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ABSTRACT 30 

One of the hallmarks of cancer cells is the increased ability to acquire nutrients, 31 

particularly glucose and glutamine. Proliferating cells need precursors for cell growth 32 

and NADPH reducing equivalents for survival. The principal responsible for glucose 33 

uptake is facilitative glucose transporters (GLUTs), which usually are overexpressed in 34 

cancer cells. Besides their role in glucose uptake, GLUT transporters are able to 35 

transport other compounds such as dehydroascorbic acid or uric acid. They play a major 36 

role in tumor progression and cellular processes such as regulated cell death. The 37 

prostate gland has the particular characteristic of being more glycolytic than other non-38 

pathological tissues given an accumulation of citrate in the seminal fluid and the 39 

inhibition of m-aconitase that affects to Tricarboxylic Acid Cycle. In prostate cancer 40 

(PCa), androgens increase glucose uptake, upregulate GLUT transporters such as 41 

GLUT1 and GLUT3 and stimulate AMPK pathway, suggesting a possible connection 42 

between glycolytic and androgenic signaling. Interestingly, diabetes is not a risk factor 43 

of PCa, as it is in other cancers, while insulin stimulates progression and IGF1 pathway 44 

plays an important role in PCa progression. It was recently found that PCa cells 45 

overexpress GLUT4 and, more importantly, that it seems to be related to the castration-46 

resistant phenotype, though little is known about its participation in tumor progression. 47 

This review will focus on the role of GLUT transporters along with PCa progression, 48 

and the involvement of GLUT4 on castration-resistant phenotype transition would be 49 

considered.   50 
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INTRODUCTION 51 

In the 20’s, Otto Warburg described a phenomenon in tumors that it was called 52 

the “Warburg effect”. This discovery took place even before ATP was discovered or 53 

glycolysis was formulated
1
.  It is based on the enhancement of lactate production 54 

because of the increment of glycolysis independently of oxygen concentration
2
. 55 

Although Warburg related this effect with defects in mitochondria of tumor cells, later 56 

studies showed that mitochondria were not altered in tumor tissues and the phenomenon 57 

was related to proliferation and growth
3
.  58 

The interest in cancer metabolism has increased during the last few years and not 59 

only for its self-importance but also for its connection with other signaling pathways
4
. 60 

Before being considered a hallmark of cancer in 2011 by Hanahan and Weinberg
5
, 61 

Kroemer and Poyssegeur suggested that all hallmarks of cancer have somehow relation 62 

with metabolism
6
. Recently, six hallmarks of cancer metabolism have been proposed by 63 

Pavlova and Thompson in 2016
7
. Metabolic alterations of cancer cells include an 64 

increased ability to acquire nutrients, assigned preferred metabolic pathways and 65 

alteration of differentiation pathways.  66 

The increase of glycolysis carries a higher glucose uptake by glucose 67 

transporters (GLUT)
8
. Therefore, GLUT levels are usually related to tumor progression. 68 

Although most cancers drive with the traditional Warburg effect, there are differences 69 

among them, including those concerning GLUT transporters. The prostate is 70 

metabolically unique since the differentiated tissue is glycolytic instead of oxidative. 71 

Prostate cancer (PCa) transformation involves a metabolic switch to oxidative 72 

phosphorylation (OXPHOS) then, later, in the advanced castration-resistant phenotype 73 

turns again to glycolytic
9,10

.    74 
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PROSTATE CANCER: AN HORMONE-SENSITIVE CANCER WITHOUT A 75 

DIAGNOSTIC BIOMARKER 76 

PCa is the most common malignancy among men and the second leading cause 77 

of cancer death
11

. In 2012, more than 1.1 million cases were recorded (data are taken 78 

from GLOBOCAN, the most recent statistics from WHO)
12

. This means an 8% of total 79 

new cancer cases and a 15% of all affecting in men. Its prevalence is higher in the west 80 

