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1 Introduction

Ever since Strominger and Vafa’s computation of the microscopic entropy of an extremal,

static, 3-charge black hole in 5 dimensions [1], showing perfect agreement at first order

with the macroscopic (Bekenstein-Hawking) entropy, there has been a keen interest in

going beyond this approximation both at the microscopic and macroscopic levels.

Going beyond the first approximation at the macroscopic level involves considering

corrections to the superstring field theory effective action and finding solutions of the

corresponding equations of motion valid to the required approximation level that describe

black holes. Then one needs to use an entropy formula such as Wald’s [2, 3] to take into

account the corrections to the action and not just the corrected geometry of the solution.

Independently of their origin (string or worldsheet loops) the corrections to the su-

perstring effective action are terms of higher order in the curvatures and take a very

complicated form, specially after compactification. Thus, no successful attempts to solving

the corrected equations of motion for black holes have been made so far and researchers
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in this field have adopted different strategies to simplify the problem: either considering

only a number of tractable corrections (the Gauss-Bonnet term is one of them) which may

appear integrated in the structure (the prepotential) of an otherwise normal, quadratic,

N = 2, d = 4 supergravity (see, e.g. ref. [4] and references therein) or by dealing only

with the near-horizon solution through different approaches (see e.g. ref. [5] and refer-

ences therein).

In both cases it is argued that the most important corrections are being captured,

basically because the expected result is found, but a definite proof is not available. Deal-

ing with near-horizon geometries, for instance, leads to the problem of finding the total,

asymptotic charges of the black holes which occur in the mass formula and some of the

corrections to the entropy are attributed to the difference between near-horizon and total

charges which, actually, are not known. Furthermore, the calculation of the entropy is also

affected by the lack of knowledge of the complete action, even if the near-horizon geometry

is known (by hypothesis).

The fact that, in general, the microscopic entropies are reproduced by these methods

can only be regarded as circumstantial evidence of their validity. Only the explicit knowl-

edge of the complete (near-horizon to infinity) α′-corrected black hole solutions and the

subsequent calculation of the entropy using the full action can clarify the situation.

In this paper we carry out this program for the same 3-charge 5-dimensional black hole

considered by Strominger and Vafa in the context of the Heterotic Superstring effective

action, to first order in α′: we find the explicit α′ corrections to all the fields of the solution

and then we apply Wald’s formula to the complete action obtaining an unambiguous answer

that reproduces the microscopic result found in ref. [6]. As we will show, this is possible

because we carry out all the calculations directly in 10 dimensions and, for these black-hole

solutions all the α′ corrections are the Laplacian of a function which provides the correction

to the harmonic functions of the zeroth-order solution.

We have found it convenient to add a SU(2) instanton field to Strominger and Vafa’s

solution because, as we will see, it can be used at pleasure to make arbitrarily small or

cancel identically many of the α′ corrections. This cancellation takes place not just at the

level of the field strengths and curvatures, but also at the level of the Chern-Simons term

via a mechanism that we will explain in full detail in a coming publication [7].

Since the corrections associated to the gauge fields have the same form as those associ-

ated to the curvature of the torsionful spin connection, it also helps us to better understand

the latter and the nature of the so-called symmetric 5-brane, found in ref. [8] which is known

to be an exact solution of the Heterotic Superstring effective action to all orders in α′.

This paper is organized as follows: in section 2 we review the Heterotic Superstring

effective action, its fermionic supersymmetry transformations and its equations of motion

to O(α′). Since most of this work will be carried out in 10-dimensional language, this

section sets the basis and the conventions for the rest of the paper. In section 3 we propose

a 10-dimensional ansatz for the α′-corrected solution that reduces to the Strominger and

Vafa’s 3-charge black hole when α′ = 0, we show that it preserves 4 out of 16 supercherges

(section 3.1), plug it into the equations of motion of the previous section, and solve for the

undetermined functions. In section 4 we start the study of the α′-corrected solution by
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computing the numbers of branes that source the solution and trying to understand their

relation with the total, asymptotic charges of the fields. In order to gain a better under-

standing of this point, in section 5 we explore the behavior under T-duality of this solution

using the α′-corrected Buscher T-duality rules proposed in ref. [9]. Both the solution and

the T-duality rules pass the test.1 In section 6 we study the α′-corrected geometry of the

5-dimensional black hole that one obtains by compactification of the solution on a T5.

Finding the form of all the 5-dimensional fields is very complicated (it requires performing

the compactification of the corrected action), except for the metric and the dilaton, which

are the 5-dimensional fields that interest us the most. This allows us to find under which

conditions there is a regular horizon and compute the area of the horizon (the entropy of

the zeroth-order solution) and the mass of the solution. Then, in section 7 we compute

the corrections to the entropy using Wald’s formula in 10-dimensional form. We find two

possible corrections to first-order in α′, one of which vanishes identically due to the very

special properties of the 10-dimensional near-horizon geometry [11]. The α′-corrected en-

tropy reproduces the expected result once the difference in conventions have been taken

into account. In section 8 we study the issue of the existence of small black holes with

classical vanishing area. Finally, in section 9 we study the limits under which the solution

can be considered a good first-order in α′ approximation to an exact solution of the full

Heterotic Superstring effective action. Section 10 contains our conclusions.

2 The Heterotic Superstring effective action to O(α′)

The Heterotic Superstring effective action to O(α′) can be written in the string frame in

the following concise form [12]:2

S =
g2s

16πG
(10)
N

∫
d10x

√
|g| e−2φ

{
R− 4(∂φ)2 +

1

2 · 3!
H2 − 1

2
T (0)

}
. (2.1)

Let us now review the definition of the different terms that appear in it. First of all, φ is

the dilaton field and the vacuum expected value of eφ is the Heterotic Superstring coupling

constant gs. The 10-dimensional Newton constant G
(10)
N is given in terms the string length

`s (with α′ = `2s) and gs by

G
(10)
N = 8π6g2s`

8
s . (2.2)

R is the Ricci scalar of the string-frame metric gµν . T (0) is one of the three “T -tensors”

associated to α′ corrections and which are defined as

T (4) ≡ 6α′
[
FA ∧ FA +R(−)

a
b ∧R(−)

b
a

]
,

T (2)
µν ≡ 2α′

[
FAµρF

A
ν
ρ +R(−)µρ

a
bR(−) ν

ρ b
a

]
,

T (0) ≡ T (2)µ
µ .

(2.3)

1In ref. [10], essentially the same α′-corrected T-duality rules have been used to show the invariance of

the temperature and entropy of the BTZ black hole in a simplified model.
2We follow the conventions of ref. [13] for the spin connection and curvature and for the gamma matrices.

See also ref. [14].
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In these definitions, R(−)
a
b is one of the two Lorenz curvature 2-forms R(±)

a
b of the two

torsionful spin connection 1-forms Ω(±)
a
b that can be constructed by combining the Levi-

Civita spin connection ωab 1-form with a torsion piece proportional to the Kalb-Ramond

field strength H. FA is the SU(2) Yang-Mills field strength and H is the Kalb-Ramond

field strength 3-form. All these objects are defined by

Ω(±)
a
b = ωab ±

1

2
Hµ

a
bdx

µ , (2.4)

R(±)
a
b = dΩ(±)

a
b − Ω(±)

a
c ∧ Ω(±)

c
b , (2.5)

FA = dAA +
1

2
εABCAB ∧AC , (2.6)

H = dB + 2α′
(
ωYM + ωL

(−)

)
. (2.7)

In the definition of H, ωYM and ωL
(−) are, respectively, the Yang-Mills and Lorentz Chern-

Simons terms

ωYM = dAA ∧AA +
1

3
εABCAA ∧AB ∧AC , (2.8)

ωL
(±) = dΩ(±)

a
b ∧ Ω(±)

b
a −

2

3
Ω(±)

a
b ∧ Ω(±)

b
c ∧ Ω(±)

c
a . (2.9)

Then, the Bianchi identity of H is

dH − 1

3
T (4) = 0 . (2.10)

The above action contains an infinite number of implicit α′ corrections which arise due

to the recursive way in which H is defined: H depends on the Lorentz Chern-Simons form

of ωL(−), which depends on Ω(−), which, in its turn, is defined in terms of H. At the order

at which we are working, it is enough to keep in the definitions of Ω(±) only the terms of

zeroth order in α′, that is

Ω(±)
a
b = ωab ±

1

2
H(0)
µ

a
bdx

µ , where H(0) ≡ dB . (2.11)

Furthermore we will ignore all the α′2 terms in the action.

The equations of motion that follow from this action are very complicated and, in order

to deal with them, we proceed as in section 3 of ref. [15]: we separate the variations with

respect to each field (gµν , Bµν , φ, A
A
µ ) into those corresponding to the explicit occurrences

of the fields in the action (i.e. when they do not appear in Ω(−)
a
b) and those corresponding

to implicit occurrences via Ω(−)
a
b:

δS =
δS

δgµν
δgµν +

δS

δBµν
δBµν +

δS

δAAµ
δAAµ +

δS

δφ
δφ

=
δS

δgµν

∣∣∣∣
exp.

δgµν +
δS

δBµν

∣∣∣∣
exp.

δBµν +
δS

δAAµ

∣∣∣∣
exp.

δAAµ +
δS

δφ
δφ

+
δS

δΩ(−)ab

(
δΩ(−)

a
b

δgµν
δgµν +

δΩ(−)
a
b

δBµν
δBµν +

δΩ(−)
a
b

δAAµ
δAAµ

)
. (2.12)
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Written in this way, we can then make use of the lemma proven in section 3 of ref. [12]:

δS/δΩ(−)
a
b is proportional to α′ and to the zeroth-order equations of motion of gµν , Bµν

and φ plus terms of higher order in α′. Thus, for any solution of the zeroth-order equations

which is exact or up to terms of order α′, these terms are, at least, of order α′2 and can be

safely ignored for our purposes.

