =
(rH
L2

)4−∆
α, φ(0) =

(rH
L2

)∆
β . (2.22)
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Near the horizon we will impose regularity of the solution plus vanishing boundary condi-

tions for the warp factor and the gauge field as in (2.15).

It is convenient to define our thermodynamic variables (µ, T ) in units of the mass m0,

as in (2.16) and (2.17). The normalization of the expectation value of the scalar operator

reads in the general case

vr =
〈O〉
Nm∆

0

. (2.23)

Taking the renormalized expectation values detailed in the appendix of [28], we get

for ∆ = 3:

εr = −3f̂0

α4
− β

α3
+

(
1

3
+
V4

2

)
log(α)− κ2 −

1

12
− V4

8

pr = − f̂0

α4
+

β

α3
−
(

1

3
+
V4

2

)
log(α) + κ2 +

1

12
+
V4

8

vr = −2
β

α3
+ 2

(
1

3
+
V4

2

)
log(α)− 2κ2 −

1

3
− V4

2

nr = −8a1 .

(2.24)

We will fix κ2 = 0 in the following, since this parameter is irrelevant for the speed of sound.

This selects V4 = −2/3 as a special value, for which the logarithmic terms drop and the

conformal anomaly vanishes, although there are still terms contributing to the trace of the

energy-momentum tensor proportional to the expectation value of the scalar operator.

For ∆ 6= 3, we on the other hand get

εr = −3f̂0

α4
+ (∆− 4)(∆− 2)

β

α3

pr = − f̂0

α4
− (∆− 4)(∆− 2)

β

α3

vr = −2(∆− 2)
β

α3

nr = −8a1 .

(2.25)

We have computed the solutions using the same numerical methods as for the top-down

model. The results are plotted as functions of µr for a fixed temperature tr = 0.1 in figure 2.

3 Generation of a new scale in the top-down model

There are some subtleties entering the EoS of the top-down model that we shall presently

discuss. In (2.19), κ1 and κ2 are the coefficients of finite counterterms. These terms are

scheme dependent but once the renormalization scheme has been fixed, their values are

related to physical quantities such as the expectation value of the scalar operator and the

charge density. This implies that the theory is not completely determined by the bulk action

of the gravity dual, but it is necessary to specify the value of the finite counterterms as well.
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Figure 2. Coefficients of the numerical solutions in the bottom-up case as functions of the reduced

chemical potential µr at fixed temperature tr = 0.1 and different values of V4. From left to right

and top to bottom, −a1, −f̂(0), α, and β.

From the point of view of the field theory, consider that in addition to the N = 4 SYM

fields there is a decoupled scalar field ϕ and a Yukawa coupling Yϕ between the scalar and

the N = 4 SYM gauginos,

LY = Yϕϕ tr λλ . (3.1)

In the large-Nc limit, we can treat the scalar field as quenched, neglecting loop effects from

the N = 4 SYM theory. Nevertheless, this coupling breaks conformal invariance (even

though it is classically marginal) and will introduce a logarithmic dependence log(E/Λ) on

the energy scale E in physical observables, such as scattering cross sections. In particular,

a wave function renormalization of ϕ will show up in the kinetic term of the scalar field,

having the same form as the finite counterterm associated to κ1. The scale Λ that appears

inside the log depends on the scheme, but can be fixed by measurement. After this, the

value of Λ will be different in different schemes, but physical quantities will naturally have

the same values in each of them.

On top of the scale appearing due to logarithmic terms, if the scalar field acquires an

expectation value 〈ϕ〉 = m0, this will affect the N = 4 SYM theory as an explicit breaking

of conformal invariance. Note that in principle the scale of explicit breaking m0 and the

scale that determines the running of the coupling Λ would be completely independent, if

no further condition is imposed.
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To illustrate the above with an example, consider the computation of a one-loop con-

tribution to the self-energy of a scalar field due to a loop of a fermion field of mass m0.

There is a logarithmic UV divergence that in dimensional regularization in d = 4 − 2ε

dimensions becomes a pole as ε→ 0. Depending on the scheme, removing this divergence

leaves behind different finite terms, taking the forms

ΣMS(p2) ∼ βm2
0

(
−γE + log(4π) + log

√
−p2

Λ

)

ΣMS(p2) ∼ βm2
0 log

√
−p2

Λ̄

ΣFS(p2) ∼ m2
0

(
κFS + β log

√
−p2

m0

)
.

(3.2)

Here, β ∼ Y 2
ϕ is a scheme-independent factor, MS and MS denote the usual (modified)

minimal subtraction schemes with scale parameters Λ and Λ̄, and FS stands for a fixed scale

scheme with an arbitrary finite term κFS . The physical mass of the scalar M corresponds

to the position of the pole in the propagator

p2 + Σ(p2)
∣∣∣
p2=−M2

= 0 , (3.3)

where m0 is the bare mass. This can be viewed as fixing the arbitrary renormalization

scales of the MS and MS schemes and the constant in the FS scheme,

Λ̄ =
eγE

4π
Λ = Me−M

2/βm2
0 , κFS =

M2

m2
0

− β log
M

m0
. (3.4)

For a given scheme, changing the renormalization scale or the finite counterterm amounts

to a change of the physical scale and thus a modification of the theory.

In the holographic calculation we fix the scheme of holographic renormalization by

using L as the reference scale in the asymptotic expansion of the fields and m0 in the

definition of the finite counterterms. We could have chosen a different scale, say L′, in such

a way that

W1 = κ′1 − 8 log
(
m0L

′) , W2 = κ′2 +
32

3
log
(
m0L

′) . (3.5)

Physical results would be unchanged as long as we appropriately identify the values of the

finite counterterms in each scheme,

κ′1 = κ1 − 8 log(L/L′), κ′2 = κ2 +
32

3
log(L/L′) . (3.6)

We could also have changed the scheme by using a scale different from m0 in the logs

W1 = κ′1 − 8 log
(
m′L

)
, W2 = κ′2 +

32

3
log
(
m′L

)
, (3.7)

leading to a somewhat different relation between the finite counterterms in different

schemes,

κ′1 = κ1 − 8 log(m0/m
′), κ′2 = κ2 +

32

3
log(m0/m

′) . (3.8)
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This shows that an arbitrary scale can indeed be introduced through holographic

renormalization.

Once we have fixed our renormalization scheme (for instance one could choose schemes

where κ′1 = 0 or κ′2 = 0), different values of finite counterterms correspond to different val-

ues of physical quantities (i.e. renormalization group invariants). However, one can see that

the effect of κ2 is to add a term independent of the temperature or the chemical potential

that shifts the value of the vacuum energy. It is therefore unimportant for thermodynam-

ics, and a valid physical choice could be that the effective cosmological constant term in

the dual field theory vanishes. A similar term appears in the D3/D7 model [35], where

the counterterm is fixed by supersymmetry and gives a vanishing expectation value for the

scalar operator [36]. In principle, the dual field theory is supersymmetric with soft-breaking

terms (the gaugino mass in eq. (2.1)), and supersymmetry could then fix the value of the

finite counterterm κ2 at zero temperature and chemical potential. The value of κ1 might

also be fixed by similar considerations, but in the present context with a nonzero chemical

potential, it is not known how or whether the finite counterterm is to be fixed. To our

knowledge, this is still an open problem in holographic renormalization in general. This

implies that giving arbitrary values to the finite counterterms might spoil the identification

of the dual field theory corresponding to the consistent truncation. Nevertheless one could

interpret models with different values as extensions of the original supersymmetric model

with additional terms (similar to the one in eq. (3.1)) that introduce an explicit breaking

of supersymmetry.

Compared to κ2, κ1 has a more interesting and physical effect: it changes the argument

of logarithms of α according to

log(α) −→ log
(
αe−κ1/8

)
= log

(
a0e
−κ1/8

µr

)
≡ log

(
Λκ
µ

)
. (3.9)

This means that a new scale Λκ has been spontaneously generated in the dual field theory,

and that its relative size in comparison with the scale of the explicit breaking of conformal

invariance is controlled by κ1:

Λκ
m0

= a0e
−κ1/8 . (3.10)

In particular, for |κ1| sufficiently large, Λκ can be pushed towards the UV. In figure 3 we

plot Λκ as a function of the reduced chemical potential for various negative values of κ1.

When the red line crosses the other curves, Λκ = µr and the argument of the logarithm in

eq. (3.9) becomes unity. Note that the hierarchy is not parametrically large with N or the

’t Hooft coupling, so we will remain in the realm of classical supergravity. Furthermore, as

the hierarchy is introduced through finite terms in the boundary action, there is no change

in the bulk supergravity equations of motion and solutions; in particular the consistent

truncation is unaffected. It is still the same subset of operators in the dual field theory

that close under the OPEs.
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Figure 3. Λκ vs µr for different values of κ1 < 0. The crossings with the red line correspond to

points where Λκ = µr. From bottom to top, κ1 = −9.49, κ1 = −11.05, κ1 = −12.94, κ1 = −15.22,

κ1 = 17.99, κ1 = −21.38, κ1 = −25.53.

