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ABSTRACT 

Along the years it has been so important for civil engineers to have 

acknowledgement about the durability of the materials in construction, especially 

about concrete. As it is known, most of the components of a structure are being 

requested to a mixed mode, which means that they are requested by forces in two 

different directions. It is very important to know about both stress intensity factors, 

in order to be able to predict how long the structure will endure until it collapses. 

This prediction can be done with the study of the Brazilian Disc, a concrete disc 

with a crack in the middle of it, requested by two symmetrical forces in different 

angles regarding the crack. The results for the stress intensity factors are calculate 

with ANSYS software. 

 

KEYWORDS 

Brazilian Disc, mixed mode, stress intensity factor, mechanic fracture, KI/KII, 

calibration curves, T – stress, crack growth. 

 

 
RESUMEN 

A lo largo de los años ha sido un tema de gran importancia para los ingenieros 

civiles el conocimiento acerca de la duración de los materiales en la construcción, 

especialmente el hormigón. Es sabido que la mayoría de los componentes que 

conforman grandes estructuras están solicitadas al modo mixto, o lo que es mismo, 

solicitadas por fuerzas en dos direcciones diferentes. Es muy importante conocer 

ambos factores de intensidad de tensión, con el objetivo de predecir la duración 

de la estructura sin que colapse. Ésta predicción se conoce con el estudio del Disco 

Brasileño, un disco de hormigón con una grieta en el medio, solicitado por dos 

fuerzas simétricas en diferentes ángulos con respecto a la grieta. Los resultados 

obtenidos para los factores de intensidad de tensión son calculados con el 

programa ANSYS. 

 

PALABRAS CLAVE 

Disco Brasileño, modo mixto, factor de intensidad de tensión, mecánica de la 

fractura, KI/KII, curvas de calibración, tensión T, crecimiento de grieta. 
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1. INTRODUCTION 

The use of concrete as a construction material is due to the large number of 

advantages that their properties have. That is why it is a very useful material for 

constructions such as buildings and structures. As a composite material, concrete 

has many applications and uses. Some of these properties are the resistance to 

corrosion and aging. 

Even so, although structures should be maintained with the aim of lasting so many 

time, some of the concrete structures built in the last decades are at the end of 

their serviceability [1,2]. 

Otherwise, concrete does not respond in a good way to tensile stresses. Because 

of this, the more used type of concrete is the prestressed concrete that along with 

steel bars allow to increase the tensile strength of this material. Prestressed 

concrete precast elements used in construction decreases time in comparison to 

the cast – in – place approach [3]. 

As important as the use and applications of concrete, is the crack analysis in 

structures. It is essential to know the stress state near the cracks present in a 

specimen in order to be able to know which way the crack will behave and in which 

directions it will grow. Some different tests can be used to carry out an investigation 

about this behaviour. 

The structural behaviour of the structures previously mentioned should be studied 

for different conditions. These structures are not only subjected to uniaxial load, 

but to mixed mode I/II (biaxial) load, this means that they are requested to two 

different types of loads. 

The Brazilian Disc test is usually used to obtain the stress intensity factors for 

different cases and conditions. It also allows engineers to know the tensile strength 

of concrete with ease. The test is a very simple test and the results are very 

approximate to the real value of the tensile strength calculated by a typical test. 

This kind of test is also known as indirect tensile test. 
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2. AIM 
The aim of this document is to study the initiation mechanism and propagation of 

a crack situated in the middle of the Brazilian disc specimen. 

The specimen will be requested by two symmetrical forces respect the diametrical 

axis until its failure. The results will be studied both cases by numerical simulation 

and by experimentally. The numerical simulation will be done by Finite Elements 

Method (FEM) in ANSYS software and it will be compared with the experimental 

results measured on the laboratory and with the results published by various 

researches. The crack study will be made based on the results obtained of the stress 

intensity factors for different sizes and different inclination angles of the relative 

crack length. 

Then, the values of Stress intensity factor will be evaluated with the results obtained 

by application two ways, numerical simulation and experimentally on the 

laboratory. The calibration curves are prepared for a selected angle between notch 

and load points. A comparison between different models and approaches will be 

done to know how different the results can be. 
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3. THEORETICAL BACKGROUND 

3.1. Concrete characteristics 

3.1.1. COMPOSITE MATERIALS CHARACTERISTICS 

Concrete is a composite material created from the union of various materials in 

which the main compound, called binder, is cement, a ceramic material. Because of 

this, concrete is also classified as a ceramic matrix composite material. It is created 

to improve the benefits of cement and has become one of the most used materials 

in construction. The properties that the concrete possesses are due to the fact that 

the matrix phase of the global compound is the ceramic material, and therefore 

acquires these properties. Concrete has some advantages such as the capacity of 

resistance to compressive forces or fire and durability. The compressive strength is 

a very important characteristic of concrete because enable to create long – life 

structures. In addition, it is possible to add various compounds to the concrete to 

further improve its properties. 

 
  Ceramic characteristics  

 

Ceramics materials are characterised by its fragility and toughness. On one hand, 

the toughness is due to the atomic bonds which are a very hard opponent to the 

dislocations movement. Dislocations are the responsible of the deformation of the 

material because they let the movement to the atomic bonds and the plastic 

deformation [4]. However, in the ceramic materials, these atomic bonds are very 

hard, so this plastic deformation is almost equal to zero, which means very hard 

materials. Parallelly, the deformation energy is very low in this family of materials, 

just the opposite respect to metallic materials. 

On the other hand, fragility is also a characteristic due to the atomic bonds. Another 

reason is the existence of surface and inner imperfections, that can grow and 

introduce into the thickness of the structure and become a crack. These cracks can 

grow in the normal direction respect the load axis, developing in the failure of the 

structure. During the hardening of the cement, appears a contraction that make 

the inherent presence of cracks [4]. This situation produces the weakness of the 

structure and can be the origin of the most important problems on structural 

analysis. These cracks can grow due to the application of a tensile load and the 

material barely gets an elastic deformation which produces the failure of the 

specimen or structure. The crack growth is carried out because the cracks which 

are oriented in a normal plane respect the load axis grows in the normal direction 

inducing the fracture mechanism. 

On the other hand, if a compression load is applied, then there is not a crack growth 

because the cracks change their orientation into the same as the compression and 

do not allow the growth [5]. 
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3.1.2. MECHANIC CHARACTERISTICS 

Tensile strength in ceramic materials is very low compared to metallic metals, this 

is due to the existence of cracks, so it depends on the fracture tenacity and on the 

crack length: 

 

𝜎 =  
  𝐾𝐼𝑐   , 
𝐶√𝜋𝑎 

(1) 

 

where  
σ is the applied pressure, 

KIc is the fracture toughness, 

C is a constant that depends on the geometry of the specimen, 

a is the crack length, 
 

The fracture intensity reaches the same value as the stress intensity factor when the 

crack is just going to grow, and the failure of the specimen occurs. 

On the other hand, tensile strength is about 15 times less than compression 

strength, so ceramic materials are very suitable to work in compression situations 

rather than be requested to tensile loads. 

3.1.3. TYPICAL TEST FOR COMPOSITE SPECIMENS 

There are so many different tests to evaluate the mechanic properties of composite 

materials, and, specifically of concrete. These tests should be following European 

standards to obtain the material’s compressive cube/cylindrical strength [6], 

flexural strength [7], Young’s modulus [8] and indirect tensile strength. It is known 

that concrete and rock have similar behaviour, so it is useful to use it to test the 

tensile strength of concrete [9]. 

The compression test’s aim is to know the compression strength of the specimen. 

It is very important for concrete structures because of its good behaviour to 

compression loads [10]. 

The bending test can be in three or four points. It is used because the stress – strain 

behaviour of fragile materials usually doesn’t get described in the tensile stress 

because two reasons: 

- It is very difficult prepare the specimens for the test. 

- There is so much difference between the results get in the tensile test and 

in the compression one. 

Because of that, the use of a specimen placed horizontally in a bending test allows 

the sample to experiment a compression state on the upper surface and a tensile 

state on the bottom surface. 

Finally, the tensile test is a very difficult test for concrete specimens, due to the high 

cost of the preparation of the sample and because it is necessary to get a very good 

alignment between the load direction and the specimen’s axis during the test. This 

is because if the alignment between both axes is not good; then can appears 

bending stresses and the results can be wrong. 

This is reason why it is used to do an indirect tensile test called the Brazilian Test. 
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3.2. Fracture Mechanics 

3.2.1. INTRODUCTION 

Fracture and, in general, structures collapse and failure, has been a problem for 

years to the society [11]. Although it is usually thought that the problem was worse 

years ago, in fact this kind of failures are worse now because of the complexity of 

structures or components, so it means the necessity of study fracture mechanics. 

In an atomic view, the fracture in a material occurs when the stress applied at the 

atomic level is enough to break the bonds that hold atoms together. 

The reason why the structures failure it generally turns into one of the following 

two categories: 

- Carelessness during design, construction or performance of the structure. 

Which also can mean the neglect on the test period of the structure. 

- Application of a new material or design: this means that if a structure is built 

with a new design different from the studied one, or if it is applied a new 

material which can change the general properties of the structure, it can 

get into failure. This is a more difficult type of failure to prevent because 

there are some factors that it is impossible to anticipate. 

3.2.2. BRITTLE FRACTURE 

There are two categories of fracture, depending on the solid type. It is possible to 

differentiate between ductile and fragile fracture. Because of the concrete 

properties, this kind of structures suffer fragile fracture. 

The ductile fracture is characterized because of the existence of plastic deformation 

before the failure of the structure, which is localized in a very distorted zone [5]. 

On the other hand, the fragile fracture is just the opposite side respect from the 

ductile fracture. This means that there is not any plastic deformation before the 

failure. This is the kind of failure that it is necessary to avoid because it occurs 

without advice and can have catastrophic consequences. 

3.2.3. GRIFFITH’S THEORY 

In 1920, according to the first law of thermodynamics, when a system goes from 

non-equilibrium to equilibrium, there is a net decrease in energy, and so Griffith 

applied this idea to the formation a crack. The Griffith’s Theory said that the low 

resistances in fragile solids are produced because of the crack’s existence in the 

inner or outer surface [4]. These cracks are produced because of the manufacturing 

processes produced them. 

As Inglis [12] published, the presence of a crack induces the concentration of 

stresses in the crack tips, which produces the actuation of a stress which can be 

higher than the one applied. The fracture is produced when this stress overcome 

the material’s resistance. 
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The located stress on the crack tip (A) is: 

 
2𝑎 

𝜎𝐴 = 𝜎 (1 + 
𝑏 

), 
(2) 

where  
σA is the located stress at the crack tip A, 

σ is the applied stress, 

a and b are the two axes of the ellipse. 
 

If the major axis, a, increases relative to b, the elliptical hole begins to take the 

appearance of a sharp crack and Inglis decide to express the previous equation in 

terms of the radius of the curvature ρ. 

 
𝑎 

𝜎𝑎 = 𝜎 (1 + 2√ ), 
𝜌 

(3) 

 

where  
σa, σ and a means the same as in the previous equation, 

ρ is the radius of curvature. 
 

 

Figure 1: Elliptical hole in a flat hole. 

 

But if it is assumed the following: 

-  a >>>> b, which means that the crack length is too much higher than the 

crack width 

- 𝜌 = 𝑏2⁄𝑎, being ρ the curvature’s radius on the crack tip. 

Then the located stress at the crack tip is: 

 

1 

𝜎 
𝑎   2 

𝑙𝑜𝑐  = 2𝜎 (  ) , 
𝜌 

 

(4) 
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Figure 2: Sharp microcrack at the tip of a macroscopic crack. 

 

The equation (4) predicts an infinite stress at the tip of an infinitely sharp crack 

(ρ=0). This caused some controversy because any material can support an infinite 

stress at the tip. This paradox motivated Griffith to develop his theory based on 

energy rather than local stress on the crack’s tip. 

When the located stress reaches the critical stress value, it results into the following 

equation: 
 1 

𝐸𝛾𝑠   2 

𝜎𝑓 = ( 
4𝑎 

) , 

 

(5) 

 

where  
σf is the remote stress at failure, 

E is the Young’s modulus, 

ϒs is the surface energy per unit area. 
 