The variations with respect to the explicit occurrences of the fields are, after some

manipulations

Rµν − 2∇µ∂νφ+
1

4
HµρσHν

ρσ − T (2)
µν = 0 , (2.13)

(∂φ)2 − 1

2
∇2φ− 1

4 · 3!
H2 +

1

8
T (0) = 0 , (2.14)

d
(
e−2φ ? H

)
= 0 , (2.15)

α′e2φD(+)

(
e−2φ ? FA

)
= 0 , (2.16)

where D(+) is the exterior derivative covariant with respect to the SU(2) group and with

respect to the torsionful connection Ω(+), that is

e2φd
(
e−2φ ? FA

)
+ εABCAB ∧ ?FC + ?H ∧ FA = 0 . (2.17)

The three non-trivial zeroth-order equations can be obtained from these by setting α′ = 0.

This eliminates the Yang-Mills fields, the T -tensors and the Chern-Simons terms in H.

We are also going to need the supersymmetry transformation laws of the gravitino ψµ,

dilatino λ and gaugini χA for vanishing fermions, to find the unbroken supersymmetries of

the field configurations under study. These are given by

δεψµ = ∇(+)
µ ε ≡

(
∂µ −

1

4
6Ω(+)µ

)
ε , (2.18)

δελ =

(
6∂φ− 1

12
6H
)
ε , (2.19)

α′δεχ
A = −1

4
α′6FAε . (2.20)

In these expressions H includes the Chern-Simons terms, which provide the first α′ correc-

tions.

3 α′ corrections to the d = 10 Heterotic Superstring background

We are interested in the following 10-dimensional field configuration

ds2 =
2

Z−
du

(
dv − 1

2
Z+du

)
−Z0(dρ

2 + ρ2dΩ2
(3))− dy

idyi , i = 1, . . . , 4 ,

H = dZ−1− ∧ du ∧ dv −
ρ3Z ′0

8
sin θdθ ∧ dψ ∧ dφ ,

AA = − ρ2

(κ2 + ρ2)
vAL ,

e−2φ = e−2φ∞
Z−
Z0

,

(3.1)
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where the functions Z+,−,0 are assumed to be of the form

Z0 = 1 +
Q0

ρ2
+ α′f0(ρ) , Z± = 1 +

Q±
ρ2

+ α′f±(ρ) , (3.2)

where, in their turn, f±,0 are functions of ρ to be determined. Observe that all the functions

in this ansatz depend on the radial coordinate ρ of a R4 space, which is adequate for

single, static, branes and black holes. The connections and curvatures for this ansatz are

computed in appendix A in a slightly more general form, using Cartesian coordinates xm

with xmxm = ρ2.

When the undetermined functions f+,−,0 and the SU(2) gauge field are set to zero,

this field configuration is a well known 1/4 supersymmetric solution of the zeroth-order

equations of the Heterotic Superstring effective action [16, 17] describing an intersection

or superposition of

1. Solitonic (S) or Neveu-Schwarz (NS) 5-branes [8, 18],3 lying in the directions u, v,

y1, · · · , y4. The R4 space parametrized by the coordinates xm, m = 1, · · · , 4 is their

transverse space and it is the common transverse space of the whole solution. They

are described by the function Z0 and their charge is represented by Q0 at this order.

2. A fundamental string (F1) lying in the directions u, v and smeared over the rest of

the S5-branes’ worldvolume directions yi, i = 1, · · · , 4. It is described by the function

Z− and its charge (winding number) is represented by Q− at this order.

3. A gravitational pp-wave (W) carrying momentum along the v direction (i.e. along the

F1). It is described by the function Z− and its charge (momentum) is represented by

Q+ at this order. The interchange between Q+ and Q− under T-duality at zeroth

order in α′ corresponds to the interchange between winding and momentum of the F1.

Upon dimensional reduction over a T5, this solution gives a static,extremal, 3-charge,

1/2 supersymmetric black hole in N = 1, d = 5 supergravity, which is dual to the one

studied by Strominger and Vafa in ref. [1].4

In ref. [22] we considered the addition of the above SU(2) gauge field, which is nothing

but a BPST instanton, in the context of Heterotic Supergravity. Heterotic Supergravity

is just N = 1, d = 10 supergravity coupled to vector supermultiplets and can be obtained

from the Heterotic Superstring effective action in eq. (2.1) by eliminating all the terms

containing the torsionful spin connection Ω(−). Thus, it only contains part of the α′ terms

of the Heterotic Superstring effective action. However, it is exactly invariant under super-

symmetry [12], which makes it easier to use supersymmetric solution-generating techniques

and, indeed, using these techniques in N = 1, d = 5 gauged supergravity it was shown that

with f0 given by

f0(ρ) = 8
ρ2 + 2κ2

(ρ2 + κ2)2
, (3.3)

3We feel more inclined to use the name S5-branes.
4See also refs. [19–21].
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and f+ = f− = 0 the above field configuration is an exact supersymmetric solution which,

upon dimensional reduction over a T5 gives a static, extremal, 3-charge, 1/2 supersymmet-

ric black hole in N = 1, d = 5 supergravity with non-Abelian hair [22–25].

To be more precise, f0(ρ) is defined up to an arbitrary harmonic function. In eq. (3.3)

the harmonic function has been chosen so as to make f0(ρ) regular at ρ = 0 while keeping

the normalization of Z0 at infinity. We will always use the same convention to choose the

arbitrary harmonic functions that can be added to f0,+,−(ρ). With this convention, the

only 1/ρ2 pole in ρ → 0 limit of the α′-corrected Z0 is the original term Q0/ρ
2 where Q0

is proportional to the number of S5-branes [8, 18].

Further shifts by harmonic functions can always be absorbed into a redefinition of Q0

Observe that, in the ρ→∞ limit, the coefficient of the 1/ρ2 term is not Q0 but Q0 + 8α′.

The difference is due to the contribution of the BPST instanton which sources a “gauge

5-brane” [26, 27] which in its turn increases to the total charge of the NS 6-form B̃ dual

to the Kalb-Ramond 2-form B measured at infinity. In this case, the difference between

these two quantities, number of S5-branes and total 5-brane charge at infinity, has a simple

explanation in terms of a delocalized gauge 5-brane but, as we are going to see, other

α′ corrections lead to very similar differences between “near-horizon” and “asymptotic”

(total) charges which do not have a (known) similar, simple, interpretation.

The fact that the α′ corrections associated to the torsionful spin connection Ω(−) have

the same structure as those associated to the gauge fields should not come as a surprise:

the theory treats the Yang-Mills and the torsionful spin connection on exactly the same

footing [28] and the curvature of the latter occurs as that of another non-Abelian gauge field

sourcing the Einstein equations. The main difference is that the torsionful spin connection

is not an independent field and, furthermore, its “kinetic term” occurs in the action with

the wrong sign.

Thus, on general grounds, one expects additional α′ corrections in f+,−,0(ρ) similar to

eq. (3.3), with opposite sign and depending on Q+,Q−,Q0 instead of κ. These corrections

cannot be assigned to something like a “gravitational 5-brane”, as far as we know, but

they are similarly delocalized and they will generically contribute to the total charges at

infinity. This may give rise to the problem of how to count the number of branes through

the computation of the charge.

Remarkably enough, when the instanton field is included together with the rest of first-

order α′ corrections, some of of these contributions to the total charge disappear completely

and the total charge at infinity has the same value as the “near-horizon” (ρ→ 0) charge, as

it happens at zeroth order in α′. Actually, since, according to the previous discussion, the

structure of those corrections is the same as that of those associated to the Yang-Mills fields

we can cancel them against each other, eliminate completely the first-order α′ corrections

and (probably, we conjecture) all the higher order corrections. It is likely that the addition

of more general gauge fields can be used to solve this problem for all charges and also to,

eventually, cancel all the α′ corrections [29].

We will discuss this issue at length in section 4.

Right now our goal is to determine the functions f+,−,0(ρ) so that the above field

configuration is a solution of the Heterotic Superstring effective action to first order in α′

– 7 –
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(i.e. up to terms of O(α′2)). However, before doing it, we are going to show that these

field configurations preserve 1/4 of the supersymmetries for any value of the functions

Z+,Z−,Z0 and for any Yang-Mills field strength which is self-dual in the 4-dimensional

space R4 transverse to the S5-branes to first order in α′.

3.1 Unbroken supersymmetries of the ansatz

Using the Zehnbein basis and results in appendix A for the torsionful spin connection Ω(+),

the different components of the supersymmetry transformation rules eqs. (2.18)–(2.20) take

the following form for our ansatz:

δεψ+ =

[
∂+ +

1

4

Z−∂mZ+

Z1/2
0

ΓmΓ+

]
ε , (3.4)

δεψ− =

[
∂− +

1

4

∂m logZ−
Z1/2
0

ΓmΓ+

]
ε , (3.5)

δεψm =

[
∂m +

1

8

∂q logZ0

Z1/2
0

(M+
qm)npΓ

np(1− Γ̃)

]
ε , (3.6)

δεψi = ∂iε , (3.7)

δελ = − 1

2Z1/2
0

Γm
[
∂m logZ−Γ−Γ+ − ∂m logZ0(1− Γ̃)

]
ε , (3.8)

α′δεχ
A = − 1

8Z1/2
0

α′6FA(1− Γ̃)ε , (3.9)

where Γ̃ ≡ Γ2345 is the chirality matrix in the R4 space transverse to the S5-branes. All

these transformations vanish identically for constant spinors satisfying the constraints

Γ̃ε = +ε , Γ+ε = 0 , (3.10)

which reduce the number of independent components to 1/4 of the 16.

3.2 Explicit computation of the α′ corrections

We just have to plug the supersymmetric configuration eq. (3.1) in the equations of mo-

tion (2.13)–(2.16) as well as in the Bianchi identity eq. (2.10) and try to solve them for

f+,−,0(ρ). Our ansatz assumes implicitly that no more components of the metric are nec-

essary to this order and that its structure and symmetries will remain intact. Only the

functions associated to the different branes can receive corrections. These assumptions

based in our experience with the non-Abelian black hole of ref. [22] will prove correct, as

we are going to see.

