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Summary

ROC curve is a popular graphical method frequently used in order to study

the diagnostic capacity of continuous (bio)markers. In spite of the existence

of a huge number of papers devoted to both theoretical and practical aspects

of this topic, the construction of confidence bands has had little impact in the

specialized literature. As far as the authors know, in the CRAN there are only

three R packages providing ROC curve confidence regions: plotROC, pROC and

fbroc. This work tries to fill this gap studying and proposing a new non-

parametric method to build confidence bands for both the standard ROC curve

and its generalization for non-monotone relationships. The behaviour of the

proposed procedure is studied via Monte Carlo simulations and the methodology

is applied on two real-world biomedical problems. In addition, an R function

to compute the proposed and some of the previously existing methodologies is

provided as online supplementary material.
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1. Introduction

The receiver operating-characteristic (ROC) curve is a popular graphical

method frequently used in order to study and compare the diagnostic capacity

of continuous (bio)markers. It displays in a plot the false-positive rate, FPR

(i.e., the inability of the marker to recognize a normal subject, without the

studied characteristic, as normal) against the true-positive rate, TPR (i.e., the

ability of the marker to detect the characteristic of interest, in biomedicine,

frequently one disease) for all possible thresholds. Conventionally, it is assumed

that larger values of the marker indicate larger confidence that a given subject

is positive/diseased. Therefore, let χ and ξ be two continuous random variables

representing the values of the diagnostic test for negative and positive subjects,

respectively. For a fixed point t (FPR), the ROC curve is defined by

R(t) =1− Fξ(F−1χ (1− t))

=P{ξ > F−1χ (1− t)} = P{1− Fχ(ξ) ≤ t} = F1−Fχ(ξ)(t), (1)

where Fχ and Fξ denote the cumulative distribution functions (CDF) of vari-

ables χ and ξ, respectively. The ROC curve was developed during the World

War II in the context of radar signal detection and popularized in the 60s [1].

Since then, it has received great attention in the specialized literature, there is

a great amount of references which cover both theoretical and practical aspects

of this topic. In a non exhaustive list, we want to highlight the monographs

of Pepe [2], Zhou, Obuchowski and McClish [3], Krzanowski and Hand [4] and

Broemeling [5, 6]. All of them provide a complete overview of the ROC curves

and some related problems from different points of view.

From an inference point of view, the problem of estimating the ROC curve

lies on the estimation of the involved CDFs. With this goal, different approaches

have been considered (see Gonçalvez, Subtil, Rosário, et al. [7] for a recent
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overview of this particular topic). From a non-parametric point of view; Zou,

Hall and Shapiro [8], among others, explored the use of kernel density estima-

tors in order to obtain a smooth estimation of the ROC curve. Recently, Cheam

and McNicholas [9] proposed a complex algorithm which estimates the unknown

CDFs from Gaussian mixture models. In spite of all these procedures, the most

used non-parametric estimator is still the direct empirical one, which employs

the empirical cumulative distribution function (ECDF) in order to approximate

the unknown CDFs. The most common parametric estimator assumes that both

positive and negative subjects are normally distributed [10]. Hsieh and Turn-

bull [11] considered the so-called semiparametric binormal model, in which it is

assumed that the distributions Fχ and Fξ are normal after the same unknown

monotonic transformation of the measurement scale. The asymptotic proper-

ties of the ROC curve estimators [11] can be used in order to obtain pointwise

confidence intervals for R(·) and even for the well-known area under the curve,

AUC [12]. On the other hand, for a fixed threshold, the binomial distribution

can be employed for deriving confidence intervals for both the sensitivity and

the specificity. However, when the focus is the whole ROC curve, one should

construct confidence bands, i.e., two random curves Lα1
(ω, ·) and Uα2

(ω, ·) (ω

denotes the random component) such that, given a fixed confidence level 1− α

(α ∈ [0, 1]):

P
{

inf
t∈[0,1]

[R(t)−Lα1
(ω, t)] < 0

}
= α1,

P

{
sup
t∈[0,1]

[R(t)−Uα2
(ω, t)] > 0

}
= α2,

with α1 + α2 = α. Note that, with this proviso, the probability that all the

points of the ROC curve are within the region between the curves Lα1(ω, t) and

Uα2
(ω, t) (t ∈ [0, 1]) is 1− α.

This problem has already been considered in the specialized literature. Based

on the asymptotic distribution of the ROC curve [11] and using Monte Carlo sim-

ulations for approximating the distribution of the limit process, Jensen, Müller

and Schäfer [13] developed symmetrical non-parametric confidence bands for
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the ROC curve. More recently, Horváth, Horváth and Zhou [14] considered a

non-parametric method for confidence bands building based on bootstrapping.

This procedure, unlike Jensen, Müller and Schäfer one, does not require esti-

mating density functions. From a parametric point of view, Ma and Hall [15]

adapted the Working-Hotelling-type confidence bands [16] used in linear regres-

sion for building confidence bands for ROC curves. Demidenko [17] revised this

method and proposed the so-called ellipse-envelope procedure, which obtains

similar but a little bit better coverage percentages than Ma and Hall [15]. From

a machine-learning perspective, Macskassy, Provost and Rosset [18] made an

empirical revision of different methods for the ROC confidence bands construc-

tion and pointed out the difficulty of translating methods for building pointwise

confidence intervals, such that those implemented by the three mentioned R

packages, into methods to obtain confidence bands.

