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Abstract. In dealing with intrinsically imprecise-valued magnitudes, a
common rating scale type is the natural language-based Likert. Along the
last decades, fuzzy scales (more concretely, fuzzy linguistic scales/varia-
bles and fuzzy ratig scales) have also been considered for rating values
of these magnitudes. A comparative descriptive analysis focussed on the
variability/dispersion associated with the magnitude depending on the
considered rating scale is performed in this study. Fuzzy rating responses
are simulated and associated with Likert responses by means of a `Lik-
ertization' criterion. Then, each `Likertized' datum is encoded by means
of a fuzzy linguistic scale. In this way, with the responses available in the
three scales, the value of the di�erent dispersion estimators is calculated
and compared among the scales.

Keywords: fuzzy linguistic scale, fuzzy rating scale, Likert scale, scale
estimates

1 Introduction

The Likert-type scales are frequently used in designing questionnaires to rate
characteristics or attributes that cannot be numerically measured (like satis-
faction, perceived quality, perception...). Although they are easy to answer and
they do not require a special training to use them, respondents often do not
�nd accurate answers to items and the available statistical methodology to an-
alyze the data from these questionnaires is rather limited. This is mainly due
to the fact that Likert scales are discrete with a very small number of responses
to choose for each item (often 4 to 7). To overcome this concern, Hesketh et

al. [5] proposed the so-called fuzzy rating scale to allow a complete freedom and
expressiveness in responding, without respondents being constrained to choose
among a few pre-speci�ed responses.



By drawing the fuzzy number that best represents the respondent's valua-
tion, the fuzzy rating scale captures the logical imprecision associated with such
variables. Moreover, this fuzzy rating scale allows us to have a rich continuous
scale of measurement, unlike the case of a posterior numerical or fuzzy encoding
(the latter encoding Likert points with fuzzy numbers from a linguistic scale,
and usually made by trained experts).

In previous studies (see Gil et al. [3], Lubiano et al. [7,6,8]) we have con-
�rmed that the results when fuzzy rating scales are considered sometimes di�er
importantly from the conclusions drawn from numerically or fuzzy linguistically
encoded Likert values.

As di�erences can often be even clearer from the dispersion than for the
location perspective, this paper aims to examine, by means of simulation de-
velopments, how location-based `scale' estimates are a�ected by the considered
scale of measurement.

2 Preliminaries

A (bounded) fuzzy number is a mapping Ũ : R → [0, 1] such that for all
α ∈ [0, 1], the α-level set Ũα = {x ∈ R : Ũ(x) ≥ α} if α ∈ (0, 1], and Ũ0 =

cl{x ∈ R : Ũ(x) > 0} (with `cl' denoting the closure of the set) is a nonempty
compact interval.

In dealing with fuzzy number-valued data, distances will be computed by
considering two di�erent metrics introduced by Diamond and Kloeden [1]: the
2-norm metric ρ2 and the 1-norm metric ρ1, which for fuzzy numbers Ũ and Ṽ
are given by

ρ2(Ũ , Ṽ ) =

√
1

2

∫
[0,1]

[
(inf Ũα − inf Ṽα)2 + (sup Ũα − sup Ṽα)2

]
dα,

ρ1(Ũ , Ṽ ) =
1

2

∫
[0,1]

[
| inf Ũα − inf Ṽα|+ | sup Ũα − sup Ṽα|

]
dα.

3 Scales measures for fuzzy data

In developing statistics with fuzzy data coming from intrinsically imprecise-
valued attributes, random fuzzy numbers constitute a well-formalized model
within the probabilistic setting for the random mechanisms generating such data.

Let X be a random fuzzy number (as de�ned by Puri and Ralescu [9]) associ-
ated with a probability space, i.e., a fuzzy number-valued mapping X associated
with a probability space and such that, for each α, the α-level interval-valued
mapping is a random interval associated with the probability space.

Let x̃n = (x̃1, . . . , x̃n) be a sample of observations from X . The sample

Aumann-type mean is the fuzzy number such that for each α



(x̃n)α =

[
n∑
i=1

inf(x̃i)α/n,

n∑
i=1

sup(x̃i)α/n

]
,

and the sample 1-norm median is the fuzzy number such that for each α

(
̂̃
Me(x̃n))α = [Mei inf(x̃i)α,Mei sup(x̃i)α] .