(about 68% of new cases) perhaps due to lifestyle and environmental factors. However, 81 

age and race are also well-recognized risk factors
13

. Despite high incidence, PCa is 82 

usually characterized by a slow growth and unpredictable outcome. PCa is a disease 83 

with a mixed origin, and the absence of a biomarker impedes to know how to anticipate 84 

the outcome of the disease.  85 

Still, Prostate Specific Antigen (PSA) screening is the only predictive method 86 

employed in the clinic. However, its levels are dependent, among others, of obesity or 87 

age, being not always reliable
14

. A potential alternative is Prostate Cancer Antigen 3 88 

(PCA3), overexpressed in primary PCa and metastases
15

. 89 

PCa is sensitive to hormones, mainly androgens. The active form of testosterone, 90 

dihydrotestosterone (DHT), mediates androgen receptor (AR) classical activation. 91 

Androgen responsive genes are involved in normal prostate architecture, homeostasis, 92 

and physiology but, in PCa, androgens promote proliferation and survival of cancer 93 

cells. Antihormonal therapy is, at first, a successful therapeutic approach
16

. However, 94 

PCa frequently becomes resistant to androgen deprivation, reaching a castration-95 

resistant (CRPC) phenotype difficult to handle.  96 

Contrary to other cancers, there is not a single pathway implicated in PCa 97 

progression nor a clear candidate as a biomarker. The homeobox gene HOXB13 was 98 
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found as a predisposition gene
17

. Also, seventy-seven single nucleotide polymorphisms 99 

close to a noncoding region of the oncogene c-MYC and with the capacity to alter its 100 

expression, are also considered a prognosis marker
14

. In the 90% of PCa, Glutathione-S-101 

transferase pi 1 gene (GSTP1) is hypermethylated, and it can be detected in urine
18

.  102 

More than half of the cases of PCa drive with androgen-driven ETS gene 103 

expression because of genomic rearrangements. However, ETS gene fusions need other 104 

events such as activation of PI3K/AKT pathway, which is mainly related to PTEN loss. 105 

Then, ETS-positive tumors are different from ETS-negative tumors, but PTEN and 106 

TP53 mutation occurs in both types
14

.  107 

In CRPC, there are additional oncogenic pathways involved. The RAS/MAPK 108 

pathway and TGF3 are upregulated in patients with metastatic CRPC. In addition to 109 

AR signaling, the WNT/-catenin and the Insulin-like growth factor (IGF) 1 pathways 110 

seem to play a major role in the most aggressive phenotype of CRPC
19

.  111 

Still, there is not a clear biomarker, as there is neither an effective treatment. 112 

Anti-hormonal therapies employed when cancer is still androgen-sensitive, and they go 113 

together with radiotherapy in localized or locally advanced carcinoma
16

. For CRPCs, 114 

docetaxel has been the preferred and the first-option chemotherapy during the last 115 

decade, but recent-discovered compounds have also been proposed as succesful
20

.  116 

Then, PCa is still a tumor without an effective prognostic and predictive 117 

biomarker and a curative treatment. However, targeting glucose metabolism has the 118 

potential to provide prognostic information and to treat PCa, since several glycolytic 119 

pathways are altered in the disease.   120 

THE CURIOUS CASE OF GLYCOLYTIC METABOLISM IN 121 

PROSTATE 122 
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In differentiated cells, glucose in the presence of oxygen is predominantly 123 

employed to get their energetic requirements from OXPHOS in mitochondria.  124 

However, under hypoxia, lactic glycolysis is favored rendering only two ATP molecules 125 

from one molecule of glucose, instead of the 36 molecules obtained by OXPHOS
21

. In 126 

cancer cells, and in other proliferative cells, the rates of glycolysis and lactate 127 

production are enhanced. Even in the presence of oxygen, cancer cells select for 128 

glycolysis instead of OXPHOS to metabolize glucose in a process called “aerobic 129 

glycolysis”
3
.  130 

Aerobic glycolysis favors glycolytic pathways to produce the building blocks 131 

necessary to cell growth. Several oncogenic signaling pathways promote aerobic 132 

glycolysis and the increase of lactate secretion
22

.  133 

PCa, like other tumors, progresses with molecular alterations that cause an 134 

increase in glucose, glutamine and lipid metabolism. However, PCa is characterized by 135 

a particular metabolism of glucose that differs from the rest of carcinomas.  136 

          The prostatic fluid contains high levels of citrate because of the inhibition of m-137 

aconitase, a tricarboxylic acid (TCA) cycle enzyme that converts citrate to isocitrate. 138 