– 8 –
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The terms of order α′ in eqs. (2.13)–(2.16) are proportional to the T -tensors defined

in eq. (2.3), which were computed for this ansatz in ref. [22]. They are explicitly given by5

T̂ (4) ∼ α′
[

κ4

(κ2 + ρ2)4
− Q2

0

(Q0 + ρ2)4

]
dρρ3 ∧ sin θdθ ∧ dΨ ∧ dφ , (3.11)

T̂ (2)
uu = −α′

32Q−Q+ρ
4
[
Q2

0 +Q0

(
Q− + 3ρ2

)
+Q2

− + 3Q−ρ2 + 3ρ4
]

(Q0 + ρ2)4 (Q− + ρ2)4
, (3.12)

T̂ (2)
ij = α′δij

48ρ2

(Q0 + ρ2)5

[
Q2

0 −
κ4
(
Q̃0 + ρ2

)4
(κ2 + ρ2)4

]
, (3.13)

T̂ = −α′ 192ρ4

(κ2 + ρ2)4 (Q0 + ρ2)6
[
κ8Q2

0 + 4κ6Q2
0ρ

2

−κ4
(
Q4

0 + 4Q3
0ρ

2 + 4Q0ρ
6 + ρ8

)
+ 4κ2Q2

0ρ
6 +Q2

0ρ
8
]
. (3.14)

Observe that, while all the scalar invariants that one can construct with these T -

tensors, and which occur in the action, depend on the parameters Q0 and κ2 only, the

component T̂ (2)
uu, which occurs in the equations of motion, depends on Q+,Q− and Q0

but not on κ2. T̂ (2)
uu vanishes identically at ρ = 0, where we expect the horizon to be,

and it also vanishes asymptotically at ρ→∞, but it is relevant at finite values of ρ. Thus,

arguments solely based on the behavior of the scalar invariants as functions of Q0 and κ2

miss completely this correction. Furthermore, this correction disappears if one considers

near-horizon geometries only.

Let us consider, first, the Yang-Mills fields. It can be seen that, given the structure

of the fields in our ansatz, independently of the actual values of the Z-functions, the

α′-corrected Yang-Mills equation eq. (2.16) is satisfied automatically provided that FA is

self-dual in the 4-dimensional Euclidean space transverse to the S5-branes, that is, ?(4)F
A =

+FA, which is a property of our ansatz.

Next, we consider the Bianchi identity eq. (2.10) for the 3-form H in eq. (3.1). Sub-

stituting the ansatz the identity takes the form6

− α′

8ρ3
d

dρ

(
ρ3
df0
dρ

)
dρρ3 ∧ sin θdθ ∧ dΨ ∧ dφ =

24α′
[

κ4

(κ2 + ρ2)4
− Q2

0

(Q0 + ρ2)4

]
dρρ3 ∧ sin θdθ ∧ dΨ ∧ dφ+O(α′2) . (3.15)

This leads to the following equation for f0

d

dρ

(
ρ3
df0
dρ

)
= −192ρ3

[
κ4

(κ2 + ρ2)4
− Q2

0

(Q0 + ρ2)4

]
, (3.16)

5T̂ (4) is computed explicitly in appendix A.
6We do not simplify the common factors in the left- and right-hand sides.
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that can be integrated immediately, giving7

f0 = 8

[
ρ2 + 2κ2

(ρ2 + κ2)2
− ρ2 + 2Q0

(ρ2 +Q0)2

]
+
c0
ρ2

+ d0 . (3.17)

Here c0 and d0 are integration constants corresponding to the arbitrary shift by a harmonic

function of Z0 discussed at the beginning of this section. There we also convened to choose

c0 so that f0 has no 1/ρ2 poles in the ρ→ 0 limit and d0 so that f0 vanishes asymptotically

to preserve the asymptotic normalization of the full metric. This has already been done in

the expression above, which is finite in the ρ → 0 limit and vanishes in the ρ → ∞ limit.

Therefore, c0 = d0 = 0

Observe that, if Q0 = 0, the second term in eq. (3.17) should not be there at all.

However, the above expression gives a spurious −1/ρ2 pole when Q0 = 0. Thus, we will

have to treat the cases Q0 = 0 and Q0 6= 0 independently. The same is also true for the

κ = 0 case, since in this limit the instanton just gives an Abelian-like contribution that can

be interpreted as 8 S5-branes.8 Then we may simply reabsorb these 8 additional S5-branes

into Q0.

The first term in f0 is just the one in eq. (3.3) and is associated to the FA ∧FA term.

The second is associated to the R(−)
a
b ∧ R(−)

b
a term and has exactly the same structure

because, as we said, Ω(−) behaves exactly as another gauge field. The presence of two

terms with the same structure but opposite signs ensures that the coefficient of the 1/ρ2

pole in the ρ → 0 limit is the same as the coefficient of the 1/ρ2 term in the ρ → ∞
limit: the contribution of the gauge 5-brane to the charge of B̃ is cancelled by another

contribution which cannot be assigned to any known brane. Typically, the latter is the

only α′ correction considered in the literature in the context of black holes, where uysually

non-Abelian fields are not introduced.

The presence of two corrections with the same functional form but opposite signs

not only suppresses the difference between “near-horizon” and asymptotic, total charge

of B̃: setting κ2 = Q0 the whole first-order α′ correction vanishes identically. With this

identification between the instanton size parameter and the S5-brane charge, the component

of the full solution described by Z0 is nothing but the so-called symmetric 5-brane, found in

ref. [8], which is known to be an exact solution of the Heterotic Superstring effective action

to all orders in α′. Finding the symmetric 5-brane solution in this form sheds new light on

its origin and meaning. Of course, the complete solution has additional fields which give

rise to some α′ corrections of their own even if κ2 = Q0, via T̂ (2)
uu.

Finally, notice that if Q0 � κ2 the second term is irrelevant compared to the first one,

except in the asymptotic limit ρ → ∞, where both are comparable. In ref. [22] this fact

was used to argue that the solution of Heterotic Supergravity that includes the instanton

suffered only small α′ corrections to first order. In section 9 we will study the issue of α′

and other corrections from a more general point of view.

7This result is obtained in appendix A.1 in a more transparent way. The integrability of this equation

is due to a set of very interesting properties of this class of ansatzs that will be explored in more generality

in ref. [7].
8The Yang-Mills field becomes pure gauge in this limit except at ρ = 0.
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Next, let us consider the equation of motion of B, eq. (2.15). It yields the following

equation for f−
d

dρ

(
ρ3
df−
dρ

)
= 0 , (3.18)

which means that f−(ρ) is just a harmonic function, which we absorb into a redefinition

of Q− according to our general prescription. Therefore Z− does not receive any first-order

α′ corrections.

Now we can turn our attention to the Einstein equations eq. (2.13). We have checked

that with the present configuration all of them are satisfied up to O(α′2) except for the uu

one, which gives the following equation for f+:

1

ρ3
d

dρ

(
ρ3
df+
dρ

)
= −

128Q+Q−
(
Q2

0 +Q2
− + 3Q0ρ

2 + 3Q−ρ2 + 3ρ4 +Q0Q−
)

(Q0 + ρ2)3(Q− + ρ2)3
. (3.19)

where the right-hand side is proportional to T̂ (2)
uu. This equation is solved by

f+(ρ) = − 16Q+Q−
ρ6Z(0)

0 Z
(0)
−

, (3.20)

up to an arbitrary harmonic function c+/ρ
2 to be chosen according to our prescription.

In the ρ → 0 limit the above f+(ρ) diverges as −16Q+Q−10 /ρ2 if Q0 6= 0. Then, we

choose c+ = +16Q+Q−10 and we are left with

f+(ρ) =
16Q+(ρ2 +Q0 +Q−)

Q0(ρ2 +Q0)(ρ2 +Q−)
, (3.21)

which has the same structure as f0(ρ) without the corrections associated to the instanton.9

Thus, since in this case there is no contribution to the gauge fields that could cancel this

α′ correction, the “near-horizon” charge and the total, asymptotic charge associated to Z+

(total momentum) are different and we are faced with the problem of deciding which of

them represents the momentum of the string. We will discuss this issue in section 4.

If Q0 = 0, f+ ∼ 1/ρ4 when ρ → 0 and there is no need to shift it by a harmonic

function.

Finally, one can check that the dilaton equation is satisfied up to O(α′2) terms.

Summarizing the results of this section, we have constructed a solution of the Heterotic

String effective action to first order in α′ of the form given in eq. (3.1) with the Z functions

given, for Q0 6= 0 by

Z0 = Z(0)
0 + 8α′

[
ρ2 + 2κ2

(ρ2 + κ2)2
− ρ2 + 2Q0

(ρ2 +Q0)2

]
+O(α′2) , (3.22)

Z− = Z(0)
− +O(α′2) , (3.23)

Z+ = Z(0)
+ + 16α′

Q+(ρ2 +Q0 +Q−)

Q0(ρ2 +Q0)(ρ2 +Q−)
+O(α′2) , (3.24)

9Up to a factor of 2 it is identical to it if we set Q− = Q0.
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and for Q0 = 0 by

Z0 = 1 + 8α′
ρ2 + 2κ2

(ρ2 + κ2)2
+O(α′2) , (3.25)

Z− = Z(0)
− +O(α′2) , (3.26)

Z+ = Z(0)
+ − 16α′

Q+Q−
ρ4(ρ2 +Q−)

+O(α′2) , (3.27)

where Z(0)
0 ,Z(0)

± are the pieces of the functions Z(0)
0 ,Z(0)

± of zeroth order in α′, namely the

harmonic functions in E4

Z(0)
0,+,− = 1 +

Q0,+,−
ρ2

. (3.28)

We would like to stress at this point that the O(α′2) terms that we have ignored in

the equations of motion derived from the action eq. (2.1) are proportional to products of

the Chern-Simons 3-forms that occur in in H. We will discuss in detail in section 9 when

it is justified to disregard these terms as well as the rest of the terms of higher-order in

α′ and in the string coupling constant that enter in the Heterotic Superstring Effective

action so, rather than just a solution to the first-order equations of motion of the Heterotic

Superstring Effective action, we can consider that this is a first-order solution of the full

effective action with second-order corrections in α′ and one- and higher-loop corrections

which are negligible when compared with the above solution.