4 Equation of State

If a weakly coupled quasiparticle description is possible for the system under study, it is

appropriate to use kinetic theory to derive its Equation of State. In a relativistic theory

causality then imposes a constraint, Taub’s inequality [15]

τ =
ε(ε− 3p)

ρ2
≥ 1 , (4.1)

where ρ is the mass density. One can check for instance that for a degenerate (non-

interacting) Fermi liquid τ = τF ≥ 1, where

τF =
9

16(µ2
r−1)3

[
2µ6

r−3µ4
r+µ2

r+log2
(
µr+

√
µ2
r−1

)
−2
√
µ2
r−1µ3

r log
(
µr+

√
µ2
r−1

)]
(4.2)

and µr = µ/mF where mF is the mass of the fermions.

In a strongly coupled theory the above condition may easily be violated. A simple

example is the D3/D7 model [35] that is used to model flavor physics at strong coupling, and

that contains quarks and squarks with a mass mq. The EoS is known analytically [37–41],

and the pressure, energy density, and mass density at zero temperature read as functions

of the chemical potential

p = λ(µ2 −m2
q)

2, ε = λ(µ2 −m2
q)(3µ

2 +m2
q), ρ = 4λmqµ(µ2 −m2

q) , (4.3)

where λ is an unimportant constant factor. Defining the reduced chemical potential as

µr = µ/mq, one finds

τD7 =
3

4

(
1 +

1

3µ2
r

)
⇒ 1 ≥ τD7 ≥

3

4
. (4.4)
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Figure 4. Left plot: the function τ − 1 appearing in Taub’s inequality plotted as a function of

the chemical potential for a degenerate Fermi liquid (red), the D3/D7 model (green) and the top-

down model for κ1 = −12.86 (purple). Holographic models clearly violate Taub’s inequality τ ≥ 1.

At large values of µr, τ − 1 in the D3/D7 model approaches a negative constant corresponding

to τ = 3/4, while the supergravity curve keeps decreasing and reaches τ = 0 at µr ' 34. The

difference in behavior can be understood from the fact that ε − 3p ∼ m2
qµ

2 in the D3/D7 model,

while ε − 3p ∼ m2
0µ

2 log(m0/µ) in the supergravity model. On the right plot we show Taub’s

inequality for the top-down model for different values of κ1, spanning from −12.86 (upper curve)

to −5.18× 103 (bottom curve).

Taub’s inequality is obviously violated, which indicates that the theory is indeed strongly

coupled and that it possesses no good quasiparticle description. Note that there is, however,

a (weaker) bound that constrains the Equation of State. Indeed, as long as τ ≥ 0 we will

have a condition

ε ≥ 3p . (4.5)

4.1 Top-down model

We can compare the values of τ in the models we study here with those of the degenerate

Fermi liquid and the D3/D7 model, see figure 4. We observe that τ < 0 for a range of

values of the chemical potential (µr & 32 for κ1 = −10; for even more negative values of κ1

the curve of the top-down model goes further down). It thus appears that in these regions

the EoS is stiffer than in a conformal theory, but how stiff can it be? In order to answer

this question we would need to compute the adiabatic speed of sound (1.1). However, it is

technically easier to work at fixed temperature and compute the isothermal speed of sound

v2
s isot =

(
∂p

∂ε

)
T

=

(
∂pr
∂µr

)
tr(

∂εr
∂µr

)
tr

, (4.6)

which is closely related to the adiabatic one through the standard thermodynamic relations

v2
s isot =

ρr

µr

(
∂ρr
∂µr

)
tr

+ tr

(
∂sr
∂µr

)
tr

v2
s adiab =

1

µr

ρr

(
∂sr
∂tr

)
µr
− sr

(
∂sr
∂µr

)
tr(

∂ρr
∂µr

)
tr

(
∂sr
∂tr

)
µr
−
(
∂ρr
∂tr

)
µr

(
∂sr
∂µr

)
tr

.

(4.7)
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Figure 5. vs as a function of the reduced chemical potential at tr = 1 at different values of κ1.

The thin horizontal line corresponds to the value of the speed of sound in the conformal theory

vs = 1/
√

3. In the left plot the values of κ1 span from −12.84 (bottom curve) to −5.18×103 (upper

curve). In the right plot we have marked the points where µr = Λκ for different curves, which are

at the same values of κ1 than in figure 3.

If the pressure has an analytic expansion in T/µ for T/µ � 1 (as it will be the case in

our models) and the entropy goes to zero at zero temperature, one can neglect the terms

proportional to
(
∂sr
∂µr

)
tr

and the two speeds become the same. At non-zero temperature,

the difference is suppressed by a factor of at least O(T/µ). Moreover, in many practical

applications the temperature is taken to be zero as a good approximation. Therefore, we

will study the isothermal speed of sound in the following and drop the label.

The behavior of the speed of sound vs in the top-down model is depicted in figure 5.4

We observe that, for κ1 < 0, when |κ1| is increased the speed of sound becomes larger at low

values of the chemical potential, eventually becoming quite close to the speed of light, and

the region where the speed of sound is large also grows. A possible way to understand this is

to recall that the scale Λκ defined in (3.10) that controls the contribution of the logarithmic

terms in (2.19) increases with increasing |κ1|. When this happens, the logarithmic terms

become large in magnitude. If the logarithmic terms in (2.19) dominate, the EoS becomes

stiff but remains compatible with causality, as εr ∼ pr. Therefore, there is no fundamental

obstacle towards obtaining a stiff EoS for a large interval of chemical potentials, as long as

a significant separation of scales is present.

An important issue to consider is the possibility that the theory might become unstable

in the stiff regime. A necessary but not sufficient condition for thermodynamic stability is

that the charge susceptibility be positive,

χ =
∂2p

∂µ2
> 0 . (4.8)

In figure 6 we plot χ|tr=1 for different values of κ1. For large enough values of |κ1|, the

susceptibility is positive and the theory is thermodynamically stable with respect to density

fluctuations. There is a critical value κ1 = κc ≈ −6.44, for which the theory becomes

4These plots correspond to values of the chemical potential that are much below the regime of validity

of the probe approximation used in [28]. For tr = 1 one should go at least to values µr > 150 before we

reach the probe limit.
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Figure 6. The charge susceptibility χ as a function of the reduced chemical potential µr for

tr = 1 and for different values of κ1. From top to bottom, κ1 = −8 (black dotted line), κ1 = κc
(black dashed line) and κ1 = −6 (black solid line). The central curve marks the onset of the

thermodynamic instability, i.e., χ(0)|κ=κc = 0. For larger values of κ1, one gets χ < 0 up to some

finite µr.

unstable at low values of the chemical potential. Therefore, the models with a large speed

of sound are thermodynamically stable in the stiff regime. We will study their dynamical

stability in section 5.

4.2 Bottom-up models

Moving again to the bottom-up models, we first consider the case without a quartic term

in the potential V4 = 0. The results are summarized in figure 7. We find that the speed of

sound can be larger than the one in a conformal theory, and that larger deviations occur

for operators of lower dimensions, close to ∆ = 3 for our allowed range. The left plot of

figure 7 reflects this: there, we have fixed the temperature, computed the speed of sound

as function of the chemical potential, and plotted the largest value we have found for each

dimension of the scalar operator. This behavior holds for a range of low temperatures. The

right plot of figure 7 shows the largest value of the speed of sound for a fixed dimension

∆ ∼ 3 as we vary the temperature. We see that the magnitude increases as we lower

the temperature, but it seems to saturate at an absolute maximum. The maximum value

is just slightly larger than the conformal value by some 3 %, while for phenomenological

purposes it should be at least ca. 30 % larger.

Next, we turn on the quartic term in the potential, i.e. let V4 6= 0. In figure 8 we plot

the speed of sound as a function of the chemical potential for a fixed temperature tr = 0.1

and different values of V4. We observe that making V4 more negative increases the value of

the speed of sound, while making V4 more positive has the opposite effect. It is possible to

reach values of the speed of sound 20–40 % larger than the conformal value for V4 ∼ −1.5

and µr ∼ 0.6–0.75. The speed of sound seems to be growing further at lower values of the

chemical potential. This shows that stiff phases are possible in generic holographic models.

However, in contrast to the top-down model, we find that in most cases there are

violations of causality (vs > 1) or thermodynamic instabilities (v2
s < 0) at small values of
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Figure 8. The speed of sound as a function of the reduced chemical potential µr for fixed temper-

ature tr = 0.1. The charge and dimension of the dual scalar operator are q = 0 and ∆ = 3.