This inhibition is driven by the overexpression of the zinc-regulated transporter/iron-139 

regulated transporter-like protein 1 (ZIP1) in prostatic epithelial cells. Since the TCA 140 

cycle is somehow compromised in the prostate gland, glycolysis is favored (Fig 1). 141 

During tumor transformation, ZIP1 levels decrease, and OXPHOS is promoted
9
. 142 

However, this may only happen during the first steps of carcinogenesis. One study 143 

shows that the mitochondrial content does not change during carcinogenesis, but 144 

OXPHOS decreases with invasiveness
23

.  145 
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Lactate production is usually associated with tumor progression in PCa. In 146 

addition to its catabolic products, pyruvate, and alanine, lactate measurement has been 147 

considered urine biomarker for non-invasive detection of PCa
24

. On the other hand, 148 

factors related to reverse Warburg effect were recently proposed as a marker to 149 

distinguish Gleason grades
25

. PCa cells employ interleukin-6 secretion to activate 150 

glycolysis in cancer associated fibroblasts, which, in turn, increase lactate secretion
26

. 151 

Lactate is consumed by OXPHOS-dependent PCa cells, having a role in redox 152 

homeostasis and angiogenesis
27

.  153 

 Glucose metabolism has not been considered as important as glutamine or lipid 154 

metabolism in PCa progression, being the reason why it has been less studied. Several 155 

candidates have been proposed as potential metabolic targets. Multiple studies are 156 

underway employing inhibitors of lipogenesis, cholesterol metabolism, and glutamine 157 

metabolism
28

. Recently, the upregulation of the steroid receptor coactivator 2 (SRC2), 158 

which drives glutamine-dependent de novo lipogenesis, was proposed as an important 159 

co-regulator for PCa survival and metastases
29

, and Sarcosine, an N-methyl derivative 160 

of glycine, is considered an important regulator of progression and metastases
30

.  161 

However, glucose metabolism in PCa is different to other tumors given their 162 

close relation to AR signaling. Glycolysis differs between androgen-sensitive and 163 

insensitive cells, being tumors more aggressive more glucose-dependent
31,32

. Also, AR 164 

regulates several genes that are closely related to glucose consumption and biomass 165 

production
33

. Thus, an increased activity of several glycolytic enzymes by androgens 166 

has been found. Hexokinase-2 (HKII) phosphorylation is stimulated by androgens via 167 

protein kinase A signaling while 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 168 

2 (PFKFB2) is stimulated by direct binding of AR to PFKFB2 promoter. Activation of 169 

PFKFB2 causes a constitutive activation of 6-phosphofructo-2-kinase (PFK2), which is 170 
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involved in the second irreversible reaction of the glycolytic pathway
34

. Another 171 

isoform of PFK2, PFKFB4, was considered an important regulator for PCa survival
35

. 172 

HKII is also involved in the increase of glucose metabolism after androgen deprivation 173 

in PTEN/Tumor protein p53 (TP53) deficient PCa cells
36

. Thus, HK inhibitors such as 174 

3-bromopyruvate or ionidamine are being tested in clinical trials
37

. Moreover, Pentose 175 

Phosphate Pathway (PPP) is promoted by an AR-mTOR mediated mechanism, 176 

maintaining Glucose-6-phosphate dehydrogenase (G6PDH) levels higher during PCa 177 

progression
38

. Overall, androgen signaling stimulates both glycolysis and anabolic 178 

metabolism  179 

Androgens positively regulate glycolysis via Calcium/calmodulin-dependent 180 

protein kinase kinase beta (CamKKβ), which activates AMP-activated protein kinase 181 

(AMPK)
39

. AMPK is a metabolic regulator that promotes migration, cell growth and 182 

survival of PCa cells
40,41

. Because of AMPK activation, androgens activates peroxisome 183 

proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), which is connected 184 

with mitochondrial biogenesis (Fig 2). Although PGC1α is overexpressed in patient 185 

samples, it was proposed as an antimetastatic factor
42

. Since PGC1α favors an oxidative 186 

metabolism, its loss could be related to the acquisition of a glycolytic and more 187 

aggressive phenotype
43

.  188 

Interestingly, high blood glucose drives with low levels of AR
44

. Thus, this 189 

might explain the surprising inverse relation between diabetes and PCa that will be 190 

discussed below. 191 

ARE GLUT SUFFICIENT TO SUPPORT PROSTATE CANCER 192 

GROWTH AND SURVIVAL? 193 
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Since cancer cells show a high demand for nutrients for cell growth, the uptake 194 

has to be higher. In non-pathological tissues, cells become quiescent when the resources 195 

are scarce, but cancer cells lose this control, being always addicted to nutrients. 196 