In De la Rosa de Sáa et al. [2] one can �nd together the most commonly used
location-based scale estimates, namely: the sample Fréchet-type ρ2-Standard

Deviation and, for D ∈ {ρ1, ρ2} and M̃ ∈ {x̃n,
̂̃
Me(x̃n)}, the sample D-

Average Distance Deviation and the sample D-Median Distance De-

viation, which are respectively given by

ρ2-SD(x̃n) =

√√√√ 1

n

n∑
i=1

[
ρ2(x̃i, x̃n)

]2
,

D̂-ADD(x̃n, M̃) =
1

n

n∑
i=1

D(x̃i, M̃), D̂-MDD(x̃n, M̃) = Mei

{
D(x̃i, M̃)

}
.

4 Generating fuzzy data for simulation studies

In this work, simulations have been inspired by real-life datasets in connection
with fuzzy rating scale-based experiments.

To generate fuzzy data from a trapezoidal-valued random fuzzy number
X = Tra(inf X0, inf X1, supX1, supX0), Sinova et al. [10] suggest to use an
alternative characterization, X = Tra〈X1, X2, X3, X4〉, where (see Figure 1)

X1 = midX1 = (inf X1 + supX1)/2, X2 = sprX1 = (supX1 − inf X1)/2,

X3 = lsprX0 = inf X1 − inf X0, X4 = usprX0 = supX0 − supX1,

(i.e., X1 = core mid-point, X2 = core radius, X3 = `left distance' between core
and support, X4 = `right distance' between core and support) whence

X = Tra〈X1, X2, X3, X4〉 = Tra(X1−X2−X3, X1−X2, X1+X2, X1+X2+X4).

In fact, fuzzy data will be generated by simulating the four real-valued ran-
dom variables X1, X2, X3 and X4, so that the R× [0,∞)× [0,∞)× [0,∞)-valued
random vector (X1, X2, X3, X4) will provide us with the 4-tuples (x1, x2, x3, x4)
with x1 = center and x2 = radius of the core, and x3 = lower and x4 = up-
per spread of the fuzzy number. To each generated 4-tuple (x1, x2, x3, x4) we
associate the fuzzy number Tra〈x1, x2, x3, x4〉.

According to the simulation procedure, data have been generated from ran-
dom fuzzy numbers with a bounded reference set and abstracting and mimicking
what we have observed in real-life examples employing the fuzzy rating scale
(FRS). More concretely, fuzzy data have been generated such that



Fig. 1. 4-Tuples to be generated for the simulation procedures

� 100 · ω1% of the data have been obtained by �rst considering a simulation
from a simple random sample of size 4 from a beta β(p, q) distribution, or-
dering the corresponding 4-tuple, and �nally computing the values xi. The
values of p and q vary in most cases to cover di�erent distributions (namely,
symmetrical weighting central values, symmetrical weighting extreme values,
and asymmetric ones). In most of the comparative studies involving simula-
tions, the values from the beta distribution are re-scaled and translated to
an interval [l0, u0] di�erent from [0, 1].

� 100 · ω2% of the data have been obtained considering a simulation of four
random variables Xi = (u0 − l0) · Yi + l0 as follows:

Y1 ∼ β(p, q),
Y2 ∼ Uniform

[
0,min{1/10, Y1, 1− Y1}

]
,

Y3 ∼ Uniform
[
0,min{1/5, Y1 − Y2}

]
,

Y4 ∼ Uniform
[
0,min{1/5, 1− Y1 − Y2}

]
.

� 100 · ω3% of the data have been obtained considering a simulation of four
random variables Xi = (u0 − l0) · Yi + l0 as follows:

Y1 ∼ β(p, q),

Y2 ∼

Exp(200) if Y1 ∈ [0.25, 0.75]
Exp(100 + 4Y1) if Y1 < 0.25
Exp(500− 4Y1) otherwise

Y3 ∼
{
γ(4, 100) if Y1 − Y2 ≥ 0.25
γ(4, 100 + 4Y1) otherwise

Y4 ∼
{
γ(4, 100) if Y1 + Y2 ≥ 0.25
γ(4, 500− 4Y1) otherwise.