0.1 0.2 0.3 0.4 0.5
0.5

0.6

0.7

0.8

0.9

1.0

μr

v s

tr=0.01

tr=0.1

tr=0.15

tr=0.175

tr=0.1953

tr=0.21

tr=0.23

tr=0.5
0.1 0.2 0.3 0.4 0.5

0.5

0.6

0.7

0.8

0.9

1.0

μr

v s

tr=0.01

tr=0.05

tr=0.077

tr=0.09

tr=0.15

tr=0.5

Figure 9. The speed of sound as a function of the reduced chemical potential µr for different

temperatures and for a fixed quartic potential V4 = −1 (left) and V4 = −0.67 (right). The charge

and dimension of the dual scalar operator are q = 0 and ∆ = 3.

the chemical potential, so there is likely a phase transition between the high temperature,

zero density phase and the low temperature, non-zero density one. Nevertheless, as we

show in figure 9, for any given temperature there is a range of values of V4 where the

speed of sound remains in the physical range 1 ≥ v2
s ≥ 0. This happens around the special

value of V4 = −2/3, for which the conformal anomaly vanishes; we even observe that near

the special value the speed of sound becomes very close to its conformal limit and almost

independent of the chemical potential.
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Figure 10. The charge susceptibility χ as a function of the reduced chemical potential µr for

tr = 0.1 and for different values of V4.

To inspect thermodynamic stability, we have plotted the charge susceptibility in

figure 10. In the cases where v2
s < 0 we also find that the susceptibility becomes neg-

ative, although this appears to happen at lower values of the chemical potential, so it may

correspond to a different kind of instability. When the speed of sound becomes superlu-

minal there can also be a small interval with χ > 0 for V4 & −1. In the window where

1 ≥ v2
s > 0 for all values of the chemical potential we find that χ > 0, so these correspond

to thermodynamically stable phases. Numerically, it seems that the values of V4 for which

v2
s = 0 and χ = 0 at zero chemical potential coincide.

5 Stability

The aim of this section is to determine whether the stiff phases we have found are indeed

local minima of the free energy in the space of homogeneous configurations. To this end,

we will introduce a small time-dependent perturbation, expecting that if the equilibrium

configuration is unstable we will witness the exponential growth of some of the modes.

Otherwise, we expect the perturbation to oscillate and/or decay back to equilibrium. As

we are considering only homogeneous configurations, we can suppress the spatial depen-

dence. On the gravity side, this translates into studying a linear perturbation around the

previously obtained background solution5

Φ→ Φ(r) + δΦ(r, t), A0 → A0(r) + δA0(r, t), gµν → gµν(r) + δgµν(r, t) . (5.1)

Since our background is stationary, we can expand in plane waves of a given frequency ω,

δΦ(r, t) = ϕ(r)e−iωt, δA0(r, t) = a0(r)e−iωt, δgµν(r, t) = hµν(r)e−iωt . (5.2)

Dynamical modes are normalizable and satisfy an ingoing boundary condition at the hori-

zon. This is possible typically only for a discrete set of complex frequencies, the quasi-

normal frequencies ωn. If the imaginary part of the quasinormal frequency is negative or

zero, Imωn ≤ 0, the associated quasinormal mode decays in time or is oscillatory, and the

background is stable. On the other hand, if Imωn > 0 is positive, the quasinormal mode

grows exponentially in time and the background is unstable.

5We work in the δgrµ = Ar = 0 gauge.
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Figure 11. Left figure: det(M) at zero density as a function of the reduced temperature. Right

figure: det(M) as a function of the reduced chemical potential at tr = 1.

An important piece of information is that at zero chemical potential and high temper-

atures — µr = 0, tr � 1 — the model is known to be stable, as the quasinormal modes

should approximate those of a probe scalar in an AdS black hole background, all of which

are on the lower half of the complex frequency plane [42]. As the background changes con-

tinuously, a quasinormal mode has to cross the real axis to the upper half plane in order

to develop an instability. Physically we expect that if the background becomes unstable

there will be another stationary solution corresponding to the true vacuum of the theory.

In that case the crossing should happen at the origin of the complex plane. Therefore, the

onset of the instability can be determined from the appearance of a quasinormal mode at

zero frequency.

We study the appearance of a zero frequency quasinormal mode using the determinant

method of e.g. [43, 44] and standard techniques, most details of which can be found in

appendix C. First, we introduce gauge invariant combinations of the fields under diffeo-

morphisms that preserve the condition gµr = 0. There are two independent scalar modes

z1 = ϕ+ ϕ† − rΦ′0
1 + rA′

h

z2 = ω
(
ϕ− ϕ†

)
+ qΦ0

[
A0

f
h00 + 2a0 +

(
A0 +

r

1 + rA′

(
A′0 −

f ′

2f
A0

))
h

]
,

(5.3)

where h = δijhij/3 is the trace of the spatial components of the metric fluctuation. If

q 6= 0, the two modes are coupled

0 = z′′i +Aijzj + Bijz′j , i, j = 1, 2 , (5.4)

with coefficients Aij ,Bij that depend on the background fields. If q = 0, the off-diagonal

components of A and B are zero and the two modes decouple.

We impose that the solutions are ingoing at the horizon. There are two independent

solutions z
(I)
i , z

(II)
i corresponding to making z1 or z2 zero at the horizon. When these

solutions are taken to the boundary, a linear combination of them will be normalizable for

the values of the frequency corresponding to the quasinormal modes. In the u coordinate,
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Figure 12. Left figure: det(M) at zero density as a function of the reduced temperature for

the bottom-up model with quartic term (top to bottom) V4 = −0.5,−0.6777,−1,−1.5,−2. Right

figure: det(M) as a function of the reduced chemical potential at tr = 0.1.

the expansion of the solutions at the boundary u→ 0 is, to leading order,

zi ∼
√
u
(
z

(nn)
i + u z

(n)
i

)
, (5.5)

where we identify the coefficients of the non-normalizable (nn) and normalizable (n) solu-

tions. We arrange the solutions in a matrix with constant entries at the boundary

M = lim
u→0

1√
u

(
z

(I)
1 z

(I)
2

z
(II)
1 z

(II)
2

)
. (5.6)

M depends on the frequency, and a normalizable solution exists when M(ω) has a zero

eigenvalue, i.e. det(M(ω)) = 0.

For the top-down model we have computed the determinant at zero frequency ω = 0

first for a zero chemical potential µr = 0 starting at high temperatures and decreasing the

temperature to values tr < 1 (left plot in figure 11). As the determinant never vanishes, the

background is stable for µr = 0, tr = 1. We then repeat the same calculation but keeping

tr = 1 fixed and increasing the chemical potential µr. We find that the determinant is non-

vanishing in the range we are interested 0 ≤ µr ≤ 50 (right plot in figure 11). Therefore,

the theory remains dynamically stable in the regime where the EoS is stiff.

For the bottom-up model we do a similar stability analysis, we first compute the

determinant at zero frequency ω = 0 at zero chemical potential µr = 0 starting at high

temperatures and decreasing the temperature to values tr < 0.1 (left plot in figure 12).

We then fix the temperature to tr = 0.1 and increase the chemical potential µr (right plot

in figure 12). We find that the determinant is non-vanishing for values of V4 where the

speed of sound remains in the physical window, even when the speed of sound is close to

the speed of light. Therefore, these models have sensible physical behavior and no obvious

instabilities even in the regime where the EoS is stiff.

6 Conclusions

In the paper at hand, we studied the thermodynamics of cold and dense strongly coupled

matter via simple holographic models. The models include the minimal ingredients of finite
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charge density and breaking of conformal invariance through a coupling for a relevant scalar

operator of conformal dimension 4 > ∆ ≥ 3. We find that for some of these cases it is

possible to find very stiff Equations of State, with the speed of sound almost reaching the

speed of light. A simple stability analysis of the models furthermore showed no obvious

thermodynamic or dynamic instabilities.

We observe that the simplest models possessing a quadratic action for the scalar field

do not reach speeds of sound significantly larger than the conformal limit of vs = 1/
√

3.

In bottom-up models with a quartic potential, the speed of sound can on the other hand

reach the speed of light if the quartic term has a negative coefficient V4 < 0 with large

enough magnitude. However, except for a small range of values around V4 = −2/3, the

isothermal speed of sound becomes superluminal or imaginary (indicating the presence

of an instability) at low values of the chemical potential. Concerning the superluminal

behavior, it should, however, be noted that when the chemical potential is of the same

order or smaller than the temperature, one should rather consider the adiabatic speed of

sound, which may affect to the range of values of V4, for which causality is respected.