But this equation is not exactly because it cannot be applied to the atomic level. Due 

to this fact, Gehlen and Kanninen [13] developed the following equation in where 

discrete atoms were connected by nonlinear springs: 

 
 1 

𝜎𝑅 = 𝜎𝑚𝑎𝑥 = (𝛾𝑠𝐸⁄𝑎)2, 
(6) 

 

where  
a is the crack length, 

ϒs and E are the same terms as the previous equation. 

 
 

Figure 3: Crack propagation in an ideally brittle material. 
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Matching 𝜎𝑙𝑜𝑐 = 𝜎𝑅, then: 
 1 

𝛾𝐸 𝜌    2 

𝜎𝑅  = [(
4𝑎

) (  )] . 
𝑎 

(7) 

And if ρ = a = 0.2 mm and ϒ = 10-2Ea, then: 

 

𝜎𝑅 = 10−3𝐸. (8) 

 

Figure 4: Necessary stress to overcome atomic bonds. 

 
3.2.4. TENSIONAL STATE IN FRONT OF THE CRACK. STRESS 

ANALYSIS OF CRACKS 

Applying the elasticity theory for a solid of any geometry with a crack a subjected 

to external forces and assuming isotropic linear elastic material behaviour, it is 

possible to calculate the stress field expressions in the surroundings of the cracks. 

Defining a polar coordinate axis with the origin at the crack tip (see Figure 5), the 

stress field is given by the following expression [5]: 

 

 

 
 

where: 

- fij is a dimensionless function that depends on the θ angle, 

- K is the stress intensity factor, 

- σij is the stress tensor, 

- Both r and θ are defined in the Figure 5. 

𝜎 = ( 
𝐾 

) 𝑓 (𝜃) + 𝐶𝑟0 + 𝐷𝑟
 1 

+ 𝐸𝑟1+ . . ., 
𝑖𝑗    𝑖𝑗 2 

√2𝜋𝑟 

(9) 
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Figure 5: Definition of the coordinate axis and its stresses on the crack tip region. 

 

The exact solution of the equation is a Taylor series in which only the leading term 

is important in the surroundings of the crack, in where it is possible to depreciate 

the rest of the terms. The higher – order terms depend on geometry, but the 

solution for any given configuration contains a leading term that is proportional to 

1⁄√𝑟. Note that for r = 0, this equation describes a singularity. At this point, which 

is the crack tip, the stress tends to ∞. 

 
3.2.5. STRESS INTENSITY FACTOR 

Each mode of loading produces the 1⁄√𝑟 [4] singularity at the crack tip, but the 

stress intensity factor K and the dimensionless factor fij depend on the mode. 

On the other hand, the stress intensity factor K is different for the three following 

modes, and each one differentiates between them as KI, KII, KIII. 

The three possible modes that can be applied individually or combined in any 

cracked solid are: 

- Mode I: the principal load is applied normal to the fracture plane (crack 

plane). It tends to open the crack. 

- Mode II: there is a share load that slides one crack face with respect to the 

other face. 

- Mode III: there is a share load that slides the crack in a parallel direction to 

the crack face. 

A cracked body can be loaded in any one of these modes or a combination of two 

or three modes. 
 

Figure 6: The three modes of loading that can be applied to a crack. 
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The stress fields ahead of a crack tip in an isotropic linear elastic material can be 

given by: 

 

lim 𝜎(𝐼) =
 𝐾𝐼 𝑓(𝐼)(𝜃) for Mode I, 

𝑟→0   𝑖𝑗 √2𝜋𝑟 𝑖𝑗 
(10) 

lim 𝜎(𝐼𝐼) =
 𝐾𝐼𝐼 𝑓(𝐼𝐼)(𝜃) for Mode II, 

𝑟→0   𝑖𝑗 √2𝜋𝑟 𝑖𝑗 

 

(11) 

lim 𝜎(𝐼𝐼𝐼) =
 𝐾𝐼𝐼𝐼 𝑓(𝐼𝐼𝐼)(𝜃) for Mode III. 

𝑟→0   𝑖𝑗 √2𝜋𝑟 𝑖𝑗 

 

(12) 

In a mixed – mode problem, in other words, more than one load mode is present, 

the individual contributions to a given stress component are additive: 

 

𝜎
(𝑡𝑜𝑡𝑎𝑙) 

= 𝜎
(𝐼) 

+ 𝜎
(𝐼𝐼) 

+ 𝜎
(𝐼𝐼𝐼)

.
 

𝑖𝑗 𝑖𝑗 𝑖𝑗 𝑖𝑗 (13) 

 

The following tables show detailed expressions for singular stress fields for Mode I 

and Mode II, displacement relationships for Mode I and Mode II and nonzero stress 

displacement components for Mode III. 

 

 Mode I Mode II 

𝜎𝑥𝑥 
𝐾𝐼 𝜃 𝜃 3𝜃 
  cos (  ) [1 − sin (  ) sin ( )] 

√2𝜋𝑟 2 2 2 
− 

𝐾𝐼𝐼 
sin 

𝜃
) [2 + cos (

𝜃
) cos (

3𝜃
)] 

   ( 
√2𝜋𝑟 2 2 2 

𝜎𝑦𝑦 
𝐾𝐼 𝜃 𝜃 3𝜃 
  cos (  ) [1 + sin (  ) sin ( )] 

√2𝜋𝑟 2 2 2 

𝐾𝐼𝐼 𝜃 𝜃 3𝜃 
  sin (  ) cos ( ) cos ( ) 

√2𝜋𝑟 2 2 2 

𝜏𝑥𝑦 
𝐾𝐼 𝜃 𝜃 3𝜃 
  cos (  ) sin ( ) cos ( ) 

√2𝜋𝑟 2 2 2 

𝐾𝐼𝐼 𝜃 𝜃 3𝜃 
  cos (  ) [1 − sin (  ) sin ( )] 

√2𝜋𝑟 2 2 2 

𝜎𝑧𝑧 0 (Plane stress) 

𝜈 (𝜎𝑥𝑥 + 𝜎𝑦𝑦 ) (Plane strain) 

0 (Plane stress) 

𝜈 (𝜎𝑥𝑥 + 𝜎𝑦𝑦 ) (Plane strain) 

𝜏𝑥𝑧, 𝜏𝑦𝑧 0 0 

Note: 𝜈 is Poisson’s ratio. 

Table 1: Stress Fields Ahead of a Crack Tip for Mode I and Mode II in a Linear 

Elastic, Isotropic Material. 
 

 Mode I Mode II 

𝑢𝑥 
𝜃 𝐾𝐼 

√ 
𝑟 

cos (
𝜃

) [𝜅 − 1 + 2𝑠𝑖𝑛2 ( )] 
2𝜇    2𝜋 2 2 

𝜃 𝜃 𝐾𝐼𝐼 
√ 

𝑟 
sin ( ) [𝜅 + 1 + 2𝑐𝑜𝑠2 ( )] 

2𝜇 2𝜋 2 2 

𝑢𝑦 
𝜃 𝜃 𝐾𝐼 

√ 
𝑟 

sin ( ) [𝜅 + 1 − 2𝑐𝑜𝑠2 ( )] 
2𝜇    2𝜋 2 2 

𝜃 𝜃 𝐾𝐼𝐼 
√ 

𝑟 
cos ( )[𝜅 − 1 − 2𝑠𝑖𝑛2 ( )] 

2𝜇 2𝜋 2 2 

Note: 𝜇 is the shear modulus. 𝜅 = 3 − 4𝜈 (plane strain) and 𝜅 = 
3−𝜈 

(plane stress). 
1+𝜈 

Table 2: Crack – Tip Displacement Fields for Mode I and Mode II (Linear Elastic, 

Isotropic Material). 



ALEJANDRO PARCERO ALONSO 16 

 

 

𝐾𝐼𝐼𝐼 𝜃 
𝜏𝑥𝑧 = − sin ( ) 

√2𝜋𝑟 2 
𝐾𝐼𝐼𝐼 𝜃 

𝜏𝑦𝑧 = cos ( ) 
√2𝜋𝑟 2 

2𝐾𝐼𝐼𝐼 𝑟 𝜃 
𝑢𝑧 = 

𝜇 
√

2𝜋𝑟 
sin (

2
) 

Table 3: Nonzero Stress and Displacement Components in Mode III (Linear Elastic, 

Isotropic Material). 

Considering load Mode I and θ = 0, the shear stress 𝜏𝑥𝑦 is also cancelled (the crack 

plane is a principal plane) and the stresses in the x and y directions are equal as 

following: 
𝐾𝐼 

𝜎𝑥𝑥  =  𝜎𝑦𝑦  = . 
√2𝜋𝑟 

 

(14) 

The next figure shows the variation of the σyy stress normal to the crack plane versus 

the distance r from the crack tip. The previous equation is only valid near the crack 

tip, where the 1⁄√𝑟 singularity dominates the stress field. 
 

In this way, it is defined a singularity – dominated zone in the surroundings of the 

crack tip where all the present stresses in every point of the crack are directly 

proportional to the stress intensity factor K for each mode. this stress intensity 

factor defines the amplitude of the crack – tip singularity. Moreover, if K is known, 

then it is possible to solve for all components of stress, strain and displacement as 

a function of r and θ. This single – parameter description of the area placed in the 

proximities of the crack tip is the most important concept of the Fracture 

Mechanics. 

On the other hand, the stress intensity factor K is an expression that only depends 

on the stress applied 𝜎, the crack length a, and the specimen’s geometry C, as 

following: 

 
 

 

𝐾 = 𝐶𝜎√𝜋𝑎. (15) 

 
 

Figure 7: Variation of σyy on the crack tip area. 
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3.2.6. CRACK TIP PLASTICITY. 

The expressions that defined the linear elastic stress state in the surroundings of 

the crack indicated that these equations tend to infinite at the crack tip (r = 0). 

However, in real materials stresses are always finite and in that part of the crack the 

yield strength of the material is overcome, it is plastically deformed and the 

material stops being elastic – linear. 

In ceramic materials, as concrete o cement, this plastic deformation is very low, 

and the failure occurs almost immediately when the yield strength is overcome. It 

is possible to calculate the size of the plastic zone (assuming spherical zone) 

equalizing the y direction stress to the yield strength, and assuming crack plane 

(θ=0), as follows: 
𝐾 

𝜎𝑦𝑦  = = 𝜎𝑦𝑠, 
√2𝜋𝑟 

 

(16) 

where 

- σyy is the normal stress in a linear elastic material, 

- σys is the yield strength. 

 

Then, the size of the plastic zone will be: 

 
1  𝐾 

2
 

𝑟  = (    
𝐼  

) . 
𝑦 2𝜋 𝜎𝑦𝑠 

 

(17) 

 

It can be demonstrated that the size of the plastic zone is twice higher, in other 

words, the value of ry corresponds to the radius of this zone, because it has been 

supposed that this zone is spherical. 

If we despise the strain hardening, then the stress distribution for r = ry can be 

represented by a horizontal line at σyy = σys, and also the stress singularity is 

truncated by yielding at the crack tip. This is illustrated on the Figure 8: 
 

Figure 8: Plastic zone in the front of the crack. 
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3.2.7. PRINCIPLE OF SUPERPOSITION 

As well as cannot be summed a normal stress with a shear stress, it is impossible 

to be summed the stress intensity factors as long as the mode of loading in 

consistent: 

 

𝐾(𝑡𝑜𝑡𝑎𝑙) = 𝐾(𝐴) + 𝐾(𝐵) + 𝐾(𝐶), 𝐼 𝐼 𝐼 𝐼 (18) 

but, 
𝐾(𝑡𝑜𝑡𝑎𝑙) ≠ 𝐾𝐼 + 𝐾𝐼𝐼 + 𝐾𝐼𝐼𝐼. (19) 

 
3.2.8. MIXED – MODE FRACTURE 

When two or the three modes of loading are present, the following equation 

indicates that the energy release rate contributions from each mode are additive: 

 
𝐾 

2 𝐾 
2 𝐾 

2
𝐼 

G = 𝐼    + 𝐼𝐼  + 𝐼𝐼  , 
𝐸′ 𝐸′ 2𝜇 

(20) 

 

where 

and 

That equation gives the energy release rate for planar crack growth at an angle 90˚ 

- β from the applied stress. 

