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Abstract Efficient registration is a major challenge for
real-time machine vision applications. Modern acquisi-
tion hardware can produce data at extremely high rates.
Thus, efficient registration algorithms are required to
align data to reference models in order to detect de-
viations and take correcting actions if needed. In this
work, an efficient registration procedure of 2D points to
CAD (Computer-aided design) models is proposed. Re-
cent developments in the field are reviewed and evaluated
in terms of accuracy, speed and robustness. Efficient al-
gorithms are proposed for the most computationally ex-
pensive parts of the registration, including an estima-
tion of the rigid transform, a calculation of the closest
point to geometric primitives, and an estimation of the
surface normal. Furthermore, a novel primitive caching
procedure is proposed that, when combined with an R-
tree, greatly improves the execution speed of the regis-
tration. The result is a very accurate registration proce-
dure, since geometric primitives are treated analytically
with no point sampling required. At the same time, the
proposed procedure is robust, very fast, and can achieve
the correct registration in less than one millisecond.

1 Introduction

Surface registration is a fundamental task in computer
vision that is required as an intermediate, but crucial,
step in many different applications. The goal is to opti-
mally align one shape with another. The two shapes, each
with its own coordinate system, are usually called the
model and the data. The objective is to find the trans-
formation that optimally aligns, or registers, the data
with respect to the model [1]. Registration is used in a
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wide variety of applications, such as reverse engineering
[2,3], cultural heritage [4], augmented reality [5], robotics
[6,7], and object recognition [8].

Registration can be divided into several types, de-
pending on the kind of data used for alignment [9]. For
example, in model reconstruction, the goal is to create a
complete object model from different views. In this case,
both the model and the data are a set of points acquired
from a surface reconstruction sensor, such as a structured
light sensor [10]. Due to the limited field of view of the
sensor and to occlusions, more than one view is required
to represent the entire object. In this case, registration is
used to align the partially overlapping views in order to
build a complete object model. In multimodal registra-
tion, the goal is also to align several views of the same
object. However, in this case, the information is acquired
from different sources, such as MRI and CT scans [11].
In model fitting, registration is applied between a view of
the object and a reference model. In this case, the data
is a set of points representing a partial view of the ob-
ject, and the object is a known CAD (Computer-aided
design) model of the actual object.

Registration methods can also be classified according
to different criteria. In [12], two main types are identi-
fied: coarse and fine registration methods. The difference
is that fine registration methods require initial informa-
tion and achieve much more accurate results. In general,
coarse methods are used as the first step of the fine reg-
istration methods. These two types are further divided
into different groups according to other aspects, such as
the minimization distance, the method used to compute
the transformation, and the estimation of the correspon-
dences.

Most of the registration methods are based on the
seminal Iterative Closest Point (ICP) algorithm [13,14].
The ICP algorithm estimates point correspondences be-
tween the data and the model. Originally, correspon-
dences were estimated by searching for the closest point
in the model to each point in the data. This is the point-
to-point approach [13]. Another alternative is to calcu-
late the projection of each point in the data onto the
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tangent plane at a model surface point located at the in-
tersection of the normal vector of the data point. This is
called the point-to-model approach [14]. Once point cor-
respondences are estimated, ICP computes a geometric
transformation between them. The standard algorithm
computes a rigid transformation. However, recent devel-
opments in the field apply ICP to deformable registration
[15]. Finally, the data is transformed by applying the
computed transformation. The process is iterated un-
til convergence. ICP iteratively improves the putative
correspondences. It was proven that this algorithm is
guaranteed to converge monotonically to a local solu-
tion of the problem. However, a global solution is only
achieved when starting from a close solution. Otherwise,
global convergence is not guaranteed. Therefore, an ini-
tial coarse registration needs to be applied to the data
before ICP.

Since the introduction of the ICP algorithm many
variants have been proposed. These variants improve the
algorithm in terms of robustness [16–19], accuracy [20,
21], and speed [22–25], using different strategies.

Research on registration is mainly focused on 3D
shapes. Most of these works can also be applied to 2D
data, as it can be interpreted as a particular case by con-
sidering a zero z axis. However, these approaches create
inefficient solutions, with inadequate algorithms for the
computation of distances, correspondences and transfor-
mations.

Registration for 2D data is a required step in different
applications. In the case of shape inspection, the obser-
vation by a camera of projected light onto the section of
an object must be aligned with the model. The objective
is to find deviations from the model, and detect defects.
Complex inspection systems use several light projectors,
generally laser stripes, and multiple cameras to avoid
occlusions and to obtain a complete section of the ob-
ject. Calibration is not a valid solution for registration
in this type of applications. The movement of the in-
spected object is generally affected by vibrations, which
change the position where the laser stripes are projected
onto the object. Moreover, the inspected object generally
moves very quickly, which requires very fast acquisition
and processing modules. Modern cameras include a laser
stripe extraction process [26]. This greatly reduces the
bandwidth between the camera and the computer and
the execution time required to extract laser stripes. This
results in cameras that are able to provide hundreds of
frames per second at megapixel resolution. When this
resolution is slightly reduced, the obtained frame rate
can be higher than 1000 fps. Therefore, the registration
procedure must be extremely efficient to meet real-time
constraints. In this work, the term “real-time” is inter-
preted in the signal processing sense [27], that is, based
on the idea of completing the processing in the time
available between successive input samples. Thus, the
processing module should be fast enough to produce the
results before the next frame is acquired.

In this work, an efficient registration for 2D is pro-
posed. In particular, an efficient variant of the ICP algo-
rithm is proposed for the registration of a set of points
in two-dimensional Cartesian space to 2D CAD models
defined using a set of geometric primitives. The main
contributions of this paper are summarized next:

– An efficient, robust and accurate procedure is pro-
posed that can align data obtained from standard
structured light sensors in less than one millisecond,
significantly faster than most commonly-used ICP
variants. The goal of the proposed procedure is to
produce very accurate alignment between the points
and the model, while being fast enough to be used in
a real-time application. Accuracy is an indispensable
requirement for machine vision applications designed
to take action based on the information inferred from
the images. Execution speed is also of utmost impor-
tance because fast registration makes it possible to
use the aligned points to measure the shapes of the
objects during industrial manufacturing, and to take
correcting actions if necessary.

– Recent developments in the field are reviewed and
their applicability to this problem is evaluated in
terms of accuracy, speed and robustness. Robustness
variants in terms of outliers rejection are analyzed,
and their impact on performance is evaluated.

– Efficient algorithms are proposed for the most com-
putationally demanding tasks, including the estima-
tion of the surface normal, the estimation of the rigid
transform, and the computation of the closest point
for the most common geometric primitives. These ef-
ficient algorithms are specially designed for real-time
applications, and have a huge impact on the execu-
tion speed of the registration algorithm. These algo-
rithms are used to compute the correspondences and
during the proposed initial coarse registration.

– A comparison is carried out between a numerical ap-
proach using a discrete version of the models and
fast kd-trees, and an analytical approach consider-
ing the geometric primitives of the CAD model and
R-trees. Standard variants of the ICP algorithm are
based on points, but this work proposes a novel proce-
dure based on the geometric primitives of the model
that can achieve much better accuracy with minimum
execution times.

– A novel primitive caching method is proposed to fur-
ther reduce the computational demands of the algo-
rithm, which is also applicable to 3D. This process is
accelerated using an R-tree. This spatial structure is
designed for points, but in this case it is successfully
adapted to be used with geometrical primitives.

The effects of the proposed optimization techniques
are discussed, and compared with a numerical registra-
tion method using kd-trees. Extensive tests are carried
out to evaluate the performance of the proposed pro-
cedure and the alternatives analyzed. Synthetic data is
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used in the tests in order to evaluate the performance
of different strategies accurately, in terms of accuracy,
speed and robustness. Moreover, the registration proce-
dure is applied to an industrial application where effi-
cient and real-time registration is required: a rail inspec-
tion system.