It is interesting to highlight that for a fixed confidence level, 1− α, given a

confidence band, {Lα1(ω, ·),Uα2(ω, ·)}, for a fixed specificity, SP (= 1− p), the

interval (Lα1(ω, p),Uα2(ω, p)) (vertical lines) contains a confidence interval for

the sensitivity at level 1−α. And, for a fixed sensitivity, SE (= R(p)), the inter-

val (p1, p2) satisfying that Uα2
(ω, p1) = Lα1

(ω, p2) = R(p) (horizontal lines),

contains a confidence interval for 1 − SP at level 1 − α (proofs are straightfor-

ward). On the other hand, it is easy to check that (
∫
Lα1(ω, s)ds,

∫
Uα2(ω, s)ds)

contains a confidence interval at level 1 − α for the true area under the ROC

curve. Figure 1 stands for a situation scheme.

In this paper the authors propose to build non-parametric confidence bands

for the ROC curve by using the pivotal function
√
n · σ−1n (t) · [R̂(ω, t) − R(t)]

(t ∈ [0, 1]), where σ2
n(t) is the variance of

√
n·[R̂(ω, t)−R(t)] and n the number of

included positive subjects, and approximating its distribution by the smoothed

bootstrap method. Section 2 provides some technical guidelines for the confi-

dence bands construction for general stochastic curves. This support is then

applied to developing confidence bands for both the ROC curve and the ROC

curve generalization for non-monotone relationships [19] (onwards gROC). An
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R function to compute the proposed methodology is provided as online supple-

mentary material. This R function allows to obtain the most efficient confidence

band for the ROC and the gROC curves (in terms of the area between the

curves), not only the symmetrical one. The coverage percentages and the effi-

ciency of the proposed confidence bands are studied via Monte Carlo simulations

and employed in two real-world datasets.

2. Confidence bands for general curves

Given a target continuous function, C(t) (t ∈ R) and a fixed confidence level,

1− α, we are looking for random curves, Lα1
(ω, t) and Uα1

(ω, t), satisfying:

P
{

sup
t∈R

[Lα1
(ω, t)− C(t)] > 0

}
= α1, (2)

P
{

sup
t∈R

[C(t)−Uα2
(ω, t)] > 0

}
= α2, (3)

with α1 + α2 = α. Let Ĉn(ω, t) be a suitable estimator for C(t) which, for each

t ∈ R, satisfies the following weak convergence result,

nδ · {Ĉn(ω, t)− C(t)} L−→n X (ω, t), (4)
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Figure 1: Confidence bands for a particular ROC curve and confidence intervals for a particular

sensitivity (vertical lines), 1-specificity (horizontal lines).
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where δ > 0 stands for the convergence ratio and X is a stochastic process

satisfying:

(i) supt∈R |X (ω, t)| follows some particular probability distribution DC , and

(ii) E[X (ω, t)] = 0 ∀t ∈ R (E denotes the mean operator).

Then, for fixed α1, α2 (α1 + α2 = α) and if cα1
, cα2

are such that

P
{

sup
t∈R

{
σ(t)−1 · X (ω, t)

}
> cα1

}
= α1, (5)

P
{

inf
t∈R

{
σ(t)−1 · X (ω, t)

}
< cα2

}
= α2, (6)

where V[X (ω, t)] = σ2(t) (V denotes the variance operator), the region between

the random curves Lα1(ω, t) = Ĉn(ω, t)−cα1 ·σ(t)·n−δ and Uα2(ω, t) = Ĉn(ω, t)−

cα2
· σ(t) · n−δ is an asymptotic confidence band at level 1 − α for the target

function C(·). Notice that, for non-pathological distributions DC , from condition

(ii), cα2 < 0.

3. Confidence bands for the ROC curve

Hsieh and Turnbull [11] proved that, if Fχ and Fξ have continuous densities,

fχ and fξ, respectively, fξ(F
−1
χ (t))/fχ(F−1χ (t)) is bounded in any subinterval

(a, b) of (0, 1) and n/m→ λ as min{n,m} → ∞ (n and m stand for the sample

size of positive and negative subjects, respectively), then

√
n · {R̂n(ω, t)−R(t)} L−→n X (ω, t), (7)

where R̂n(ω, ·) is the empirical ROC curve estimator (ω denotes the random

component i.e., the sample) and

X (ω, t) = λ1/2 · r(t) ·B1(1− t) + B2(1−R(t)),

where r(t) = fξ(F
−1
χ (1 − t))/fχ(F−1χ (1 − t)) and {B1(t), 0 ≤ t ≤ 1} and

{B2(t), 0 ≤ t ≤ 1} are two independent Brownian bridges. This result guar-

antees that the region between the random functions Lα1(ω, t) = R̂n(ω, t) −

cα1
·σ(t)/

√
n and Uα2

(ω, t) = R̂n(ω, t)− cα2
·σ(t)/

√
n, with σ2(t) = V[X (ω, t)]
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and cα1 and cα2 satisfying (5) and (6) above, respectively, is an asymptotic

confidence band for R(t) for any subinterval (a, b) of (0, 1), particularly for

(1/n, 1 − 1/n). Then, taken into account that R(0) = 0 and R(1) = 1, the

above one is in fact an asymptotic confidence band for R(t) in [0, 1].

Jensen, Müller and Schäfer [13] approximated the distribution of X (ω, ·) via

Monte Carlo simulations. Unfortunatelly, in order to estimate this distribution,

both density functions for positive and negative subjects must also be estimated.