 

Figure 9: Propagation of a crack not orthogonal to the applied normal stress. 

 

The last figure illustrates that when fracture occurs, the crack tends to propagate 

orthogonal to the applied normal stress, in other words, the mixed – mode crack 

becomes a Mode I crack. 

𝐸 = 𝐸′ Young’s modulus for plane stress, (21) 

 

𝐸′ = 
𝐸 

Young’s modulus for plane strain. 
1−𝜈2 

(22) 
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PROPAGATION OF AN ANGLED CRACK.  

For uniaxial loading, the stress intensity factor for Mode I and Mode II are given by: 

 

𝐾𝐼 = 𝐾𝐼(0) cos2 𝛽, (23) 

𝐾𝐼 = 𝐾𝐼(0) cos 𝛽 sin 𝛽. (24) 

 

Where KI(0) is the Mode I stress intensity when β = 0˚. The crack – tip stress fields 

for the Mode I portion of the loading are given by: 

 
𝐾𝐼 5 𝜃 1 3𝜃 

𝜎𝑟𝑟 = [   cos (   ) −  cos ( )], 
√2𝜋𝑟   4 2 4 2 

(25) 

𝐾𝐼 3 𝜃 1 3𝜃 
𝜎𝜃𝜃 = [   cos (   ) +  cos ( )], 

√2𝜋𝑟   4 2 4 2 
(26) 

𝐾𝐼 1 𝜃 1 3𝜃 
𝜏 𝑟𝜃 = [   sin (   ) +   sin ( )]. 

√2𝜋𝑟   4 2 4 2 
(27) 

The singular stress fields for Mode II are given by: 

 
𝐾𝐼𝐼 5 𝜃 3 3𝜃 

𝜎𝑟𝑟 = [−    sin (   ) +   sin ( )], 
√2𝜋𝑟 4 2 4 2 

(28) 

𝐾𝐼𝐼 3 𝜃 3 3𝜃 
𝜎𝜃𝜃 = [−    sin (   ) −   sin ( )], 

√2𝜋𝑟 4 2 4 2 
(29) 

𝐾𝐼𝐼 1 𝜃 3 3𝜃 
𝜏𝑟𝜃 = [   cos (  ) + cos ( )]. 

√2𝜋𝑟   4 2 4 2 
(30) 

In the case that the crack forms an infinitesimal kink at an angle α from the plane 

of the crack, then the local stress intensity factors at the tip of this kink differ from 

the nominal K values of the main crack. 

 

 

Figure 10: Infinitesimal kink at the crack tip and the x – y coordinate system. 

 

Defining a local x – y coordinate system at the tip of the kink and considering the 

previous equations, if these equations define the local stress fields, the local Mode 
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I and Mode II stress intensity factors at the tip are obtained by summing the normal 

and shear stresses at α: 

 
 

 

𝑘𝐼(𝛼) = 𝜎𝑦𝑦 √2𝜋𝑟 = 𝐶11𝐾𝐼 + 𝐶12𝐾𝐼𝐼, (31) 

 
 

𝑘𝐼𝐼(𝛼) = 𝜏𝑥𝑦 √2𝜋𝑟 = 𝐶21𝐾𝐼 + 𝐶22𝐾𝐼𝐼, (32) 

 

Where kI and kII are the local stress intensity factors at the tip of the kink and KI and 

KII are the stress intensity factors for the main crack, given in the equations (23) and 

(24). The coefficients Cij are given by: 
 

 
3 𝛼 1 3𝛼 

𝐶11 = 
4 

cos (
2

) + 
4 

cos ( 
2 

), 
(33) 

3 𝛼 3𝛼 
𝐶12 = − 

4 
[sin (

2
) + sin ( 

2 
)], 

(34) 

1 𝛼 3𝛼 
𝐶21 = 

4 
[sin (

2
) + sin ( 

2 
)], 

(35) 

1 𝛼 3 3𝛼 
𝐶22 = 

4 
cos (

2
) + 

4 
cos ( 

2 
), 

(36) 

 

The energy release rate for the kinked crack is given by: 

 
𝑘 

2(𝛼) + 𝑘2 (𝛼) 
𝐺(𝛼) = 𝐼 𝐼𝐼 . 

𝐸 

(37) 

The following figure illustrates a plot of G(α) normalized by G(α = 0). 

 

Figure 11: Local energy release rate at the tip of a kinked crack. 
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The peak in G(α) at each β corresponds to the point where kI shows a maximum 

and kII = 0. So, the maximum energy release rate is given by: 

 
𝑘 

2(𝛼∗) 
𝐺(𝛼) = 𝐼 . 

𝐸 

(38) 

Where α* is the angle at which both G and kI shows a maximum and kII = 0. Crack 

growth in a homogeneous material should initiate along α*. 

 

Figure 12: Optimum propagation angle for a crack oriented at an angle β from the 

stress axis. 

 

This figure exhibits the effect of β on the optimum propagation angle. The dashed 

line corresponds to propagation perpendicular to the remote principal stress. 

 
3.2.9. T – STRESS 

The T – stress is a parameter that allows engineers to characterize the level of 

constraint and the fields of stresses and displacements around the crack tip [14]. 

This parameter represents the stress parallel to the crack line, only in plane 

conditions. 

When the crack is inclined with respect to the action of the loads, as this thesis’ 

case. Generally, the stress intensity factor is enough to characterize the stress state 

and the displacements, but there are some cases where the parameter T – stress 

can be large in comparison with the other parameters, reason why it is important 

to take it into [15]. 

There are many methods to calculate the T – stress [16]. As examples, different 

approaches stand out, as Fett [17,18] who proposed several solutions for the T – 

stress for a centrally cracked BD with different crack lengths and loading conditions 

or Ayatollahi et al. [19,20] who obtained the elastic T – stress directly by evaluating 

the stresses along the crack flanks and near the crack tip using the FEM. 
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However, apart from these methods, one of them can explain the T – stress 

parameter referring to the characterization of the crack tip by polar coordinates, as 

follows: 

 

𝑇 = lim(𝜎𝑥𝑥 − 𝜎𝑦𝑦) , 
𝑟→0 𝜃=0 

(39) 

where 

- σxx and σyy represent the stress components along the axis x and y, 

- θ is the polar coordinate angle. 

For θ equals to zero, then the T – stress can be calculated by the difference between 

σxx and σyy. 

 
3.2.10. SINGLE – PARAMETER VERSUS MULTI – PARAMETER 

APPROACH 

The linear elastic fracture mechanics (LEFM) describe the stress distribution state in 

cracked components in terms of the stress intensity factors. This approach is the 

most common for assessment of fracture behaviour of several structures and 

materials [21]. 

The LEFM is also called as single – parameter because the stress intensity factor is 

the only parameter which is taken into account in order to define the stress and 

displacements fields near the crack tip. However, the LEFM has several limitations. 

The most important is that the extent of the zone of non – linear behaviour that 

should be small enough in comparison to the typical structural dimensions. 

For materials as composite (as concrete or ceramic, as cement) that are quasi – 

brittle materials, this restriction is too strong because there are many parameters 

which have to be considered in the process of their fracture such as 

heterogeneities, microcracks or other defects [11]. 

 

In general, the fracture process of ceramic materials is characterized by the 

existence of a large fracture zone. Thus, the principles of the conventional linear 

elastic fracture mechanics concept are not valid for this case. 

On the other hand, the multi – parametric approach is used to the problems have 

been explain before. The use of more one or two parameters to approximate the 

stress and displacement states present a gear advantage for materials as ceramic. 

This multi – parametric approach is based on the Williams expansion. 

 
3.2.11. WILLIAMS EXPANSION. 

The Williams solution of the crack-tip stress and displacement field distribution in 

a cracked specimen provides a reasonable approximation. It is expressed in a form 

of a series expansion, particularly as a power series. This solution was originally 

delivered for a homogeneous elastic isotropic cracked material with an arbitrary 

remote loading. 
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The stress series expansion is the following: 

 
∞ ∞ 

𝜎 = ∑ 
𝑛 

𝑟
 𝑛 

− 1 𝐴 𝑓𝜎 (𝜃, 𝑛) + ∑ 
𝑚 

𝑟
 𝑚 

− 1 𝐵 𝑔𝜎 (𝜃, 𝑚) 𝑖, 𝑗 ∈ {𝑥, 𝑦}, 
2 2 

𝑖𝑗 2 𝑛   𝑖𝑗 2 𝑚 𝑖𝑗 
𝑛≠1 𝑚=1 

 

(40) 

∞ ∞ 
 𝑛  𝑚 

𝑢𝑖 = ∑ 𝑟2 𝐴𝑛 𝑓𝑢 (𝜃, 𝑛, 𝐸, 𝜈) + ∑ 𝑟 2 𝐵𝑚 𝑔𝑢 (𝜃, 𝑚 , 𝐸, 𝜈) 𝑖, 𝑗 ∈ {𝑥, 𝑦}. 
𝑖 𝑖 

𝑛=0 𝑚=0 

 

(41) 

 

3.3. BRAZILIAN DISC TEST 

3.3.1. INTRODUCTION 

The BD test is an indirect tensile test, representative and simple, that is useful to 

obtain the maximum load in a specimen before the collapse. Is a widely used test 

to evaluate the tensile strength and is specified in the standards [22]. 

This test is thought to be carried out on cylindrical specimens, although it is 

possible to carry out using prismatic or cubic specimens, but it is necessary the use 

of correction coefficients that the standard provides. 

 
3.3.2. TEST DESCRIPTION 

This essay consists in the application of a diametral compression load in a 

cylindrical specimen along two opposite generatrixes until the failure. This load 

configuration induces a relatively uniform load tensile along the diameter of the 

plane of the vertical load, and this traction spend the specimen and produces the 

failure. 
 

Figure 13: The specimen is loaded by compression loads along the vertical 

diametral plane. 

 

In order to load the specimen, it is necessary to situate the example horizontally 

between the two plates of a press. As part of this mechanism there are two 

elements that oversee avoid the local failure of the specimen during the test. It will 

be necessary to consider the temperature of the test because the material 

behaviour will widely depend on this variable. 

The following are some of the most important advantages of this test: 
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- Is a very simple test. 

- The failure is not affected by the conditions of the specimen’s surface. 

- The applied load can be static or dynamic, modifying the press type in 

function of the type of study. 

Aside from the tensile strength information, this test can inform about the elastic 

properties as static/dynamic elasticity module or the permanent deformation. 

 
3.3.3. THEORETICAL STRESS DISTRIBUTION 

The theoretical solution of the stress distribution inside a cylindrical specimen is 

based on the analysis of the elastic and linear behaviour of a material. 

When a diametral compression load is applied to a cylindrical specimen, it develops 

a bi-dimensional stress state inside. The applied load along the two-diametrical 

opposite generatrixes describes horizontal and vertical main stress planes. 

Particularly, on the vertical plane appears a variable compression stress and a 

theoretical uniform tensile stress. 

If an analysis if the break is made, it is shown that the initial crack appears when 

the horizontal tensile stress developed on the vertical plane reaches the tensile 

strength value of the material. 

Figure 14: Theoretical stress distribution on horizontal and vertical axis. 

 
3.3.4. TENSILE STRENGTH 

The initial failure occurs by tensile break, therefore, the indirect tensile strength in 

the failure moment: 

 
2𝑃𝑚𝑎𝑥 

𝜎 = , 
𝜋𝑡𝑑 

(48) 

where 
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- 𝜎 is the indirect tensile strength to the failure, 

- Pmax is the maximum load or failure load, 

- t is the thickness of the specimen, 

- d is the diameter of the specimen, 

- x, y are the coordinates respect from the specimen’s centre. 

 
According to this linear load conditions, the specimen would collapse near the load 

points due to the compression stresses and not in the central area due to the tensile 

stresses. 