The remainder of this paper is organized as follows.
Section 2 compares the numerical and the analytical ap-
proach; Section 3 presents the optimization of the analyt-
ical approach to reduce the execution speed and improve
the robustness while maintaining the accuracy; Section 4
discusses the results obtained with synthetic and real
data; and finally, Section 5 reports conclusions.

2 Numerical and analytical approach

The ICP algorithm is designed to deal with two sets of
points or point clouds. However, a CAD model is defined
in terms of basic geometric primitives, mainly line seg-
ments and circular arcs. Two different approaches can
be applied for registration: a numerical approach where
a discrete version of the model is used, or an analytical
approach where the geometric primitives that define the
model are used for registration.

2.1 Numerical approach

In order to apply the numerical approach, a set of points
describing the surface of the model must be calculated.
This process can be applied offline, thus it does not in-
trude upon the registration process. A CAD model is
described in terms of geometric primitives. Therefore, a
discrete version of the model can be obtained by sam-
pling the primitives at a specific resolution. The geomet-
ric primitives form an ordered closed shape, that is, the
final point of a primitive is the initial point of the next
primitive. Therefore, the distance remaining while sam-
pling one primitive is added to the next. In this way, it is
possible to obtain a discrete version where all the points
are at the same arc length distance from each other, pro-
ducing an accurate description of the model.

In the numerical approach, a naive approach to com-
pute the closest points from the data to the model is to
compare the squared distances from all the points in the
discrete version of the model in a loop.

2.2 Analytical approach

The analytical approach requires the definition of ap-
propriate operators to compute the closest point. The
estimation of correspondences in the registration pro-
cess requires the computation of the closest point in the
model from each point in the data. The closest point in
the model is the closest point in any geometric primi-
tive. Thus, a possible solution is the computation of the

closest point in all geometric primitives. Then, the final
closest point is selected from this set of points. Consid-
ering the model composed of line segments and circular
arcs, a naive approach can be applied to the calculation
of the closest point. In the case of a line segment, the
closest point in the segment to a specific point is the
intersection of the line segment with the line perpendic-
ular to this segment that passes throughout the point.
When the intersection does not lie onto the segment, the
closest point is either the initial or the final point, the
closest one. In the case of a circular arc, the process is
similar. The closest point in the circular arc to a specific
point is the intersection of the circle with the line that
passes throughout the point and the center of the circu-
lar arc, but only when this point is inside the circular
angle of the arc. Otherwise, it is either the initial or the
final point of the arc, the one closest to it.

2.3 Registration

In order to evaluate the performance of the registration,
a standard 2D model and a synthetically-generated point
cloud based on the model are used. The model can be
seen in Fig. 1a. It is a model of a rail defined in the
UNE EN13674-1 standard, called 60E1. The model is
composed of line segments and circular arcs that can be
distinguished with different colors in the figure. Fig. 1a
shows a detail of the point cloud used for tests. The point
cloud contains 2708 points with an arc length distance
of 0.25 mm between them.

The reason for using synthetic data for the initial
performance evaluation is that the correct transform is
known exactly, and the performance of different strate-
gies can be assessed accurately. Two different metrics are
used to assess the registration: average distance and av-
erage execution time. The average distance is calculated
from the points after registration, to the model (calcu-
lated analytically). This metric allows for objective com-
parisons of the registration strategies in terms of accu-
racy. The second metric is the average execution time re-
quired by the registration. This value is calculated as an
average of 100 experiments. All reported running times
are for a C++ implementation running on an Intel Core
i7 4770 running at 3.4 GHz with 16 GB of RAM. The im-
plementation is compiled for x64 and the data type used
to store the coordinates of the points is double-precision
floating-point. The average execution time allows for ob-
jective comparisons of the registration strategies in terms
of speed.

The data used for tests is randomly transformed be-
fore the registration, applying the same translation and a
rotation. This transformation changes the position of the
points. The goal of the registration is to align the data
back to the model. These initial tests do not apply an
initial coarse registration before ICP, because the objec-
tive is to compare the raw performance of the strategies.
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(a) (b)

Fig. 1 Model and point cloud used for tests. (a) Model of rail 60E1. (b) Detail of point cloud in the left foot of the rail

(a) (b)

Fig. 2 Spatial partitioning using kd-tree. (a) Conventional partitioning. (b) Partitioning based on the variance. Green lines
indicate the limits of vertical partitions and red lines the limits of horizontal partitions.

Thus, the transformation applied to the data is small in
terms of distance (only a translation of 5 mm), so that
the registration does not fall into a local solution and is
able to reach the global optimum.

Two convergence criteria are used for the registra-
tion tests. Firstly, that the distance between the data
and the model is below 1e-6 mm. Secondly, that the dis-
tance from current correspondences to the model is worse

than in the previous iteration, that is, that the registra-
tion is not improving. When any of these two conditions
are met, the registration finishes. The rigid transform be-
tween the points and their correspondences in the model
is estimated using a standard approach based on the
cross-dispersion matrix and SVD [28].

The first two experiments compare the performance
of the numerical and the analytical approach. For the



5

numerical approach the correspondences are estimated
using the naive method described in Section 2.1. In this
first test, the discrete version of the model contains 6769
points with an arc length distance of 0.1 mm between
them. For the analytical approach, the correspondences
are estimated using naive method described in Section
2.2. The results of the numerical approach were an av-
erage distance of 0.0078 mm with an average execution
time of 222.71 ms in 13 iterations. The results of the
analytical approach were an average distance of 8.53E-
07 mm with an average execution time of 323.41 ms in
35 iterations. Both the numerical and the analytical ap-
proaches are very slow, as they are implemented ineffi-
ciently. However, the relevant result is that the numerical
approach provides much lower accuracy than the analyt-
ical approach. The numerical approach is only able to
improve the registration for 13 iterations, and the final
average distance is far from the convergence objective
of 1e-6 mm. The numerical approach converges in fewer
iterations than the analytical approach but with worse
alignment. This result is not unexpected since sampling
a continuous function leads to errors.

In order to improve the registration based on the
numerical approach, a straightforward solution is to in-
crease the resolution of the discrete version of the model.
Improving the resolution of the discrete version of the
model to 67689 points with an arc length distance of
0.01 mm does indeed reduce the average distance to 0.0023 mm
in 19 iterations. However, the execution time increase
dramatically to 3299.71 ms. Therefore, a small improve-
ment in accuracy is obtained with a large increase of
execution time.

The problem with the numerical approach is the naive
implementation of the nearest-neighbor search. Explor-
ing every possible pairing of points is O(nm) where n
and m are the number of points in the respective data
and model. A much more efficient approach is to em-
ploy spatial data structures, which reduce the complexity
in the order of O(n logm). Spatial data structures that
partition space allow efficient access to the stored ele-
ments via positional queries [29]. Therefore, in order to
improve the execution speed of the numerical approach,
a kd-tree, which is a data structure for organizing points
in a space [30], can be used to store the discrete ver-
sion of the model. It is important to use a space parti-
tioning strategy suitable to the data stored, as it has a
strong influence on the performance [31]. Conventional
kd-trees apply a partition axis selection where each axis
is selected alternatively. This creates an inefficient binary
space partitioning, as can be seen in Fig. 2a. Much more
efficient in this case is a space partitioning based on the
variance. The result is shown in Fig. 2b. As can be seen,
by using this strategy the points forming a horizontal
line are only divided with vertical partitions, whereas
the points forming a vertical line are only divided with
horizontal partitions. This gives much more efficient par-
titioning which in turn greatly increases the performance

of the nearest-neighbor search. This type of efficient par-
titioning increases the most computationally expensive
part using a kd-tree: the initialization or insertion of the
points in the hierarchical data structure. However, in this
case this process is carried out offline and does not affect
the execution speed. In this work, the nanoflann library
is used for kd-tree, which is an optimized version for 2D
or 3D point clouds of the flann library [32].