These authors proposed to use kernel density estimators with this goal. How-

ever, as it is well-known, kernel density estimators are strongly dependent on

the selected bandwidth making complex its use in inference (see, for instance,

Mart́ınez-Camblor and de Uña-Álvarez [20]). In this context, due to one of the

densities appears as denominator, the final obtained estimation could be unsta-

ble in those values close to zero [21]. Horváth, Horváth and Zhou [14] based

their confidence bands on the pivotal function
√
n ·{R̂(ω, ·)−R(·)} and approxi-

mated its distribution via bootstrapping. In that paper, it is proved the asymp-

totic convergence of the smoothed bootstrap (SB) approximation. These results

can be directly used in order to prove the convergence of the smoothed boot-

strap approximation for the pivotal function
√
n ·σ−1n (·) · {R̂(ω, ·)−R(·)} where

σ2
n(·) = V[

√
n·{R̂(ω, ·)−R(·)}]. Notice that, when the distribution of the consid-

ered estimator directly depends on local properties (the distribution of X (·) de-

pends on density functions), it is advisable to use smoothed resampling instead

of the standard näıve bootstrap one [22]. The sole difference between the SB and

the standard naive bootstrap procedures is that, in the first one, the bootstrap

samples are run from the smoothed cumulative distribution function estima-

tion, SCFE, instead of from the empirical one. Given a random sample Zn,

the well-known SCFE [23] is defined by F̃ (Zn, ·) = (1/n) ·
∑n
i=1K((zi − ·)/hn)

where K(·) is a kernel function usual chosen to be a distribution function such

that K(x) = 1 −K(−x) ∀x ∈ R, with finite variance and hn is a real positive

number usually called bandwidth. Using the standard normal distribution func-

tion as kernel, the SB is equivalent to the naive bootstrap and adding white
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noise, with variance h2n, to the bootstrap samples. Hence, given Xn and Ym

random samples from ξ (positives) and χ (negatives), respectively; we propose

to approximate σ2
n(·), cα1

and cα2
using the following algorithm:

A1 From the observed sample, compute the empirical ROC curve estimation,

R̂(ω, ·) (remember that ω denotes the random component: the sample).

A2 Compute F̃ (Xn, ·) and F̃ (Ym, ·) (SCFE of Fξ and Fχ, respectively) and

for each b ∈ {1, . . . , B} (B is an arbitrary large number) generate the

smoothed random samples X∗,bn and Y ∗,bm and their respective empirical

ROC curve estimation, R̂(ω∗,b, ·).

A3 Approximate σ2
n(·) by σ∗,2n (·) = V[

√
n · (R̂(ω∗,, ·) − R̂(ω, ·))] and, for b ∈

{1, . . . , B}, compute U b = supt∈[0,1]{σ∗,−1n (t) ·
√
n · [R̂(ω∗,b, t)− R̂(ω, t)]}

and Lb = inft∈[0,1]{σ∗,−1n (t) ·
√
n · [R̂(ω∗,b, t)− R̂(ω, t)]}.

A4 Approximate cα1
by the (1 − α1)-percentile of {U1, . . . , UB} and cα2

by

the α2-percentile of {L1, . . . , LB}.

A5 Finally, compute:

Lα1
(ω, t) =R̂(ω, t)− cα1

· σ∗n(t)/
√
n,

Uα2(ω, t) =R̂(ω, t)− cα2 · σ∗n(t)/
√
n.

The area between the curves (a =
∫ 1

0
[Uα2

(ω, t)−Lα1
(ω, t)]dt) could be used to

measure the precision of the estimation. From the above algorithm, we obtain

that this precision is a = (cα1
− cα2

) ·n−1/2 ·
∫
σ∗n(t)dt. Hence, the most precise

estimation is the one which minimizes the quantity (cα1−cα2), considering that

α1 + α2 = α.

Remark. We realize that, in step A2, the computation of the SCFEs, F̃ (Xn, ·)

and F̃ (Ym, ·), requires the selection of adequate bandwidths. In kernel density

estimation, the selection of an optimal bandwidth was a really hot topic in the

80s (see, for instance, Wand and Jones [24], and references therein). However,

in the SB methodology, bandwidth selection usually has minor impact on the
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observed results [25]. In this paper, we consider the bandwidth h = s ·N−1/5 · σ̂,

where N is the minimum between the positive and the negative sample sizes

(N = min{m,n}), σ̂ the sample standard deviation and s is an arbitrary scale

parameter. In the following simulations s = 1. Observed results for different

values of s (1/2, 3/2 and 2 were considered) are provided as online supplemen-

tary material. Results suggest that, for s values around 1, the method is stable

in most of the considered models. However, expected coverage percentage could

be far from the expected one for extreme values of s. For instance, for the con-

sidered scenarios (fully explained in the next subsection), the worst observed

results was in the Table S2 (online supplementary files), for the model mA,2,

with a coverage percentage of 70.8% (n = 50, m = 50).

3.1. Monte Carlo simulation study

The behaviour of the proposed method is studied by Monte Carlo simula-

tions. Three different scenarios have been considered. In the first one (Sce-

nario I), the negative subjects were drawn from a standard normal distribution,

N0,1, while four different distributions were considered for the positives: normal

distribution with mean 0.95 and standard deviation 1 (mN,1), normal distribu-

tion with mean 2.13 and standard deviation 3 (mN,2), log-normal distribution

with both parameters equal to 1/2 (mN,3) and the mixture of normal distribu-

tions 0.15 · N0,1 + 0.85 · N3,0.75 (mN,4). In the second scenario (Scenario II),

negative subjects were drawn from a centered log-normal distribution with pa-

rameters 1/10 and 1 (it was centered in order to be a zero mean distribution)

and four different distributions were considered for the positives: normal dis-

tribution with mean 2 and standard deviation 1 (mA,1), normal distribution

with mean 3.75 and standard deviation 3 (mA,2), log-normal distribution with

both parameters equal to 1/2 (mA,3) and the mixture of normal distributions

0.15 · N0,1 + 0.85 · N3,0.75 (mA,4). Finally, in the third scenario (Scenario III)

gamma distributions have been studied. Negative subjects were always drawn

from a Γ2,3/4 (Γa,b stands for a gamma distribution with shape a and scale 1/b)
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while the positives were drawn from the distributions Γ5,1 (mG,1), Γ10,2 (mG,2),

Γ5/2,1/2 (mG,3) and Γ5/2,1/3 (mG,4).