In addition to the bottom-up models, we also studied a top-down model with a more

complicated action for the scalar, determined by a consistent truncation of supergrav-

ity. The issues of superluminal or imaginary speeds of sound do not appear in this case,

which suggests that adding higher powers of the scalar field to the scalar potential might

ameliorate the behavior of these quantities also in the bottom-up models. On the other

hand, a stiff EoS is achieved in the top-down model only when there is a large separation

between the scale of explicit breaking of conformal invariance and another scale that is

spontaneously generated due to logarithmic divergences. The conclusion seems to be that

although there is no fundamental obstruction to achieving a stiff EoS, this may not be

possible in the simplest models and/or for the most “natural” values of the parameters

of the system. On the positive side, the conditions required to achieve a stiff and phys-

ically consistent EoS may prove to be quite restrictive and thus turn out to be useful in

constraining possible holographic models of QCD.

An interesting question is if the increase in stiffness is due to some underlying physical

mechanism involving microscopic degrees of freedom in the dual field theory, at least for

the top-down model where the dual is known. However, microscopic fields are not gauge

invariant and therefore not directly accessible using the duality. So far we can just make

a broad qualitative statement, it appears that one needs a combination of explicit and

anomalous breaking of conformal invariance, with a hierarchy between these scales such

that the scale of anomalous breaking is the larger.

An obvious phenomenological application of our results lies in the physics of neutron

stars, where a holographic quark matter EoS has previously been matched to nuclear matter

EoSs in [27]. The fact that very stiff EoSs can be obtained from holography opens up the

possibility to construct matched EoSs exhibiting a weakly first order or even a cross-over

deconfinement transition, thus allowing for the existence of a macroscopic amount of quark

matter in the cores of the stars. Recalling the ease, with which quantities such as neutrino

emissitivities and transport coefficients can be computed in holography, this paves the way

for very interesting astrophysical studies.
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A Background solutions

Varying the action (2.5) of the top-down model (2.6) with respect to the bulk metric, gauge,

and scalar fields yields the equations of motion

0 =
Φ′

fr

[
f
(
4rA′ + 5

)
+ rf ′

]
− Φ2 + 1

Φ2 − 1

e−2AΦ

f2r4

(
3e2Afr2 +A2

0L
4q2
)

+
2Φ (Φ′)2

1− Φ2
+ Φ′′

0 = A′0
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3

r
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2Φ2

fr2 (1− Φ2)2 +A′′0

0 = f ′
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5

r

)
− 16e−2AA2

0L
4q2Φ2

fr4 (1− Φ2)2 − 4L4

r2
e−2AA′0

2 + f ′′

0 = A′′ +
A′

r
+

8

3 (1− Φ2)2

(
Φ′2 +

L4q2

f2r4
e−2AA2

0Φ2

)
0 = A′

(
3f ′

2f
+

12

r
+ 6A′

)
+

1

2fr2

[
2e−2AL4A′0

2 + 3

(
rf ′ − 4

1 + Φ4

(1− Φ2)2

)]
+

6

r2
− 4

(1− Φ2)2

(
Φ′2 +

L4q2

f2r4
e−2AA2

0Φ2

)
.

(A.1)

A.1 Near boundary series expansions

The near boundary behavior for the scalar field is

Φ ∼ L2

r
φ(0,1) +

L6

r3

[
φ(1,3) log

( r
L

)
+ φ(0,3)

]
. (A.2)

We shall assume the following series expansions for the other fields

f = 1 +
∑
n,m

L2n

rn
f(n,m) log

( r
L

)m
, A =

∑
n,m

L2n

rn
A(n,m) log

( r
L

)m
A0 = µ+

∑
n,m

L2n

rn
A0(n,m) log

( r
L

)m
, Φ =

∑
n,m

L2n

rn
φ(n,m) log

( r
L

)m (A.3)
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which upon implementing the equations of motion become

A0(r)∼µ+
L4

r2

[
A0(0,2)−8µφ2

(0,1) log
( r
L

)]
+

L8

3r4

{
2φ(0,1)

[
φ(0,1)

(
4A0(0,2)+9µ3

)
−8µφ3

(0,1)+6µφ(0,3)

]
+

24log
( r
L

)
µφ2

(0,1)

(
µ2φ2

(0,1)−2φ2
(0,1)

)}

f(r)∼ 1+
L8

r4

[
f0,4−16µ2L4φ2

(0,1) log
( r
L

)]
A(r)∼−

2L4φ2
(0,1)

3r2
− L8

9r4
φ(0,1)

{
9µ2φ(0,1)

[
2log

( r
L

)
+1
]
+φ3

(0,1)

[
12log

( r
L

)
+5
]
+9φ(0,3)

}

Φ(r) =
L2

r
φ(0,1)+

L6

r3

[
φ(0,1) log

( r
L

)(4

3
φ2

(0,1)+2µ2

)
+φ(0,3)

]
(A.4)

plus sub-leading terms that we do not put here.

A.2 Near horizon series expansions

As stated before, we will demand regularity of the solutions near the horizon. Thus, in the

u coordinate,

(Φ, A) =
∑
n=0

(
φ

(n)
H , A

(n)
H

)
(1− u)n, (f,A0) =

∑
n=1

(
f

(n)
H , A0

(n)
H

)
(1− u)n . (A.5)

Again, combining this with the equations of motion, we obtain

A
(1)
H =

1

f
(1)
H

 1 + φ
(0)
H

4(
φ

(0)
H

2 − 1
)

2
− 2

3
A

(1)
0H

2e−2A
(0)
H

− 1

2

A
(2)
H =

1

f
(1)
H

(
φ

(0)
H

2 − 1
)

2

[
−

4A
(1)
0H

2e−2A
(0)
H φ

(0)
H

2

3f
(1)
H

+
φ

(0)
H

4

2
+

1

2

]
−
A

(1)
0H

2e−2A
(0)
H

3f
(1)
H

−
φ

(0)
H

2

2f
(1)
H

2
(
φ

(0)
H

2 − 1
)

4

[
3φ

(0)
H

4

2
+ 3φ

(0)
H

2 +
3

2

]
− 1

4

A0
(2)
H =

1

6
A

(1)
0H

(
4A

(1)
0H

2e−2A
(0)
H − 6

f
(1)
H

+ 3

)
(A.6)
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and

f
(2)
H =

10

3
A

(1)
0H

2e−2A
(0)
H +

f
(1)
H

2
−

2
(
φ

(0)
H

4 + 1
)

(
φ

(0)
H

2 − 1
)

2
(A.7)

φ
(1)
H =

3
(
φ

(0)
H

2 + 1
)

4f
(1)
H

(
φ

(0)
H

2 − 1
)φ(0)

H

φ
(2)
H =

φ
(0)
H

(
φ

(0)
H

2 + 1
)

64f
(1)
H

2
(
φ

(0)
H

2 − 1
)

2

{
3
[
(8f

(1)
H + 9)φ

(0)
H

2 − 8f
(1)
H + 3

]
− 32e2A

(0)
H A

(1)
0H

2
(
φ

(0)
H

2 − 1
)}

plus higher-order terms.

A.3 Numerical integration

We will solve the system of equations (A.1) through the shooting technique to determine

the independent boundary and horizon constants. At given values (µr, tr), one starts with

a trial set of independent boundary and horizon data,

X =
(
A0

(1)
H , A

(0)
H , A0(0,2), α, β, φ

(0)
H

)
, (A.8)

Note that f
(1)
H can be fixed in terms of tr and A

(0)
H alone and the constrain fixes the value

of A
(1)
H .

The algorithm is as follows: we compute the numerical solution and construct some

object made out of the fields and their derivatives

V (u) =
(
f,A0, φ, A,A

′
0, φ
′) , (A.9)

note that it is not necessary to account for the derivatives of f or A0 since their equa-

tions of motion turn out to be first order. We perform the numerical integration from

some near horizon value uhor, using as boundary conditions the near-horizon series expan-

sions from (A.6) and (A.7), down to some intermediate point u∗. Evaluating the fields

and their derivatives at this point produces a vector V (u∗)|hor→bulk. Repeating the anal-

ogous procedure, this time employing the near-boundary series as boundary conditions,

from some near-boundary value uboun down to the same intermediate point u∗ produces

V (u∗)|boun→bulk.6 The mismatch vector M is constructed by the difference

M(X) = V (u∗)|hor→bulk − V (u∗)|boun→bulk . (A.10)

The correct choice of X must lead to M = 0. By thinking of M(X) as a vector-valued

function, the problem becomes a root finding in six dimensions. We apply the Newton-

Raphson method. It works by a generalization of the familiar one-dimensional method of

6Nevertheless, both for the near horizon and near boundary series expansions, in order to enhance the

accuracy and shorten the overall integration time, we have truncated the series at a much larger order.
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tracking tangent lines. For a guess X, compute the Jacobian J of partial derivatives of the

mismatch vector. The new vector X shall be

X = Xguess − J−1M . (A.11)

The Jacobian is computed through finite differences, once the solutions in a neighbor-

hood of the guess point (on each direction on the constants space) are known. In particular,

as step in the Jacobian we will take 10−10. On each numerical integration, uhor = 1 − ε0,

uboun = ε0, ε0 being some sensitive cut-off; we use 10−8 and u∗ = 1/2. As for the ini-

tial data Xguess, a sensitive choice for mild reduced chemical potential and temperature is

the solution inherited from the scalar field in probe approximation, wherein the geometry

reduced to an AdS-RN [28],

Xguess = XAdS-RN =
(
µ, 0, 0, αP , βP , φPH

)
, (A.12)

where
(
αP , βP

)
are obtained from integration of the scalar equation in this approximation,

once φPH is set. If the norm of the mismatch ||M || lies above some threshold fixed a

priori, the iteration starts once again, but taking X as the new starting point and stops

if otherwise. In our computations, we will fix the threshold to be 10−9. Our attempt to

connect the model to neutron star physics implies that we will focus in regimes at which

XAdS-RN works not very well, but luckily, thanks to the smoothness of the solutions, if for

some choice X(µ0,t0), ||M || < 10−9, then we can take this vector as initial guess on the next

computation, i.e., X(µ0,t0) → Xguess
(µ0+δµ,t0).