The results with the numerical approach implemented
using kd-trees are no more accurate than those using
the naive implementation for the same resolution of the
discrete model. However, the execution speed is reduced
drastically. When using the discrete version of the model
that contains 6769 points (resolution 0.1 mm), the exe-
cution speed is reduced to 20.22 ms. The registration us-
ing the higher resolution model with 67689 points (res-
olution 0.01 mm) requires 38.32 ms, compared with the
3299.71 of the naive implementation. This low execution
speed makes it possible to use discrete models with even
better resolution, as further increasing the resolution of
the model produces better accuracy with low overhead.
Improving the resolution of the discrete version of the
model to 135378 points with an arc length distance of
0.005 mm reduces the average distance to 0.0012 mm in
21 iterations. The execution time in this case increases to
46.39 ms. The results of these experiments indicate that
using kd-trees greatly improves the performance of the
numerical approach in terms of execution speed. How-
ever, the improvement in terms of accuracy is low, even
when the discrete model is sampled with very high res-
olution. The obtained accuracy is still much lower than
the accuracy obtained using the analytical approach.

The analytical approach provides much more accu-
rate results than the numerical approach, but is also
much more computationally expensive. A tradeoff ap-
pears between accuracy and execution speed. The accu-
racy with the numerical approach cannot really be im-
proved. Further increasing the resolution of the discrete
model greatly increases the required memory for very
low improvement in accuracy. On the other hand, the
analytical approach, although slow, still has room for im-
provement by optimizing different aspects. Moreover, it
is the only approach that can achieve the accuracy indi-
cated in the first convergence condition. Therefore, the
rest of this paper will develop the analytical approach
by proposing different strategies that improve the per-
formance of this approach in terms of execution speed
and robustness.

3 Optimization of the analytical approach

Computing the correspondences is the most computa-
tionally expensive part of the registration process. There-
fore, improving the computation of the closest point to
line segments and circular arcs is essential for improving
the execution speed of the algorithm using the analytical
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approach. Other alternatives for improving the registra-
tion speed are explored in this section, such as the es-
timation of the rigid transform. The resulting execution
speed is evaluated with the test data.

3.1 Efficient estimation of the rigid transformation in
2D

During the registration process, a rigid transformation
between the data and the model must be estimated for
each iteration. This is a computationally demanding math-
ematical procedure that is applied between thousands of
points. Thus, it is important to make this step more ef-
ficient in order to improve the registration performance.

Rigid transformation is one of the classes of geometric
transformations. These classes can be described in terms
of those elements or quantities that are preserved or in-
variant, such as the distance or the angle [33]. A rigid
transformation preserves the Euclidean distance; this is
why it is also called Euclidean transformation. This type
of transformation is a composition of translations, ro-
tations, reflections and compositions of these. However,
reflections are commonly excluded from the definition
by imposing that the transformation also preserve the
handedness.

Different methods can be used to estimate a rigid
transformation between two point clouds. The most com-
mon are based on computing the singular value decom-
position (SVD) of the cross-dispersion matrix or quater-
nions [34]. These methods are generally applied to 3D
data, but can be adapted to 2D.

Considering a set of n points P = {p1, p2, . . . , pn},
and Q = {q1, q2, . . . , qn} in R2, where pi = (pix, piy)T

represents the 2D coordinates of the i-th point in P,
a rigid transformation composed of a rotation R and
a translation t provides a mapping between these two
datasets as (1).

Q = PR+ t (1)

Solving for the optimal rigid transformation (R and
t) that maps P onto Q requires minimizing E, the least
squares error criterion (2).

E =

n∑
i=1

|Q − PR− t|2 (2)

The value of t minimizing E must satisfy (3).

0 =
∂E

∂t
= −2

n∑
i=1

|Q − PR− t| (3)

Therefore, t can be obtained from (4), where p̄ and q̄
are the centroids of P and Q, calculated using (5).

t = q̄ −Rp̄ (4)

p̄ =
1

n

k∑
i=1

pi, q̄ =
1

n

k∑
i=1

qi (5)

Introducing the centered points Pz = {pz1 = p1 −
p̄, pz2 = p2 − p̄, . . . , pzn = pn − p̄}, and Qz = {qz1 = q1 −
q̄, qz2 = q2 − q̄, . . . , qzn = qn − q̄} in (2) yields (6).

E =

n∑
i=1

|Qz − PzR|2 (6)

The estimation of R that minimizes E in (6) is known
as the orthogonal Procrustes problem [35], becauseRTR =
I, i.e., the rotation matrix is orthonormal.

The standard method for estimating R for 3D points
is to calculate the cross-dispersion matrix [28], which is
defined as (7).

C =
1

n

n∑
i=1

PzQzT (7)

The matrix C is decomposed using SVD as (8).

C = USV T (8)

The rotation matrix R is finally calculated using (9).
Extended details about the mathematical procedure that
leads to this equation are given in [36].

R = UV T (9)

The calculation of the translation t is obtained by
substituting the value of R in (4).

In 2D, the estimation of R can be greatly simplified.
The rotation matrix is defined by θ, the angle of rotation.
The rotation of point pzi by the angle θ gives (10).

Rpzi =

(
cos(θ)pzix − sin(θ)pziy
sin(θ)pzix + cos(θ)pziy

)
(10)

Substituting (10) in (6) gives a function where E only
depends on θ. Minimizing E involves taking the deriva-
tive with respect to θ and solving for θ when the deriva-
tive is zero. The result is (11).

θ = tan−1


n∑

i=1

(pzixq
z
iy − pziyqzix)

n∑
i=1

(pzixq
z
ix + pziyq

z
iy)

 (11)

The angle θ can be also calculated from the coeffi-
cients of the cross-dispersion matrix, as (12) and (11)
are equivalent.

θ = tan−1
(
C12 − C21

C11 + C22

)
(12)

The calculation of θ has a geometric interpretation
by considering pzi and qzi as the coordinates of two vec-
tors in R2. The dot product between these two vectors
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can be calculated using (13). The perp dot product be-
tween these two vectors, where one vector is replaced by
its perpendicular vector, can be calculated using (14).
These two vector products have equivalent algebraic and
geometric definitions.

pzi · qzi = |pzi ||qzi |cos(θ) = pzixq
z
ix + pziyq

z
iy (13)

pz⊥i · qzi = |pzi ||qzi |sin(θ) = pzixq
z
iy − pziyqzix (14)

Dividing (14) by (13) results in (15). Therefore, θ can
be calculated using (16).

pz⊥i · qzi
pzi · qzi

=
|pzi ||qzi |sin(θ)

|pzi ||qzi |cos(θ)
=
sin(θ)

cos(θ)
(15)

θ = tan−1
(
pzi⊥qzi
pzi · qzi

)
= tan−1

(
pzixq

z
iy − pziyqzix

pzixq
z
ix + pziyq

z
iy

)
(16)

The rotation matrix R for θ is finally obtained from
(17).

R =

(
cos θ − sin θ
sin θ cos θ

)
(17)

The rotation matrix obtained in (17) is the same as
the rotation matrix obtained in (9). However, the calcu-
lations required in (11) to obtain the rotation angle are
more efficient than applying SVD to the cross-dispersion
matrix. Therefore, the required execution time is greatly
reduced, which is very important for time-constrained
applications.

The registration of the test data with the proposed
estimation of rigid transform reduces the execution time
from 323.41 ms to 281.86 ms. This not a great reduction
because the estimation of the rigid transform is not the
most computationally demanding part of the registra-
tion. However, it is a step toward improving the global
execution time of the algorithm.