5 Results

First, FRS data will be simulated in accordance with the above described real-
istic simulation procedure. Later, fuzzy data based on a fuzzy rating scale can
fairly be associated/classi�ed in accordance with labels in a Likert scale (more
concretely, with their numerical encoding). This process is to be called �Liker-
tization�. Furthermore, the associated Likert values could also be later encoded
by means of values from a fuzzy linguistic scale.



For carrying out the Likertization, the �minimum distance Likertization cri-
terion� will be employed (see Figure 2):

Fig. 2. Minimum distance criterion scheme when the reference interval equals [1, k]

In this way, if the considered Likert scale is a k-point one, given a metric
D between fuzzy data and Ũ the free fuzzy response to be classi�ed, then Ũ is
associated with the integer κ(Ũ) such that

κ(Ũ) = arg min
j∈{1,...,k}

D(Ũ ,1{j}).

Each FRS-based datum will be �rst Likertized by means of the minimum
distance criterion, and it will later be encoded by means of a fuzzy linguistic scale.
We have chosen the most usual (see, for instance, Herrera et al. [4]) balanced
semantic representations of the linguistic hierarchies of k = 4 and k = 5 levels
(Figure 3).
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Fig. 3. Usual balanced semantic representation of the linguistic hierarchies of k = 4
and k = 5 levels

Simulations-based tables (Tables 1 and 2) collect the percentages of Eu-
clidean distances between the sample scale estimates D̂ for the FRS-simulated
data and for their numerically (NEL) and fuzzy linguistically (FLS) encoded ρ1
Likertization that are over ε ∈ {1, 5, 10, 15}.



Table 1. % of simulated samples of size n for which the Euclidean distance between
the sample scale estimate D̂ associated with the FRS and the one associated with
either the NEL (numerically encoded Likert) or the FLS (fuzzy linguistic scale) with
k = 4 di�erent values is greater than ε ∈ {1, 5, 10, 15} and (from top to bottom)
β(p, q) ≡ β(1, 1), β(.75, .75), β(4, 2), and β(6, 1)

%
∣∣∣D̂(FRS) − D̂(S)

∣∣∣ > ε (k = 4, β(p, q) ≡ β(1, 1))

D̂ ε = 1 ε = 5 ε = 10 ε = 15
n S = NEL S = FLS S = NEL S = FLS S = NEL S = FLS S = NEL S = FLS

ρ̂2-SD(x̃n)
10 82.2 64.3 16.8 4.1 0.2 0 0 0

30 85.7 51.9 4.8 0.1 0 0 0 0

100 94.9 44.2 0 0 0 0 0 0

̂ρ2-ADD(x̃n, x̃n)
10 78.2 70.1 11.3 6.1 0.2 0 0 0

30 69 52.2 1.6 0.1 0 0 0 0

100 79.1 25.7 0 0 0 0 0 0

̂ρ1-ADD(x̃n,
̂̃
Me(x̃n))

10 79.2 76.2 14.2 16.7 0.2 0.1 0 0

30 63.5 72.3 1.9 3.1 0 0 0 0

100 64.9 58.9 0 0 0 0 0 0

̂ρ2-MDD(x̃n, x̃n)
10 91 86.3 47.9 41.1 14.3 9.4 2.3 0.7

30 88.7 89.1 42.8 42.8 8.7 7.7 0.4 0

100 94.9 95.7 55.3 55.8 4.3 3.7 0 0

̂ρ1-MDD(x̃n,
̂̃
Me(x̃n))

10 93 91.2 66.2 57.5 40.7 25 15.7 8.3

30 97.1 86.6 83.5 37.8 47.8 9 11.2 3.2

100 100 74.3 97.5 12.5 44.7 0.7 1.2 0.1

%
∣∣∣D̂(FRS) − D̂(S)

∣∣∣ > ε (k = 4, β(p, q) ≡ β(0.75, 0.75))