Principal nutrients are glucose and glutamine
3
.  197 

There are two different types of transporters for glucose: Na
+
/glucose 198 

transporters (SGLTs, SLC5A) and facilitative glucose transporters (GLUTs, SCL2A). 199 

Among the 12 members of SGLTs, only SGLT1 and SGLT2 are proposed as 200 

responsible for glucose uptake in some cancer cells
45

.  201 

GLUT transporters internalize glucose by a mechanism of facilitated diffusion. 202 

There are 14 members (GLUT1-12, GLUT14 and H
+
/myo-inositol transporter –HMIT-203 

). They transport other compounds in addition to glucose, and that circumstance 204 

establishes the differences between members. They also differ in their affinity for 205 

substrate and tissue location. They are divided into three classes: Class I includes 206 

GLUT1-4 and GLUT14, class II are GLUT5, GLUT7, GLUT9 and GLUT11 and class 207 

III consist of GLUT6, GLUT8, GLUT10, GLUT12, and HMIT. Class I is the best 208 

characterized, and its members share the same bacterial ancestor –XylE-
46

. Class II is 209 

able to transport fructose and, class III is structurally different. They share common 210 

elements as 12 transmembrane -helixes while the cytoplasmic N-terminus and C-211 

terminus are less conserved among members
47

.  212 

 GLUT transporters respond to metabolic and hormonal regulation, and several 213 

transcription factors are able to increase glucose uptake by overexpressing or locating 214 

GLUTs on the cell membrane. Furthermore, under hypoxia or nutrient deprivation, 215 

tumor cells overexpress at least one of the isoforms, being predominantly GLUT1
48

. 216 
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GLUT1 is overexpressed under growth factor withdrawal, which makes cancer cells 217 

more resistant to apoptosis
49

.    218 

GLUT transporters are regulated by glycosylation or phosphorylation. It was 219 

well studied that GLUT transporters are N-glycosylated, which is associated with its 220 

ability to increase glucose uptake
50,51

. Phosphorylation was recently described, opening 221 

a new paradigm of GLUT regulation. It was shown a phosphorylation site at serine 490 222 

for ataxia telangiectasia mutated (ATM) that promotes surface GLUT1
52

 and at serine 223 

226 for protein kinase C which is related with GLUT1 deficiency syndrome
53

.  224 

The important role of GLUT transporters is also linked to the uptake of other 225 

compounds than glucose. The best well known is dehydroascorbic acid
54

, the oxidized 226 

form of vitamin C, and recently our group opens the possibility that melatonin might 227 

also enter into the cell via GLUT transporters
55

. The affinity for the different substrates 228 

can be dependent on the interaction of other transmembrane proteins
56,57

.  229 

GLUT1 is usually associated with poor prognosis in tumors
58

. However, not 230 

always this transporter is found overexpressed in cancer, and other GLUTs are instead 231 

involved in increasing glucose uptake
8
. GLUT-dependent glucose uptake has an 232 

important role in diagnosis by positron emission tomography (PET) imaging. The 233 

uptake of 2-deoxy-2-[
18

F]-fluoro-D-glucose (
18

F-FDG) is employed in PET to follow 234 

glucose uptake. This compound is phosphorylated by hexokinase (
18

F-FDG-6P), but it 235 

cannot continue the glycolytic pathway, being accumulated into the cytoplasm. This 236 

methodology is valid as a diagnostic tool particularly when cancer drives with the 237 

classical Warburg effect
59

.  238 

GLUT TRANSPORTERS AS CLINICAL TARGETS IN PROSTATE CANCER 239 
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In diagnosis, classic 
18

F-FDG-PET has not been considered useful in primary 240 

PCa tumors, so the increased glycolysis and GLUT overexpression have not been 241 

recognized as relevant as in other tumors. However, now it is assumed that its utility is 242 

dependent on the stage of the disease. Also, the high activity by urine in the adjacent 243 

urine bladder overlaps the signal in prostate
60

. Thus, the assumption that 
18

F-FDG-PET 244 

is not valid because PCa is not a glycolytic carcinoma should be discarded. 245 

In PCa, it seems that exists a possible balance among GLUT transporters, being 246 

the majority-produced transporter dependent of the step of the disease (Table 1). 247 