Let us close this section by commenting the relation of these solutions to the ones

described in [30], which were also argued to be exact solutions at first order in α′. Those

can be obtained from eqs. (3.22) by removing the 1’s from the harmonic functions Z(0)
0,+,−,

but this has the effect of removing as well all the α′ corrections except the one due to

the SU(2) instanton. The reason is that at zeroth order in α′ such solutions are just

AdS3 × S3 ×T4, for which R̂(−) vanishes identically [11] — see also section 7. Hence, only

corrections coming from the Yang-Mills fields appear in that case.

4 The α′-corrected charges

Before doing any explicit calculation, it is good to have a more qualitative discussion on

the meaning of the charges that we are going to calculate.

As we have discussed in the previous section, the α′ corrections introduce delocalized

terms in the the fields which, generically, give contributions to the total charges of the

fields computed at spatial infinity. The term in Z0 associated to the presence of the

BPST instanton (let us ignore the second one due to the curvature of the torsionful spin

connection) contributes to the total charge at infinity of the NS 6-form B̃ dual to the

Kalb-Ramond 2-form B and its contribution, which can be explained in terms of a gauge

5-brane [26, 27] is equivalent to that of 8 S5-branes:

Z0
ρ→∞∼ 1 + (Q0 + 8α′)/ρ2 + · · · (4.1)

If we are interested in finding how many S5-branes there are in the background this contri-

bution to the total charge must be taken into account and we could say that Q0 = NS5α
′.
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Alternatively, one can look at the “near-horizon” charge which will be determined by the

coefficient of the 1/ρ2 pole in the ρ→ 0 limit. By convention, this is always the coefficient

in Z(0), Q0:

Z0
ρ→0∼ Q0/ρ

2 + · · · (4.2)

Now, let us take into account the second term in f0 associated to the R(−)∧R(−) term.

This term contributes to the total charge at infinity as -8 S5-branes:

Z0
ρ→∞∼ 1 + (Q0 + 8α′ − 8α′)/ρ2 + · · · (4.3)

and, therefore, the total charge and the “near-horizon charge” which is always given by

eq. (4.2) are both equal to Q0 in this case. We do not know of any delocalized extended

object to which this negative contribution to the charge can be attributed to but the net

effect is that we do not need to worry about the different contributions to this charge.

Now we can try to use more rigorous definitions (which, of course, will give the same

result).

In order to compute 5-brane charge we need to use NS 6-form B̃ dual to the Kalb-

Ramond 2-form B. The equation of motion of the latter can be written in the form

d
(
e−2φ ? H +O(α′)

)
= 0 , (4.4)

where, according to the discussion in section 2 the +O(α′) terms are related to the zeroth-

order equations of motion. Locally, the equation of motion is solved by

e−2φ ? H +O(α′) ≡ dB̃ , ⇒ H = e2φ ? H̃ , with H̃ ≡ dB̃ +O(α′) . (4.5)

The 6-form equation of motion can be obtained from the Bianchi identity of H eq. (2.10)

d(e2φ ? H̃)− 2α′
(
FA ∧ FA +R(−)

a
b ∧R(−)

b
a

)
= 0 , (4.6)

and, if we couple the system to NS5 solitonic 5-branes lying in the directions 1
2(u+v),

y1, · · · , y4, it takes the form10

d(?e2φH̃)− 2α′
(
FA ∧ FA +R(−)

a
b ∧R(−)

b
a

)
= 4π2α′NS5 ?(4) δ

(4)(ρ) . (4.8)

This identity means that the expression in the left-hand side is sensitive to the 1/ρ2 poles in

the ρ→ 0 limit and, therefore, the “near-horizon charge” Q0 essentially counts the number

of S5-branes in the background, as we explained before. This can be checked explicitly

10Here we have used the normalization of the Heterotic Superstring effective action in eq. (2.1), the nor-

malization of the Wess-Zumino term of the S5-branes NS5TS5 g
2
s

∫
φ∗B̃ and the values of the 10-dimensional

Newton constant eq. (2.2) and the S5-brane tension in terms of the string length `2s = α′ and the string

coupling constant gs, which are given by

TS5 =
1

(2π`s)5`sg2s
. (4.7)
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by using the form eq. (A.27) for the Bianchi identity in the above expression, and the

conclusion is that11

Q0 = NS5 α
′ . (4.9)

If, instead of the number of S5-branes, we wanted to calculate the total 5-brane charge

at infinity, we should move the α′ terms to the right-hand side

d(?e2φH̃) = 4π2α′NS5 ?(4) δ
(4)(ρ)− 2α′

(
FA ∧ FA +R(−)

a
b ∧R(−)

b
a

)
, (4.10)

and integrate over the 4-dimensional transverse space to the 5-branes. The total charge

would be (NS5 + 8NG5− 8NU5)α
′ where NG5 is the number of gauge 5-branes and is equal

to the instanton number of the gauge field and NU5 is the number of “unknown 5-branes”

associated to the torsionful spin connection Ω(−) and is equal to its instanton number too.

In our solution NU5 = 1, and, is we include the SU(2) instanton, NG5 = 1. Then, the total

5-brane charge is, again, given by eq. (4.9).

Finally, observe that, in the end, the α′ terms in the Bianchi identity are simply those

in eq. (3.15) and, as discussed above, only the 1/ρ2 poles in f0 give contributions to the

δ-function.

Let us now move to the fundamental string charge (winding number), described by Z−
which is not affected by α′ corrections. Repeating the discussion at the beginning of this

section we would conclude that the “near-horizon charge” and the total charge at infinity

should both be equal to Q− which, in its turn, should be proportional to the winding

number.

In fact, following ref. [22] if we have NF1 fundamental strings lying in the direction
1
2(u− v) we have

TF1NF1 =
g2s

16πG
(10)
N

∫
V 8

d
(
?e−2φH +O(α′)

)
, where TF1 =

1

2πα′
, (4.11)

where O(α′) are terms associated to the zeroth-order equations of motion, as we have

discussed, and where V 8 is the space transverse to worldsheet parametrized by u and v,

whose boundary is the product T4 × S3
∞. The O(α′) terms do not contribute to this

integral for the same reason they do not introduce α′-corrections in Z−, which remains a

harmonic function whose pole is the sole contribution to the above integral (see eq. (3.18)).

Therefore, using Stokes’ theorem and the value of volume of the T4, (2π`S)4, we get again

Q− = `2sg
2
sNF1 . (4.12)

Following the same reasoning, the strings’ momentum can be found by just looking

at the coefficient of the 1/ρ2 pole in Z+ which we have denoted, according to the general

convention, by Q+:

Q+ =
g2s`

4
s

R2
z

NW . (4.13)

11When κ = 0 there is an additional contribution to the pole equivalent to 8 S5-branes that, as we said

before, we will simply absorb into a redefinition of Q0 so the above identification will always hold.
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However, in this case, the total momentum at infinity is different because there is a

first-order in α′ delocalized contribution in f+(ρ) which is not cancelled by the Yang-Mills

field’s contribution:

Z+
ρ→∞∼ 1 +Q+

(
1 + 16α′/Q0

)
/ρ2 + · · · (4.14)

If Q0 is small, the difference between the string’s momentum, which we have argued

should be measure in the near-horizon limit, and the total, asymptotic momentum, which

is assumed to be the momentum of the string in some of the literature, can be large and

with important physical consequences, as we are going to see in section 8.

5 α′-corrected T-duality

In ref. [22] we arrived to the relation between Q+ and NW eq. (4.13) via a T-duality

transformation of the solution, which is commonly understood to interchange momentum

and winding of a fundamental string wrapped on a circle. We can call

N ′F1 = NW , N ′W = NF1 , (5.1)

the “microscopic T-duality rules”. However, these microscopic T-duality rules come form

the study of the Heterotic String spectrum on M1,8×S1, in absence of any other background

field, but the system under consideration contains a non-perturbative S5-brane wrapped

around the T-duality direction and it is conceivable that the string spectrum and the

microscopic T-duality rules eq. (5.1), which should be supplemented by

g′s = gs`s/Rx , R′x = `2s/Rx , (5.2)

suffer α′ corrections.

In order to clarify this point we are going to perform a T-duality transformation of the

solution in the direction of propagation of the wave x ≡ 1
2(u − v) using the α′-corrected

Buscher T-duality rules of ref. [9] (for µ, ν 6= x):

g′µν = gµν +
[
gxxGxµGxν − 2GxxGx(µgν)x

]
/G2

xx ,

B′µν = Bµν −Gx[µGν]x/Gxx ,

g′xµ = −gxµ/Gxx + gxxGxµ/G
2
xx , B′xµ = −Bxµ/Gxx −Gxµ/Gxx ,

g′xx = gxx/G
2
xx , e−2φ

′
= e−2φ|Gxx| ,

A′Ax = −AAx /Gxx , A′Aµ = AAµ −AAxGxµ/Gxx ,

(5.3)

where Gµν is defined by

Gµν ≡ gµν −Bµν − 2α′
{
AAµA

A
ν + Ω(−)µ

a
bΩ(−) ν

b
a

}
. (5.4)

Notice that these α′-corrected T-duality transformations are only well-defined if Gxx 6=
0. This corresponds to the first-order deformation of the non-vanishing radii condition

at zeroth-order, which is gxx 6= 0. This issue becomes relevant for the exotic solutions

presented in section 8, for which it is not possible to apply the transformation.
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We only need the components Gxx, Gµx, Gxµ. Taking into account that, in terms of

the coordinates t, x, xm, yi, the metric and the Kalb-Ramond 2-form (given in eq. (A.29))

take the form12

ds2 =
(2−Z+)

Z−
dt2 − (2 + Z+)

Z−
dx2 − 2

Z+

Z−
dtdx−Z0dx

mdxm − dyidyi , (5.5)

B = − 2

Z−
dt ∧ dx+

1

4
Q0 cos θdϕ ∧ dψ , (5.6)

that AAx = 0 and

Ω(−)x
a
bΩ(−)x

b
a = Ω(−)t

a
bΩ(−)x

b
a = Ω(−)x

a
bΩ(−)t

b
a = 2Z−10 Z

−2
− ∂mZ+∂mZ−

= − 1

2Z−

(
f+(ρ)− 16Q+Q−

ρ2

)
, (5.7)

the only non-vanishing components of Gµν we are interested in are given by

Gxx = −Z−1−
[
(2 + Z+)− α′

(
f+(ρ)− 16Q+

Q0ρ2

)]
= −Z−1−

[
2 + Z(0)

+ +
16Q+

Q0ρ2

]
, (5.8)

Gtx =
(2−Z+)

Z−
− 2α′Z−10 Z

−2
− ∂mZ+∂mZ−

= Z−1−
[
2−

(
Z(0)
+ +

16Q+

Q0ρ2

)]
, (5.9)

Gxt = Gxx , (5.10)

where f+ is the function given in eq. (3.21) and Z(0)
+ is the piece of Z+ of zeroth order in

α′ defined in eq. (3.28).