Figure 2 depicts the different shapes of both densities and ROC curves con-

sidered in the Scenario I. Table 1 shows the observed coverage percentages (%C)

and the confidence band areas (mean±standard deviation) for the proposed

method (PSN), the one proposed by Jensen, Müller and Schäfer [13] (JMS)

and the Demidenko’s one [17] (DEK), in 2,000 Monte Carlo simulations for the

models described above. All computations were performed using the R func-

tion ROCbands provided as online supplementary material. As it was described

above, distribution of PSN pivotal function was approximated by the smoothed

bootstrap method with B = 500 and s = 1. In the models mN,1 and mN,3 and

mN,4, the areas between the bands obtained by the proposed method are of-

ten larger than those obtained by the other two considered methods, especially

compared to DEK. However, the PSN procedure is the only which achieved the

expected confidence level in most of the considered situations, even it shows

itself mostly conservative. Results obtained by JMS and DEK suggest that, in

these considered models and for the whole curve, they do not work adequately.

In the model mN,2, JMS obtained good results although, in this case, the aver-

ages of the area inside the confidence bands were slightly larger than PSN ones.

In this model, DEK obtained low but competitive coverage percentages and, as

usual, with small areas between the confidence bands.

Table 2 and Figure 3 are similar to Table 1 and Figure 2 but considering

the models in Scenario II. Due to negative subjects in the models considered in

this scenario are never normal distributed, DEK obtained really poor results. In

fact, the provided confidence regions never contained the whole real ROC curve.

Notice that, in this context, even the obtained ROC curve estimation is usually

far from its target. Although with better results than DEK, JMS also achieved

really poor coverage percentages for the whole curve; it is worth remarking that

in the original paper, JMS has just proved in subintervals. The proposed method

obtained in general good results; although it had some problems in models mA,2

10
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Figure 2: At left, densities for the models considered in the Scenario I: dashed lines denotes

the distribution for negatives, in black, models mN,1 and mN,3, in gray, models mN,2 and

mN,4.
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Table 1: Coverage percentages and mean±standard deviation for the area between the 95%

confidence bands for the proposed method, PSN; Jensen, Müller and Schäfer, JMS; and Demi-

denko procedure, DEK, for the Scenario I models.

PSN JMS DEK

Model n m %C Area %C Area %C Area

mN,1 50 50 96.7 0.42 ± 0.04 61.2 0.37 ± 0.05 56.6 0.16 ± 0.01

100 97.3 0.39 ± 0.04 52.7 0.33 ± 0.04 63.2 0.15 ± 0.01

100 100 96.8 0.34 ± 0.03 28.9 0.29 ± 0.03 55.0 0.11 ± 0.01

200 99.6 0.32 ± 0.02 46.7 0.26 ± 0.02 59.8 0.10 ± 0.01

mN,2 50 50 97.4 0.36 ± 0.04 95.5 0.47 ± 0.07 89.0 0.21 ± 0.02

100 97.3 0.36 ± 0.03 93.4 0.43 ± 0.06 94.1 0.22 ± 0.02

100 100 97.4 0.27 ± 0.02 95.6 0.38 ± 0.05 88.2 0.15 ± 0.01

200 98.4 0.27 ± 0.02 96.1 0.33 ± 0.03 93.9 0.15 ± 0.01

mN,3 50 50 94.1 0.22 ± 0.05 46.1 0.11 ± 0.03 1.1 0.11 ± 0.02

100 98.5 0.21 ± 0.04 43.9 0.08 ± 0.02 0.9 0.09 ± 0.02

100 100 98.2 0.18 ± 0.03 36.6 0.08 ± 0.02 1.2 0.08 ± 0.01

200 99.4 0.17 ± 0.02 35.7 0.08 ± 0.01 0.8 0.06 ± 0.01

mN,4 50 50 88.4 0.18 ± 0.05 52.1 0.17 ± 0.05 3.5 0.11 ± 0.02

100 88.6 0.18 ± 0.05 41.8 0.17 ± 0.05 5.6 0.09 ± 0.02

100 100 93.8 0.16 ± 0.03 55.4 0.15 ± 0.03 0.2 0.07 ± 0.02

200 94.4 0.16 ± 0.03 43.4 0.14 ± 0.03 0.5 0.06 ± 0.01

12



−2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

t

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

False−Positive Rate

Tr
ue

−
P

os
iti

ve
 R

at
e

mA,1
mA,2

−2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

t

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

False−Positive Rate

Tr
ue

−
P

os
iti

ve
 R

at
e

mA,3
mA,4

Figure 3: At left, densities for the models considered in the Scenario II: dashed lines denotes

the distribution for negatives, in black, models mA,1 and mA,3, in gray, models mA,2 and

mA,4.

and mA,4, the observed results are far from the reference procedures.

Finally, Table 3 and Figure 4 are similar to the previous ones for the models

considered in the Scenario III. Observed results support previous conclusions.