GLUT1 is found overexpressed in PCa cells, being the highest levels found in 248 

androgen-independent cells
32

. Since GLUT1 is usually the transporter overexpressed in 249 

tumors, it has been the most studied in PCa. Although higher GLUT1 levels were also 250 

found in non-tumor tissues
61

, it seems that GLUT1 is related to aggressiveness because 251 

it is usually overexpressed in poorly differentiated tumours
62

. Also, GLUT1 is 252 

connected with recurrence after radical prostatectomy
63

. This overexpression seems to 253 

be dependent of hypoxia more than androgenic regulation. Also, the stromal levels of 254 

GLUT1 have been employed to classified PCa by Gleason score and to indicate the 255 

presence of a tumor area undetected by biopsia
25

. Furthermore, GLUT1 is involved in 256 

the increase of glucose uptake by inflammatory cells in PCa
64

 and it was recently 257 

described that GLUT1 overexpression in PCa might be mediated by the reduced levels 258 

of microRNA-132
65

. Regarding its intracellular localization, GLUT1 was also found in 259 

Golgi Apparatus where it could have a role in supplying glucose to the prostatic fluid
66

.  260 

On the other hand, GLUT3 is activated via caveolin-1 in AR-negative cells
67

 261 

and GLUT12, which is also considered an insulin-dependent transporter, was found in 262 

PCa but not in non-tumor samples
66

, suggesting a similar role than other insulin 263 

dependent transporters as GLUT4 in tumorigenesis.  264 
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Fructose consumption in the modern diet is increasing, and it is considered a 265 

cancer risk factor. In tumor cells, fructose is differently metabolized than glucose, being 266 

mainly employed for nucleic acid synthesis
68

. However, in PCa, fructose was not 267 

considered as a risk of metastasis
69

. Fructose is secreted in seminal vesicle, so high 268 

concentration is found in the dorsal prostate and coagulating glands (rodent anatomy)
70

. 269 

GLUT5, the main fructose transporter in addition to GLUT2, is produced in the apical 270 

membrane of secretory cells in normal tissue and high-grade intraepithelial neoplasia 271 

(HGPIN). Furthermore, SLC2A7, SLC2A9, and SCL2A11 mRNAs were found in PCa 272 

but only SCL2A11 mRNA levels increased in PCa tissue respect benign prostate
61

. 273 

Altogether, fructose uptake might have a role in PCa progression, particularly at early 274 

stages.  275 

In PCa cells, androgen stimulation increases both GLUT1 and GLUT3, 276 

increasing glucose uptake and the secretion of lactate
71

. However, these transporters, 277 

particularly GLUT1, are downregulated by DHT in non-tumor Sertoli cells
72

. Thus, 278 

hormonal regulation of GLUT1/3 seems to be tissue-dependent.  279 

Interestingly, androgens and antiandrogens are able to interact with GLUT1 at 280 

the external opening since GLUT1 and the ligand-binding domain of AR share 281 

sequence homologies
73

, establishing the idea that regulation is not only via signaling 282 

pathway. Other members such as the fructose transporter GLUT5 also seems to be 283 

under androgenic regulation. Using the antiandrogenic flutamide in Scotophilus healthy, 284 

GLUT5 production is reduced in testis
74

. 285 

As previously discussed, androgen signaling activates AMPK. As a metabolic 286 

regulator, AMPK regulates GLUT transporters
75

. Activated AMPK inhibits activation 287 

of thioredoxin-interacting protein (TXNIP), which binds to GLUT1 avoiding its 288 
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expression and translocation (Fig 2)
76