Observe that Z(0)
+ always occurs in the combination

Ẑ(0)
+ = 1 +

Q̂+

ρ2
, Q̂+ ≡ Q+

(
1 + 16α′/Q0

)
, (5.11)

where, in view of eq. (4.14) Q̂+ is the total, asymptotic, momentum.

Applying straightforwardly the above T-duality rules gives the following solution

ds′2 =
2

(2 + Ẑ(0)
+ )

dũ

[
dṽ − 1

2
(Z− + α′f ′−)dũ

]
−Z0dx

mdxm − dyidyi ,

B′ =
1

(2 + Ẑ(0)
+ )

dũ ∧ dṽ +
1

4
Q0 cos θdϕ ∧ dψ ,

A′A = AA ,

e−2φ
′

= e−2φ∞
(2 + Ẑ(0)

+ )

Z0
,

(5.12)

12Observe that here it is not possible to shift away the harmonic − 16Q+Q−
ρ2

pole. Its presence here is the

root of the microscopic T-duality rules that we are going to obtain.
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where

f ′−(ρ) ≡ − 16Q+Q−
ρ6Z(0)

0 (2 + Ẑ(0)
+ )

, (5.13)

and where we have defined the light-cone coordinates

ṽ ≡ 2t , ũ ≡ x′ . (5.14)

Observe that, at this order in α′, we can replace Q+ by Q̂+ in f ′−:

f ′−(ρ) ≡ − 16Q̂+Q−
ρ6Z(0)

0 (2 + Ẑ(0)
+ )

, (5.15)

and, then, rewrite the combination

Z− + α′f ′− = 1 +
Q−(1− 16α′/Q0)

ρ2
+ 16α′

Q−(3ρ2 +Q0 + 3Q̂+)

(ρ2 +Q0)(3ρ2 + Q̂+)
+O(α′2) , (5.16)

or

Z− + α′f ′− = Ẑ− + 16α′
Q̂−(3ρ2 +Q0 + 3Q̂+)

(ρ2 +Q0)(3ρ2 + Q̂+)
+O(α′2) , (5.17)

where we have defined

Ẑ− ≡ 1 +
Q̂−
ρ2

, Q̂− ≡ Q−(1− 16α′/Q0) . (5.18)

Thus, the T-dual configuration, including the first-order α′-corrections, can be obtained

by replacing everywhere in the original solution

Z(0)′
− = 2 + Ẑ(0)

+ ,

Z(0)′
+ = Ẑ(0)

− .
(5.19)

Since the constant part of the function Z+ in the original configuration can be shifted

via coordinate transformations v → au for any constant a,13 we conclude that the net effect

of the T-duality transformation at the level of near-horizon charges is

Q′− = Q̂+ = Q+(1 + 16α′/Q0) ,

Q′+ = Q̂− = Q−(1− 16α′/Q0) .
(5.20)

At first sight, these transformation rules are inconsistent with the relations between the

charges Q+,− and the winding and momentum numbers NF1, NW in eqs. (4.12) and (4.13)

and the microscopic T-duality rules eqs. (5.1) and (5.2), but there are some encouraging

signs. For instance, this transformation is an involution to O(α′2) as long as 16α′/Q0 < 1:

Q′′∓ = Q′±(1± 16α′/Q0) = Q∓[1− (16α′/Q0)
2] ∼ Q∓ +O(α′2) . (5.21)

13It can also be eliminated by T-dualizing in a slightly different direction [7].
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Then, using eqs. (4.12) and (4.13), the transformations eqs. (5.20) and the T-duality

transformation of the moduli eq. (5.2), which is still valid in the α′-corrected context,14 we

arrive at the following microscopic T-duality transformations that replace eq. (5.1) in this

context:

N ′F1 = NW(1 + 16/NS5) , N ′W = NF1(1− 16/NS5) , (5.22)

and which are involutive to second order in 1/NS5 if NS5 � 16.

The correctness of these rules cannot be showed using the effective field theory methods

used in this paper. It should be mentioned that, had we adopted the point of view that

the asymptotic Q̂+ = g2s`
4
sNW /R

2
z, the rules eq. (5.1) would still hold. However, since

Q+ = Q̂+(1 − 16α′/Q0), it can become negative for small values of NS5, giving rise to

5-dimensional black holes with regular horizon and negative or vanishing mass. These

pathological solutions disappear if NS5 � 1 because the first-order α′ corrections become

very small. We will discuss in section 9 if it is necessary to impose this condition or not.

6 α′ corrections to the 5-dimensional non-Abelian black hole solution

When we compactify the Heterotic Superstring Effective action to first order in α′ on a

T 5 we get a very complicated action with higher-order terms in curvatures which is very

difficult to work with. The definitions of some gauge fields are also affected by the presence

of the Chern-Simons term of the torsionful spin connection Ω(−). However, we can just focus

on the metric and the two scalar fields of the 5-dimensional solution ( the 5-dimensional

dilaton field φ and the Kaluza-Klein scalar of the 6 → 5 compactification, k), which are

obtained from the 10-dimensional one exactly as in absence of α′ corrections and take the

form [22]

ds2 = f2dt2 − f−1(dρ2 + ρ2dΩ2
(3)) ,

e2φ = e2φ∞
Z0

Z−
,

k = k∞(fZ+)3/4 ,

(6.1)

where φ∞ and k∞ are the asymptotic values of φ and k, the metric function f is given by

f−3 = Z0Z+Z− , (6.2)

and the Z functions take the form given in eqs. (3.22) and (3.25).

Observe that the α′ corrections of Z0 cancel identically in the ρ → ∞ limit, unless

Q0 = 0, in which case only the term associated to the Yang-Mills field contributes. The

value of its contribution in that limit is independent of the value of κ but, according to

the previous discussions, when κ = 0 this contribution must be understood as that of 8

S5-branes and we will simply absorb them into Q0 = 0.

Taking these considerations and conventions into account, and expressing all the 5-

dimensional constants in terms of the 10-dimensional ones using eqs. (2.2), (4.9), (4.12)

14They follow from eqs. (5.3) by restoring the radius of the x direction so that gxx ∼ (Rz/`s)
2 at infinity.
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and (4.13) the mass of this family of black-hole solutions is given by

M =
π

4G
(5)
N

[
Q0 +Q+(1 + 16α′/Q0) +Q−

]
=

Rz
g2s`

2
s

NS5 +
Rz
`2s
NF1 +

1

Rz
NW(1 + 16/NS5) , for Q0 6= 0 , (6.3)

M =
π

4G
(5)
N

[
8α′ +Q+ +Q−

]
= 8

Rz
g2s`

2
s

+
Rz
`2s
NF1 +

1

Rz
NW for Q0 = 0 . (6.4)

The mass depends on the total, asymptotic charges and, therefore, written in terms

of the numbers of branes (“near-horizon charges”), contains additional terms from the

delocalized fields.

The area of the horizon, which will give the leading contribution to the entropy, as we

will see in section 7, is given by

AH = 2π2
√
Q0Q+Q− , for Q0 6= 0 , (6.5)

AH = 2π2
√
−16α′Q+Q− , for Q0 = 0 .

In the Q0 = 0 case one of the two non-vanishing charges has to be negative for the

horizon to exist at all. If Q− < 0 then Z− will vanish at ρ2 = |Q−|. If Q− < 0 the

vanishing of Z+ depends on the values of Q+ and Q− and we will explores the different

possibilities in section 8 even though the near-horizon geometry is singular in d = 10.

In the next section we consider other possible contributions to the entropy.

7 BH entropy

In order to find the entropy, we would need to compactify the action down to 5 dimensions

and use there Wald’s entropy formula [2, 3]

S = −2π

∫
H
d3x
√
|h|

∂L(5)
∂Rabcd

εabεcd , (7.1)

where h is determinant of the 3-dimensional metric induced on the horizon ds2H, εab is the

binormal to the bifurcation surface, normalized as εabε
ab = −2, L(5) is the 5-dimensional

Lagrangian and Rabcd is the 5-dimensional Riemann tensor.15

This formula is valid for diff-invariant theories. The 10-dimensional action eq. (2.1) is,

by construction, exactly diff-invariant to first order in α′, and so would be the 5-dimensional

theory that follows from the direct compactification to 5 dimensions. Therefore, Wald’s

formula can be applied to it and no terms such as those considered in ref. [31] need to

be added.

15All the indices in this expression run from 0 to 4. 10-dimensional indices will be distinguished with

hats in this section.
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Compactifying the α′-corrected action is a very involved calculation that, quite under-

standably, we would like to avoid carrying out. Thus, we try a different strategy, directly

applying this formula to the 10-dimensional action.

First of all, we have to identify the part of the 10-dimensional Riemann curvature that

corresponds to the 5-dimensional one. The decomposition of the 10-dimensional metric in

5-dimensional variables is given by [22]

dŝ2 = eφ−φ∞
[
(k/k∞)−2/3ds2 − k2A2

]
− dyidyi , (7.2)

where A is the 1-form

A ≡ dz +
k
1/3
∞√
12

(A1 +A2) , (7.3)

and A1, A2 are certain 5-dimensional vector fields.