However, this compression stresses are considerably reduced distributing the 

loading along the load plate. This plate reduces the vertical compression stresses 

and change the horizontal stresses along the vertical diameter from tensile to 

compression near the application points. The resulting stress distribution is 

illustrated on the following figure. 
 

Figure 15: Stress distribution in a specimen subjected to a load applied on a curved 

support load plate. [23] 
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4. NUMERICAL MODELLING IN ANSYS 
The numerical modelling of the test has been done in ANSYS software [24]. ANSYS 

is a software of engineering simulation which allows engineers to know how a 

product will work in a certain environment. This behaviour is studied under the 

ideas of the FEM to structures. 

ANSYS is divided in three different tools, called modules, which are pre – processor, 

processor, post – processor. The pre – processor creates the geometry and the 

meshing. In this part is also defined the material properties. In the processor part 

is applied the forces and the boundary conditions and it is obtained the solution 

for the problem. Finally, in the post – processor is possible to have a visualization 

of the results as well as the deformed shape of the geometry. The visualization of 

the results included a list of the results in a table. 

In this thesis, the geometry of the model has been modelled as a 2D model with 

plane strain conditions. As it has been said before, one of the aims of the thesis is 

obtain the calibration curves for each mode of stress intensity factors. 

 

4.1. GEOMETRY 

The modelled disc has the following dimensions diameter, D = 100 mm with 

relative crack length, a/R = [0,1; 0,9] and notch angle α = 0˚, 90˚. 

The aim of this variety of the crack ratio and the notch angle is to study the stress 

intensity factors to different crack length. 
 

Figure 16: Scheme of geometry of a typical BD specimen with a load arbitrary 

position alongside crack. 

 

 

4.2. ELEMENT TYPE 

There so many element types available to use in analysis. These elements are 

identified by a name consisting of a group label and a unique identifying number. 
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Each element is identified by a maximum of eight characters. Depending upon the 

element type used it is possible to model solids in 2D or 3D. 2D models are defined 

in a XY plane, and at the time that a 3D element is included on the set, the model 

becomes 3D. 

The command KEYOPT sets the element type, which are defined on the ET 

command. In this thesis the element type used is PLANE183. This element type is a 

higher order 2 -D, 8 – node or 6 – node element (see Figure 17). This element has 

two degrees of freedom at each node: translations in the nodal x and y directions. 

This element can be used as a plane element (plane stress, plane strain and 

generalized plane strain) or as an axisymmetric element [25] 
 

Figure 17: Element type PLANE183 2D 8 – node taken from [24]. 

 

 

Figure 18: Element type PLANE183 used in ANSYS. 

 

In general, four shapes of elements are possible to use: keypoints, lines, areas and 

volumes. However, in this thesis will be used only the first ones, in order to create 

a 2D solid. 
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KEYPOINTS 
 

Keypoints refer to points that are created to define geometric entities. In other 

words, keypoints are necessary to model the specimen. 

 
LINES 

 

As well as keypoints are necessary to define geometric entities, lines also, because 

they join one keypoint with another, creating a complete 2D entity. It will be 

necessary to create both straight and arc lines. 

 
AREAS 

 

Areas define the space between three or more lines with the aim of creating a 2D 

solid. It is important to note that it is possible to create an area both joining lines 

between them or keypoints. 

 

4.3. MATERIAL PROPERTIES 

The material properties used in this model are the typical properties for concrete 

C50/60: 

 

 YOUNG’S MODULUS POISSON’S RATIO 

CONCRETE C50/60 44 GPa 0.2 

Table 4: Material Properties for concrete C50/60 used on the experiment. 

 

Figure 19: Material properties in ANSYS. 

 

Note that the units used in ANSYS are Newtons (N) and millimetres (mm). That is 

the reason why EX is 44000 MPa (N/mm2) what it is 44 GPa = 44000 MPa. 
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4.4. MODELLING OF THE SPECIMEN 

Once the element type and the material properties are defined it is necessary to 

follow the following steps in order to create the specimen model. 

 
4.4.1. MODELLING OF THE KEYPOINTS 

There is a total of 53 keypoints, but not all of them are modelled in the same way. 

This means that there are some keypoints in Cartesian coordinate system, and 

others that are modelled in cylindrical coordinate system. 

First of all, it is necessary to model the first keypoint on the coordinate’s origin 

(0,0) which will be the one that will be referenced by the rest of the keypoints. 

 

 

Figure 20: First and second keypoints. Keypoint number 2 at the coordinate (1,0) in 

relation with the first keypoint which is on the coordinate origin. 

 

 

Figure 21: Crack tips of the specimen. 

 

The keypoints modelled in the Figure 21 are in the Cartesian coordinate system. In 

that figure it is possible to appreciate the shape of the crack tip in both sides of the 

crack length. 

Note also that there are two keypoints at the same three locations. This is because 

the crack length will tend to open once the loads are applied and it is necessary to 

study the situation for each part. This is illustrated in the next figures: 
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Figure 22: Crack tip left part. 

 

 

Figure 23: Crack tip right part. 

 

The rest of the keypoints belong to the peripherical contour and it is necessary to 

use the cylindrical coordinate system. 

In order to use this new coordinate system, is necessary to use the LOCAL 

command to use the cylindrical coordinate system instead of the Cartesian one. 
 

Figure 24: Periphery contour keypoints. 
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4.4.2. MODELLING OF THE LINES 

There is a total of 72 lines. In the same way as the keypoints, not all the lines are 

modelled equally. This means that some lines will be modelled in the Cartesian 

coordinate system and others in the cylindrical coordinate system. 

For the keypoints of the crack tip the modelled lines will be on the Cartesian 

coordinate system, but since the current coordinate system is cylindrical, it is 

necessary to use a new command to call the previous coordinate system and not 

use the LOCAL command again. This new command is CSYS. 
 

Figure 25: Lines in the surroundings of the crack. 

 

For the lines in the periphery contour, it is necessary to call the cylindrical 

coordinate system, so it is necessary to use the CSYS command before modelling 

the lines. 

 

 

Figure 26: Lines in the periphery contour. 
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Once the lines are modelled, the next step is model the areas, but as it has been 

said before, areas modelled from lines have a maximum number of 10 lines. So, 

because of that, it is necessary to divide the first and the third quarters of the 

specimen into different geometries in order to model areas. These new lines will 

be in the Cartesian coordinate system. 
 

Figure 27: Lines dividing areas. 

 
4.4.3. MODELLING AREAS 

 
There is a total of 20 areas, all of them modelled in the Cartesian coordinate system. 

 

Figure 28: Areas modelling. 
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4.5. MESHING 

Meshing is defined as the process of dividing the whole component into several 

elements so that whenever the load is applied on the component it distributes the 

load uniformly called as meshing. If the solid is not mesh, then the load 

distribution once applied is not uniform and it is possible to get irregular or faulty 

results. It is important that the size of the divided elements be as small as possible 

so that the total number of elements divided must be as large as possible, 

helping the results to be accurate. It is necessary to use the KSCON command. 

The KSCON command specifies a keypoint about which an area mesh will be 

skewed. During meshing, elements are initially generated circumferentially about 

and radially away from the keypoint. It should be noted that only one concentration 

keypoint per unmeshed area is allowed. 

 

Figure 29: Meshing of the specimen. 

 
4.6. BOUNDARY CONDITIONS 

The boundary conditions are the loads and constraints that represent the effect of 

the surrounding environment on the model. 

In this thesis, the boundary conditions that are applied to the model are the forces 

and the support. It will be a force applied symmetrically opposed to the support, 

with the aim of simulate the two symmetrical forces applied in the original test. 

 

 

4.6.1. Modelling of the support 

For the modelling of the support it is necessary to select the nodes where the 

displacements on X and Y direction will be restricted. First, it is necessary to call the 

solution processor of the program, in order to be able to model the boundary 

conditions and get the final solution of the calculation. Once the solution interface 

is active, it is possible to model the support. 
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It is necessary to write the NSEL command to select the nodes and specify the 

restriction of the displacement. Finally, the nodes and the elements drawing will be 

done. This is shown on the following figures. 

 

 

Figure 30: Boundary conditions: displacement constraints on X and Y direction. 

Nodes drawing. 

 

 

Figure 31: Boundary conditions: displacement constraints on X and Y direction. 

Elements drawing. 



ALEJANDRO PARCERO ALONSO 35 

 

 

4.6.2. MODELLING OF THE FORCES 

 
As the force must be diametrically applied, then it will have two components, one 

in the X direction and the other on the Y direction. The value of the force will be 

100 N. The way to model the force is the same as the support. 

 

 

Figure 32: Boundary conditions: Forces on node for α = 45˚ and a/R = 0.1. Nodes 

drawing. 

 

 

Figure 33: Boundary conditions: Forces on node for α = 45˚ and a/R = 0.1. 

Elements drawing. 
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4.7. SOLUTION 

The solution command is active and now is necessary to exit the processor interface 

and start the database results postprocessor. 

In order to calculate SIFs of each force angle and crack length ratio, is necessary to 

set the path where the solution will be calculated. This path will be both sides of 

the crack tip, where all the stresses located on every point of the crack tip are 

directly proportional to the stress intensity factor. Because of that, if the SIF is 

known, then all the stress components of that region are also known. The path is 

modelled with the LPATH command in which it is necessary to specify the nodes 

that are going to be part of the path. 

 

 

 

 

 

 

(a) (b) 

 

Figure 34: (a) Nodes used for the crack displacement in a full – crack model, taken 

from, (b) the path defined for a full – crack model. [26]. 

Finally, the most important part and the last step of the modelling part is the KCALC 

command which calculates the SIF results. 

In this thesis, because the model has been modelled as one unique solid, it will be 

necessary five nodes on the path. On the same way, it has been working on plane 

stress condition. In my case, I will print local displacements in order to see how the 

crack tip has moved from its original position. 
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Figure 35: KCALC command for α = 45˚ and a/R = 0,1. The same results are 

shown on the ANNEX II: “TABLES AND RESULTS”. 
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5. RESULTS 

 
5.1. SPECIMEN’S DATA 

The data used to obtain the SIFs for each ratio of the crack length are shown on 

the following tables: 

 

 

CRACK LENGHT 

 

RATIO a/R 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

a [mm] 7.5 15 22.5 30 37.5 45 52.5 60 67.5 

a [m] 0.0075 0.015 0.0225 0.03 0.0375 0.045 0.0525 0.06 0.0675 

Table 5: Crack relative length for different ratio a/R. 
 

DATA 

P [N] 100 

D [mm] 150 

R [mm] 75 

B [mm] 1 

Table 6: Specimen's measures and external force. 

5.2. STRESS INTENSITY FACTORS 

On the following graphs it can be seen that the SIFs are dependent on the crack 

angle under the same force value (P = 100 N). These results were obtained using 

the FE software ANSYS with the commands explained before. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Graph 1: Stress intensity factor for mode I, versus the crack angle. 
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Graph 2: Stress intensity factor for mode II, versus the crack angle. 

 

 

5.3. CALIBRATION CURVES 

The calibration curves can be calculated from the following equations: 

 
 

𝐾𝐼 𝑅𝐵 √𝜋 𝑎 
𝑓𝐼    (𝛼. 𝑎⁄𝑅) = √ , 

𝑃 √𝑎 𝑅 

 

(49) 

𝐾𝐼𝐼 𝑅𝐵 √𝜋 𝑎 
𝑓𝐼𝐼   (𝛼. 𝑎⁄𝑅) = √   , 

𝑃 √𝑎 𝑅 
(50) 

 

where  
KI is the stress intensity factor for Mode I, taken from ANSYS, 

R, B, a are measured from the specimen, 

P is the applied force, 
 

By substituting the values of the SIFs taken from ANSYS and the specimen’s data 

on the previous equations it is possible to obtain the calibration curves for different 

angles and ratios of the crack length, that allow to get the SIFs for several 

geometries. The following graphs show that relationship: 
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Graph 3: Calibration curve 𝑓𝐼 (𝛼, 𝑎/𝑅) for mode I, versus the crack angle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Graph 4: Calibration curve 𝑓𝐼𝐼 (𝛼, 𝑎/𝑅) for mode II, versus the crack angle. 
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6. EXPERIMENTAL MEASUREMENT 
 

The experimental results were taken by Stanislav Seitl, Petr Miarka and Vlastimil 

Bílek [27]. 