PSN produced the widest confidence bands and, although a little bit conserva-

tive, it was the only method which reached the fixed confidence level in all the

considered situations. JMS algorithm often had problems in the extremes of

the curves; in models mG,1 and mG,2, it provided a little bit tighter confidence

bands which frequently obtained less confidence than it was expected. In models

mG,3 and mG,4 both JMS and PSN performed similarly. As in the Scenario II

models, DEK suffers the lack of normality: this procedure did not work in this
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Table 2: Coverage percentages and mean±standard deviation for the area between the 95%

confidence bands for the proposed method, PSN; Jensen, Müller and Schäfer, JMS; and Demi-

denko procedure, DEK, for the Scenario II models.

PSN JMS DEK

Model n m %C Area %C Area %C Area

mA,1 50 50 93.5 0.30 ± 0.06 7.2 0.16 ± 0.04 0.0 0.20 ± 0.04

100 97.1 0.28 ± 0.04 4.7 0.15 ± 0.03 0.0 0.13 ± 0.02

100 100 97.9 0.26 ± 0.03 1.6 0.14 ± 0.03 0.0 0.13 ± 0.02

200 98.7 0.24 ± 0.03 0.7 0.12 ± 0.02 0.0 0.09 ± 0.01

mA,2 50 50 80.5 0.30 ± 0.07 53.3 0.23 ± 0.06 0.0 0.16 ± 0.02

100 91.0 0.30 ± 0.06 58.5 0.22 ± 0.05 0.0 0.14 ± 0.02

100 100 89.1 0.26 ± 0.04 49.9 0.20 ± 0.04 0.0 0.10 ± 0.01

200 94.1 0.26 ± 0.03 60.5 0.19 ± 0.03 0.0 0.10 ± 0.01

mA,3 50 50 95.5 0.30 ± 0.05 32.9 0.15 ± 0.04 0.0 0.16 ± 0.02

100 97.8 0.28 ± 0.04 34.9 0.13 ± 0.03 0.0 0.14 ± 0.02

100 100 99.4 0.24 ± 0.03 24.1 0.13 ± 0.02 0.0 0.10 ± 0.01

200 94.1 0.25 ± 0.03 17.8 0.11 ± 0.01 0.0 0.10 ± 0.01

mA,4 50 50 86.4 0.29 ± 0.06 9.8 0.18 ± 0.05 0.0 0.18 ± 0.04

100 94.0 0.28 ± 0.05 6.0 0.17 ± 0.04 0.0 0.12 ± 0.02

100 100 93.9 0.24 ± 0.04 4.5 0.16 ± 0.03 0.0 0.12 ± 0.03

200 97.1 0.23 ± 0.03 1.8 0.15 ± 0.03 0.0 0.08 ± 0.01
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Figure 4: At left, densities for the models considered in the Scenario II: dashed lines denotes

the distribution for negatives, in black, models mG,1 and mG,3, in gray, models mG,2 and

mG,4.

scenario and obtained coverage percentage of zero in all the studied cases.

4. Confidence bands for the gROC curve

Mart́ınez-Camblor, Corral N, Rey C, et al. [19] proposed a ROC curve

generalization, Rg(·), for situations in which both lower and larger values of

the marker are associated with higher probability of being positive (called here

gROC). The main properties of Rg, defined by

Rg(t) = sup
γ∈(0,1)

{1−R(1− γ · t) +R([1− γ] · t)} (8)
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Table 3: Coverage percentages and mean±standard deviation for the area between the 95%

confidence bands for the proposed method, PSN; Jensen, Müller and Schäfer, JMS; and Demi-

denko procedure, DEK, for the Scenario III models.

PSN JMS DEK

Model n m %C Area %C Area %C Area

mG,1 50 50 95.3 0.38 ± 0.05 84.3 0.34 ± 0.04 0.0 0.15 ± 0.01

100 98.4 0.36 ± 0.04 90.0 0.30 ± 0.03 0.0 0.15 ± 0.01

100 100 97.8 0.31 ± 0.03 82.1 0.28 ± 0.02 0.0 0.11 ± 0.01

200 99.5 0.28 ± 0.02 88.1 0.23 ± 0.02 0.0 0.11 ± 0.01

mG,2 50 50 96.2 0.35 ± 0.06 58.8 0.25 ± 0.04 0.0 0.16 ± 0.02

100 98.6 0.32 ± 0.04 70.8 0.21 ± 0.03 0.0 0.11 ± 0.01

100 100 99.2 0.29 ± 0.03 60.2 0.20 ± 0.02 0.0 0.10 ± 0.01

200 99.9 0.27 ± 0.02 67.5 0.17 ± 0.02 0.0 0.08 ± 0.01

mG,3 50 50 96.0 0.40 ± 0.04 92.8 0.45 ± 0.05 5.1 0.18 ± 0.02

100 97.7 0.38 ± 0.03 95.5 0.39 ± 0.04 4.4 0.18 ± 0.01

100 100 96.1 0.32 ± 0.02 95.0 0.36 ± 0.03 0.1 0.13 ± 0.01

200 99.6 0.29 ± 0.02 95.0 0.30 ± 0.02 0.1 0.12 ± 0.01

mG,4 50 50 92.4 0.31 ± 0.05 94.9 0.37 ± 0.06 0.3 0.17 ± 0.06

100 96.4 0.30 ± 0.04 97.1 0.32 ± 0.04 0.0 0.17 ± 0.01

100 100 92.7 0.25 ± 0.03 95.9 0.30 ± 0.03 0.0 0.12 ± 0.01

200 97.4 0.24 ± 0.02 99.0 0.29 ± 0.02 0.0 0.12 ± 0.01
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and of its direct empirical estimator, R̂g, were investigated in that paper.