If we decompose the 10-dimensional flat and curved indices as, respectively, â = a , z , i

and µ̂ = µ , z , i, the, Fünfbein eaµ is related to the components êaµ of the Zehnbein êâµ̂ by

êaµ = e(φ−φ∞)/2(k/k∞)−1/3eaµ , (7.4)

so the 5-dimensional Riemann curvature Rabcd is related to the R̂abcd components of the

10-dimensional Riemann curvature R̂âb̂ĉd̂ by

R̂abcd = e−(φ−φ∞)(k/k∞)2/3Rabcd + . . . . (7.5)

Furthermore, the 10-dimensional Riemann curvature enters the curvature tensor of the

torsionful spin connection R̂(−) âb̂ĉd̂ in this way

R̂(−) âb̂ĉd̂ = R̂âb̂ĉd̂ − ∇̂[âĤb̂]ĉd̂ +
1

2
Ĥ[â|ĉêĤ|b̂]d̂

ê , (7.6)

so

R̂(−) abcd = e−(φ−φ∞)(k/k∞)2/3Rabcd + . . . . (7.7)

Taking into account these relations, Wald’s entropy formula eq. (7.1) can be rewritten

in terms of the 10-dimensional Lagrangian and the 10-dimensional Riemann tensor for the

family of metrics under consideration as16

S = −2π

∫
H×S1×T4

d8x̂

√
|ĝ|√
f
e−(φ−φ∞)(k/k∞)2/3

∂L(10)
∂R̂abcd

εabεcd , (7.9)

where |ĝ| is the absolute value of the full 10-dimensional metric and we we are integrating

over the co-dimension 2 surface H × S1 × T4, and where the binormal εab is intrinsically

16The reason why the metric function appears explicitly is because it is the optimal way of taking into

account the rescalings the action goes through in the dimensional reduction. We can write, for these metrics,

√
|h|L(5) =

√
|g|√
f
L(5) =

√
|ĝ|√
f
L(10) , (7.8)

because the Lagrangian density is the same in any dimension.
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5-dimensional. In the Vielbein basis, though, εab has the same components both in the

5-dimensional and in the 10-dimensional basis.

Let us apply this formula to the different pieces of the 10-dimensional action that

contain the 10-dimensional Riemann tensor, manifestly, or via R̂(−).

Applied to the Riemann-Hilbert term, we have

∂L(10)
∂R̂abcd

=
1

16πG
(10)
N

e−2(φ̂−φ̂∞)η̂acη̂bd , (7.10)

√
|ĝ|√
f

=
1

8
k∞e

+3(φ̂−φ̂∞)(k/k∞)−2/3(ρ6f−3)1/2 sin θ , (7.11)

where, evidently η̂ab = ηab. Then, taking the ρ → 0 limit, substituting in the formula

and integrating over the 5 compact dimensions whose coordinates take values in [0, 2π`s),

and over the 3-sphere, and using k∞ = Rz/`s, we get the zeroth-order contribution to the

entropy

S(0) =
AH

4G
(5)
N

, (7.12)

where AH is the area of the horizon, computed in eq. (6.5) and where the 5-dimensional

Newton constant is
1

G
(5)
N

=
(2π`s)

4(2πRz)

G
(10)
N

. (7.13)

Using the result eq. (6.5) and the relations between the 5- and 10-dimensional con-

stants, this zeroth-order contribution is, in terms of the brane numbers

S(0) = 2π
√
NS5NF1NW , (7.14)

which is the classical, zeroth-order in α′ result.

There are two terms that contribute to Wald’s formula at first order in α′ through

the occurrence of R̂(−): the kinetic term of the Kalb-Ramond field, whose field strength

contains R̂(−) in the Lorentz-Chern-Simons term, and in the T̂ (2) tensor. Let us start with

the latter.

The contribution of the T̂ (0) tensor term of the action to Wald’s formula is clearly

proportional to R̂(−). However, when evaluated on AdS3 × S3 × T4, R̂(−) vanishes identi-

cally [11]. It is easy to prove this fact explicitly: the Riemann tensor takes the form

R̂âb̂ĉd̂ =

(
− 2

L2
ĝâ[ĉĝd̂]b̂ ,

2

L2
ĝâ[ĉĝd̂]b̂ , 0

)
, (7.15)

in a more or less obvious notation in which each factor corresponds, respectively, to AdS3,

S3 and T4, and L is the common radius of AdS3 and of the sphere. Only the indices

corresponding to those subspaces are active in each factor, but we will not introduce new

indices to keep the notation as simple as possible.

On the other hand, the 3-form field strength can be put in the form

Ĥ =
2

L
(−dΠ3 + dV3) , (7.16)
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where dΠ3 is the volume form of the AdS3 factor (with unit radius) and dV3 the volume

form of S3 (of unit radius too). Then, Ĥ is covariantly constant, ∇̂Ĥ = 0, and we can see

that, in the same notation,

Ĥ[â|ĉêĤ|b̂]d̂
ê =

(
+

4

L2
ĝâ[ĉĝd̂]b̂ , −

4

L2
ĝâ[ĉĝd̂]b̂ , 0

)
, (7.17)

which implies, according to the definition eq. (7.6) R̂(−) âb̂ĉd̂ = 0. Since AdS3 × S3 × T4 is

the near-horizon of extremal black holes as the ones we are considering, we conclude that

for these extremal black holes the T̂ (0)-tensor term in the action does not contribute to

Wald’s entropy formula.

Then, the only possible first-order contribution comes from

S(1) = −2π

∫
d8x̂

√
|ĝ|√
f
e−(φ−φ∞)(k/k∞)2/3

∂

∂R̂abcd

{
1

2 · 3!

e−2(φ̂−φ̂∞)

16πG
(10)
N

Ĥ2

}
εabεcd

= − 1

48G
(10)
N

∫
d8x̂

√
|ĝ|√
f
e−3(φ−φ∞)(k/k∞)2/3Ĥ êf̂ ĝ

∂Ĥêf̂ ĝ

∂R̂abcd
εabεcd

=
α′

8G
(10)
N

∫
d8x̂

√
|ĝ|√
f
e−3(φ−φ∞)(k/k∞)2/3ĤabĝΩ̂(−) ĝ

cdεabεcd . (7.18)

The binormal has the following components:17 ε0] = 1, where e] = f−1/2dρ and,

therefore,

S(1) =
α′

2G
(10)
N

∫
d8x̂

√
|ĝ|√
f
e−3(φ−φ∞)(k/k∞)2/3Ĥ0]ĝΩ̂(−) ĝ

0] . (7.19)

In appendix A we have computed explicitly the components of Ĥ (eq. (A.6)) using the

Zehnbein basis eq. (A.2), but this is not the basis related by a simple rescaling to the

Fünfbein basis in which ε0] = 1. The relation is

ê0 =
1

2

√
Z+Z− ê+ +

1√
Z+Z−

ê− ,

ê1 =
1

2

√
Z+Z−ê+ −

1√
Z+Z−

ê− ,

ê] =
xm

ρ
êm ,

(7.20)

and leads to

Ĥ0]ĝ =
1

2
δĝ−
√
Z+Z−

xm

ρ
Ĥ+m− + δĝ+

1√
Z+Z−

xm

ρ
Ĥ−m+ , (7.21)

Ω̂(−) ĝ
0] = δĝ

+

(
1

2

√
Z+Z−

xm

ρ
Ω̂(−)+

+m +
1√
Z+Z−

xm

ρ
Ω̂(−)+

−m
)
, (7.22)

Ĥ0]ĝΩ̂(−) ĝ
0] = −x

m

ρ
Ĥ+−m

xn

ρ

(
1

2
Ω̂(−)+−n +

1

Z+Z−
Ω̂(−)++n

)
=

1

2Z0
∂ρ logZ− (∂ρ logZ− + ∂ρ logZ+) . (7.23)

17The global sign is irrelevant, as it appears twice in the formula.
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Observe that, in the near-horizon ( ρ → 0) limit, ∂ρ logZ− (∂ρ logZ− + ∂ρ logZ+) ∼
1/ρ2, and the above term will only be finite if, in the same limit, Z0 ∼ 1/ρ2, i.e. if Q0 6= 0.

Nevertheless, what really matters is the ρ → 0 limit of the product of this term with

(ρ6f−3)1/2, and this limit is finite if the separate limits of the two factors are finite (this

is what happens when all the charges are finite) or when Q0 = Q+ = 0, a case in which

there is no classical horizon. For small black holes, this contribution will be divergent.

Then, plugging this result into the above expression for S(1) and evaluating it for

Q0 6= 0, we get

S(1) = +
8α′

Q0
S(0) , (7.24)

and, to first order in α′, and for Q0 6= 0 the entropy is given by

S = 2π
√
NS5NF1NW (1 + 8/NS5)

∼ 2π
√

(NS5 + 16)NF1NW , for NS5 � 16 .
(7.25)

8 Small black holes

Another potentially interesting feature of these α′-corrected solutions which has been ob-

served in the literature before,18 is the emergence of regular horizons in certain configura-

tions with only two non-vanishing charges which, in our case, must be Q+ and Q−. For

Q0 = 0, the area of the horizon is given by the second equation in (6.5), which we rewrite

here for the sake of convenience:

AH = 2π2
√
−16α′Q+Q− . (8.1)

This expression can be real and finite, and Z− > 0 ∀ ρ, if Q+ < 0 and Q− > 0. Now we

have to study if there are values of these constants for which Z+(ρ) > 0 ∀ ρ, making the

5-dimensional metric completely regular. This function can be written in the form

Z+ = 1− |Q+|
ρ2

[
1− 16α′Q−

ρ2(ρ2 +Q−)

]
+O(α′2) . (8.2)

It is not difficult to see that there are values of Q+ < and Q− > 0 for which the

regularity condition is satisfied. The orange-shaded region in figure 1 corresponds to the

values of Q+,Q− for which the black holes have a regular horizon due to the α′ corrections.

The blue-shaded area corresponds to the small black holes with |Q+| ≥ Q−, which have

negative or vanishing mass.

For Q− � α′ it is possible to see that the condition on the other charge is 0 > Q+ >

−64α′. Thus, the small black holes are confined to the region of small Q+.

9 Range of validity of the solution

So far we have studied the solutions ignoring whether they are really good solutions of the

complete Heterotic Superstring effective action to first order in α′ and to zeroth order in

the string coupling constant, everywhere.

18See, e.g. refs. [32, 33], the review ref. [4] and references therein.
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Figure 1. Location in Q+-Q− charge space of the small black holes (Q0 = 0) whose horizon area

is rendered finite due to the α′ corrections in their geometry. .