B Calculation of thermodynamic quantities

B.1 On-shell action

For the holographic models we consider, one can write Einstein’s equations in the form

RMN = T
(A)
MN + T φMN +

1

2
gMN

(
L2

3
F 2 +KΦ|Dφ|2 +

5

3
VΦ

)
. (B.1)

From the trace of these equations, we find that the Ricci scalar reads

R =
L2

3
F 2 +KΦ|Dφ|2 +

5

3
VΦ , (B.2)

implying that the on-shell action (2.5) evaluates to

Son−shell =
1

16πG5

∫
d5x
√
−g
[

2

3
VΦ −

2

3
L2F 2

]
. (B.3)

Let us now use the fact that for our solutions

Γαµν = Γrrν = Γαrr = 0 , Γrµν = − 1
√
grr

Kµν , Γαµr =
√
grrK

α
µ , Γrrr =

1

2
grr∂rgrr , (B.4)

where

Kµν =
1

2
√
grr

∂rgµν (B.5)
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is the extrinsic curvature and Kα
µ = gαβKβµ, K = gµνKµν . Using also the simple result

∂r
√
−g√
−g

= Γrrr +
√
grrK , (B.6)

we can write

gµνRµν = − 1√
−g

∂r

(√
−g
√
grr

K

)
= − 1√

−g
∂r
(√
−γK

)
. (B.7)

Here, we defined γµν = gµν as the boundary metric and used
√
−g =

√
grr
√
−γ.

On the other hand, from Einstein’s equations we obtain

gµνRµν = −2L2

3
F0rF

0r +
4

3
VΦ + q2g00KΦA

2
0φ

2 , (B.8)

where we only focused on the nonzero components of the solutions. Solving now for VΦ

and introducing the result in the on-shell action, one gets

Son−shell =
1

16πG5

∫
d5x
√
−g
[
− 1

2
√
−g

∂r
(√
−γK

)
−L2Fr0F

r0− q
2

2
g00KφA2

0φ
2

]
. (B.9)

Finally, we use the equation of motion for the gauge field,

4L2∂r
(√
−gF r0

)
= 2q2√−gg00KφA0φ

2 . (B.10)

We can then replace the q2 term in the action by a derivative term and write the action as

a total derivative:

Son−shell =
1

16πG5

∫
d5x

[
−1

2
∂r
(√
−γK

)
− L2√−g∂rA0F

r0 − L2A0∂r
(√
−gF r0

)]
=

1

16πG5

∫
d5x ∂r

[
−1

2

√
−γK − L2√−gA0F

r0

]
=

1

16πG5

∫
d4x

[
1

2

√
−γK + L2√−gA0F

r0

]r=rΛ
r=rH

. (B.11)

B.2 Holographic renormalization

In order to be able to read off the speed of sound, we need the energy density ε and pressure

p, which can be read from the diagonal components of the expectation value of the stress

energy tensor, 〈Tµν〉. We can decompose the line element (2.9) into its transverse and

longitudinal components,

dS2 = N2dr2 + γµνdx
µdxν , N2 =

L2

r2f
. (B.12)

We will now determine, which counterterms we need to consider in order to obtain finite

one point correlation functions. Together with the cosmological constant term

IΛ = − 1

8πG5

∫
d4x
√
−γΛ , (B.13)
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which will cancel out the volume divergence, we need to include also the Gibbons-Hawking

term,

IGH =
1

8πG5

∫
d4x
√
−γK . (B.14)

The details of the holographic renormalization of bottom-up models can be found in [28].

In the following we focus on the top-down model, that present some small differences due

to the more complicated form of the kinetic term and the potential for the scalar field.

From the near boundary behavior of the metric field,

γ00 = − r
2

L2
+

4

3
L2φ2

(0,1) +
L6

9r2

{[
2φ(0,1)

(
9µ2φ(0,1) + φ3

(0,1) + 9φ(0,3)

)
− 9f0,4

]
+ 12φ2

(0,1)

(
15µ2 + 2φ2

(0,1)

)
log
( r
L

)}

γii =
r2

L2
− 4

3
L2φ2

(0,1) −
2L6

9r2

{
φ(0,1)

(
9µ2φ(0,1) + φ3

(0,1) + 9φ(0,3)

)
+ 6φ2

(0,1)

(
3µ2 + 2φ2

(0,1)

)
log
( r
L

)}
,

(B.15)

we note that it is necessary to add the following counterterm that will cancel out divergences

due to the backreaction of the scalar field,

Ic = − 1

8πG5

∫
d4x
√
−γ

{
32

4
L|DΦ|2 log

( r
L

)
−
[
8 +

32

3
Φ2 log

( r
L

)] Φ2

L

}
. (B.16)

Another counterterm may also be added,

If = − L

8πG5

∫
d4x
√
−γ
[
W1|DαΦ|2 +

W2

L2
Φ4

]
, (B.17)

which will introduce non-trivial finite contributions to our QFT.

After varying the action with respect to the boundary metric, and inserting the near

boundary series expansions (A.4), we get the boundary vev’s

〈
T 00
〉

= ε = − L3

16πG5

[
3f(0,4) + 8φ(0,1)φ(0,3) + 4µ2φ2

(0,1)(W1 + 3) + φ4
(0,1)

(
W2 +

16

3

)]
〈
T ii
〉

= p = − L3

16πG5

[
f0,4 − 8φ(0,1)φ(0,3) + 4µ2φ2

(0,1)(W1 + 1)− φ4
(0,1)

(
W2 +

16

3

)]
〈O〉 = v = − 2L3

πG5

[
φ(0,3) −

1

4
µ2φ(0,1)(W1 + 4) + φ3

(0,1)

(
W2

8
− 2

3

)]
〈
j0
〉

= n = − L3

2πG5

[
A0(0,2) + µφ2

(0,1)(W1 + 4)
]
,

(B.18)

which satisfy

〈Tµν〉 ηµν = −〈O〉φ(0,1) +A , (B.19)
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with the anomaly

A =
L3

πG5
φ2

(0,1)

(
µ2

2
+

2

3
φ2

(0,1)

)
. (B.20)

Combining expressions (B.18) and (B.25), one can straightforwardly verify that the

thermodynamic relation

ε+ p = nµ+ TS (B.21)

holds. Moreover, the renormalized action at the boundary is equal to the free energy in

the macrocanonical ensemble,

Sren = Son−shell + IΛ + IGH + Ic + If

= Ω =
L3

16πG5

[
f0,4−8φ(0,1)φ(0,3)+4µ2φ2

(0,1)(W1+1)−φ4
(0,1)

(
W2+

16

3

)]
= −p ,

(B.22)

where we have made use of (B.27) when expressing Son−shell at the horizon rH in terms of

the boundary coefficients.

We can now examine the equations of motion in order to see if some sort of relation

between the near boundary/horizon coefficients can be set. If we define

β(r) = e4Ar5f ′ − 4L4e2Ar3A′0A0 , (B.23)

we notice that due to equations (A.1), this quantity is independent of the radial coordinate.

It is convenient to evaluate it at the horizon, r → rH , giving

β(rH) = e4A(rH)r5
Hf
′(rH) ≡ βH . (B.24)

Note also that the temperature and entropy density are given by

T =
r2
Hf
′(rH)

4πL2
eA(rH) , s =

1

4G5

r3
H

L3
e3A(rH) , (B.25)

so that

βH = 16πG5L
5Ts . (B.26)

The above steps enable us to find the relation

f̂(0) = α
(

2µra1 + 4µ2
rα

3 − πe3A
(0)
H tr

)
. (B.27)

Moreover, another relation can be obtained from the constraint equation in the bulk,

A
(1)
H =

1

f
(1)
H

 1 + φ
(0)
H

4(
φ

(0)
H

2 − 1
)

2
− 2

3
A

(1)
0H

2e−2A
(0)
H

− 1

2
. (B.28)

Both relations (B.27) and (B.28) can be employed to enhance the numeric integration of

the set of equations (A.1).