. Consequently, the insulin-independent GLUT1, 289 

and consequently glucose uptake, is also hormonal regulated. 290 

Besides AMPK, PI3K/AKT/mTOR pathway has a major role in glucose 291 

metabolism through its activation by insulin and IGF1. AKT1 stimulates glycolysis by 292 

an increase in both the expression and translocation of GLUT transporters in addition to 293 

the phosphorylation of glycolytic enzymes such as hexokinase and 294 

phosphofructokinase
8,77

. On the other hand, PTEN, the inhibitor of PI3K/AKT pathway, 295 

is able to reduce SLC2A1 expression directly
78

.  296 

Hypoxia-inducible factors HIF1 and HIF2 are involved in the cellular response 297 

to low oxygen concentration in PCa
79

. HIF1 promotes the transcription of the majority 298 

of glycolytic enzymes and GLUT transporters, mainly GLUT1 and GLUT3
8
.  299 

KRAS is frequently mutated in PCa, and its rearrangements were mainly 300 

involved in metastases
80,81

. Tumors with mutations in this gene drive with an increasing 301 

rate of glycolysis and higher use of glycolytic products in other anabolic pathways
82

. 302 

Mutation of KRAS and BRAF are related with GLUT1 overexpression in cancer
83

.  303 

TP53, known as “genome guardian” has a dual role in glucose metabolism. On 304 

the one hand, it activates HKII expression but, on the other hand, it inhibits glycolysis 305 

by the overexpression of TP53-inducible glycolysis and apoptosis regulator TIGAR
84

. 306 

TP53 reduces SLC2A1 and SLC2A4 transcription
85

, and it interacts with SLC2A12
86

. On 307 

the other hand, the loss of TP53 upregulates GLUT3
87

. P53 mutations are usually found 308 

in PCa and as a consequence, a higher expression of GLUT transporters was 309 

described
88

.  310 

Since the inhibition of glycolysis by 2DG (2-deoxyglucose) causes an 311 

activation of autophagy in patients with CRPC, its use in the clinic has to be considered 312 
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in combination with autophagy inhibitors
89,90

. Then, targeting glucose metabolism could 313 

be an option to treat PCa. However, consulting the current clinical trials in prostate 314 

(data are taken from www.clinicaltrials.gov), only 1% has a direct association with 315 

glucose metabolism, being one directly related with GLUT transporters (Fig 3).  316 

Nevertheless, most studies are focused on inhibiting glucose uptake by 317 

blocking GLUT transporters. Currently, the recent crystallization of GLUT transporters, 318 

the better knowledge of the mechanism of inhibition and the development of GLUT-319 

specific inhibitors open a new approach for the treatment of cancer that develops with 320 

increasing glucose uptake. Glucose deprivation kills cancer cells by different 321 

mechanisms
91

. The consequences of blocking glucose transporters, besides the 322 

downregulation of glycolysis, are the inhibition of cell growth, cell cycle arrest and 323 

FAS-induced cell death
92,93

. In fact, fasentin, a compound that inhibits GLUT1, 324 

increases apoptosis by sensitizing cells to FAS-ligand death receptor signaling in PCa 325 

cells
94

. 326 

Although there are not clinical trials focused on specific compounds that block 327 

GLUTs in PCa, some compounds that inhibit progression are well-known blockers of 328 

GLUT transport, particularly flavonoids. They play an important role in PCa prevention 329 

since their phytoestrogen activity and have a promising application as adjuvant 330 

treatment
95

. 331 

THE INSULIN-DEPENDENT GLUT4 TRANSPORTER IN PROSTATE 332 

CANCER: A LINK BETWEEN DIABETES AND PROSTATE CANCER? 333 

Although the insulin-dependent glucose transporter GLUT4 has not been 334 

considered as important as GLUT1 in cancer, recent studies show the critical role that 335 

might play in several types of tumors. This transporter was described by our group in 336 
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PCa culture cells
96

 for the first time. We found that phytoestrogens regulate GLUT1
96

 in 337 

androgen sensitive LNCaP cells GLUT4 in androgen-insensitive PCa cells while 338 

showing a possible balance between both transporters dependent on the phenotype of 339 

the cells. We have found an increase production of GLUT4 by androgen-insensitive 340 

cells (unpublished data). In fact, GLUT4 has been already detected in the prostate of 341 

Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) mice
97

. However, in this 342 

model, the relevance of GLUT4 in tumor progression is under investigation.  343 

It has been described that testosterone stimulates GLUT4-dependent glucose 344 

uptake in human skeletal muscle cells, cardiomyocytes, and 3T3-L1 adipocytes 345 

independently of AR signaling
98–101

. In adipocytes, it was confirmed that this regulation 346 

occurs through Liver kinase B1 (LKB1)/AMPK signaling. As previously described, 347 