Let us start with the possible loop corrections. These will be small if

eφ = eφ∞
√
Z0/Z− , (9.1)

whose vacuum expectation value gives the string coupling constant, is small. For Q0 6= 0,

it is easy to see that, at spatial infinity, this requires

eφ∞ = gs � 1 , (9.2)

while at the horizon (and also at intermediate values of ρ) this requires

Q− . Q0 , or NF1 � NS5 . (9.3)

For Q0 = 0, the dilaton vanishes at ρ = 0 and there is no need to impose any more

conditions.

Another important condition that the solution must satisfy is that the radius of com-

pactification of the 6th dimension, measured in `s units by |gzz|1/2 in the 10-dimensional

string frame

|gzz|1/2 = ke
1
2
(φ−φ∞) = k∞

√∣∣∣∣Z+

Z−

∣∣∣∣ , (9.4)

is much larger than the self-dual19 radius ∼ `s, at which new massless modes appear in

the string spectrum that invalidate the effective action we have used because they have not

been taken into account in it. At infinity, this condition, |gzz|1/2 � 1, translates into

k∞ � 1 , ⇒ Rz � `s . (9.5)

19Self-dual under T-duality.
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If Q0 = 0, |gzz|1/2 diverges in the ρ → 0 limit and, again, no conditions must be imposed

on the remaining charges. If Q0 6= 0, we find the following condition

Q+ & Q− , ⇒ NW � NF1 . (9.6)

All these conditions can be summarized into

NW � NF1 � NS5 . (9.7)

For the case Q0 = 0 the only conditions that need to be satisfied are those affecting

the moduli, namely gs � 1, k∞ > 1. These solutions, however, have many other problems:

their metrics are singular at ρ = 0 in d = 10, to start with and the reason why they are

regular in d = 5 is that the compactification radius is also singular there.

Finally, we must find if and when the solution of the first-order in α′ equations that we

have obtained can be considered a first-order in α′ approximation to a solution of the full

Heterotic Superstring effective action. Clearly, this happens if and when the higher-order

corrections to the Z-functions are very small, compared with the first-order solution.

It is not easy to assess the relevance of higher-order corrections without actually com-

puting them, which becomes increasingly difficult. Since the higher-order corrections of the

action and equations of motion are expected to contain powers of the first-order corrections,

many of them codified in the so-called “T̂ -tensors” and in the Chern-Simons terms present

in Ĥ, it is reasonable to expect that the higher-order corrections will be smaller than the

first-order corrections if the first-order corrections are small enough. Since the first-order

corrections are proportional to the T̂ -tensors and to the Chern-Simons terms, they will

be small if the later are also small. Actually, a necessary criterion for a supersymmetric

solution to be exact to all orders in α′ is the vanishing of T̂ -tensors and the Chern-Simons

terms [15].

The origin of the T -tensors is the need to supersymmetrize the Yang-Mills and Lorentz

Chern-Simons terms. There may be other terms in the action with a different origin such

as the well-known ζ(3)R4 term, but very little is known about them. When Q0 6= 0, it is

usually argued that these terms as well as other invariants occur in the action as inverse

powers of NS5, once the factors of α′ have been taken into account. The consequence is

that Q0 is usually taken to be large so NS5 is very large.

However, we would like to stress that it is not enough to study the scalar invariants

constructed from the curvature or from the T -tensors because, as discussed in the paragraph

following eqs. (3.11)–(3.14), some components of the curvature and of the T tensors that

occur in the equations of motion and source the first-order α′ corrections such as T̂ (2)
uu

disappear in the scalar invariants. Thus, even if all the curvature invariants vanish, one

can expect non-vanishing α′ corrections to the solutions such as those occurring in Z+.

The 3 T̂ -tensors are defined in eq. (2.3) and their values, computed for this kind of

solutions in ref. [22] to O(α′2), are given in eqs. (3.11)–(3.14). It is convenient to analyze

the corrections for the cases Q0 6= 0 and Q0 = 0 separately.

When Q0 6= 0, all the components of these tensors, except for T̂ (2)
uu, as well as

the combined Yang-Mills- and Lorentz-Chern-Simons terms, become arbitrarily small for
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κ2 ∼ Q0. In fact, in agreement with this, the correction to Z0, which we write here for

convenience

8α′
[
ρ2 + 2κ2

(ρ2 + κ2)2
− ρ2 + 2Q0

(ρ2 +Q0)2

]
, (9.8)

also becomes arbitrarily small in this limit, independently of the value of Q0, which is

usually necessary to assume very large.

For κ2 = Q0 all the components of the T -tensors, except for T̂ (2)
uu, and the correction

of Z0 vanish identically. As mentioned before, if we set Q+ = Q− = 0 we recover the

so-called “symmetric 5-brane” solution of ref. [8] which has been argued to be an exact

solution to all orders in α′ ( T̂ (2)
uu = 0). In the general case we have to consider the effects

of the non-vanishing T̂ (2)
uu. At first order, it sources the uu component of the Einstein

equations, which only affect Z+. At higher order, it cannot occur in any invariant, as we

have explained. It can only appear multiplied by invariants sourcing the same component of

the Einstein equations. Those invariants can be made as small as wanted with κ2 ∼ Q0 and,

therefore, since the first-order correction of Z+ (f+(ρ) in eq. (3.21)) is regular everywhere,

it is reasonable to expect that the higher-order corrections will also be finite but much

smaller.

The conclusion, thus, is that for Q0 6= 0, and Q0 � α′, taking κ2 ∼ Q0 we get a very

good approximation to an exact solution of the Heterotic String effective action.

For Q0 = 0 (small black holes) the corrections associated to the gauge 5-brane are

finite and at higher orders, multiplied by higher powers of α′, much smaller, but cannot be

completely cancelled. We can simply remove the gauge 5-brane to simplify the problem,

eliminating these corrections. The main problem, though, is the correction in Z+ associated

to T̂ (2)
uu, which diverges at the horizon and which will diverge there at higher orders even

if we multiply it by small numbers, as long as they are non zero. The divergence of the

first-order correction, by itself, only indicates that the zeroth-order solution is not to be

trusted at the horizon. The first-order solution can be trusted if the rest of the corrections

vanish which, according to the previous discussions, may happen if we remove the gauge

5-brane.

Nevertheless, as we have pointed out before, the small black-hole solutions are singular

in 10 dimensions and the α′ correction to their entropy seems to be divergent. Furthermore,

their T-dual is singular because Q′− = −|Q+| < 0 and Z ′− with vanish at ρ2 = |Q+|. These

properties suggest that these solutions, which may have negative mass in d = 5, are not

good solutions of Heterotic String Theory.

10 Discussion

In this paper we have computed explicitly the first α′ corrections to a 3-charge 5-

dimensional black hole to which we have added an SU(2) Yang-Mills instanton, and we

have studied some of the effects that these corrections have on the geometry, entropy and

mass of the solutions. We have also studied the effect of an α′-corrected T-duality trans-

formation in the α′-corrected solution, testing simultaneously the validity of our solution

and of the T-duality rules proposed, long time ago, in ref. [9]. Studying the effect of these
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α′-corrected T-duality transformations requires the knowledge of α′-corrected solutions,

which is very scarce in the literature.

The fact that the corrections can be computed explicitly is, by itself, a remarkable

fact. The computability of the corrections to the Z0 function is due to the surprisingly

simple form of the Bianchi identity for the configurations we have considered: a linear

combination of Laplacians, a “coincidence” that can be generalized to more complicated

supersymmetric configurations [7].

Finding the α′ corrections to the S5-brane solution in presence of a gauge 5-brane

has also allowed us to gain better understanding of the symmetric 5-brane solution found

in ref. [8].

Furthermore, we have shown how the α′ corrections to the entropy of the 5-dimensional

black holes can be computed using Wald’s formula directly in 10-dimensional language.

Our calculation is very clean and transparent and shows the relevance of the Lorentz-

Chern-Simons term in the corrections and the irrelevance of the curvature-squared terms

(which was already known since ref. [11]). Our results concerning the invariance under

α′-corrected T-duality (up to interchange of numbers of branes) of the family of solutions

considered here, implies the invariance of the α′-corrected entropy formula under the same

transformations, in agreement with the results of ref. [10].

Of course, we must compare our results with other results about higher-order α′ cor-

rections to supersymmetric black-hole solutions in the literature.20

Most of the work done in this field deals with solutions to ungauged 4- and 5-

dimensional N = 2 (8-supercharge) supergravities obtained via Calabi-Yau compactifi-

cations from M-theory or type II theories and (at least some of) the 1st-order in α′ cor-

rections are said to be effectively encoded in corrections to the prepotential (in d = 4), for

instance. This obscures the origin of the corrections, which may or may not represent all

the corrections one finds in higher dimensions (see, e.g. [34]), and makes it very difficult

to say anything about the relevance of corrections of orders higher than 1. Furthermore,

the absence of non-Abelian fields forbids the use of the “symmetric” mechanism we have

used to make very small or cancel many of the corrections and argue the validity of our

solution.21 Finally, it is unclear where the relevant contribution of 10-dimensional Lorentz-

Chern-Simons term to the first-order corrections is to be found in 4 or 5 dimensions. Thus,

comparing our results with those obtained within this approach is very difficult.

Some work has also been done using a 10-dimensional approach to the computation

of the corrections in Heterotic Superstring Theory,22 but only near-horizon geometries

were studied,23 while we have studied and computed the corrections to the full black-hole

geometry from infinity to the horizon. While we have concluded that the parameters of

interest are the “near-horizon charges”, because they count the number of string-theory

20See, for instance, refs. [4, 5] and references therein.
21It has been explored with Abelian fields, though. See ref. [35] and references therein. An early use

of this mechanism applied to a configuration related to that studied here can be found in ref. [36], but it

does not have enough charges to be a regular extremal black hole in lower dimensions. In a forthcoming

publication we will show the relation between that configuration and the one studied here [7].
22See ref. [5] and references therein.
23They have also been used in the context of the entropy-functional approach [37].
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objects sourcing the solution, of course, the total charges, measured at infinity and these

constants are related, and the relation can be computed explicitly in our α′-corrected

solutions because they describe both regions. Writing the entropy or the mass in terms of

one or the other is a matter of choice, but, after they are written in terms of numbers of

branes and other quantized quantities that are expected to be strictly positive, one expects

the solution to have sensible physical properties. It is not hard to see that, when all the

charges are different from zero, if the asymptotic charges were identified with the quantized

charges, it would be possible to find negative-mass solutions.