6.1. MATERIAL 

This type of material, C50/60, is a typical material used for the pre – stressed precast 

elements and shows very good properties such as its high compressive and tensile 

strength. The studied concrete contains 450 kg of CEM I 42.5 R, the water to cement 

ratio (c/w) is 0.40. Fine aggregate was natural sand 0/4 mm and crushed aggregates 

4/8 mm and 8/16 mm from high quality granite was used along with drinking water. 

The concrete was mixed in a volume of 1 m3 and poured immediately into modulus. 

Cone was measured 540 mm according to [28]. 

6.2. SPECIMEN’S GEOMETRY 

The experimental test was carried out on standardized specimens with the 

following dimensions: 

- Compressive cube strength: cubes – 150 mm x 150 mm x 150 mm. 

- Compressive cylindrical strength: cylinders – diameter 150 mm and height 

= 300 mm. 

- Flexural strength: beams – 80 x 80 x 480 (400) mm. 

- Young’s modulus: beams – 80 x 80 x 480 (400) mm, diameter 150 mm and 

height = 300 mm. 

- Indirect tensile strength: unnotched discs – diameter 150 mm and thickness 

30 mm. 

- BDC specimens were prepared from standardized cylindrical specimens 

used for evaluation of cylindrical compressive strength of concrete [29]. 

The following tables give an overview of the values measured on the experiments for 

two different a/R ratios for the crack relative length: 

 
a/R = 0.267 

 

 

SPECIMEN 

NUMBER 

 

INCLINATION 

ANGLE α[°] 

 

NOTCH 

LENGTH 

2a [mm] 

 

THICKNESS 

B [mm] 

 

DIAMETER 

D [mm] 

 

FRACTURE 

FORCE PC 

[kN] 

4_2_01 0 39.72 28.60 149.22 25.69 

4_2_02 0 39.44 28.64 149.29 26.22 

4_2_04 5 39.38 28.38 149.20 24.98 

4_2_11 10 39.80 28.44 149.24 27.40 

4_2_09 15 39.60 28.44 149.21 25.44 

4_2_10 15 39.26 28.47 149.19 26.52 

4_2_07 20 38.79 28.57 149.25 24.13 
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4_2_08 20 39.94 27.92 149.25 26.42 

4_2_03 27.2 39.82 28.32 149.22 22.89 

4_2_06 27.2 39.70 28.41 149.00 25.69 

Table 7: Dimensions of BD test for a/R = 0.267. 

 
a/R=0.4 

 

 

SPECIMEN 

NUMBER 

 

INCLINATION 

ANGLE α[°] 

 

NOTCH 

LENGTH 

2a [mm] 

 

THICKNESS 

B [mm] 

 

DIAMETER 

D [mm] 

 

FRACTURE 

FORCE PC 

[kN] 

6_2_02 0 59.70 29.43 149.09 22.177 

6_2_01 0 59.44 29.99 149.15 19.568 

6_2_05 5 59.91 28.35 149.23 20.221 

6_2_10 10 59.27 28.48 149.32 19.568 

6_2_11 10 60.13 27.57 149.01 16.190 

6_2_08 15 60.06 28.09 149.18 18.916 

6_2_09 15 59.96 28.70 149.28 19.151 

6_2_06 20 60.01 28.33 149.21 19.568 

6_2_07 20 60.03 28.45 149.12 19.568 

6_2_03 25.2 59.81 28.45 149.18 16.959 

6_2_04 25.2 59.93 28.96 149.23 18.916 

Table 8: Dimensions of BD test for a/R = 0.4. 

 
 

6.3. EXPERIMENTAL PROCEDURE FOR BRAZILIAN DISC TEST 

The machine used in the experimental test has maximum loading capacity of 200 

kN. The speed of the induced displacement of the upper support was equal to 

0.25 mm/s. BD specimens with notch lengths a/R = 0.267 and 0.4 were tested 

under the selected angles inclined against loading position, as shown on the Tables 

7 and 8. 

6.4. CALIBRATION CURVES FOR EXPERIMENT 

From the FE software ANSYS it is obtained the SIFs values for the mode I and II. The 

using of the equations (49) and (50) it is possible to obtain the values for the 

calibration curves for both ratios of the crack relative length. These results are 

summarized on the following graphs: 
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Graph 5: Calibration curve fI (α, a/R) for mode I, versus the crack inclination angle. 

 

 

 

 

 

 

 

 

 

 
Graph 6: Calibration curve fII (α, a/R) for mode II, versus the crack inclination 

angle. 

The geometry functions, also referred to the calibration curves, for both ratios a/R 

are calculated with the following equations. 

 

- For ratio a/R = 0.267 and for inclination angle α = [0˚; 27.2˚], the shape 

functions can be expressed as a following polynomial functions: 

 
𝑌𝐼 (𝑎⁄𝑅, 𝛼) = + 0.7003 + 0.0009𝛼 − 0.0012𝛼2 − 9 · 10−6𝛼3, (51) 

𝑌𝐼𝐼 (𝑎⁄𝑅, 𝛼) = − 0.0006 + 0.0529𝛼 − 0.0001𝛼2 − 1 · 10−5𝛼3. (52) 

 

- On the other hand, for ratio a/R = 0.4 and for inclination angle α = [0˚; 

25.25˚], the shape functions are: 

 
𝑌𝐼 (𝑎⁄𝑅, 𝛼) = + 0.9634 + 0.0013𝛼 − 0.0022𝛼2 − 2 · 10−5𝛼3, (53) 

𝑌𝐼𝐼 (𝑎⁄𝑅, 𝛼) = −0.0018 + 0.0816𝛼 − 0.0004𝛼2 − 2 · 10−5𝛼3. (54) 

These equations were taken using the polynomial linear regression in Excel once 

the SIFs and the shape functions were calculated. These expressions allow to obtain 

the shape functions for every angle and then calculate the SIFs for these angles. 
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Once the calibration curves were calculated, using the following equations it is 

possible to evaluate the SIFs for the different specimens. 

 
𝑃√𝑎 1 

𝐾𝐼   = 𝑌𝐼(𝑎⁄𝑅 . 𝛼), 
𝑅𝐵√𝜋  

√1 − 
 𝑎 
𝑅 

(55) 

𝑃√𝑎 1 
𝐾𝐼𝐼  = 𝑌𝐼𝐼(𝑎⁄𝑅 . 𝛼). 

𝑅𝐵√𝜋  
√1 − 

 𝑎 
𝑅 

(56) 

 

6.5. EXPERIMENTALLY OBTAIN DATA 

The maximum load of Brazilian disc tests is summed up in the next graphs, 

together with SIFs results evaluated by Miarka et al [27]. These data could be 

evaluated by calibration curves calculated by Villanueva, Miarka and Ayatollahi and 

Aliha, and then the difference could be described like difference among mentioned 

calibration curves. Therefore, in next chapter, the numerical results from software 

ANSYS and mentioned method are compared. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Graph 7: Fracture forces and SIFs values for different angles for relative crack 

length a/R = 0.267. 
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Graph 8: Fracture forces and SIFs values for different angles for relative crack 

length a/R = 0.4. 
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7. NUMERICAL DATA-COMPARISON 

As the results I get from the FE software ANSYS can be wrong, on this part of the 

thesis, several comparisons will be done in order to show how different my results 

can be from others and what can be the reasons. 

 
7.1. COMPARISON WITH MARIA VILLANUEVA’S THESIS 

Firstly, the comparison is with the results that María Villanueva got on her thesis 

on the past course [30]. As me, she obtained the SIFs values from ANSYS and then 

the calibration curves from the same equations as me, equations (49) and (50). 

The analysis of both approaches in terms of the calibration curves is shown on the 

following graphs: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Graph 9: Error in the calibration curves for mode I between María Villanueva’s 

thesis and mine. 
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Graph 10: Error in the calibration curves for mode II between María Villanueva's 

thesis and mine. 

It can be seen that for mode I the error that emerge is approximately constant and 

has an average value around the ten per cent for angles between 45˚ and 90˚. For 

angles between 15˚ and 40˚ the calibration functions suffer variations that range 

from almost zero per cent of error to more than seventy per cent. Finally, the error 

for angles that oscillate from 0˚ to 10˚ is less constant that the last angles, but also 

with an average value around the ten per cent. 

On the other hand, the mode II graph is completely different from the mode I. In 

this graph it is possible to observe that for angles between 15˚ and 65˚ the error 

value is very constant, about the fifteen per cent. Otherwise, both for angles less 

than 15˚ and for higher than 65˚ the error values raise very high levels, as two 

hundred per cent for 85˚ and one hundred for 0˚. 

These big differences of error are due to the fact that I get María’s SIFs values 

directly from her thesis’ graphs using a graph digitizer software [31] that allow me 

to get those values in an approximately way. Because of this, the SIFs values are no 

exact and therefore it is possible to see how different the calibration functions are 

one from the other. That is why for some angles there is so much error and 

however, for others there is not. 

Since the calibration functions allow get the SIFs values for each specimen’s 

geometry and angle of the crack, the problem is not the data I get or María’s got 

but the way I obtained the SIFs values from María’s thesis. 

Another possible reason is the meshing. As I haven’t had the MACRO document 

from María’s thesis I couldn’t see if her meshing was equal or similar as mine, so 

the SIFs results can change and as a result, the calibration functions. 

The tables and graphs related to the SIFs values from María’s thesis and the 

calibration functions are shown on the Annex II. 
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7.2. COMPARISON WITH EXPERIMENTAL RESULTS 

The experimental results were described on the sixth point of this thesis and now 

the calibration functions will be compared with mine. The experimental test was 

done for two relatives crack lengths. a/R = 0.267 and a/R = 0.4. Inasmuch as my 

results do not consider the relationship a/R = 0.267, the comparison between both 

models will be only for a/R = 0.4. 

The shape functions for angles in range [0˚; 25.25˚] are shown on the Annex II. These 

results were given to me by Petr Miarka in order to be able to compare both 

models. It is also shown on the Annex the linear regression line and the equation 

for each mode. 

As my ANSYS results were obtained for angles in range [0˚; 90˚] in an interval of 5˚, 

it was necessary to create graphs with the calibration functions values for angles 

between 0˚ and 25˚ in an interval of 5˚, for which I have calculated the geometry 

functions. Then I could get the linear regression line and the equation and be able 

to get the shape functions for any angle in that range and compare with Miarka’s 

results. 

These calibration curves with its respectively linear regression lines and equations 

are also shown on the Annex II. 

As a summary, it is shown the graph where it can be noted the per cent of error 

that appears between both models for mode I and II. The numerical results are 

shown on the Annex II. 

 

 

 

 

 

 

 

 

 

 

 
Graph 11: Error graph between both calibration curves models for mode I. 

Comparison with experimental test. 
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Graph 12: Error graph between both calibration curves models for mode II. 

Comparison with experimental test. 

 
It can be seen that there is not too much difference between both models. For 

mode I, the error has an average value about the eight per cent until 24˚. Then, for 

angles near 25˚ the difference fluctuates because in Miarka’s model, at 25.25˚ the 

pure mode II is raised (KI = 0) and, in my case, the pure mode II is raised at 25.51˚. 

This value is calculated using the linear regression curve for mode I. 

On the other hand, for mode II, the graph is more uniform, and the error average 

value is about the seven percent. 

 
 

7.3. COMPARISON WITH M. R. AYATOLLAHI AND M. R. M. 
ALIHA RESULTS 

The last comparison is with M. R Ayatollahi and M. R. M. Aliha, from the Iran 

University of Technology. On their article [19], the generalized maximum tangential 

stress (GMTS) criterion was used for predicting the mixed – mode fracture 

toughness using the BD test. In it, it is given the numerical values for the shape 

functions YI and YII necessary to carry out this comparison [32]. 