In particular, from the Theorem 2, under the same assumptions that in the

standard ROC curve context and with the same notation, for any subinterval

(a, b) ⊂ (0, 1), can be derived the weak convergence that follows:

√
n · {R̂g(ω, t)−Rg(t)}

L−→n X (ω, t), (9)

with

X (ω, t) =λ1/2 · [1− γt − γ′t · t] · r([1− γt] · t) ·B1(1− [1− γt] · t)

− λ1/2 · [−γt − γ′t · t] · r(1− γt · t) ·B1(γt · t)

+ B2(1−R([1− γt] · t))−B2(1−R(1− γt · t)),

where γt = arg sup0≤γ≤1{1 − R(1 − γ · t) + R([1 − γ] · t)}, γ′t its derivative

and {B1(t), 0 ≤ t ≤ 1} and {B2(t), 0 ≤ t ≤ 1} are two independent Brownian

bridges.

This result guarantees the good asymptotic behavior of the above algorithm,

A1 − A5, for building confidence bands at level 1 − α for the gROC curve. In

the next subsection the algorithm performance in the context of finite samples

is studied via Monte Carlo simulations.

4.1. Monte Carlo simulation study

The studied situations are similar to the Scenario I and II previously con-

sidered in the standard ROC case. In the first scenario (Scenario I), negative

subjects were drawn from a standard normal distribution while the positives

were generated from: normal distribution with mean 0.95 and standard de-

viation 1 (mN,1), normal distribution with mean zero and standard deviation

2.38 (mN,2), log-normal distribution with both parameters equal to 1/2 (mN,3)

and the mixture of normal distributions 0.4 · N−2,1 + 0.6 · N2,0.75 (mN,4). In

the second considered situation (Scenario II), the negative subjects were drawn

from a centered log-normal distribution with parameters 1/10 and 1 and, as

in the standard ROC case, four different distributions were considered for the
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positives: normal distribution with mean 2 and standard deviation 1 (mA,1),

normal distribution with mean 0 and standard deviation 3 (mA,2), log-normal

distribution with both parameters equal to 1/2 (mA,3) and the mixture of nor-

mal distributions 0.4 ·N−4,1 + 0.6 ·N0,0.75 (mA,4). Figure 5 depicts the different

shapes of both proposed densities and their respective ROC curves.

Table 4 shows the observed coverage percentage (%C) and the confidence

band area (mean±standard deviation) for the proposed methodology computed

on 1,000 Monte Carlo iterations. Distributions were approximated from 200

smoothed bootstrap replications using s = 1. The proposed methodology ob-

tains good, although quite conservative, results for most of the considered mod-

els. It should be mentioned that both the lower and upper bound curves were

adequately truncated (see the R function ROCbands enclosed as online supple-

mentary material) for the largest and the smallest values, respectively. It is

worth noticing that, when the ROC curve is the most adequate, that is, in the

models mN,1, mN,3, mA,1 and mA,3, as it is desirable, the observed results for

both the gROC and the ROC curves were similar.

5. Real-world practical applications

5.1. Treatment outcome prediction in patients with chronic HCV infection

Vidal-Castiñeira, López-Vázquez, Alonso-Arias et al. [26] studied the effect

of several single nucleotide polymorphisms of PD-1 gene and several previously

associated factors such as IL28B and KIR receptors on the treatment of chronic

hepatitis C virus (HCV) responses. With this goal, the 407 patients finally col-

lected were classified as sustained virological response (SVR, positives) or with

non sustained virological response (NR, negatives). More information about the

210 SVR and the 197 NR patients can be found in [26]. In that paper, one of

the findings was a predictive model based on a logistic regression including the

variables: IL28B rs12979860, PD-1.3, HCV genotype 1-4, KIR-HLA genotype

and viral load before treatment. Standard ROC curve was used in order to

study the predictive capacity of this model.
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Figure 5: At left, densities for the considered models: dashed lines denotes the distribution for

negatives; in black, models mN,1, mN,3, mA,1 and mA,3; in gray, models mN,2, mN,4, mA,2

and mA,4.
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Table 4: Coverage percentages and mean±standard deviation for the area between 95% con-

fidence bands for the gROC curve.

m = n m = 2 · n

Model n %C Area %C Area

Scenario I

mN,1 50 96.4 0.41 ± 0.04 98.4 0.38 ± 0.03

100 96.8 0.34 ± 0.03 93.5 0.31 ± 0.02

mN,2 50 92.1 0.35 ± 0.05 94.2 0.34 ± 0.04

100 92.2 0.29 ± 0.04 92.7 0.27 ± 0.04

mN,3 50 99.1 0.25 ± 0.05 99.6 0.22 ± 0.03

100 99.7 0.20 ± 0.03 99.7 0.18 ± 0.02

mN,4 50 99.1 0.28 ± 0.03 98.9 0.28 ± 0.03

100 99.4 0.25 ± 0.02 99.8 0.24 ± 0.02

Scenario II

mA,1 50 93.9 0.29 ± 0.06 96.1 0.26 ± 0.04

100 98.6 0.24 ± 0.04 98.9 0.20 ± 0.04

mA,2 50 99.4 0.37 ± 0.06 99.6 0.37 ± 0.06

100 99.8 0.34 ± 0.05 98.3 0.33 ± 0.05

mA,3 50 96.6 0.30 ± 0.05 98.2 0.25 ± 0.03

100 99.2 0.22 ± 0.03 98.4 0.21 ± 0.02

mA,4 50 99.5 0.41 ± 0.06 99.9 0.41 ± 0.05

100 99.1 0.36 ± 0.05 99.9 0.36 ± 0.04
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Figure 6-A shows kernel density estimations for the model punctuations in

both positive and negative patients. In spite of the fact that, apparently, the

density shapes are non-normal, the standard ROC curve seems to be the most

appropriate one. Both ROC and gROC curves have the same shape although

a small difference between them is observed for false-positive rates around 0.6

(Figure 6-B). The variability approximation, σ∗(t), was also similar for both

the ROC (Figure 6-C) and the gROC (Figure 6-E) curves and both were robust

respect to the s-value. While, at 95% level, the optimal confidence band for the

ROC curve is reached for α1 = 0.015 (α2 = 0.035) and the area between the

upper and lower band is 0.282, for the gROC curve, the symmetrical confidence

band is the optimal one (α1 = α2 = 0.025) with an area of 0.267. It is worth

mentioning that area between the confidence bands considering different α1 and

α2 (always α1 + α2 = 0.05) shifted less in the ROC (with a maximum area of

0.305) than in the gROC curve (with a maximum of 0.454).