3.2 Efficient closest point

3.2.1 Closest point to a line segment

The parametric form of a line defined by two points P0

and P1 is P (t) = P0 + td for t ∈ R, where d = (P1 −
P0) is the direction vector. A line segment, or simply a
segment, is a particular case of a line with t ∈ [0, 1]. In
this case, t represents the fraction of distance along the
whole segment. If t < 0, then P (t) is outside the segment
on the P0 side, and if t > 1 then P (t) is outside on the
P1 side [37].

Given a point P and a line L, the closest point Q on
the line L to P is the projection of P onto L, as can be
seen in Fig. 3. The vector (P−Q) must be perpendicular
to the direction vector d. Thus, the dot product of these
two vectors must be zero, satisfying (18). Solving this
equation for t gives (19).

0 = d · (P −Q) = d · (P − P0 − td) (18)

P0 P1

P

Q

d =(P1 - P0)

(P - Q)

t

(P - P0)

L

Fig. 3 Closest point to a line segment.

t =
d · (P − P0)

|d|2
(19)

In the case of the line segment S, the projection of
P onto S may lie onto the segment, behind the initial
point (P0), or ahead of the final point of the segment
(P1). These three possibilities depend on t. Therefore the
closest point Q on a segment to a point P is obtained
from (20).

Q =

P0 t ≤ 0
P0+td t ∈ (0, 1)
P1 t ≥ 1

(20)

The calculation of the closest point to a segment can
be further optimized. The quantities a = |d|2 (the de-
nominator in (19)) and b = d/|d|2 can be precomputed
and stored with the information about the line segment.
Then, in order to obtain the closest point, the numera-
tor (n) in (19) is calculated first using (21). This is the
dot product between the direction vector and the vector
from the initial point of the segment to P . The resulting
value of this product indicates an obtuse angle between
the vectors when it is negative. In this case, the closest
point is P0. When the value of this dot product is greater
than or equal to a (the denominator in (19)), the closest
point is P1, because the result of the division would be
greater than or equal to one. Only when neither of these
two conditions are satisfied, are further calculations re-
quired. Finally, the closest point is calculated using (22).
This expression further improves the efficiency of the al-
gorithm.

n = d · (P − P0) (21)

Q =

P0 n ≤ 0
P1 n ≥ a
P0+bn otherwise

(22)

3.2.2 Closest point to a circular arc

A circular arc, or simply an arc, is a portion of the cir-
cumference of a circle. It is defined by a central point,
C, the radius, r, and the initial and final angles, α0, and
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P1

P

C

vp = (P - C)

r

Q

α0

α1 v0

v1

P0

Fig. 4 Closest point to a circular arc.

α1. The central point and the radius define the circle of
which the arc is a part. Arcs can be clockwise or coun-
terclockwise, but they can be mathematically treated the
same by swapping the initial and final angles.

Angle normalization makes further calculations more
simple. Any angle α can be normalized as ((α mod 2π)+
2π) mod 2π. The resulting angle ∈ [0, 2π]. Then, if α1 is
less than α0, 2π is added to α1. This way the circular
angle of the arc is α1 − α0.

Given a point P and a circle C, the closest point Q
on the circle C to P is calculated using the vector vp =
(P −C), as can be seen in Fig. 4. This is the vector from
C (the center of the circle) to P . The closest point is the
unit vector of vp multiplied by r (the radius) plus the
center point, as shown in (23).

Q =
vP
|vP |

r + C (23)

The point Q is also the closest point to an arc A,
but only when P is inside the circular angle of A. This
can be tested by calculating the angle of vp using the ex-
pression αP = tan−1(vPy/vPx) (calculated using atan2
function). The point P is inside the circular angle of A
when α0 ≤ αP ≤ α1. If αP is normalized the same as
α1, the test expression can be simplified as αP ≤ α1. The
problem with this approach is that the computation of
tan−1 is complex and heavy. A more efficient approach
can be used.

An efficient solution to test if a P is inside the cir-
cular angle of A can be obtained using the perp dot
product. The vectors from the center of the arc to the
initial and final points of the arc can be precomputed
as v0 = (cos(α0), sin(α0)) and v1 = (cos(α1), sin(α1)).
The sign of the perp dot product between two vectors
indicates, when positive, that the second vector is coun-
terclockwise from the first, or clockwise when negative
[38]. Therefore, P is inside the circular angle of A when
c0 = v⊥0 ·vP > 0 and c1 = v⊥1 ·vP < 0. When the circular
angle of A is reflex (> π), then P is inside when c0 > 0
or c1 < 0.

When the point is outside the circular angle, the clos-
est point is either the initial or the final point of the arc,

P0 = C + r(cos(α0), sin(α0)), or P1 = C + r(cos(α1),
sin(α1)), which can be precomputed. Whether it is P0

or P1 can be determined by comparing the squared dis-
tances from P . A more efficient alternative is the com-
putation of the dot product between the direction vector
b = (P1−P0)/|P1−P0|2 and (P −P0). When the result
of the dot product is less or equal than 0.5, the closest
point is P0. Otherwise, it is P1. The mathematical rea-
soning can be found in Section 3.2.1. This approach is
slightly faster than the computation of the squared dis-
tances because b can be precomputed.

Finally, the closest point is calculated using (24),
where R(A) is a precomputed boolean that indicates if
the circular angle of A is reflex. This expression to calcu-
late the closest point to an arc is very efficient and does
not require the computation of any computationally ex-
pensive trigonometric function.

Q =


vP
|vP |r + C

(c0 > 0 ∧ c1 < 0)∨
(R(A) ∧ (c1 > 0 ∨ c1 < 0))

P0 (P − P0) · b ≤ 0.5
P1 otherwise

(24)

Applying the proposed procedures to calculate the
closest point to the line segment and circular arcs of the
model has a huge impact on the execution speed of the
registration algorithm. The average execution speed is
reduced to 22.58 ms. This is a speedup of ×14. Using
the proposed efficient procedures, the execution speed of
the analytical approach is similar to the one obtained
with the numerical approach and kd-trees. However, the
analytical approach provides much better accuracy.

3.3 R-trees

The computation of the closest point to the model re-
quires the calculation of the closest point to each geo-
metric primitive of the model. The final closest point is
then obtained as the closest in terms of squared distance
from this set of points. However, the spatial position of
the point can be used to reduce the number of required
tests. Only the close primitives of the points really need
to be used for the closest point. The R-tree is an efficient
spatial data structure that can be used for this purpose
[39].

An R-tree is a hierarchical data structure that stores
nodes representing an axis-aligned bounding box of ar-
bitrary dimensions that can overlap. The primary use of
this data structure is in geographic information systems.
The search in an R-tree provides the nodes that contain
a point in space. Therefore, in the case of the registra-
tion process it can be used to determine efficiently the
closest geometric primitives of a point. Then, only these
primitives need to be tested to calculate the closest point
in the model.

In order to create the R-tree for the model, the follow-
ing approach is proposed. First, a closed envelope region
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(a) (b)

Fig. 5 Spatial partitioning using R-tree. (a) Envelope of geometric primitives using a distance threshold of 10 mm. (b)
Bounding box of geometric primitives based on the envelopes regions.

around every geometric primitive is created. These en-
velope regions are created so that only relevant points
closer than a distance threshold to the primitive are
included. The envelope is restricted by the perpendic-
ulars of the initial and final points of each primitive.
The points before or after these points may be close to
the primitive, but will be closer to the next or previous
primitive of the model. In this way, the envelope region
represents an area that can be used to identify the cor-
responding primitive to a point. The result can be seen
in Fig. 5a. It is important to take into account that ICP
is a fine registration method where data points are close
to the model. Therefore, a low distance threshold can be
used in most cases to create the envelope regions.