– 28 –



J
H
E
P
1
1
(
2
0
1
7
)
0
3
1

C Fluctuations

C.1 Equations for gauge invariant combinations

We will use radial gauge δgµr = δar = 0. At zero spatial momentum fluctuations split in

decoupled sectors according to their representation under the group of spatial rotations.

There are three sectors:

• Tensor: hij − 1
3δijδ

klhkl .

• Vector: ai, h0i .

• Scalar: ϕ, ϕ†, h00, a0, h = δijhij/3 .

In principle we expect instabilities to be related to changes in the scalar, thus we will

restrict the analysis to the scalar sector. We see that there are five components of the

fields in the scalar sector. The equations of motion (Einstein, Maxwell, and the equation

of motion for the scalar) include a second order (dynamical) equation for each mode plus

three first order (constraints) equations. This adds up to eight coupled equations for the

five modes. However, the actual number of independent dynamical modes is just two and

the system can be reduced to two coupled differential equations (of second order). We will

do this in the following.

In the radial gauge there are residual diffeomorphisms ξM (x) and gauge transforma-

tions λ(x). The linear variations of the fields are

δΦ = ξM∂MΦ + iqΦλ

δΦ† = ξM∂MΦ† − iqΦ†λ
δAM = ξN∂NAM + ∂Mξ

NAN + ∂Mλ .

(C.1)

For homogeneous fluctuations we can expand in plane waves ξM = e−iωtηM (r), λ = e−iωtχ(r),

in such a way that the allowed transformations are

ηr = c0r
√
f, η0′ = −iωc0

L4e−2A

r3f3/2
, χ′ = iωc0

L4e−2A

r3f3/2
A0, ηi = ci , (C.2)

where c0, ci are arbitrary functions of the frequency. We can construct a basis of two

independent combinations of the scalar components that are invariant under these gauge

transformations z1, z2; these are the expressions given in (5.3). The equations of motion

can be found in a straightforward way by taking radial derivatives of zi and using the

equations of motion of the scalar modes. They take the generic form (5.4). The result

with q 6= 0 is quite cumbersome, so we will give here expressions for the bottom-up models

with q = 0 and canonical kinetic term, but generic potential. The off-diagonal coefficients
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vanish A12 = A21 = B12 = B21 = 0 and the diagonal ones take the values:

A11 = A22 = −4A′ − f ′

f
− 5

r

B11 = −e
−2AL4ω2

f2r4
+

4Φ0Φ′0∂VΦ

3fr2A′ + 3fr
− 2rf ′ (Φ′0) 2

3f (rA′ + 1)
− 8

3

(
Φ′0
)

2

+
∂VΦ + 2Φ2

0∂
2VΦ

fr2
+

2r2 (Φ′0) 4

9 (rA′ + 1)2

B22 =
∂VΦ

fr2
− e−2AL4ω2

f2r4
.

(C.3)

C.2 Solutions

The method that we will follow here to find a solution for the quasi-normal modes is

valid for any number of coupled or decoupled linear differential equations. Expanding the

system (5.4) around u→ 1,

0 = z′′j −
z′j

1− u
+

e−2A
(0)
H ω2

4f
(1)
H (1− u)2

zj , (C.4)

we infer that the leading order behavior at the horizon is given by

zj |u→1 ∼ z(out)
j (1− u)iωcI + z

(ing)
j (1− u)−iωcI (C.5)

with cI = eA
(0)
H /2f

(1)
H , and we have labeled the outgoing and infalling pieces as z

(out)
j and

z
(ing)
j , respectively. Imposing causality means that we pick the ingoing solution. From here,

we can construct a solution valid throughout the whole bulk,

zj ∼ (1− u)−iωcIzj(reg) , (C.6)

with

zj(reg) =
∑
m=0

z
(m)
j (1− u)m , (C.7)

regular at the horizon. At leading order and taking ω = 0,

z1(reg) = z
(1)
1 (1− u) + · · ·

z2(reg) = z
(0)
2 −


(
φ

(0)
H

2 − 1
)(

φ
(0)
H

2 + 1
)

2
(
φ

(0)
H

4 + 1
)
fH (0)

z1
(1)e−2AH

(0)
A0H

(1)

+
3
(
φ

(0)
H

8 + 8φ
(0)
H

4 − 1
)
z2

(0)

4
(
φ

(0)
H

2 − 1
)

2
(
φ

(0)
H

4 + 1
)
fH (0)

 (1− u) + · · · .

(C.8)

A normalizable solution at u→ 0 can be obtained by means of the determinant method.

First, we choose a set of linearly independent boundary conditions at the horizon, that is,{
z1(reg), z2(reg)

}
=
{

(1, 0) , (0, 1)
}
, (C.9)
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and for each of these boundary conditions, we solve numerically the system (5.4) by means

of a single shooting from the horizon, where we impose

zj(1− ε0) = zj(reg)(1− ε0), z′j(1− ε0) = zj(reg)
′(1− ε0) , (C.10)

to the boundary, taking as cutoff the same as in the background computation (ε0 = 10−8),

although there is a high robustness against this choice. Furthermore, since we now deal

with a linear differential equation system, there is no need to demand the same accuracy

as for the background computation, so we set m = 2 in eq. (C.7). Near the boundary, the

solutions have the following expansion to leading order,

z1,2 ∼
√
u
(
z

(nn)
1,2 + u z

(n)
1,2

)
, (C.11)

where we identify the non-normalizable (nn) as the leading term while the normalizable (n)

as the sub-leading one. Normalizable solutions will have z
(nn)
1 = z

(nn)
2 = 0. The numerical

solutions can be arranged as elements of a matrix M ,

M =
1√
u

(
z

(I)
1 (reg) z

(I)
2 (reg)

z
(II)
1 (reg) z

(II)
2 (reg)

)
, (C.12)

which, if evaluated at the AdS boundary gives zero determinant, then, a normalizable

solution exists. This will happen at a certain frequency ω ∈ C, for fixed chemical potential

and temperature. If we were about to determine such frequency, the problem amounts to

find the root of a certain equation, det(M(ω)) = 0, which can be searched using Newton’s

method. Nevertheless, this might not even be necessary, since we can dial the chemical

potential and compute the determinant at zero frequency.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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4 Results

Now we shall summarize the results obtained in the articles presented in this thesis, leaving for

Sec. 5, a more detailed discussion.

Results of the article “Ward identities and relations between conductivities and viscosities in

holography”:

The near boundary analysis in holographic models with UV fixed point is not enough to

determine all the Ward identities that arise from the existing symmetries of the system, al-

though there are no arguments a priori to avoid their derivation from the gauge/gravity duality.

The missing information is still present, although hidden in a “subtle” way. In this work, we

developed a procedure to determine, up to possible inherent ambiguities, the remaining Ward

identities. Our approach relied on the construction of a conserved probability current in the bulk,

J , i.e. independent of the AdS coordinate, and parity symmetry. We gave a general prescription

on how to construct such probability current for any linear system of second order ordinary

differential equations and applied it to a specific set of theories consisting of 3 + 1-dimensional

gravity dual theory coupled to a scalar field. From there, we could establish the relation between

the parity even components of the conductivities and the shear and bulk viscosities.

It is however worthwhile to mention that the current J contains two kinds of contributions,

one is coming from the evaluation of the probability current at the boundary and it is ambiguous

because the probability current we have constructed depends on auxiliary fields whose boundary

conditions can be fixed in different ways. The second kind of contribution depends on the value

of the current at the horizon and it cannot be determined without explicitly solving the equations

of motion. Since the correlators Γ are defined only in terms of the original fluctuations, the hori-

zon and boundary ambiguities should cancel each other, but we cannot determine completely the

Ward identity from parity invariance of the current alone. The situation is somewhat improved

when only parity even or parity odd sources are turned on, in this case there are no spurious

contributions from the horizon. Nevertheless, the results are consistent with the already known

relations between conductivities and viscosities from standard field theory analysis [66], posing

therefore a novel and more complete way to derive transport relations from the Ward identities

in the gauge/gravity duality.

Results of the article “Holographic quark matter and neutron stars”:
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By means of an extrapolation of top-down theory [50], we studied in [67] a quantum field

theory at strong coupling which could be identified as cold quark matter at finite density. Fla-

vor was introduced by adding D7 branes in the probe approximation, so that the overall action

can be split into two contributions, S = SN=4 + SD7, wherein SN=4 vanishes when one sets

T/µ → 04. Both the energy density and the pressure have been determined analytically. With

this, we described the core of a neutron star, made out of deconfined matter at zero temperature.