AMPK phosphorylates the Rab-GTPase TBC1D1, which triggers GLUT4 348 

externalization
102

. On the other hand, endometrial GLUT4 levels decrease after DHT 349 

treatment, and they are inversely related to AR expression in polycystic ovary 350 

syndrome
103

.  351 

Since GLUT4 is regulated by androgen-independent mechanisms in other 352 

tissues, its regulation in PCa might not be dependent on androgens or AMPK signaling. 353 

On the other hand, IGF1/insulin pathway regulates insulin-dependent transporter, which 354 

suggests its possible role in the regulation of GLUT4 in PCa. In this sense, it implies 355 

that this transporter could be more relevant in androgen-insensitive phenotype as our 356 

group previously suggested. In addition, GLUT4 might be an intermediate in the effect 357 

of insulin on PCa and might have some role in the inverse relationship between diabetes 358 

and PCa.  359 
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PCa risk is related to lifestyle being high-fat diet connected to its progression 360 

and aggressiveness. Hyperinsulinemia, which is usually associated with insulin 361 

resistance, is also related with a higher PCa risk
104–106

. Interestedly, insulin levels are 362 

higher in PCa patients
107

, and insulin receptors (IR) have been found in PCa epithelial 363 

cells
108

. Moreover, epidemiological studies show a significantly decreased risk of PCa 364 

in long-standing type 2 diabetes (T2DM)
109

. However, it has also been reported that 365 

diabetic men have a more aggressive PCa but their PSA levels remain low, avoiding its 366 

early detection
110

. 367 

Circulating insulin and testosterone levels are correlated in male
111

. On the one 368 

hand, higher insulin levels decrease the production of sex-hormone binding globulin 369 

(SHBG), increasing free and biologically active testosterone
112,113

. Moreover, the sex 370 

hormone promotes insulin production in beta-cells by the extranuclear activity of AR
114

 371 

(Fig 4A). Since this positive feedback, insulin signaling would be related to androgen 372 

promotion of tumor growth. However, the IGF1 pathway is usually overexpressed in 373 

PCa and, this pathway promotes AR hormone-independent activation which supports a 374 

role of insulin-dependent glucose transporters, as GLUT4, in androgen-independent 375 

tumor growth (Fig 4B).  376 

Under hyperinsulinemia, T2DM is usually treated using metformin, which 377 

activates AMPK in the liver
115

. Most of the current clinical trials connecting glucose 378 

metabolism and PCa are focusing on the treatment with metformin in androgen 379 

deprivation therapy. In several cancers, metformin itself is being considered a potential 380 

treatment. Since metformin inhibits the mitochondrial complex I, it was reported a 381 

metabolic switch towards glutamine metabolism in PCa
116

. However, it was shown that 382 

metformin induces apoptosis in the presence of other compounds such as the 383 
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antiglycolytic 2DG
117

 or the anti-androgen bicalutamide
118

, and it is particularly 384 

effective in CRPC
119

. Interestingly, metformin also inhibits androgen-induced IGF1 385 

receptor (IGF1R) overexpression
120

 so that GLUT4 transporter might be altered by this 386 

treatment.    387 

CONCLUDING REMARKS 388 

After almost 100 years, the metabolic switch to aerobic glycolysis is still under 389 

study in oncology. This change is accepted in most of the cancers, but PCa has been 390 

considered particular from the metabolic point of view because the role of glucose 391 

metabolism in the first steps of progression was less important. Now, several studies are 392 

showing that glucose metabolism plays an important role also in prostate carcinogenesis 393 

but in a different way than in the rest of cancers. Androgens, despite increasing 394 

glycolysis, are involved in anabolism promoting PPP and mitochondrial biogenesis. 395 

Thus, androgen dependent tumors are oxidative at first, shifting to glycolysis only in the 396 

latest stages of the disease. Then, contrary to other tumors, glucose transporters, and in 397 

particular GLUT1, are only overexpressed in the most aggressive tumors that usually 398 

drive with hypoxia and with a higher glycolytic activity (Fig 5). Since insulin signaling 399 

is related to PCa progression, it seems possible that insulin-dependent glucose 400 

transporters might play a relevant role in the progression of the disease. A role of 401 

insulin in PCa cancer is suggested by clinical observation since diabetes is inversely 402 

related to PCa and some clinical trials are ongoing using the antidiabetic metformin. 403 