The envelope regions are good indications of which
primitive is closer to a point. However, determining if
a point is inside these regions is not computationally
efficient. Therefore, the envelopes are transformed into
rectangles. A rectangle is created for each envelope by
calculating the bounding box of the envelope. The result
can be seen in Fig. 5b. These rectangular regions are not
as precise as the envelopes to determine which geometric
primitive is closer, but they are much more efficient to
work with. The coordinates of these rectangular regions
are the coordinates with which the R-Tree is created.

In the worst-case scenario, a point can be inside mul-
tiple regions. This is the case shown in Fig. 6a using a
distance threshold of 10 mm. In this example, the point
is inside four regions. Therefore, in order to calculate the

closest point of the model tests are required with the cor-
responding four geometric primitives. Fortunately, the
most common case is when the point is contained inside
only one region, as can be seen in Fig. 6b. In this case,
the computation of the closest point is the computations
of the closest point with a single geometric primitive.

Using the proposed R-tree creates a singular problem
when there are outliers in data points. Some of these
points could be located outside all the regions. In this
case, the closest point can be calculated using the previ-
ous approach: iteration between all the geometric primi-
tives. A tradeoff appears when selecting the most appro-
priate value for the distance threshold used to create the
regions of the R-tree. A low value reduces the overlap-
ping regions. Therefore, searching the closest geometric
primitive to a point is more efficient. However, when us-
ing very small envelope regions, some points could be
outside all the envelope regions, provoking a brute-force
search.

Using an R-tree makes the computation of the corre-
spondences much more efficient. The average execution
speed is reduced to 6.76 ms for the registration of the
test data.

3.4 Primitive caching

Caching accelerates the speed of conventional registra-
tion using ICP by storing a subset of model points that
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(a) (b)

Fig. 6 Worst and best-case scenario when using R-tree to search for the closest geometric primitives. (a) Worst-case: the
point is inside four regions. (b) Best and most common case: the point belongs to only one region so the closest point can
be directly calculated from the corresponding geometric primitive.

are close to a data point at a previous iteration [40].
This work proposes a similar approach to further ac-
celerate the proposed registration procedure. However,
rather than point caching, in this case a primitive geo-
metric caching procedure is proposed.

ICP is a fine registration method where the position
of data points does not change significantly between it-
erations. Therefore, when a point is close to a geometric
primitive at one iteration it is highly probable that the
corresponding geometric primitive in the next iteration
will be the same. This could be interpreted as tempo-
ral locality: if at one iteration a point has a particular
corresponding geometric primitive, then it is likely that
the same geometric primitive will be the corresponding
primitive for the same point at the next iteration.

The proposed primitive caching procedure is as fol-
lows. Initially, a corresponding primitive is assigned to
each data point: the geometric primitive that contains
the closest point in the model to the data point. This
initial process is accelerated using an R-tree. When the
estimation of correspondences is required, only the clos-
est point in the cached corresponding primitive is cal-
culated. This is how the initial corresponding points are
calculated. The change in the positions of the points due
to the alignment with respect to the model can make
a cached corresponding primitive become invalid. This
can be detected by comparing the obtained correspond-
ing point with the initial and final point of the cached
primitive. If this is not the case, the initial corresponding
point is correct, but when this case occurs, a new prim-
itive must be assigned as the corresponding primitive
for that point. If the corresponding point is the initial

(a) (b)

Fig. 7 Best and most frequent scenario for primitive caching.
(a) Initial correspondences. (b) New iteration: the closest
point is calculated directly from the cached corresponding
primitive.

point of the current cached primitive, a new correspond-
ing point is calculated using the previous primitive. The
resulting point could be the same, which indicates that
the closest point is the intersection of the primitives (ini-
tial point of the current primitive and final point of the
previous primitive). If the corresponding point is the final
point, the same procedure is applied using the next prim-
itive. This process is repeated while the corresponding
point is either the initial or the final point of the current
primitive and that point has not been obtained before.
This iterative process ends with one valid corresponding
point and updated corresponding primitive that will be
cached for the next iteration of the registration.
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(a) (b)

(c)

Fig. 8 Primitive caching when updating is required. (a) Ini-
tial correspondences. (b) New iteration: the corresponding
point is the final point of the cached corresponding primi-
tive. (c) The cached corresponding primitive is updated and
the correct closest point is calculated.

The most frequent case is when the obtained initial
corresponding point is neither the initial nor the final
point of the corresponding primitive. This is the case
shown in Fig. 7. In the new iteration, the closest point is
calculated directly from the cached corresponding prim-
itive.

Much less frequently, the corresponding point is the
initial or final point of the cached corresponding primi-
tive. When this occurs, the corresponding primitive must
be updated. This is the case shown in Fig. 8. In the new
iteration, it is detected that the cached corresponding
primitive is no longer valid. Thus, it needs to be updated
to obtain the correct corresponding point.

Under very specific conditions, the correct correspond-
ing primitive is before or after two or more primitives
than the cached primitive. This is the case shown in
Fig. 9. In this case, the cached corresponding primitive
needs to be updated twice to obtain the correct corre-
sponding point. This case only occurs when a large dis-
placement is applied to a point or when geometric prim-
itives are very short.

Primitive caching further reduces the execution speed
of the registration. Using the proposed caching proce-
dure, the average execution speed is reduced to 1.57 ms.
Therefore, from the original naive analytical approach
with an execution time of 323.41 ms, the proposed effi-
cient registration has obtained a speedup of ×304. The

(a) (b)

(c) (d)

Fig. 9 Primitive caching when more than one update is re-
quired. (a) Initial correspondences. (b) New iteration: the
corresponding point is the final point of the cached corre-
sponding primitive. (c) The new corresponding point is the
final point of updated primitive. (d) The cached correspond-
ing primitive is updated and the correct closest point is cal-
culated.

improvement in execution speed has been carried out
with no sacrifices in accuracy. The resulting procedure
reaches the same result, but in only a tiny portion of
time. Moreover, the result obtained is not only much
more accurate than the numerical approach, but also
much faster than the optimized version using kd-trees.

3.5 Improving robustness

The efficient registration procedure proposed is not yet
complete. It is a valid test to compare different strate-
gies for the computation of the fine registration. How-
ever, robust registration requires an appropriate initial
coarse registration that approximates the data to the
model so that the ICP does not get stuck in a local min-
imum. Moreover, considering all the correspondences be-
tween the data and the model as valid does not produce
a good registration in the presence of noise or outliers in
the data. Incorrect correspondences bias the obtained re-
sult, preventing the registration from finding the correct
alignment.
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3.5.1 Initial coarse registration

For the initial coarse registration, a simple yet effective
strategy is proposed: alignment of centroids and orien-
tation. Centroid and orientation for the model are cal-
culated offline. However, the equivalent features for the
data must be calculated during the initial coarse regis-
tration. The centroid calculation is very simple, but the
orientation requires a procedure based on principal com-
ponent analysis to estimate the surface normal. Next, an
efficient procedure to estimate surface normals in 2D is
described. The procedure is described for a generic case
where the surface normal is calculated for a point with
a local neighborhood. The orientation of the data is cal-
culated by considering all the points as belonging to the
neighborhood.

The surface normal vector is one of the most impor-
tant features for geometry reconstruction and interpre-
tation of point clouds [41]. The normal vector provides
information about the geometry of the underlying sam-
pled surface. Many different applications calculate the
normal vector as a local feature that is used for differ-
ent purposes, including segmentation [42], surface recon-
struction [43], or computer graphics [44].

2D point clouds represent a noisy sampling of curves.
Information about orientation and curvature of these
curves is lost in the sampling process. The estimation
of the surface normal restores this information by calcu-
lating the orthogonal vector to the tangential line of the
curve [45].