Figure 7 shows the resulting confidence bands for the JMS, DEK and square

pointwise algorithms. The last method is the one provided for the three R

packages which currently perform ROC curve confidence bands (pROC, fbroc

and plotROC). All of them compute pointwise square confidence bands based

on bootstrapping. The three methods drew tighter confidence bands than PSN.

Areas between the lower and the upper lines were 0.183, 0.068 and 0.143, for

JMS, DEK and square pointwise, respectively. It should be noted that the

difference between the JMS and the PSN methods which, in spite of being based

on the same pivotal function, used different approximations to its distribution.

Main difference between these procedures is located at left, for the smallest

FPRs.

5.2. Postoperative infection dataset

The objective of this study was to evaluate whether the glucose levels are

useful in order to predict the appearance of infection in the inmediate post-

operative period. With this goal, López-Ratón [27] considered a subgroup of
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Figure 6: ROC curve analysis for the HCV infection data: density estimations for the model

punctuation in positive and negative subjects, ROC and gROC curves, estimated variability

for different bandwidths, and 95% confidence bands.
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Figure 7: 95% Confidence bands for the JMS and DEK methods computed with the R function

rocBands provided as online supplementary material and square pointwise confidence bands

computed with the R package pROC for the HCV infection dataset.
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non-diabetic individuals who underwent clean surgical interventions at the Hos-

pital Cĺınico Universitario de Santiago (Santiago de Compostela, north of Spain)

from January 1996 to March 1997. A total of 836 patients were finally included,

45 (5%) of them suffered a postoperative infection (POI). Figure 8-A depicts

the kernel density estimations for both positive (POI) and negative (Non POI)

patients.

Due to the main difference between the POI and Non POI distributions is

the variability, in this case the gROC curve seems to be the most appropriate.

Figure 8-B shows both ROC and gROC curves. For the smallest specificities

the gROC curve yields larger sensitivities than the right-side ROC curve. Vari-

ability functions are again robust respect to s-values. However, in this case, the

observed approximations for the variability, σ∗(t), for the ROC and the gROC

curves are quite different each other and also really different from those ones

observed in the previous considered example (see Figures 8-C and 8-E). The

small number of positive subjects and the large variability of the glucose levels

provoke large confidence bands: the optimal one for the right-side ROC curve,

achieved for α1 = 0.04 (α2 = 0.01), has an area between the curves of 0.484 (the

largest one had an area of 0.751) and the diagonal line is contained within this

region (Figure 8-D). The gROC curve does not work quite different: the area of

the optimal band, reached for α1 = 0.015 (α2 = 0.035), is 0.380 (maximum of

0.446) and, in spite of the fact that the gROC curve is better than the standard

ROC, the diagonal line is mostly still within the confidence region (Figure 8-F).

Figure 9 shows the resulting confidence bands for the JMS, DEK and square

pointwise methods. In this case, DEK and square pointwise procedures also

led on to tighter confidence bands than the PSN one. Their areas between the

lower and the upper lines were 0.251 and 0.255, respectively. JMS and PSN

produced similar results with areas of 0.425 and 0.484, respectively. Again,

main difference between both confidence bands is located at the left side of the

curve. It is worth mentioning that the four confidence bands included, total or

partially, the main diagonal within the confidence region.
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Figure 8: ROC curve analysis for the Postoperative infection data: density estimations for the

glucose levels in positive and negative subjects, ROC and gROC curves, estimated variability

for different bandwidths, and 95% confidence bands.
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Figure 9: 95% Confidence bands for the JMS and DEK methods computed with the R function

rocBands provided as online supplementary material and square pointwise confidence bands

computed with the R package pROC for the Postoperative infection dataset.
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6. Discussion

The ROC curve is a popular graphical tool often used in order to study the

diagnostic capacity of continuous (bio)markers. Both its theoretical and practi-

cal aspects have been deeply studied in the specialized literature. In spite of the

huge amount of published works, confidence bands construction has deserved

less attention. Particularly, the authors have selected four main papers: two of

them (Jensen, Müller and Schäfer [13] and Horváth, Horváth, Zhou [14]) deal-

ing with the problmen from the non-parametric point of view, and two more

(Ma and Hall [15] and Demidenko [17]) from a parametric approach. Regarding

to the non-parametric methods: in the approach proposed by Jensen, Müller

and Schäfer [13] the estimation of a quotient dependent on a smoothed pa-

rameter is required in order to approximate the pivotal function distribution,

and this directly brings some well-known associated problems with it [21]. The

Horváth, Horváth and Zhou [14] proposal generates parallel confidence bands

which are not usually the most efficient ones, specially in the extremes of the

curve, where, usually, the variability is smaller. The parametric approach has

the usual limitation of fixed distribution models assumption.