The value found for the α′-corrected entropy, eq. (7.25) seems to disagree with the

value of the microscopic entropy computed in ref. [6] as written in ref. [5], but the value

of α′ in that reference is 8 times ours and, therefore, they coincide, although the route

followed to arrive at the same result is totally different.

The fact that the α′ corrections associated to the torsionful spin connection have the

“wrong sign” as compared with those of the Yang-Mills fields is clearly the source of some

of this pathological behavior, already hinted at by the results of ref. [38], in which the

α′-corrected black holes were shown to be repulsive. The addition of Yang-Mills fields can

correct some of these effects, making some of the α′ corrections very small or zero, but not

all of them. It is, however, likely, that a more general kind of Yang-Mills fields which give

rise to non-Abelian dyons in 5 dimensions can cancel all of them. Work in this direction is

in progress [7].

Acknowledgments

The authors would like to thank S. Chimento and A. Ruipérez for many useful conver-
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A Connection, torsionful spin connection etc.

In this appendix we are going to compute explicitly the connections and curvatures of the

ansatz eq. (3.1). While that ansatz is spherically symmetric in a 4-dimensional space, it is

more convenient to do some of the computations using a slightly more general ansatz and

then particularize to spherical symmetry.

Thus, here, we are interested in 10-dimensional metrics of the form

ds2 =
2

Z−
du

[
dv − 1

2
Z+du

]
−Z0dx

mdxm − dyidyi , (A.1)
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where m,n, i, j = 1, 2, 3, 4 and the functions Z±,Z0, H are functions on the first 4-

dimensional space with coordinates xm. Thus, the metric is independent of the light-cone

coordinates u, v and of the 4 spatial coordinates yi.

A simple choice of Zehnbein is

e+ = Z−1− du , e− = dv − 1

2
Z+du , em = Z1/2

0 dxm , ei = dyi , (A.2)

and the inverse basis is

e+ = Z−
(
∂u +

1

2
Z+∂v

)
, e− = ∂v , em = Z−1/20 ∂m , ei = ∂i , (A.3)

where ∂m ≡ ∂m and ∂i ≡ ∂i.
Using the structure equation dea = ωab∧eb we find that the non-vanishing components

of the spin connection are given by

ω−+m = ω+−m = ωm+− = 1
2Z
−1/2
0 ∂m logZ− , ω+m+ = −1

2Z−Z
−1/2
0 ∂mZ+ ,

ωmnp = Z−3/20 δm[n∂p]Z0 .
(A.4)

We are also interested in 3-form field strengths of the general form

H = du ∧ dv ∧ dZ−1− + ?(4)dZ0 , (A.5)

where ?(4) is the Hodge dual in the first 4-dimensional space with the orientation ε]123 = +1.

Their non-vanishing flat components are

Hm+− = −Z−1/20 ∂m logZ− , Hmnp = Z−1/20 εmnpq∂q logZ0 . (A.6)

Then, the non-vanishing flat components of torsionful spin connection Ω(−)abc ≡ ωabc−
1
2Habc are

Ω(−)++m = 1
2Z−Z

−1/2
0 ∂mZ+ , Ω(−)+−m = Z−1/20 ∂m logZ− ,

Ω(−)m+− = Ω(−)+−m , Ω(−)mnp = Z−1/20 (M−mq)np∂q logZ0 ,
(A.7)

and those of the torsionful spin connection Ω(+)abc ≡ ωabc + 1
2Habc are given by

Ω(+)++m = 1
2Z−Z

−1/2
0 ∂mZ+ , Ω(+)−+m = Z−1/20 ∂m logZ− ,

Ω(+)mnp = Z−1/20 (M+
mq)np∂q logZ0 ,

(A.8)

where the 4 × 4 matrices M±mq are the self- and anti-self-dual parts of the generators of

SO(4):

(Mmq)np = (Mnp)mq ≡ 2δn[mδq]p , M±mq ≡
1

2

(
Mmq ±

1

2
εmqrsMrs

)
. (A.9)

The components with curved indices are given by

Ω(−)m+− = ∂m logZ− , Ω(−)u−m = −Z−1/20 ∂mZ−1− ,

Ω(−)u+m = 1
2Z
−1/2
0 ∂mZ+ , Ω(−)mnp = (M−mq)np∂q logZ0 ,

(A.10)

and
Ω(+)u+m = 1

2Z
−1/2
0 ∂mZ+ , Ω(+)v+m = Z−1/20 ∂m logZ− ,

Ω(+)mnp = (M+
mq)np∂q logZ0 ,

(A.11)
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A.1 Solving the Bianchi identity for H

Observe that Ω(−)mnp coincides with the form of the ’t Hooft ansatz for SU(2) Yang-Mills

multi-instanton solutions using SO(4) indices.24 Furthermore, this is the only piece of

Ω(−)µab that contributes to the Lorentz-Chern-Simons term:

ωL
(−) = dΩ(−)mn ∧ Ω(−)nm +

2

3
Ω(−)mn ∧ Ω(−)np ∧ Ω(−)pm = ?(4)d(∂ logZ0)

2 . (A.12)

Then

R(−)
a
b ∧R(−)

b
a = dωL

(−) = d ?(4) d(∂ logZ0)
2 = −∂m∂m(∂ logZ0)

2d4x , (A.13)

where d4x is the volume form of E4. To obtain this expression we have used the local

connection Ω(−)mnp given in (A.10), which is well defined in R4 except at the pole of Z0 at

ρ = 0, where it becomes singular. Since the quantity computed in (A.13) is gauge invariant,

the result obtained is valid everywhere except at this isolated point, which is not covered

by our local connection. Evaluating explicitly the right hand side, at zeroth-order in α′,

we obtain

− ∂m∂m(∂ logZ(0)
0 )2 = ∂m∂m

[
4
ρ2 + 2Q0

(ρ2 +Q0)2
− 4

ρ2

]
= ∂m∂m

[
4
ρ2 + 2Q0

(ρ2 +Q0)2

]
− 4δ(4)(ρ) .

(A.14)

While the first term in that expression is a continuous, regular function, the second term

just introduces a pointlike singularity at ρ = 0 that, according to the preceding discussion,

should be interpreted as spurious.

Since the components of the 4-form R(−)
a
b ∧R(−)

b
a are continuous, at this stage it is

clear that at this order in α′ we have25

R(−)
a
b ∧R(−)

b
a = ∂m∂m

[
4
ρ2 + 2Q0

(ρ2 +Q0)2

]
dx4 ≡ −∂m∂m

[
(∂ logZ(0)

0 )2
]
\�
d4x , (A.15)

where Z(0)
0 is the piece of Z0 which is of zeroth order in α′, which is the harmonic function

in E4 defined in eq. (3.28). Here we have introduced the symbols {\�} to indicate that the

(harmonic) singular term should be removed from the term within squared brackets.

It is convenient to use the ’t Hooft ansatz with SO(4) indices for the gauge field as

well. We can write it in the form

A = M−mp∂p logZYMdx
m , (A.16)

where ZYM is the harmonic function on E4

ZYM = 1 +
κ2

ρ2
. (A.17)

24The same is true, with opposite self-duality, for Ω(+)mnp, but we will focus on Ω(−)mnp only, because

it is the one whose Chern-Simons 3-form and curvature occur in the equations of motion.
25This result is also obtained by performing a (singular) local Lorentz transformation that would render

the torsionful spin connection regular at ρ = 0, in virtue of the removable singularity theorem of Uhlenbeck

ref. [39].
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Using the result obtained for the ωL(−),
26

ωYM = − ?(4) d(∂ logZYM)2 , (A.22)

FA ∧ FA = dωYM = ∂m∂m
[
(∂ logZYM)2

]
\� d

4x , (A.23)

where, following the same reasoning as before, the singular contribution must be removed.

Thus, taking into account the general form of the 3-form H in eq. (A.5), the Bianchi

identity of the 3-form field strength eq. (2.10) can be written in the form

− ∂m∂m
{
Z0 + 2α′

[
(∂ logZYM)2 − (∂ logZ(0)

0 )2
]
\�

}
= 0 , (A.24)

The above equation is solved by

Z0 = Z(0)
0 + 2α′

[
(∂ logZ(0)

0 )2 − (∂ logZYM)2
]
\�

+O(α′2) , (A.25)

where we have used that Z0 = Z(0)
0 +O(α′). In the language of section 3,

f0(ρ) = 2
[
(∂ logZ(0)

0 )2 − (∂ logZYM)2
]
\�

= 8

[
ρ2 + 2κ2

(ρ2 + κ2)2
− ρ2 + 2Q0

(ρ2 +Q0)2

]
, (A.26)

which is the same result as in eq. (3.17). Upon substitution in the Bianchi identity, it

reduces to the Laplacian of a harmonic function on E4:

− ∂m∂mZ0 = 0 . (A.27)

As usual, this equation is not satisfied at the singularities of the harmonic function and the

corresponding δ-functions will give contributions to the S5-brane charge (see eq. (4.8)).

Using these results in the definition of H eq. (2.7) we arrive at the following equation

for the Kalb-Ramond 2-form B:

dB = d
[
Z−1− du ∧ dv

]
+ ?(4)dZ

(0)
0 . (A.28)

The integrability condition is satisfied if Z(0)
0 is harmonic in E4 and for the value in

eq. (3.28), it is given by

B = Z−1du ∧ dv +
1

4
Q0 cos θdϕ ∧ dψ , (A.29)

and receives no α′-corrections to this order.
26We have to take into account that the anti-self-dual SO(4) generators have the normalization

Tr(M−mnM−pq) = −2(M−mn)pq , [M−0i,M
−
0j ] = εijkM−0k , i = 1, 2, 3 . (A.18)

Therefore, using the above representation,

F = dA+A ∧A , (A.19)

ωYM = −Tr

[
dA ∧A+

2

3
A ∧A ∧A

]
, (A.20)

FA ∧ FA = −TrF ∧ F . (A.21)
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