Considering a set of n points P = {p1, p2, . . . , pn},
pi ∈ R2, where pi = (pix, piy)T represent the 2D co-
ordinates of the measured points, the estimation of the
normal vectors for pi is ni = (nix, niy)T , which are the
coordinates of the perpendicular vector to the curve at
that point.

The estimation of the normal vectors for point cloud
data involves at least two main steps: identification of
the applicable neighboring points, and estimation of the
normal vector based on points in the local neighborhood.

Nearest Neighbors The normal vector is a local feature
specific to a given point. Thus, reliable estimation of the
normal vector largely depends on the identification of its
neighboring points. The number of neighboring points,
k, is critical. Too high a value for k degrades the local
characteristic of the normal vector. On the contrary, too
low a value for k may not be sufficient to satisfactorily
represent the local geometry. An adaptive neighborhood
size based on local properties, such as noise scale, curva-
ture and sampling density can be selected [46]. However,
in most applications, a fixed value of k is selected based
on the expected shape of the object and the noise.

Given k, the neighborhood of point pi, Qi = {qi1,
qi2, . . . , qik}, qij ∈ P , is calculated using a k-nearest
neighbors algorithm. This algorithm is efficiently exe-
cuted using a kd-tree.

Normal estimation One of the most efficient methods
to estimate surface normals is based on the covariance
matrix [47]. The eigen-analysis of the covariance matrix
provides invariant descriptions of shape that indicate the
orientation of the point cloud.

The first step to calculate the covariance matrix is
to subtract the centroid from the point cloud, which is
equivalent to translating the coordinate system to the
location of the mean. This results in Qz

i = {qzi1 = qi1−q̄i,
qzi2 = qi2 − q̄i, . . . , qzik = qik − q̄i}, where q̄i is calculated
as (25).

q̄i =
1

k

k∑
j=1

qij (25)

The covariance matrix, Ci ∈ R2×2, for Qi is defined
as (26).

Ci =
1

k

k∑
j=1

(
qzij
)(
qzij
)T

(26)

The covariance matrix is symmetrical, as seen in (27).
Therefore, only the upper triangular entries (including
the diagonal) must be computed. The coefficients of the
matrix are calculated using (28)

Ci =

(
a b
b d

)
(27)

a = 1
k

k∑
j=1

(
qzijx
)2
, b = 1

k

k∑
j=1

(
qzijx
) (
qzijy
)
,

d = 1
k

k∑
j=1

(
qzijy
)2 (28)

The eigenvalues and eigenvectors of Ci determine two
orthogonal vectors, one of which defines a line whose ori-
entation minimizes, in the least square sense, the squared
distance of all the points. This line is a reasonable ap-
proximation to the curve tangent. Therefore, the nor-
mal vector of Qi is the eigenvector corresponding to the
smallest eigenvalue of the covariance matrix Ci, that is,
the principal component with the smallest covariance.

The non-zero vector v is said to be an eigenvector
of matrix Ci for the eigenvalue λ when (29) is satisfied.
This equation can be also written as (30), where I is the
identity matrix.

Civ = λv (29)

(Ci − λI)v = 0 (30)

The solutions of equation (30) are given by (31),
which is known as the characteristic equation.

det(Ci − λI) = 0 (31)

The polynomial equation derived from (31) is (32),
where Tr is the trace of the matrix.

λ2 − Tr(Ci)λ+ det(Ci) = 0 (32)
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Table 1 Summary of the registration strategies evaluated

Strategy Iterations Distance (mm) Time (ms)

Naive numerical approach (model with 0.1 mm resolution) 13 0.0078 222.72
Naive numerical approach (model with 0.01 mm resolution) 19 0.0023 3299.71
Numerical approach using kd-trees (model with 0.1 mm resolution) 13 0.0078 20.22
Numerical approach using kd-trees (model with 0.01 mm resolution) 19 0.0023 38.32
Numerical approach using kd-trees (model with 0.01 mm resolution) 21 0.0011 46.39
Naive analytical approach 35 8.53E-07 323.41
Naive analytical approach with efficient estimation rigid transform 35 8.53E-07 281.86
Efficient analytical approach (transformation and closest point) 35 8.53E-07 22.58
Efficient analytical approach with R-tree 35 8.53E-07 6.76
Efficient analytical approach with primitive caching 35 8.53E-07 1.57
Efficient and robust analytical approach (caching, coarse reg., and X84 rule) 35 8.53E-07 4.83
Efficient and robust analytical approach (caching, coarse reg., and median) 35 8.53E-07 3.46
Efficient and robust analytical approach (median and subsampling 50%) 35 8.53E-07 1.70
Efficient and robust analytical approach (median and subsampling 25%) 35 8.53E-07 0.79

Table 2 Summary of the results

Model Points Iterations Time (ms)

Beam 339 35 0.31
Complex shape 711 2 0.15
Real rail with outliers 458 14 0.21
Real rail with misaligned camera 505 20 0.33
Real rail with two shapes 779 23 0.50
Real rail with zoom 505 19 0.25
Real rail from the inspection system 4045 14 2.38
Real rail (50% subsampling) 4045 14 0.89
Real rail (25% subsampling) 4045 14 0.42

Substituting the coefficients of Ci in (32) and solv-
ing for λ gives the two solutions in (33). Therefore, the
smallest eigenvalue, λmin, is calculated as (34).

λ =
(a+ d)±

√
(a− d)

2
+ 4b2

2
(33)

λmin =
(a+ d)−

√
(a− d)

2
+ 4b2

2
(34)

Substituting λmin in (30) gives the eigenvector in
(35). It can be normalized by dividing it by its magni-
tude. This is the normal vector of pi considering a neigh-
borhood of size k.

v =

(
b

λmin − a

)
(35)

These simple mathematical equations can be exe-
cuted very efficiently, providing a robust estimation of
the normal vector of a 2D point cloud, nix = b and
niy = λmin − a.

There is a degenerate case when a or d are equal to
zero. This means the point cloud represents a vertical
or horizontal line. The normal in this case is (1, 0)T or
(0, 1)T , respectively.

Fig. 10 Resolving the 180-degree ambiguity for a rail model

Centroid and orientation alignment The alignment of
centroids is achieved by shifting the centroid of the data
to the centroid of the model. The alignment of orienta-
tion is achieved by rotating the data according to the
angle difference between the normal of the data and the
normal of the model. This rotation creates a 180-degree
ambiguity. A possible application-dependent solution to
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this problem is based on the analysis of the shape of the
model. In the rail model used as a test, the head and
the foot have a different shape. Therefore, metrics can
be extracted to indicate when the data is rotated 180
degree with respect to the model. A simple and efficient
approach is to compute the centroids of the data when it
is divided into four quadrants. Only the centroids of the
two quadrants on the right must be calculated, as can
be seen in Fig. 10. The x coordinate of the centroid of
the top right quadrant (Cq1) must be lower than the x
coordinate of the centroid of the bottom right quadrant
(Cq1). When this condition is not true for the data it
indicates it is upside down, and a 180 degree rotation is
required.

3.5.2 Outlier rejection

Outlier rejection is a required step for the registration
process with noisy or incomplete data. Considering all
correspondences as valid in these cases leads to inac-
curate results. Many different strategies have been pro-
posed [48]. In this work we consider two robust strategies
that are based on statistics from the residual vector: the
median threshold and the X84 rule [49].

Outlier rejection based on the median threshold is
carried out by calculating the median squared distance
between the potential correspondences. Only those can-
didates whose distance is lower than k times the squared
median distance are considered valid.

Outlier rejection based on the X84 rule is a more
elaborate procedure that uses robust statistics to set a
rejection threshold. In this case, the threshold is obtained
from the Median Absolute Deviation (MAD), which is
calculated using (36), where ε represents the residuals
between correspondences. The X84 rule rejects corre-
spondences that are more than k times MAD. Assuming
an underlying Gaussian distribution of the residuals, a
value of k = 5 is usually selected, as the resulting thresh-
old contains more than 99.9% of the distribution [50].