According to them, the SIFs expressions for mode I and II a BD test specimen are 

written as follows: 
 

𝑃 𝑎 
𝐾𝐼   =  

𝑅𝐵 
√ 𝑌𝐼(𝑎⁄𝑅 . 𝛼), 

𝜋 

(57) 

𝑃 𝑎 
𝐾𝐼𝐼   =  

𝑅𝐵 
√ 𝑌𝐼𝐼(𝑎⁄𝑅 . 𝛼). 

𝜋 

(58) 

 

It can be proved that these equations are different from (49) and (50), used in both 

experimental results and in my analysis. 

As in the comparison with the experimental results. it was necessary to do the 

different linear regression lines and equations for each ratio that will influence on 

the analysis. These graphs, along to the article’s numerical values are exposed in 

the Annex II. 

%
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The error values of the calibration functions for each mode are summarized on the 

following graphs: 

 

 

 

 

 

 

 

 

 

 

 
Graph 13: Error graph between both calibration curves models for mode I. 

Comparison with Ayatollahi and Aliha’s article [19]. 

 

 

 

 

 

 

 

 

 

 

 
Graph 14: Error graph between both calibration curves models for mode II. 

Comparison with Ayatollahi and Aliha’s article [19]. 

 
It can be seen that the error values oscillate a lot and have very high levels for both 

modes for the majority of the angles. There is an important reason why these values 

are so different from mine, apart from what was previously mentioned about 

meshing. 

This reason is that Ayatollahi and Aliha have calculated these shape functions using 

a wide range of FE analysis. That means that they obtained the SIFs values from 

different ways and then used the equations (57) and (58) to calculate the geometry 

functions. The fact that it has been used different formulas to evaluate the 

calibration functions can explain the huge differences between approaches. 
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8. CONCLUSIONS 
In this document, two parameters were evaluated to define the stress state on the 

crack tip: the stress intensity factor for Mode I and II and the calibrations functions. 

Then, these two variables have been compared with experimental results and data 

from literature. 

Consequently, the following conclusions can be obtained: 

• For the same crack length ratio, a/R = 0.4 and range of angles [0; 25˚], the 

four approaches seems to be very similar. 

• The difference between my results and María Villanueva’s is not appreciable 

for angles between 40˚ and 70˚ for both modes. 

• There is a clear error between María Villanueva’s results and mine for the 

rest of angles which is probably due to the different ways of calculation. 

• The results I obtained seems to be correct, at least for the crack length ratio 

a/ R studied at the laboratory, because the error between both techniques 

is not very important. 

• Should be necessary to do an experimental evaluation of the BD for 

different ratios a/R to ensure if the results I obtained are effectively right or 

not. 

• The comparison with Ayatollahi’s and Aliha’s article shows the obvious 

difference with respect to my results due to the use of different calibration 

functions. 

• To be able to do an accurate comparison between both models, it is 

recommended to use the same equations and compare the results 

obtained. 

• It will be necessary a more in – depth analysis of different approaches and 

compare with both models proposed on this thesis. 

 
Definitely, there is not a definitive conclusion to say which method is better than 

other to calculate the calibration curves and consequently the stress intensity 

factors for different angles and specimens. The three approaches are valid to 

calculate the stress state in the crack tip and study how the crack grow under 

determined applied loads. 
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9. ANNEXES 

9.1. ANNEX I. MACRO DOCUMENT 

 
!******************************************************************* 

 

!******** MACRO FOR SOLUTION OF STRESS INTENSITY FACTOR ************ 

!*************** AUTOR: ALEJANDRO PARCERO ALONSO ******************* 

!********************** MATERIAL: CONCRETE ************************* 

!***************** PROPERTIES: E=44 GPa AND nu=0.2 *************** 
 

!****** BRAZILIAN TEST SPECIMEN. D = 150 mm. a/R = [0.1;0.9] ******* 

!******************************************************************* 

!******************************************************************* 

!********************** ORDERS BEFORE MODELLING ******************** 

/title,cleaning the set-up area 
 

/replot 

fini 

/output,hlasky,tmp 

WPCSYS,-1,0 

/clear 

/output 

/COLOR,ELEM,BLUE 

/COLOR,OUTL,WHIT 
 

/REPLOT 

/PNUM,KP,1 

/PNUM,LINE,1 

/PNUM,AREA,1 
 

/filnam,BrazilianDiskSpecimen 

/prep7 

!******************************************************************* 

!*************************** CONDITIONS **************************** 

!******************************************************************* 

pi=3.1415926535897932384626433832795 

!*********************** SPECIMEN'S DIAMATER *********************** 

D=150 !units mm 
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!*********************** SPECIMEN'S RADIUS ************************* 

R=D/2 !units mm 

!************************* RATIO a/R ******************************* 

a_R=0.1 !the ratio a/R will vary in the range [0,1,0,9] 

!************************ CRACK LENGTH ***************************** 

a=a_R*R !crack length 

!************************* ANGLE VALUE ***************************** 

FI=45 !the angle FI will vary in the range [0,90] in an 

!interval of 5 degrees 

!******************************************************************* 

!******************************************************************* 

ET,1,PLANE183 

KEYOPT,1,3,2 !plane strain 

!******************************************************************* 

!*********************** MATERIAL PROPERTIES *********************** 

!******************************************************************* 

MP,EX,1,44000 !Material Young modulus 

MP,NUXY,1,0,2 !Material Poisson number 

!******************************************************************* 

!******************************************************************* 

!*************************** MODELLING ***************************** 
 

!******************************************************************* 

!************************** KEYPOINTS ****************************** 

!********************* RIGHT PART OF THE CRACK ********************* 

k,1,0,0 ! K1 : center of the crack tip 

K,2,1,0 ! K2 : 1 mm in X axis from the crack tip 

k,3,0,1 ! K3 : 1 mm in Y axis from the crack tip 

k,4,-1,0  ! K4 : 1 mm in X axis from the crack tip K,5,-

1,0 ! K5 : same coordination as K4 

K,6,0,-1 ! K6 : bottom part of the crack 
 

!********************* LEFT PART OF THE CRACK ********************** 

K,12,2*(-a),0 ! K12 

K,13,2*(-a)-1,0 ! K13 
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K,14,2*(-a)+1,0 ! K14 

K,15,2*(-a)+1,0 ! K15 

K,16,2*(-a),1 ! K16 

K,17,2*(-a),-1 ! K17 
 

!********************* UNION OF THE TWO PARTS ********************** 

K,7,-a,0 ! K7 

K,100,-a,0 ! K100 

!******************* BEGINNING OF THE PERIPHERY ******************** 

K,8,R-a,0 ! K8 

K,9,-R-a,0 ! K9 

!************* MODELLING OF THE PERIPHERY KEYPOINTS **************** 

LOCAL,11,1,-a,0,0,,,,1,1 !Defines a local coordinate system 

K,18,R,5 ! K18 

K,19,R,10 ! K19 

K,20,R,15 ! K20 

K,21,R,20 ! K21 

K,22,R,25 ! K22 

K,23,R,30 ! K23 

K,24,R,35 ! K24 

K,25,R,40 ! K25 

K,26,R,45 ! K26 

K,27,R,50 ! K27 

K,28,R,55 ! K28 

K,29,R,60 ! K29 

K,30,R,65 ! K30 

K,31,R,70 ! K31 

K,32,R,75 ! K32 

K,33,R,80 ! K33 

K,34,R,85 ! K34 

K,35,R,90 ! K35 

K,36,R,185 ! K36 

K,37,R,190 ! K37 

K,38,R,195 ! K38 
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K,39,R,200 ! K39 

K,40,R,205 ! K40 

K,41,R,210 ! K41 

K,42,R,215 ! K42 

K,43,R,220 ! K43 

K,44,R,225 ! K44 

K,45,R,230 ! K45 

K,46,R,235 ! K46 

K,47,R,240 ! K47 

K,48,R,245 ! K48 

K,49,R,250 ! K49 

K,50,R,255 ! K50 

K,51,R,260 ! K51 

K,52,R,265 ! K52 

K,53,R,270 ! K53 
 

!******************************************************************* 

!******************************** LINES **************************** 

!***************************** CRACK LINES ************************* 
 

!*********************** RIGHT PART OF THE CRACK ******************* 
 

CSYS,0 ! Activates a previously defined coordinate system 

L,1,2 ! L1 

Larc,2,3,1,1 ! L2 

Larc,3,4,1,1 ! L3 

L,4,1 ! L4 

L,1,3 ! L5 

L,1,6 ! L6 

Larc,6,5,1,1 ! L7 

Larc,6,2,1,1 ! L8 

L,5,1 ! L9 

L,7,4 ! L10 

L,100,5 ! L11 

!*********************** LEFT PART OF THE CRACK ******************** 

L,12,16 ! L12 
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L,12,13 ! L13 

L,12,17 ! L14 

L,12,14 ! L15 

L,12,15 ! L16 

Larc,16,13,12,1 ! L17 

Larc,13,17,12,1 ! L18 

Larc,17,15,12,1 ! L19 

Larc,14,16,12,1 ! L20 

L,14,7 ! L21 

L,15,100 ! L22 
 

!******************* UNION OF THE END OF THE PERIPHERY ************* 

L,35,7 ! L23 

L,13,9 ! L24 

L,2,8 ! L25 
 

L,53,100 ! L26 

!************************ LINES OF THE PERIPHERY ******************* 
 

CSYS,1 

Larc,8,18,7,R 

 

! 

 

L27 

Larc,18,19,7,R ! L28 

Larc,19,20,7,R ! L29 

Larc,20,21,7,R ! L30 

Larc,21,22,7,R ! L31 

Larc,22,23,7,R ! L32 

Larc,23,24,7,R ! L33 

Larc,24,25,7,R ! L34 

Larc,25,26,7,R ! L35 

Larc,26,27,7,R ! L36 

Larc,27,28,7,R ! L37 

Larc,28,29,7,R ! L38 

Larc,29,30,7,R ! L39 

Larc,30,31,7,R ! L40 

Larc,31,32,7,R ! L41 

Larc,32,33,7,R ! L42 
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Larc,33,34,7,R ! L43 

Larc,34,35,7,R ! L44 

Larc,35,9,7,R ! L45 

Larc,9,36,7,R ! L46 

Larc,36,37,7,R ! L47 

Larc,37,38,7,R ! L48 

Larc,38,39,7,R ! L49 

Larc,39,40,7,R ! L50 

Larc,40,41,7,R ! L51 

Larc,41,42,7,R ! L52 

Larc,42,43,7,R ! L53 

Larc,43,44,7,R ! L54 

Larc,44,45,7,R ! L55 

Larc,45,46,7,R ! L56 

Larc,46,47,7,R ! L57 

Larc,47,48,7,R ! L58 

Larc,48,49,7,R ! L59 

Larc,49,50,7,R ! L60 

Larc,50,51,7,R ! L61 

Larc,51,52,7,R ! L62 

Larc,52,53,7,R ! L63 

Larc,53,8,7,R ! L64 
 

!*************** LINES WITH THE PURPOSE OF DIVIDE AREAS ************ 

CSYS,0 

L,7,30 ! L65 

L,2,19 ! L66 

L,7,25 ! L67 
 

L,3,23 ! L68 

L,13,37 ! L69 

L,17,40 ! L70 

L,100,43 ! L71 
 

L,100,48 ! L72 

!******************************************************************* 
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!****************************** AREAS ****************************** 
 

CSYS,0 

al,2,5,1 

 

! 