The confidence bands are a natural generalization to the confidence interval

concept for the curves context. The idea is to build a region in which we can

likely draw the real curve, that is, all points of the real curve are contained

within this region. Due to the ROC curve provides a graphical overview of the

diagnostic capacity of a marker, an appropriate confidence band lets us know

the accuracy of this overview, allowing to see the weaknesses and strengths parts

(those ones wider and narrower, respectively) of the provided analysis.

In this paper, the authors use the pivotal function proposed in [13] but

they take advantage of some theoretical results developed by Horváth, Horváth

and Zhou [14]. The result is an efficient non-parametric procedure for building

asymptotic confidence bands for both ROC and gROC curves. Note that similar

procedures to the proposed one can be used in order to develop confidence bands

for more general curves based on estimators satisfying the convergence given
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in (4). In particular, for other ROC curve generalizations such as the time-

dependent case (see Mart́ınez-Camblor, Bayón and Pérez-Fernández [28] for a

recent output of this topic).

While the asymptotic behaviour of the proposed method is directly derived

from [14], Monte Carlo simulations have been used to check its finite sample

performance. Observed results suggest that the proposed methodology provides

conservative confidence bands for both the ROC and the gROC curves in most

studied models. Even though the area between the bands was usually larger than

the one observed in the reference methods [17] [13], we must highlight that it

was the only one which achieved the fixed coverage percentage in most of models

considered. In order to get appropriate coverages, the extremes of the curves

are the main problem, since for those values with high/low sensitivity/specificity

the computed confidence regions work worse. This was the main problem in the

JMS procedure, so that one must be careful making inferences at these points,

especially, when the slope of the curve is high. The procedures used as references

(Demidenko [17] and Jensen, Müller, Schäfer [13]) obtained really poor results

in most of the considered models. The observed results suggest that parametric

method [17] is seriously affected by the lack of normality.

Although the used pivotal function does not include any smoothed param-

eter, due to the fact that its function distribution directly depends on local

properties, it is advised to use smoothed bootstrap in order to approximate

it (see Hall, DiCiccio, Romano [22]). Hence, a bandwidth parameter must

be selected with this goal. In this paper, we chose bandwidth in the way

h = s · min{n,m}−1/5 · σ̂. Even though the method obtained similar and

good results for s-values around 1, it could not work for too large or too small

s-values. While larger s-values are always associated with larger confidence

regions, the relationship is not always the same for the coverage percentages.

In the Scenario I, where the negative subjects were symmetrically distributed,

the observed coverage percentages were larger, and similar, for s = 3/2 and

s = 2 than for s = 1/2 (Table S1 in the online supplementary material). In
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the Scenario II, with the negative subjects asymmetrically distributed, the ob-

served impact of the parameter s is greater; the coverage percentages decreased

with bandwidth. Here, we observed the worst result: a coverage percentage

of 70.8% in the model mA,2 (n = 50, m = 50) and s = 2 (Table S2 in the

online supplementary material). Finally, in the Scenario III (Table S3), where

both positives and negatives follow gamma distributions, s-value has a minor

impact on the observed coverage percentages: all considered s-values performed

similarly althought the biggest, s = 2, showed itself a little more conservative

than the others. It is worth to remark that, although the obtained confidence

bands perform well for the main body of the curve (central part), the procedure

requires some calibration for the largest and smallest ROC curve values (right-

upper and left-lower extremes: highest and lowest sensitivities) in order to get

suitable coverage percentages: lower and upper bounds must be truncated.

Both Monte Carlo simulations and the studied real-world datasets results

suggest the well performace of the gROC curve. It does not overestimate diag-

nostic capacity when the standard ROC curve is the proper one. Moreover the

inferences based on this curve seem to have the expected behaviour. Note that

in the second real-word example, conclusions do not differ quite much respect

to those ones derived from the ROC curve: sample size of positives does not

allow to make any definitive decision, which seems to be the most expected

conclusion.

Finally, it is clear that the popularization of statistical methodologies strongly

depends on the existence of friendly and available computational tools. Among

more than twenty R packages in the CRAN including some procedures related to

ROC curve, just three of them provide confidence regions: the fbroc package

developed by Erik Peter and published on 12/10/2015 contains a function which

computes confidence regions for the right-side ROC curve but no information

about the method used to build these regions is provided. The package plotROC

developed by Michael C. Sachs and published on 05/02/2016 also contains a

function which, literally displays rectangular confidence regions for the ROC
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curve. And finally perhaps the most known and commonly used in practice, the

pROC package: developed by Robin, Turk, Haimard et al. [29] and published on

05/05/2015. This package, labelled as confidence intervals for shape, computes

square pointwise confidence bands. In fact, these three package produce the

same square pointwise confidence bands. As we mentioned in the introduction

of this paper, an empirical revision of these methods performance has already

been carried out by Macskassy, Provost and Rosset [18] pointed out the difficulty

of translating methods for building pointwise confidence intervals into methods

to obtain confidence bands. We provided, as online supplementary material, the

results obtained by this method in our three scenarios. Obtained results (Table

S5) support the conclusions presented by Macskassy, Provost and Rosset [18].

Produced confidence bands were too tight. The maximum observed coverage

percentage was 78.9% in the model mN,2 (N = 100, M = 100). Coverage per-

centages were close to zero for models mN,3, mA,1, mG,1 and mG,2. In this work,

also as online supplementary material, it is included the R function ROCbands

which allows computing and plotting the proposed confidence bands. This func-

tion also computes the confidence bands proposed by Demidenko [17] and by

Jensen, Müller and Schäfer [13]. However, we realize that these procedures were

computed based on our reading of those papers. We have tried to contact the

authors in order to ensure the accurateness of their procedure implementations

but, unfortunately, we have not got it.
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