D̂ ε = 1 ε = 5 ε = 10 ε = 15
n S = NEL S = FLS S = NEL S = FLS S = NEL S = FLS S = NEL S = FLS

ρ̂2-SD(x̃n)
10 83 67.9 19.9 3.8 0 0 0 0

30 90 59.7 6.2 0 0 0 0 0

100 98.8 70 0.1 0 0 0 0 0

̂ρ2-ADD(x̃n, x̃n)
10 76.4 71.4 12.1 5.3 0 0 0 0

30 70.7 55.4 2.2 0 0 0 0 0

100 82.1 40 0 0 0 0 0 0

̂ρ1-ADD(x̃n,
̂̃
Me(x̃n))

10 78 78.4 14.1 14 0 0 0 0

30 65.9 77.8 1.3 2.7 0 0 0 0

100 65.3 77.6 0 0 0 0 0 0

̂ρ2-MDD(x̃n, x̃n)
10 87.9 87.8 53.2 41.9 17.4 9.9 1.3 0.2

30 91.5 92 59.5 56.1 20.4 15.3 0.7 0.3

100 98.5 99.2 84.8 86.8 31.1 28.6 1.2 0.2

̂ρ1-MDD(x̃n,
̂̃
Me(x̃n))

10 94 91.1 68.5 57.5 39.7 22.6 15.5 6.1

30 96.5 83.9 74.7 34.6 36.3 9.5 5.6 2.1

100 98.8 78.1 74.6 18.6 13.5 4.8 0.3 0.3

%
∣∣∣D̂(FRS) − D̂(S)

∣∣∣ > ε (k = 4, β(p, q) ≡ β(4, 2))

D̂ ε = 1 ε = 5 ε = 10 ε = 15
n S = NEL S = FLS S = NEL S = FLS S = NEL S = FLS S = NEL S = FLS

ρ̂2-SD(x̃n)
10 81 71.7 18.9 4.9 0.6 0.6 0 0

30 81 50.6 3.5 0 0 0 0 0

100 93.1 22.3 0 0 0 0 0 0

̂ρ2-ADD(x̃n, x̃n)
10 77.6 73.1 10.3 0.3 0.3 0 0 0

30 70 75.5 5 5.7 0 0 0 0

100 85.8 95.9 0.6 0.4 0 0 0 0

̂ρ1-ADD(x̃n,
̂̃
Me(x̃n))

10 79.2 84.2 16 20.3 0.1 0 0 0

30 76.5 95.7 5.6 16.4 0 0 0 0

100 92.8 100 0.2 5.8 0 0 0 0

̂ρ2-MDD(x̃n, x̃n)
10 92.5 92.8 62.4 61.9 21.7 13 2.6 0

30 97.1 97.4 90.7 91.4 51.9 37 3.2 0.2

100 100 100 100 100 86.3 61.7 1.3 0

̂ρ1-MDD(x̃n,
̂̃
Me(x̃n))

10 96.5 96.1 84.9 80.6 42 36.5 9.2 4

30 98.1 99.3 95.4 95.4 73.7 72.4 7.7 5.7

100 100 100 100 100 96.1 96.1 0.7 0.7

%
∣∣∣D̂(FRS) − D̂(S)

∣∣∣ > ε (k = 4, β(p, q) ≡ β(6, 1))

D̂ ε = 1 ε = 5 ε = 10 ε = 15
n S = NEL S = FLS S = NEL S = FLS S = NEL S = FLS S = NEL S = FLS

ρ̂2-SD(x̃n)
10 95.4 78 44.2 8.6 0.3 0 0 0

30 99.5 76.7 44.9 0.4 0 0 0 0

100 100 90.3 37.3 0 0 0 0 0

̂ρ2-ADD(x̃n, x̃n)
10 92.8 80.6 46.9 11.1 1.1 0 0 0

30 99.2 91.1 63.8 2.5 0 0 0 0

100 100 99.4 78.4 0 0 0 0 0

̂ρ1-ADD(x̃n,
̂̃
Me(x̃n))

10 81.1 68.7 23.4 3.9 1.5 0 0 0

30 86.7 52.9 20.6 0 0 0 0 0

100 95.2 25.9 6.4 0 0 0 0 0

̂ρ2-MDD(x̃n, x̃n)
10 79.4 71.9 25.2 8.4 2.6 0.3 0.2 0

30 86.6 62.2 24.6 1.5 0.1 0 0 0

100 98.3 60.9 12.1 0.2 0.1 0 0 0

̂ρ1-MDD(x̃n,
̂̃
Me(x̃n))