In order to model a full hybrid neutron star, we combined the information gained from hologra-

phy with an extrapolation of soft/intermediate and stiff equations of state from chiral effective

field theories, employed to model the outer layer, made out of confined matter. In addition,

we integrated out the TOV equations and obtained the M − R curves. From comparing the

free energies both of the holographic and CET models, we found that at the crossing point, the

difference between their derivatives was rather large, signaling thus a strong first order phase

transition between confined and deconfined matter. The underlying reason of is related to the

softness on the equation of state from the D3 − D7 model. Based on all of these results, we

concluded that no significant amount of quark matter can exist at the interior of a neutron star.

Results of the article “Breaking the sound barrier in holography”:

In this work, we studied a simple class of models involving RG flows triggered by relevant

scalar operators charged under a global Abelian symmetry, particularized to the case where the

charged scalar field was in the probe approximation (no backreaction). The gravity geometry

was thus reduced to an AdS-RN. At a particular choice of scalar charge q and conformal dimen-

sion ∆, we reproduced a simplified model from a string theory example: a charged black hole

dual to a N = 4 theory at finite R-charge density, deformed by a gaugino mass term in the probe

approximation. We found solutions to the scalar field, both numerical and even analytical at

low temperatures, where the black hole is near extremal and the geometry of the gravitational

theory reduces to an AdS2×R3. Since at very large densities an instability toward the formation

of a homogeneous condensate develops (the scalar field would acquire an expectation value at

zero source), we made sure that the violation occurs in the stable regime, which occurred at

an extremely large ratio µ/T . We proved that the conjectured bound for holographic theories

in four dimensions, vs < 1/
√

3, was not correct, as the holographic models found realized UV

complete four dimensional field theories that could describe stable systems, both thermodynam-

4Strictly speaking, the temperature inside a neutron star is evidently not zero, but since the densities are

much larger compared to the temperature, µ/T ∼ 103 − 104, thermal contributions can be neglected.
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ically and dynamically and hence susceptible to be applied to phenomenology. From the results

of this work, we conclude that there is no universal bound for the speed of sound in holographic

models dual to ordinary four-dimensional relativistic field theories.

Results of the article “Stiff phases in strongly coupled gauge theories with holographic duals”:

In [68], we studied the thermodynamics of cold and dense strongly coupled matter via sim-

ple holographic models, following a natural extension of [69], consisting of going beyond the

approximation of a small breaking of conformal invariance, namely, including backreaction of

the scalar field onto the geometry. The models included the minimal ingredients of finite charge

density and breaking of conformal invariance through a coupling for a relevant scalar operator of

conformal dimension 4 > ∆ ≥ 3. A simple stability analysis of the models furthermore showed

no obvious thermodynamic or dynamic instabilities. In addition to the bottom-up models, we

also studied a top-down model with a more complicated action for the scalar, determined by

a consistent truncation of supergravity. We studied how large can be the value of the speed

of sound in holography. We showed that the speeds of sound obtained in gauge/gravity mod-

els can be arbitrarily close to the speed of light, providing several examples. On the gravity

side, the models consisted of an Einstein-Maxwell theory coupled to a scalar field, which can

be either charged or neutral. These models are dual to a strongly coupled gauge theory in its

large-Nc limit. The bulk gauge field is then dual to a global U(1) current on the field theory

side, while the addition of the scalar field induces a relevant deformation (meaning that the

UV is a fixed point). We focused on two particular models: The first one had a string theory

(top-down) realization with a known field theory dual, while the the second case consisted of a

family of bottom-up models. Interestingly, we observed that the simplest scenario including a

quadratic potential for a canonically normalized scalar field does not lead to large enough values

for the speed of sound. To reach higher values, it has been necessary for the scalar field to

possess self-interactions, which are reflected in the properties of higher order correlators of the

dual operator. In any case, both the bottom-up and top-down theories violated the Taub’s in-

equality (2.6) in (stable) regimes where the speed of sound was clearly above the conformal value.

While it is true that in what concerns the top-down model, its applicability to phenomenology

is not straightforward (the chemical potential in this case is related to the R-density, instead of a

baryonic density), it described a well-known relativistic field theory, wherein the only (natural)

bound that arises is causality. A seizable speed of sound was found, driven by the emergence

of a new scale from the boundary renormalization, and because of the fact that the scalar field
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was charged under the U(1) gauge group. Such new scale did not appear for the bottom-up

family models. Instead, the source for the seizable speed of sound in this last kind of models

was essentially the (unfixed) coefficient that multiplies the φ4 term in the bulk potential, which,

if led to be large enough, can lead to the emergence of (thermo)dynamic instabilities.

5 Conclusions

Now we shall detail the conclusions of the present thesis, making a distinction whether are re-

ferred to systems in 2 + 1 dimensions [32] or in 3 + 1 dimensions [67–69].

5.1 Systems in 2 + 1 dimensions

Regarding the relations for the stress-tensor transport coefficients from the Ward identities,

some non-trivial information has been derived in the context of holography for systems with

parity invariance. In relation to the ambiguities that enter in the Ward identities in [32], a näıve

comparison with the Ward identity (2.23) at zero magnetic field in [66] would fix the imaginary

part to zero. Although this probably holds in the holographic model, the correlators computed

using holographic renormalization can differ by contact terms from the correlators that enter in

the Ward identity in [66], so there might be additional contributions. It would be interesting to

look for a general argument that fixes the aforementioned ambiguity in holographic models.

A natural generalization of this work would be to derive similar Ward identities in holo-

graphic models with broken parity, in particular the relation between Hall viscosity and Hall

conductivity. This is a direction that has not been explored much, even though there are a large

variety of models that exhibit a non-zero Hall conductivity: dyonic black holes [25, 70–74], D-

brane intersections of different types [75–79] and others [80, 81]. However, the value of the Hall

viscosity has been determined in a different class of holographic models dual to parity breaking

superfluids [82–85]. It would be interesting to check if and when the models that have a Hall

conductivity also have a Hall viscosity, since this is mostly the case in Quantum Hall systems

and other topological states in condensed matter.
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Figure 1: Left plot: Types of neutron stars predicted by the combined D3−D7 brane intersection

and CEF models from [67] as a function of m0. Right plot: Tidal deformability (blue line) and

allowed radii for a neutron star as a function of m0. For both plots, the orange region denotes

strange quark matter while the black one hadronic matter.

5.2 Systems in 3 + 1 dimensions

The validity regime for treating the stack of D7 branes in a D3−D7 brane intersection as if they

are in the probe approximation, is restricted to the case when Nc � Nf . Since in [67], we have

set Nf = Nc = 3, the model has thus been regarded as a phenomenological extrapolation from

a former top-down model with one parameter to fix (the t’Hooft coupling). This extrapolation

might have entailed an additional systematic uncertainty, which perhaps can be ameliorated if

one departs from the probe approximation and considers a fully-backreacted solution. Moreover,

we have set the constituent quark mass m0 to be a fixed parameter, but one can explore the phe-

nomenology that arises when such restriction is lifted. This has already been carried out in [86],

being able to model not only pure neutron stars and pure quark stars, but also exotic hybrid

stars that accommodate either an outer crust composed of quark matter and a core of hadronic

matter (HS2s), or another type (HS3s) that have both a quark mantle and a nuclear crust on top

of a nuclear matter core. For all types of stars constructed, we were able to determine not only

their mass-radius relations, but we also computed the tidal deformabilities (see figure 1), as well

as moments of inertia and the mass distribution, finding that there exists a range of parameter

values in the D3 − D7 model, for which the novel hybrid stars have properties in very good

agreement with all existing bounds on the stationary properties of compact stars. In particular,

the tidal deformabilities of these solutions are smaller than those of ordinary neutron stars of

the same mass, implying that they provide an excellent fit to the gravitational data GW170817

of LIGO and Virgo.
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Regarding our analysis in [69], it is worthwhile to mention that only for the near-extremal

case we were able to find an analytic formula for the speed of sound. It would be interesting to

examine whether there exists a general formula, or more precisely, under what specific conditions

one can get an speed of sound larger than its conformal value for holographic theories, more or

less in the same lines than in [87], but for theories with relevant deformations instead.