MAD = mediani ( |εi −medianj(εj)| ) (36)

The execution speed of the registration obviously in-
creases with the addition of the initial coarse registra-
tion and the outlier rejection strategy, as more compu-
tation is required. The execution time when using the
strategy based on the median is 3.46 ms. The strategy
based on the X84 rule requires more calculations and is
slightly slower: 4.83 ms. Tests with different types of syn-
thetic data, noise, outliers, and real data did not provide
any significant difference between any of these methods.
Therefore, the fastest strategy based on the median is
selected for the rejection of outliers.

More complex strategies calculate descriptive features
about the correspondences to determine if they are re-
ally valid correspondences. Surface normals for all the
points in the data is a common procedure. This is an
effective procedure with complex shapes and where the

initial coarse registration does not produce a good ap-
proximation. In this work, computing the surface nor-
mals for all the points is not considered necessary. Not
only would it increase the execution time significantly, it
would not provide better accuracy.

3.6 Subsampling

Subsampling consists of applying the registration with
only a subset of the points in the data. Obviously, re-
ducing the number of points will reduce the execution
time. Thus, this is a simple method to reduce compu-
tation demands. However, this method is not without
drawbacks. Subsampling can create aliasing, and small
features of the model that are vital to determining the
correct alignment may be lost. Moreover, in the presence
of noise and outliers, subsampling can select those points
that do not have valid correspondences in the model, pro-
ducing an incorrect registration. Therefore, subsampling
is a strategy that needs to be applied with care and mod-
eration to preserve accuracy.

Among the methods to select points for subsampling,
random [51] and uniform [52] subsampling are the most
common strategies. More complex approaches based on
surface normals provide better results but are much more
computationally demanding.

Applying uniform subsampling to the test data pro-
duces the expected reduction in execution speed. Apply-
ing a sampling rate of 50%, the registration converges in
1.70 ms, and 0.79 ms with 25%. The registration includes
the initial coarse registration and the outlier rejection
method. The number of iterations and the accuracy ob-
tained is the same, as the test data does not contain noise
and the subsampling rate used is low.

Table 1 shows a summary of all the strategies evalu-
ated and the performance obtained with the test data.

4 Results and discussion

In order to test the proposed registration procedure, it
has been applied to different models and data, with miss-
ing parts, outliers and complex shapes. The results can
be seen in Figs. 11 and 12, and Table 2.

Figs. 11a and 11b show the experiments with a beam
model. In this case, the data, the point cloud that needs
to be aligned, is corrupted with noise. In addition, an
important part of the foot is missing. The registration
aligns the shapes correctly, ignoring the missing part.
The registration requires 35 iterations, and the execution
time is 0.31 ms. In this case the data only contains 339
points.

Figs. 11c and 11d show the experiments with a com-
plex shape. The data has been corrupted with Gaussian
noise. The results of the registration is correct. The ini-
tial coarse registration performs a good approximation
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(a) (b) (c)

(d) (e) (f)

Fig. 11 Registration experiments. (a), (b), (c) Models and data. (e), (e), (f) Results of the registration.

that allows the fine registration to align the shapes per-
fectly. Only 2 iterations were necessary, which were exe-
cuted in 0.15 ms for a point cloud with 711 points.

Figs. 11e and 11f show the experiments with a differ-
ent rail model. The data was obtained with a real struc-
tured sensor but was transformed with a synthetic trans-
formation. The objective is to test the proposed proce-
dure with data that contains outliers, and to test the
180-degree ambiguity. Therefore, this experiment is used
to test robustness. As can be seen, the registration pro-
vides the desired result. It solves the rotation ambiguity
and deals with the outliers in the head correctly. This
part corresponds to a defect that cannot be aligned with
the model. The outlier rejection strategy worked as ex-

pected. The registration was performed in 14 iterations
and took 0.21 ms for a point cloud with 458 points.

Fig. 12 shows additional tests with challenging cases.
Fig. 12a shows real data with a synthetic transformation
and modified to simulate a misaligned camera. This is
a possible scenario that produces points in a different
reference system than the points acquired by the rest of
the cameras. Fig. 12c shows real data with a synthetic
transformation and modified to simulate that more than
one shape is visible. Fig. 12e shows another example with
real data altered with a synthetic transformation and
modified to simulate a zoom in the foot of the rail. This
could be a possible scenario when the manufactured rail
is bigger in one are than the compared CAD model. The
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(a) (b) (c)

(d) (e) (f)

Fig. 12 Registration experiments with challenging cases. (a), (b), (c) Models and data. (d), (e), (f) Results of the registration.

registration procedure provides excellent results in all
these cases. Moreover, the required execution time is in
all cases below 0.6 ms, i.e., the procedure is robust and
fast.

The proposed procedure has been applied to real data
obtained from a rail inspection system. The system is
composed of 4 laser projectors and 4 cameras with a res-
olution of 1400×1024 that can acquire images at 100 fps.
The objective of the inspection system is to measure
the dimensions of the rail and to compare these values
with the reference model. Maximum allowed errors are
±0.5 mm. Therefore, the inspection system must be very
accurate. Much of this accuracy comes from the regis-
tration process that aligns the model and the acquired

point cloud. The acquired points that describe the sur-
face of the rail are obtained from the images after being
translated using a calibration map. However, vibrations
of the rail during production require an accurate regis-
tration before metrics about the dimension of the rail are
performed.

Fig. 13 shows the rail inspection system. Fig. 13a
shows a laboratory prototype used to test the system,
and Fig. 13b the industrial system. As can be seen, im-
ages are acquired while the rail moves, which makes the
inspection of the whole rail possible.

Fig. 14 shows the images acquired by the cameras
of the rail inspection system. The four cameras are re-
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(a) (b)

Fig. 13 Images of the rail inspection system. (a) Laboratory prototype. (b) Industrial prototype.

quired to avoid occlusion, what makes possible a correct
inspection of a complete section of the rail.

Fig. 15 shows a typical example of acquired data from
the rail inspection system and the registration results.
Initially, data is displaced with respect to the model. The
registration accurately aligns the data and the model. Af-
ter registration, different metrics can be calculated about
the shape, such as curvature of the arcs in the head,
width at the body, or height.

Fig. 16 shows some details of different parts of the
rail data. The registration aligns the data with respect to
the model correctly. However, the inspected rail is rarely
an exact reproduction of the model. There are some very
small differences, which are generally within valid ranges.
However, in some cases defects appear, which are accu-
rately detected by the system. This process is extremely
important, as using defective rails can lead to catas-
trophic consequences.

Registration with data acquired from the inspection
system takes 2.38 ms in 14 iterations with a point cloud
of 4045 points. Applying a subsampling rate of 50%, the
registration converges in 0.89 ms, and 0.42 ms with 25%.
Calculating the average distance between the data and
the model after registration with different subsampling
rates produces the results shown in Fig. 17. In this case
the x axis represents the number of points used. For ex-
ample, a value of 50 indicates that one point in 50 is used
for registration, i.e., 2%. The distance remains stable up
to 20, that is, when using a subsampling rate of 5%.
However, when the subsampling rate is above 12%, the
number of iterations required to reach the same results
increases, compensating for the reduction in execution
time due to using fewer points. When using a subsam-
pling rate of 12%, the registration converges in 0.16 ms.
However, this subsampling rate means data with out-
liers can provoke major problems for registration. Sub-
sampling can eliminate the required detail to produce

an accurate registration. A conservative approach could
be the selection of the subsampling rate based on the
deadline of the registration process. For example, in an
inspection system that produces 1000 fps a subsampling
of 50% could be applied, or 25% for 2000 fps. These
subsampling rates seem safe for the considered models
in the rail inspection system. However, different mod-
els could require more points. Therefore, this decision is
application-dependent.