10 100 98.7 66.2 57.7 7.1 3.7 0.2 0

30 100 100 88.6 85.2 2.4 2.3 0.3 0.2

100 100 100 99.1 99 0.1 0.1 0.1 0.1



Table 2. % of simulated samples of size n for which the Euclidean distance between
the sample scale estimate D̂ associated with the FRS and the one associated with
either the NEL (numerically encoded Likert) or the FLS (fuzzy linguistic scale) with
k = 5 di�erent values is greater than ε ∈ {1, 5, 10, 15} and (from top to bottom)
β(p, q) ≡ β(1, 1), β(.75, .75), β(4, 2), and β(6, 1)

%
∣∣∣D̂(FRS) − D̂(S)

∣∣∣ > ε (k = 5, β(p, q) ≡ β(1, 1))

D̂ ε = 1 ε = 5 ε = 10 ε = 15
n S = NEL S = FLS S = NEL S = FLS S = NEL S = FLS S = NEL S = FLS

ρ̂2-SD(x̃n)
10 71.6 58.6 4.4 1.1 0 0 0 0

30 66.2 40.5 0 0 0 0 0 0

100 75.2 25.1 0 0 0 0 0 0

̂ρ2-ADD(x̃n, x̃n)
10 65.8 64.9 2.4 1.9 0 0 0 0

30 48.6 60.2 0.2 0.2 0 0 0 0

100 25.1 72.7 0 0 0 0 0 0

̂ρ1-ADD(x̃n,
̂̃
Me(x̃n))

10 68.3 70.4 3.7 5.3 0 0 0 0

30 50.2 60.8 0.2 0.3 0 0 0 0

100 20.7 75.1 0 0 0 0 0 0

̂ρ2-MDD(x̃n, x̃n)
10 83.9 83.2 34.3 28.4 3.6 2.3 0.1 0.1

30 79.3 79.8 24.3 21.2 1.9 0.9 0.1 0.1

100 71.2 70.6 7.2 6.2 0 0 0 0

̂ρ1-MDD(x̃n,
̂̃
Me(x̃n))

10 89.7 87.3 53 46.1 16.7 13.1 2.4 1.9

30 85.3 85.4 33.1 29.7 5.5 4.6 0.3 0.2

100 73.3 73.4 7.3 7.2 0.5 0.4 0 0

%
∣∣∣D̂(FRS) − D̂(S)

∣∣∣ > ε (k = 5, β(p, q) ≡ β(0.75, 0.75))

D̂ ε = 1 ε = 5 ε = 10 ε = 15
n S = NEL S = FLS S = NEL S = FLS S = NEL S = FLS S = NEL S = FLS

ρ̂2-SD(x̃n)
10 72.8 64.5 3.8 0.8 0 0 0 0

30 72.4 49.1 0 0 0 0 0 0

100 83.8 46.1 0 0 0 0 0 0

̂ρ2-ADD(x̃n, x̃n)
10 68.6 69.4 2.2 2.2 0 0 0 0

30 49.3 61.6 0 0 0 0 0 0

100 21 78.3 0 0 0 0 0 0

̂ρ1-ADD(x̃n,
̂̃
Me(x̃n))

10 67.3 74.2 4 5.3 0 0.1 0 0

30 50.8 64.6 0 0.1 0 0 0 0

100 24.4 79.7 0 0 0 0 0 0

̂ρ2-MDD(x̃n, x̃n)
10 86.4 83.5 36.7 29.8 4.3 2.6 0 0

30 86.3 86.8 33.5 28.8 2.5 1 0 0

100 79.4 78.9 13.7 12.4 0.2 0.1 0 0

̂ρ1-MDD(x̃n,
̂̃
Me(x̃n))

10 90 85.1 52.3 43.8 14.1 10.8 2 1.4

30 85.7 86.4 33.9 32.6 6.1 4.8 0.2 0

100 78.3 79.2 12.1 13.4 0.7 0.6 0 0

%
∣∣∣D̂(FRS) − D̂(S)

∣∣∣ > ε (k = 5, β(p, q) ≡ β(4, 2))