This could be a good reason to look into the possibility of insulin-dependent glucose 404 

transporters act as principal players in those stages of the disease that do not depend on 405 

androgens. Glucose transporters have not been considered relevant in prostate cancer 406 

progression because glucose metabolism is different in prostate gland than in other 407 

differentiate tissues. However, the importance of these transporters has been recently 408 
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considered since the relevance of increasing nutrients uptake including glucose is 409 

clearly demonstrated in prostate cancer. From now on, the employment of components 410 

of glucose metabolism, including metabolites, enzymes or transporters to characterize 411 

carcinomas will be an area of interest that should be exploited and carefully considered.  412 
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 FIGURE LEGENDS 809 

Figure 1: Zn accumulation in the mitochondria of non-malignant prostatic 810 

epithelial cells. High Zn uptake in prostatic epithelial cells is due to the overexpression 811 

of ZIP1. Zinc is accumulated in mitochondria where it inhibits aconitase, TCA-cycle 812 

enzyme that converts citrate to isocitrate. Citrate excess is secreted into the prostatic 813 

fluid.  814 

Figure 2: Androgen regulation of AMPK in prostate cancer cells. 815 

Androgen stimulation activates CAMKKwhich phosphorylates AMPK. AMPK is 816 

responsible for promoting glucose uptake via GLUT1, glycolysis, and mitochondrial 817 

biogenesis in PCa cells.  818 

Figure 3: Clinical trials related to glucose metabolism in prostate cancer. 819 

(A) Number of clinical trials focused on metabolism and glucose metabolism in cancer 820 

and, particularly, in prostate cancer. (B) Number of current clinical trials (recruiting and 821 

active) focused on metabolism and glucose metabolism in cancer and, particularly, in 822 

prostate cancer. 823 

 
Table 1: Expression of GLUT transporters in non-malignant and tumor prostate 

Glucose 

transporter 
  Expression in prostate  Location 

 References 

GLUT1   Non-malignant prostate/Aggressive tumors  

Plasma membrane, cytoplasm, 

Golgi system. 

Secretory and luminal epithelial 

cells/Basal cells 

 

61,62,63,66 

GLUT3   CRPC    7 

GLUT4   PCa  Plasma membrane, cytoplasm  97 

GLUT5   
Non-malignant prostate/ Overexpression in 

HGPIN 
 

Plasma membrane (apical zone of 

epithelial cells) 

 
61 

GLUT7   
Non-malignant prostate/ Overexpression in 

PCa (mRNA levels) 
  

 
61 

GLUT9   
Non-malignant prostate/PCa without 

overexpression (mRNA levels) 
  

 
61 

GLUT11   
Non-malignant prostate/PCa with 

overexpression (mRNA levels) 
  

 
61 

GLUT12   PCa  Plasma membrane, cytoplasm  66 
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Figure 4: Possible molecular pathways regulated by insulin in prostate 824 

cancer. (A) Positive feedback regulation between insulin and testosterone. Since insulin 825 

reduces SHBG synthesis in the liver, circulating active testosterone levels increase and 826 

stimulates insulin release by beta-cells in pancreas via extranuclear AR activity (B) 827 

Insulin stimulates testosterone production, which may activate AR signaling, and 828 

activates PI3K/AKT pathway by itself or through IGF pathway. This last activation 829 

might lead GLUT4 regulation in PCa cells. SHBG = Sex-hormone binding globulin. 830 

Test =Testosterone.  831 

Figure 5: Tumor progression in prostate and GLUT expression along it. 832 

The non-pathological prostate is characterized by high glycolytic activity and GLUT1 833 

expression because of impairment in TCA cycle. In the first stages of tumorigenesis, 834 

OXPHOS is favored, and circulating insulin levels increase in comparison with the non-835 

tumorogenic prostate. This may be connected with the expression of the insulin-836 

dependent transporter GLUT4. In poorly differentiated PCa tumors, glycolysis and 837 

GLUT1 overexpression are again promoted, being correlated with low oxygen levels.  838 
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Figure 2 841 
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Figure 3 847 
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