In [68] we found out that the issues of superluminal or imaginary speeds of sound do not

appear for the top-down model, which suggests that adding higher powers of the scalar field

to the scalar potential might ameliorate the behavior of these quantities also in the bottom-up

models. On the other hand, a stiff EoS is achieved in the top-down model only when there is

a large separation between the scale of explicit breaking of conformal invariance and another

scale that is spontaneously generated due to the inclusion of finite counterterms from renor-

malization. An interesting question is if the increase in stiffness is due to some underlying

physical mechanism involving microscopic degrees of freedom in the dual field theory, at least

for the top-down model where the dual is known. However, microscopic fields are not gauge

invariant and therefore not directly accessible using the duality. So far we could just make a

broad qualitative statement, it appears that one needs a combination of explicit and anomalous

breaking of conformal invariance, with a hierarchy between these scales such that the scale of

anomalous breaking is the larger. Moreover, while it is true that the bottom-up constructions

are limited to some finite density and temperature windows, the applications to phenomenology

are rich and wide. Response under external tidal deformations (parametrized by the so–called

Love numbers), or even computer simulations of hybrid neutron star binary merging with EoS

for the deconfined portion governed by stiff holographic models is at hand, opening up a wide

spectrum of possibilities to study.

A different but equally interesting study would be to find a top-down model with finite

baryon (rather than R-charge) density. Quark matter is typically introduced by embedding

probe branes in the geometry, and in the known examples where the theory is truly (3 + 1)-

dimensional, the bound on the speed of sound is satisfied even at finite density. This might

change upon considering the backreaction of the branes. Solutions with backreacted flavors

at finite density have been recently constructed in [88–91]. Another possibility is to take an

alternative large-N limit where (anti) fundamental fields are extrapolated to two-index antisym-

metric representations [92] and where operators with baryon charge map to gravitational modes.
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6 Conclusiones

Ahora detallaremos las conclusiones de la presente tesis, haciendo una distinción si están referi-

das a sistemas en 2 + 1 dimensiones [32] o a 3 + 1 dimensiones [67–69].

6.1 Sistemas en 2 + 1 dimensiones

Con respecto a las relaciones para los coeficientes de transporte que se obtienen por medio de

las identidades de Ward, se extrajo información no trivial de acuerdo con la dualidad holográfica

para sistemas con invariancia bajo paridad. En relación a las ambigüedades existentes en las

identidades de Ward que aparecen en [32], una ingenua comparación con la identidad de Ward

derivada en (2.23) en ausencia de campo magnético en [66] fijaŕıa la parte imaginaria de corri-

ente de probabilidad a cero. Aunque esto posiblemente sea cierto, los correladores obtenidos por

medio de la renormalización holográfica pueden diferir en términos de contacto con respecto a

los que intervienen en la identidad de Ward en [66], por lo que pueden haber contribuciones adi-

cionales. Seŕıa interesante buscar un argumento general que fijase por completo la incertidumbre

anteriormente mencionada en modelos holográficos.

Una generalización natural de este trabajo seŕıa el derivar identidades de Ward en modelos

holográficos con ruptura de paridad, en particular examinando la relación entre la viscosidad de

Hall y la conductividad de Hall. Esta es una dirección no muy explorada, aunque existen una

gran variedad de modelos holográficos que exhiben una conductividad Hall no nula: agujeros ne-

gros diónicos [25,70–74], intersecciones de D-branas de distintas clases [75–79] entre otros [80,81].

No obstante, el valor de la viscosidad Hall ha sido determinado en una clase diferente de modelos

holográficos duales a superfluidos que presentan ruptura de paridad [82–85]. Seŕıa de interés ex-

aminar cuando, y bajo qué circunstancias, los modelos que presentan conductividad Hall puedan

también presentar viscosidad de Hall, dado que este es el caso en sistemas cuánticos Hall y otros

estados topológicos en materia condensada.

6.2 Sistemas en 3 + 1 dimensiones

El régimen de validez para tratar el conjunto de D7 branas en la intersección D3 − D7 bajo

la aproximación sonda, está restringida al caso en donde Nc � Nf . Dado que en [67] hemos

establecido que Nf = Nc = 3, el modelo ha sido por tanto considerado como una extrapolación

fenomenológica de un modelo top-down original, con un parámetro a fijar (el acoplo t‘Hooft).
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Figure 2: Gráfico izquierdo: Clases de estrellas de neutrones predichas por la combinación de

modelos D3−D7 y CEF empleada en [67] como función de m0. Gráfico derecho: Deformación

de marea (ĺınea azul) y radios permitidos para una estrella de neutrones estable como función

de m0. Para ambos gráficos, las regiones naranja y negra denotan materia quarkiónica extraña

y materia hadrónica respectivamente.

Esta extrapolación puede haber originado una incertidumbre sistemática adicional, que quizás

se puede aliviar si uno abandona la aproximación sonda y uno considera una solución con back-

reaction. Por otra parte, hemos fijado la masa quark constituyente m0, pero uno puede explorar

la fenomenoloǵıa que surge cuando tal restricción es eliminada. Esto se realizó en particular

en [86], siendo capaces de modelizar no sólo estrellas de neutrones o de quarks, sino también es-

trellas h́ıbridas que pueden contener una corteza exterior de materia quarkiónica y un núcleo de

materia hadrónica (HS2), u otro tipo (HS3) que contienen tanto un manto de materia quarkion-

ica aśı como una corteza exterior de materia hadrónica. Para todos los modelos de estrellas

construidos, pudimos determinar no sólo las relaciones masa-radio, sino además determinar las

deformaciones de marea (ver figura 2), aśı como momentos de inercia y la distribución de masa,

encontrando que existe un rango de parámetros concerniente al modelo D3 − D7 para el cual

los modelos de estrellas h́ıbridas exóticas tienen propiedades en muy buen acuerdo con todas

las restricciones necesarias para existencia de estrellas compactas estacionarias. En particular,

las deformaciones de marea de estos modelos son menores a con respecto las de estrellas de

neutrones ordinarias de igual masa, implicando por tanto que poseen un excelente acuerdo con

respecto a las observaciones gravitacionales de Ligo GW170817 y Virgo.

Relacionado con nuestro análisis de la velocidad del sonido en [69], cabe destacar que sola-

mente en el caso extremal fuimos capaces de derivar una fórmula para la velocidad del sonido.

Seŕıa interesante examinar si existe una fórmula general, o para ser más preciso, bajo qué cir-
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cunstancias uno puede tener una velocidad del sonido mayor que la dada por el valor conforme

en teoŕıas holográficas, más o menos en la misma ĺınea que en [87], pero para teoŕıas con defor-

maciones relevantes.

En [68] encontramos que el modelo top-down está exento de problemas relacionados con

velocidad del sonido superluminal o compleja, lo cual sugiere que añadir órdenes superiores

en el campo escalar al potencial puede mejorar el comportamiento de estas cantidades en lo

concerniente a los modelos bottom-up. Por otra parte, una ecuación de estado ŕıgida es alcan-

zada en el modelo top-down solo cuando hay una amplia separación entre la escala de ruptura

expĺıcita de simetŕıa conforme y otra escala que es espontáneamente generada debido a la in-

clusión de términos finitos desde la renormalización holográfica. Una cuestión interesante es si

el incremento de la rigidez es debido a algún mecanismo f́ısico subyacente que involucre grados

de libertad microscópicos en la teoŕıa dual, al menos en lo que respecta al modelo top-down,

en donde su dual es conocido. No obstante, los campos microscópicos no son invariantes gauge

y por tanto no accesibles por medio de la dualidad holográfica. Hasta el momento solo hemos

podido establecer una afirmación cualitativa amplia; parece ser que uno necesita la combinación

de ruptura de invariancia conforme tanto expĺıcita como anómala, con una jerarqúıa entre am-

bas escalas, de tal manera que la escala de ruptura anómala es considerablemente más grande.

Por otra parte, si bien es cierto que la viabilidad de los modelos bottom-up está limitada en

un cierto intervalo de temperatura y potencial qúımico, sus aplicaciones fenomenológicas son

ricas y amplias. Respuesta bajo deformaciones de marea externas (parametrizadas por medio

de los llamados números Love), o incluso simulaciones por ordenador de fusiones de estrellas de

neutrones h́ıbridas, cuyas equaciones de estado estén governadas por modelos holográficos, son

posibles, abriendo un amplio espectro de posibilidades para estudiar.

Enfocado en otra ĺınea de estudio, pero igualmente provechosa, se podŕıa encontrar un modelo

top-down que describiese un estado a densidad bariónica finita (en vez de a densidad R finita).

Materia quarkiónica es introducida mediante el embebimiento de branas en la geometŕıa bajo

la aproximación sonda, y el los casos conocidos en donde la teoŕıa es verdaderamente en (3 + 1)

dimensiones, el ĺımite para la velocidad del sonido es satisfecho incluso para estados a densidad

finita. Esto podŕıa cambiar tras considerar el backreaction de las branas. Soluciones con sabores

en backreaction a densidad finita han sido recientemente construidas en [88–91]. Otra posibilidad

es considerar un ĺımite de gran N alternativo, en donde campos en la representación (anti)

fundamental son extrapolados a representaciones asimétricas con dos ı́ndices [92] y en donde

operadores con carga bariónica son relacionados con modos gravitacionales.
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