 

A1 

al,3,5,4 ! A2 

al,9,6,7 ! A3 

al,6,8,1 ! A4 

al,12,13,17 ! A5 

al,20,15,12 ! A6 

al,13,18,14 ! A7 

al,19,14,16 ! A8 

al,25,66,27,28 ! A9 

al,66,68,29,30,31,32,2 ! A10 

al,10,3,67,68,33,34 ! A11 

al,67,65,35,36,37,38,39 ! A12 

al,23,65,44,43,42,41,40 ! A13 

al,23,45,21,20,17,24 ! A14 

al,24,69,46,47 ! A15 

al,48,49,50,70,18,69 ! A16 

al,19,22,71,70,51,52,53 ! A17 

al,71,72,54,55,56,57,58 ! A18 

al,72,26,59,60,61,62,63 ! A19 

al,26,64,25,11,7,8 ! A20 

!******************************************************************* 

!******************************************************************* 

!*************************** MESHING ******************************* 

!******************************************************************* 

Kscon,1,0,25,1,4,0,75 ! shift of node to 1/4 of L(element length) 

P=0,5 

Q=4 

KESIZE,1,P 

KESIZE,2,P 

KESIZE,3,P 

KESIZE,4,P 
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KESIZE,5,P 

KESIZE,6,P 

KESIZE,7,P 

KESIZE,100,P 

KESIZE,12,P 

KESIZE,13,P 

KESIZE,14,P 

KESIZE,15,P 

KESIZE,16,P 

KESIZE,17,P 

KESIZE,8,Q 

KESIZE,18,Q 

KESIZE,19,Q 

KESIZE,20,Q 

KESIZE,21,Q 

KESIZE,22,Q 

KESIZE,23,Q 

KESIZE,24,Q 

KESIZE,25,Q 

KESIZE,26,Q 

KESIZE,27,Q 

KESIZE,28,Q 

KESIZE,29,Q 

KESIZE,30,Q 

KESIZE,31,Q 

KESIZE,32,Q 

KESIZE,33,Q 

KESIZE,34,Q 

KESIZE,35,Q 

KESIZE,9,Q 

KESIZE,36,Q 

KESIZE,37,Q 

KESIZE,38,Q 
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KESIZE,39,Q 

KESIZE,40,Q 

KESIZE,41,Q 

KESIZE,42,Q 

KESIZE,43,Q 

KESIZE,44,Q 

KESIZE,45,Q 

KESIZE,46,Q 

KESIZE,47,Q 

KESIZE,48,Q 

KESIZE,49,Q 

KESIZE,50,Q 

KESIZE,51,Q 

KESIZE,52,Q 

KESIZE,53,Q 

 
 

!Material 

TYPE,1 

MAT,1 

 
 

AMESH,1 

AMESH,2 

AMESH,3 

AMESH,4 

AMESH,5 

AMESH,6 

AMESH,7 

AMESH,8 

AMESH,9 

AMESH,10 

AMESH,11 

AMESH,12 

AMESH,13 
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AMESH,14 

AMESH,15 

AMESH,16 

AMESH,17 

AMESH,18 

AMESH,19 

AMESH,20 

 
 

FINISH 
 

!******************************************************************* 

!********************* BOUNDARY CONDITIONS ************************* 

!******************************************************************* 

!******************************************************************* 

!************************** SUPPORT ******************************** 
 

!******************************************************************* 

/sol 

!********************** SUPPORT FORCE UY *************************** 

D,1767, ,0, , , ,UY, , , , 

!D,2546, ,0, , , ,UX, , , , !UX only for case FI = 90 

degrees !instead of UY 

ALLSEL, all 

kplot 

nplot 

eplot 

!******************* SUPPORT UX – UY ******************************* 

NSEL,S,NODE,,7556 !Selection of the node 

D,ALL, ,0, , , ,UX,UY, , , , !Define of the D,O,F of nodes 

ALLSEL,all !Select all entitles with a single 
command 

nplot 

eplot 

!******************************************************************* 
 

!******************************************************************* 

!************************* FORCES ********************************** 
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!******************************************************************* 
 

!Constant force of 100 N 

NSEL,S,NODE,,5012 

F,all,Fx,-100*COS(FI*2*PI/360) !Defines loads at nodes 

F,all,FY,-100*SIN(FI*2*PI/360) 

ALLSEL,all 

!******************************************************************* 

eplot 

solve 

FINISH 

/POST1 

eplot 

LPATH,1,80,79,129,128 !DEFINE PATH TO CALCULATE KI AND KII 

KCALC,0,1,3,1 !KCALC CALCULATE SIF 
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9.2. ANNEX II, TABLES AND RESULTS 

 
9.2.1. STRESS INTENSITY FACTORS FOR MODE I AND II 

 
On the following tables are summed up the results I obtained from FE software ANSYS 

under the conditions mentioned on Tables 5 and 6. 

 

 

 
STRESS INTENSITY FACTORS FOR MODE I AND MODE II 

 
α 

RATIO a/R = 0.1 RATIO a/R = 0.2 RATIO a/R = 0.3 

KI KII KI KII KI KII 

0˚ 1.87190 0.00039 2.75920 0.00013 3.68120 0.00076 

5˚ 1.81360 0.66508 2.70030 1.02100 3.53750 1.41400 

10˚ 1.64040 1.30840 2.41990 2.00340 3.11570 2.75900 

15˚ 1.35820 1.91000 1.96630 2.91130 2.44320 3.97400 

20˚ 0.97638 2.45090 1.35930 3.71270 1.56160 5.00960 

25˚ 0.50753 2.91410 0.62401 4.38170 0.52055 5.83150 

30˚ 0.03301 3.28580 0.21021 4.89860 0.62679 6.42120 

35˚ 0.62779 3.55500 1.11200 5.25110 1.82900 6.77430 

40˚ 1.25820 3.71420 2.04950 5.43340 3.03970 6.89770 

45˚ 1.90430 3.75960 2.99210 5.44630 4.21960 6.80640 

50˚ 2.54640 3.69080 3.91100 5.29570 5.33610 6.52080 

55˚ 3.16530 3.51100 4.78030 4.99210 6.36360 6.06370 

60˚ 3.74260 3.22650 5.57740 4.54940 7.28280 5.45910 

65˚ 4.26170 2.84660 6.28290 3.98410 8.07910 4.73060 

70˚ 4.70770 2.38320 6.88100 3.31460 8.74210 3.90120 

75˚ 5.06820 1.85020 7.35880 2.56060 9.26430 2.99290 

80˚ 5.33290 1.26360 7.70690 1.74270 9.64050 2.02640 

85˚ 5.49480 0.64049 7.91830 0.88189 9.86760 1.02160 

90˚ 5.54930 0.00111 7.98930 0.00039 9.94360 0.00206 

Table 9: Stress intensity factor for mode I and II for ratios a/R = 0.1, a/R = 0.2 and a/R 

= 0.3. 

 

 

STRESS INTENSITY FACTORS FOR MODE I AND MODE II 

 
α 

RATIO a/R = 0.4 RATIO a/R = 0.5 RATIO a/R = 0.6 

KI KII KI KII KI KII 

0˚ 4.66390 0.00082 5.82800 0.00110 7.27370 0.00190 

5˚ 4.44240 1.93220 5.46890 2.68980 6.64590 3.90730 
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10˚ 3.79980 3.73360 4.45400 5.11040 4.95110 7.18720 

15˚ 2.80220 5.29770 2.94780 7.07030 2.64100 9.52610 

20˚ 1.53950 6.55240 1.15110 8.48580 0.14765 10.92000 

25˚ 0.10975 7.46510 0.75558 9.36800 2.25600 11.55300 

30˚ 1.39660 8.03630 2.63950 9.78250 4.44650 11.63800 

35˚ 2.90510 8.28990 4.41980 9.81550 6.39290 11.34400 

40˚ 4.35990 8.26240 6.05370 9.54870 8.10560 10.79200 

45˚ 5.72230 7.99410 7.52360 9.05090 9.60600 10.05800 

50˚ 6.96710 7.52490 8.82530 8.37610 10.91500 9.19120 

55˚ 8.07880 6.89070 9.96100 7.56500 12.04900 8.22420 

60˚ 9.04850 6.12310 10.93500 6.64850 13.01900 7.17870 

65˚ 9.87170 5.24900 11.75200 5.65030 13.83200 6.07080 

70˚ 10.54600 4.29160 12.41600 4.58920 14.49500 4.91340 

75˚ 11.07100 3.27080 12.92900 3.48060 15.00800 3.71750 

80˚ 11.44500 2.20450 13.29500 2.33780 15.37500 2.49340 

85˚ 11.67000 1.10860 13.51400 1.17300 15.59400 1.25060 

90˚ 11.74500 0.00177 13.58700 0.00272 15.66800 0.00153 

Table 10: Stress intensity factor for mode I and II. a/R = 0.4, a/R = 0.5 and a/R = 0.6. 

 

 

 
 

STRESS INTENSITY FACTORS FOR MODE I AND MODE II 

 
α 

RATIO a/R = 0.7 RATIO a/R = 0.8 RATIO a/R = 0.9 

KI KII KI KII KI KII 

0˚ 9.17420 0.00059 11.94900 0.00115 17.19500 0.18384 

5˚ 7.92740 6.09350 8.89870 10.72600 6.63000 22.68000 

10˚ 4.91220 10.52100 3.30120 16.06100 1.60060 25.34300 

15˚ 1.42410 12.94600 1.34180 17.58700 5.78590 24.91100 

20˚ 1.77590 13.90700 4.77180 17.60000 8.87600 24.12300 

25˚ 4.50280 14.01000 7.45650 17.07000 11.57700 23.19000 

30˚ 6.80680 13.64000 9.70730 16.29600 14.07300 22.11400 

35˚ 8.77960 12.99800 11.68600 15.38000 16.40100 20.89000 

40˚ 10.49600 12.18300 13.46100 14.35100 18.56900 19.52000 

45˚ 12.00200 11.24600 15.06500 13.22200 20.57200 18.00800 

50˚ 13.32800 10.21500 16.50700 12.00200 22.40000 16.36400 

55˚ 14.48900 9.10410 17.79100 10.69700 24.04200 14.59700 

60˚ 15.49300 7.92670 18.91600 9.31650 25.48900 12.72100 

65˚ 16.34300 6.69260 19.87600 7.86940 26.73000 10.75000 

70˚ 17.04000 5.41100 20.67000 6.36570 27.75800 8.69760 
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75˚ 17.58400 4.09130 21.29100 4.81580 28.56400 6.57950 

80˚ 17.97300 2.74270 21.73700 3.23090 29.14500 4.41170 

85˚ 18.20700 1.37490 22.00600 1.62240 29.49500 2.21050 

90˚ 18.28500 0.00270 22.09600 0.00201 29.61200 0.00731 

Table 11: Stress intensity factor for mode I and II. a/R = 0.7, a/R = 0.8 and a/R = 0.9. 

 
 

9.2.2. CALIBRATION CURVES FOR MODES I AND II 

 
The following tables summarize the calibration function values for each crack angle 

from the equations (49) and (50). 

 
 

VALUES OF CALIBRATION CURVES FOR MODE I AND II 

 
α 

RATIO a/R = 0.1 RATIO a/R = 0.2 RATIO a/R = 0.3 

KI KII KI KII KI KII 

0˚ 0.86200 0.00017 0.84706 3.883E-05 0.86314 0.00017 

5˚ 0.83515 0.30626 0.82898 0.31344 0.82945 0.33154 

10˚ 0.75539 0.60251 0.74290 0.61503 0.73054 0.64691 

15˚ 0.62544 0.87954 0.60365 0.89376 0.57286 0.93179 

20˚ 0.44962 1.12863 0.41730 1.13979 0.36615 1.17461 

25˚ 0.23371 1.34193 0.19156 1.34517 0.12205 1.36733 

30˚ 0.01520 1.51310 0.06453 1.50386 0.14696 1.50560 

35˚ 0.28909 1.63706 0.34138 1.61207 0.42885 1.58839 

40˚ 0.57939 1.71037 0.62919 1.66805 0.71272 1.61732 

45˚ 0.87692 1.73128 0.91856 1.67200 0.98938 1.59592 

50˚ 1.17260 1.69960 1.20066 1.62576 1.25115 1.52895 

55˚ 1.45761 1.61680 1.46754 1.53256 1.49209 1.4217 

60˚ 1.72345 1.48579 1.71225 1.39665 1.70762 1.28001 

65˚ 1.96250 1.31085 1.92883 1.22311 1.89433 1.10920 

70˚ 2.16788 1.09745 2.11245 1.01757 2.04976 0.91472 

75˚ 2.33389 0.85201 2.25913 0.78609 2.17223 0.70175 

80˚ 2.45578 0.58188 2.36600 0.53500 2.26044 0.47513 

85˚ 2.53033 0.29494 2.43090 0.27073 2.31369 0.23953 

90˚ 2.55543 0.00051 2.45269 0.00012 2.33151 0.00048 

Table 12: Calibration curves for mode I and II. a/R = 0.1, a/R = 0.2 and a/R = 0.3. 