5 Conclusions

In many real-time applications, surface registration is a
crucial step for achieving high accuracy. Much research
has been carried out for registration in different fields,
but efficient registration for 2D has been mostly neglected.
However, in different inspection systems, efficient 2D model
registration is of utmost importance. Furthermore, cur-
rent acquisition hardware can produce data at extremely
high rates that can be used to inspect very fast moving
objects. These systems require efficient algorithms for
processing data. In this work, an efficient registration
procedure for 2D data is proposed. Recent developments
in the field are reviewed and their applicability to this
problem is evaluated in terms of accuracy, speed and ro-
bustness. Moreover, efficient procedures are proposed for
the most demanding parts of the registration, including
the estimation of the rigid transform, the calculation of
the closest points, and the estimation of surface normals.
The best approach is to work with the geometric prim-
itives that describe the model and apply these efficient
procedures to estimate the correspondences. The novel
primitive caching method proposed in this work further
reduces the computational demands of the algorithm,
which is also applicable to 3D.

Both synthetic and real data has been used to ver-
ify the performance of the proposed procedure. The re-



18
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Fig. 14 Images acquired from the projection of the laser stripes onto the rail. (a) Camera 1. (b) Camera 2. (c) Camera 3.
(d) Camera 4.

sults show excellent performance. The proposed regis-
tration algorithm is a robust procedure that can very
accurately align data obtained from standard structured
light sensors in less than one millisecond. This provides
the opportunity for the application of the registration in
high-speed systems or time-constrained machine vision
applications.

Acknowledgements This work has been partially funded
by the project TIN2001-24903 of the Spanish National Plan
for Research, Development and Innovation.

References

1. N. Gelfand, N. J. Mitra, L. J. Guibas, and H. Pottmann,
“Robust global registration,” in Symposium on geometry
processing, vol. 2, no. 3, 2005, p. 5.

2. T. Varady, R. R. Martin, and J. Cox, “Reverse engi-
neering of geometric modelsan introduction,” Computer-
Aided Design, vol. 29, no. 4, pp. 255–268, 1997.

3. V. Raja and K. J. Fernandes, Reverse engineering: an
industrial perspective. Springer, 2007.

4. M. Pieraccini, G. Guidi, and C. Atzeni, “3d digitizing of
cultural heritage,” Journal of Cultural Heritage, vol. 2,
no. 1, pp. 63–70, 2001.

5. V. Vlahakis, N. Ioannidis, J. Karigiannis, M. Tsotros,
M. Gounaris, D. Stricker, T. Gleue, P. Daehne, and
L. Almeida, “Archeoguide: an augmented reality guide
for archaeological sites,” IEEE Computer Graphics and
Applications, vol. 22, no. 5, pp. 52–60, 2002.

6. C.-C. Wang, C. Thorpe, S. Thrun, M. Hebert, and
H. Durrant-Whyte, “Simultaneous localization, mapping
and moving object tracking,” The International Journal
of Robotics Research, vol. 26, no. 9, pp. 889–916, 2007.

7. C. Goldfeder, M. Ciocarlie, J. Peretzman, H. Dang, and
P. K. Allen, “Data-driven grasping with partial sensor
data,” in Intelligent Robots and Systems, 2009. IROS
2009. IEEE/RSJ International Conference on. IEEE,
2009, pp. 1278–1283.

8. K. W. Bowyer, K. Chang, and P. Flynn, “A survey of
approaches and challenges in 3d and multi-modal 3d+
2d face recognition,” Computer vision and image under-
standing, vol. 101, no. 1, pp. 1–15, 2006.



19

(a) (b)

Fig. 15 Rail registration with real data. (a) Rail model and data. (b) Result of the registration.

(a) (b) (c)

Fig. 16 Details of different parts of the rail data. (a) Bottom left head. (b) Right foot. (c) Body

9. U. Castellani and A. Bartoli, “3d shape registration,” in
3D Imaging, Analysis and Applications. Springer, 2012,
pp. 221–264.

10. J. Salvi, J. Pages, and J. Batlle, “Pattern codification
strategies in structured light systems,” Pattern Recogni-
tion, vol. 37, no. 4, pp. 827–849, 2004.

11. C. Studholme, D. L. Hill, and D. J. Hawkes, “Automated
3-d registration of mr and ct images of the head,” Medical
image analysis, vol. 1, no. 2, pp. 163–175, 1996.

12. J. Salvi, C. Matabosch, D. Fofi, and J. Forest, “A review
of recent range image registration methods with accuracy
evaluation,” Image and Vision Computing, vol. 25, no. 5,
pp. 578–596, 2007.

13. P. J. Besl and N. D. McKay, “A method for registration
of 3-d shapes,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 14, no. 2, pp. 239–256, Feb. 1992.

14. Y. Chen and G. Medioni, “Object modelling by registra-
tion of multiple range images,” Image and vision com-
puting, vol. 10, no. 3, pp. 145–155, 1992.

15. H. Li, R. W. Sumner, and M. Pauly, “Global correspon-
dence optimization for non-rigid registration of depth

scans,” in Computer Graphics Forum, vol. 27, no. 5. Wi-
ley Online Library, 2008, pp. 1421–1430.

16. K. Pulli, “Multiview registration for large data sets,” in
3-D Digital Imaging and Modeling, 1999. Proceedings.
Second International Conference on. IEEE, 1999, pp.
160–168.

17. T. Jost and H. Hugli, “A multi-resolution icp with heuris-
tic closest point search for fast and robust 3d registra-
tion of range images,” in 3-D Digital Imaging and Model-
ing, 2003. 3DIM 2003. Proceedings. Fourth International
Conference on. IEEE, 2003, pp. 427–433.

18. A. W. Fitzgibbon, “Robust registration of 2d and 3d
point sets,” Image and Vision Computing, vol. 21, no. 13,
pp. 1145–1153, 2003.

19. A. Rangarajan, H. Chui, E. Mjolsness, S. Pappu,
L. Davachi, P. Goldman-Rakic, and J. Duncan, “A ro-
bust point-matching algorithm for autoradiograph align-
ment,” Medical Image Analysis, vol. 1, no. 4, pp. 379–398,
1997.



20

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sampling ratio

D
is

ta
n
ce

Fig. 17 Error with subsampling strategy.

20. G. C. Sharp, S. W. Lee, and D. K. Wehe, “Icp registration
using invariant features,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 24, no. 1, pp.
90–102, 2002.

21. S.-Y. Park and M. Subbarao, “An accurate and fast
point-to-plane registration technique,” Pattern Recogni-
tion Letters, vol. 24, no. 16, pp. 2967–2976, 2003.

22. S. Rusinkiewicz and M. Levoy, “Efficient variants of the
icp algorithm,” in 3-D Digital Imaging and Modeling,
2001. Proceedings. Third International Conference on.
IEEE, 2001, pp. 145–152.

23. A. Nuchter, K. Lingemann, and J. Hertzberg, “Cached
kd tree search for icp algorithms,” in 3-D Digital Imaging
and Modeling, 2007. 3DIM’07. Sixth International Con-
ference on. IEEE, 2007, pp. 419–426.

24. I. K. Park, M. Germann, M. D. Breitenstein, and H. Pfis-
ter, “Fast and automatic object pose estimation for range
images on the gpu,” Machine Vision and Applications,
vol. 21, no. 5, pp. 749–766, 2010.

25. M. Esteghamatian, Z. Azimifar, P. Radau, and
G. Wright, “Real time cardiac image registration during
respiration: a time series prediction approach,” Journal
of real-time image processing, vol. 8, no. 2, pp. 179–191,
2013.

26. R. Usamentiaga, J. Molleda, and D. F. Garćıa, “Fast
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