D̂ ε = 1 ε = 5 ε = 10 ε = 15
n S = NEL S = FLS S = NEL S = FLS S = NEL S = FLS S = NEL S = FLS

ρ̂2-SD(x̃n)
10 70.7 60.7 4.4 1.2 0 0 0 0

30 57.5 39.1 0 0 0 0 0 0

100 53.5 12.6 0 0 0 0 0 0

̂ρ2-ADD(x̃n, x̃n)
10 67.9 64.4 3.3 2.4 0 0 0 0

30 48.4 43.7 0.2 0 0 0 0 0

100 33.1 19.5 0 0 0 0 0 0

̂ρ1-ADD(x̃n,
̂̃
Me(x̃n))

10 72.2 74.7 6.7 7.3 0 0 0 0

30 58 66.5 0.2 0.5 0 0 0 0

100 42.8 61.4 0 0 0 0 0 0

̂ρ2-MDD(x̃n, x̃n)
10 85.1 84.7 36.8 31.1 4.7 2.1 0.1 0

30 82.3 80 32.1 26.2 2.3 0.7 0 0

100 86.5 83.3 29.4 19.7 0.3 0.1 0 0

̂ρ1-MDD(x̃n,
̂̃
Me(x̃n))

10 89.7 90.4 66.8 62.9 23.9 18.8 2.2 1.4

30 92.8 96.8 79.2 70.5 53.1 35.6 2.2 1.4

100 95.3 100 92.8 84.1 84.5 56.3 0.2 0.1

%
∣∣∣D̂(FRS) − D̂(S)

∣∣∣ > ε (k = 5, β(p, q) ≡ β(6, 1))

D̂ ε = 1 ε = 5 ε = 10 ε = 15
n S = NEL S = FLS S = NEL S = FLS S = NEL S = FLS S = NEL S = FLS

ρ̂2-SD(x̃n)
10 88.5 63.3 13.6 0.5 0 0 0 0

30 96.7 48.2 2.3 0 0 0 0 0

100 100 39.4 0 0 0 0 0 0

̂ρ2-ADD(x̃n, x̃n)
10 91.1 66.3 16.8 0.7 0 0 0 0

30 99.1 69.5 9.5 0 0 0 0 0

100 100 86.7 1.5 0 0 0 0 0

̂ρ1-ADD(x̃n,
̂̃
Me(x̃n))

10 81.2 59.2 15.4 0.7 0 0 0 0

30 92.6 44.3 9.6 0 0 0 0 0

100 99.8 48.1 5.9 0 0 0 0 0

̂ρ2-MDD(x̃n, x̃n)
10 83.4 69.7 22.2 9.2 1 0 0 0

30 90.3 72.5 24.5 3.8 0.5 0 0 0

100 98.7 89.5 34 0.5 0 0 0 0

̂ρ1-MDD(x̃n,
̂̃
Me(x̃n))

10 99.1 93.4 57.4 40 5.4 2.9 1.5 0

30 100 96.5 79.2 66.7 11.6 8.2 9.7 0

100 100 99.5 96 89.7 21 19.9 21 0



The percentages have been quanti�ed over 1000 samples of n ∈ {10, 30, 100}
FRS simulated (with di�erent betas) data with reference interval [0, 100] (this
last fact being irrelevant for the study). On the basis of Tables 1 and 2 we cannot
get very general conclusions, but we can de�nitely assert that scale measures
mostly vary more from the FRS-based data to the encoded Likert ones.

Furthermore, one can state some approximate behaviour patterns, such as

� for almost all situations, the robust scale estimate (the last one) provides
us with much higher percentages than non-robust ones; more concretely,
̂ρ1-MDD(x̃n,

̂̃
Me(x̃n)) is almost generally more sensitive to the change in the

rating scale type; this is especially clear for small samples;
� distances are uniformly lower for k = 5 than for k = 4 when the midpoint of

the 1-level is beta distributed with (p, q) ∈ {(1, 1), (0.75, 0.75), (4, 2)}; when
(p, q) = (6, 1) such a conclusion is appropriate for robust estimates and
ε ∈ {1, 5}, but there is no clear conclusion for non-robust estimates or
greater values of ε.
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