 

 

VALUES OF CALIBRATION CURVES FOR MODE I AND II 

 
α 

RATIO a/R = 0.4 RATIO a/R = 0.5 RATIO a/R = 0.6 

KI KII KI KII KI KII 
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0˚ 0.87680 0.00015 0.89459 0.00017 0.91162 0.00024 

5˚ 0.83516 0.36325 0.83947 0.41288 0.83294 0.48971 

10˚ 0.71435 0.70191 0.68368 0.78444 0.62053 0.90078 

15˚ 0.52681 0.99595 0.45248 1.08528 0.33100 1.19392 

20˚ 0.28942 1.23183 0.17669 1.30256 0.01851 1.36862 

25˚ 0.02063 1.40342 0.11598 1.43798 0.28275 1.44795 

30˚ 0.26256 1.51080 0.40516 1.50160 0.55729 1.45861 

35˚ 0.54615 1.55848 0.67843 1.50667 0.80123 1.42176 

40˚ 0.81965 1.55331 0.92924 1.46572 1.01589 1.35258 

45˚ 1.07578 1.50287 1.15487 1.38930 1.20393 1.26058 

50˚ 1.30979 1.41466 1.35467 1.28572 1.36799 1.15195 

55˚ 1.51879 1.29543 1.52900 1.16122 1.51012 1.03075 

60˚ 1.70109 1.15113 1.67851 1.02054 1.63169 0.89972 

65˚ 1.85585 0.98680 1.80392 0.86732 1.73358 0.76086 

70˚ 1.98262 0.80681 1.90584 0.70444 1.81668 0.61580 

75˚ 2.08132 0.61490 1.98459 0.53427 1.88097 0.46592 

80˚ 2.15163 0.41444 2.04077 0.35885 1.92697 0.31250 

85˚ 2.19393 0.20841 2.07439 0.18005 1.95442 0.15674 

90˚ 2.20803 0.00033 2.08559 0.00042 1.96369 0.00019 

Table 13: Calibration curves for mode I and II. a/R = 0.4, a/R = 0.5 and a/R = 0.6. 

 

 

VALUES OF CALIBRATION CURVES FOR MODE I AND II 

 
α 

RATIO a/R = 0.7 RATIO a/R = 0.8 RATIO a/R = 0.9 

KI KII KI KII KI KII 

0˚ 0.92190 5.9772E-05 0.91707 8.8201E-05 0.87980 0.00940 

5˚ 0.79661 0.61232 0.68295 0.82321 0.3392 1.16045 

10˚ 0.49362 1.05724 0.25336 1.23267 0.08189 1.29670 

15˚ 0.14310 1.30092 0.10298 1.34979 0.29607 1.27460 

20˚ 0.17845 1.39749 0.36623 1.35079 0.45415 1.23428 

25˚ 0.45248 1.40784 0.57228 1.31011 0.59235 1.18654 

30˚ 0.6840 1.3706 0.74503 1.25073 0.72006 1.13149 

35˚ 0.88225 1.30615 0.89689 1.18040 0.83917 1.06886 

40˚ 1.05472 1.22425 1.03312 1.10143 0.95010 0.99876 

45˚ 1.20606 1.13009 1.15623 1.01478 1.05259 0.92140 

50˚ 1.33931 1.02649 1.26690 0.92114 1.14612 0.83728 

55˚ 1.4559 0.91485 1.36545 0.82098 1.23014 0.74687 

60˚ 1.55687 0.79654 1.45177 0.71503 1.30417 0.65088 

65˚ 1.64228 0.67253 1.52547 0.60397 1.36767 0.55003 

70˚ 1.71232 0.54374 1.58641 0.48856 1.42027 0.44502 
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75˚ 1.76699 0.41112 1.63407 0.36961 1.46153 0.33668 

80˚ 1.80608 0.27561 1.66830 0.24796 1.49124 0.22573 

85˚ 1.82959 0.13818 1.68894 0.12451 1.50915 0.11310 

90˚ 1.83743 0.00027 1.69585 0.00015 1.51513 0.00037 

Table 14: Calibration curves for mode I and II. a/R = 0.7, a/R = 0.8 and a/R = 0.9. 

 
 

9.2.3. STRESS INTENSITY FACTORS FOR MODE I AND II FROM 
MARIA’S VILLANUEVAS THESIS 

The tables below show a summary of the SIFs values obtained by María on her thesis 

under the following conditions: 

 
CRACK LENGHT 

 

RATIO 

a/R 
 

0.1 

 
0.2 

 
0.3 

 
0.4 

 
0.5 

 
0.6 

 
0.7 

 
0.8 

 
0.9 

a 

[mm] 

3.5 7 10.5 14 17.5 21 24.5 28 31.5 

a [m] 0.0035 0.007 0.0105 0.014 0.0175 0.021 0.0245 0.028 0.0315 

Table 15: Crack length according to ratio a/R. 

 
 

P [N] 100 

B [mm] 1 

D [mm] 70 

R [mm] 35 

Table 16: Initial data. 

It should be noted again that the SIF results are not exact because I couldn’t be able to 

obtain from ANSYS as María did, due to I do not have her MACRO document. 

Therefore, as I try to get them by using a graph digitizer software, these results are 

approximate. as it can be seen on the tables. 

 
 

STRESS INTENSITY FACTOR FOR MODE I AND II 

 
α 

RATIO a/R = 0.1 RATIO a/R = 0.2 RATIO a/R = 0.3 

KI KII KI KII KI KII 

0 2.6667 0.0876 3.6667 0.1505 5.0000 0.2258 

5 2.5000 0.6022 3.6667 0.8280 4.8333 1.2043 

10 2.1667 1.5054 3.3333 1.8817 4.3333 3.1613 

15 2.0000 2.3333 2.5000 3.5376 3.3333 4.9677 

20 1.5000 3.1613 2.0000 4.8925 2.5000 6.4731 

25 1.1667 3.7634 1.6667 5.6452 1.8333 7.6022 

30 0.1667 4.1398 0.3333 6.3978 0.6667 8.3548 
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35 0.8333 4.5161 1.3333 6.8495 2.3333 8.9570 

40 1.5000 4.7419 2.6667 7.0753 4.1667 9.1075 

45 2.6667 4.8172 4.0000 7.0753 5.8333 8.8817 

50 3.5000 4.7419 5.3333 6.7742 7.3333 8.4301 

55 4.5000 4.5161 6.5000 6.3978 8.6667 7.7527 

60 5.1667 4.1398 7.6667 5.7204 10.0000 6.6237 

65 5.8333 3.5376 8.6667 4.8925 11.0000 5.5699 

70 6.6667 3.0108 9.5000 3.9892 12.0000 4.5161 

75 7.0000 2.1075 10.0000 2.8602 12.6667 3.2366 

80 7.5000 1.2796 10.6667 1.5806 13.1667 1.8817 

85 7.6667 0.3108 10.8333 0.5269 13.3333 0.8280 

90 7.6667 0.1505 10.8333 0.2258 13.5000 0.3763 

Table 17: Stress intensity factor for mode I and II. a/R = 0.1, a/R = 0.2 and a/R = 0.3 

from María Villanueva's thesis. 

 

 

STRESS INTENSITY FACTOR FOR MODE I AND II 

 
α 

RATIO a/R= 0.4 RATIO a/R = 0.5 RATIO a/R = 0.6 

KI KII KI KII KI KII 

0 6.1667 0.4516 7.8333 0.5269 10.0000 0.3011 

5 6.0000 1.9570 7.1667 3.3871 9.0000 5.0430 

10 5.0000 4.7419 6.0000 6.6989 6.6667 9.3333 

15 3.6667 7.0000 4.3333 9.3333 3.5000 12.6452 

20 2.3333 8.5806 1.6667 11.2151 0.1667 14.3763 

25 0.1667 9.7097 1.0000 12.2688 3.1667 15.2043 

30 1.8333 10.5376 3.8333 12.8710 6.1667 15.1290 

35 4.0000 10.8387 6.1667 12.8710 8.6667 14.9032 

40 6.0000 10.7634 8.3333 12.4946 11.0000 14.1505 

45 7.6667 10.3871 10.3333 11.7419 13.0000 13.0215 

50 9.5000 9.6344 12.0000 10.7634 14.8333 12.0430 

55 11.0000 8.8065 13.5000 9.6344 16.1667 10.6129 

60 12.3333 7.6774 14.8333 8.5054 17.5000 9.1828 

65 13.3333 6.4731 16.0000 7.1505 18.6667 7.7527 

70 14.3333 5.1183 16.8333 5.6452 19.5000 6.1720 

75 15.0000 3.6882 17.5000 4.0645 20.1667 4.5161 

80 15.5000 2.2581 17.8333 2.6344 20.6667 2.9355 

85 15.6667 1.2043 18.1667 1.5054 21.0000 1.8065 

90 15.8333 0.3763 18.3333 0.3763 21.1667 0.3763 

Table 18: Stress intensity factor for mode I and II. a/R = 0.4, a/R = 0.5 and a/R = 

0.6 from María Villanueva's thesis. 
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STRESS INTENSITY FACTOR FOR MODE I AND II 

 
α 

RATIO a/R = 0.7 RATIO a/R = 0.8 RATIO a/R = 0.9 

KI KII KI KII KI KII 

0 12.3333 0.3763 16.1667 0.6022 22.6667 0.6774 

5 10.6667 8.1290 11.8333 14.3011 8.1667 30.1075 

10 6.5000 13.9247 4.5000 21.2258 2.6667 33.4194 

15 1.8333 17.1613 2.1667 23.1828 8.0000 32.7419 

20 2.6667 18.3656 6.6667 23.1828 12.0000 31.6129 

25 6.1667 18.5161 10.1667 22.3548 15.6667 30.5591 

30 9.1667 17.9140 13.1667 21.3763 18.8333 29.0538 

35 11.8333 17.0108 15.6667 20.0968 21.5000 27.3978 

40 14.1667 15.9570 18.1667 18.8925 24.8333 25.7419 

45 16.1667 14.7527 20.1667 17.3871 27.5000 23.6344 

50 18.0000 13.4731 22.1667 15.7312 29.8333 21.4516 

55 19.5000 11.7419 23.8333 13.9247 32.0000 19.1935 

60 20.8333 10.2366 25.3333 12.1183 34.0000 16.4839 

65 21.8333 8.8065 26.6667 10.0860 35.6667 14.0753 

70 23.0000 6.9247 27.6667 8.2796 37.0000 11.2903 

75 23.6667 4.9677 28.5000 6.1720 38.1667 8.5054 

80 24.0000 3.3871 29.1667 3.9892 38.8333 5.6452 

85 24.5000 1.9570 29.5000 2.4086 39.3333 2.9355 

90 24.5000 0.4516 29.5000 0.4516 39.5000 0.2505 

Table 19: Stress intensity factor for mode I and II. a/R = 0.7, a/R = 0.8 and a/R = 

0.9 from María Villanueva's thesis. 

The following graphs show these results. These graphs seem to be similar to 

María’s. but not equal, because María’s results are exact and mine not. 
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Graph 15: Stress intensity factor for mode I, from María Villanueva's thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Graph 16: Stress intensity factor for mode II, from María Villanueva's thesis. 

9.2.4. CALIBRATION CURVES FOR MODE I AND II FROM MARIA’S 
VILLANUEVAS THESIS 

 
As it has been said before. María’s calibration curves are calculated from the same 

equations as me, (49) and (50). These results are summed up on the following tables 

and graphs: 

 

0˚ 5˚ 10˚ 15˚ 20˚ 25˚ 30˚ 35˚ 40˚ 45˚ 50˚ 55˚ 60˚ 65˚ 70˚ 75˚ 80˚ 85˚ 90˚ 

CRACK ANGLE [-] 

RATIO 0,1 

RATIO 0,2 

RATIO 0,3 

RATIO 0,4 

RATIO 0,5 

RATIO 0,6 

RATIO 0,7 

RATIO 0,8 

RATIO 0,9 

45 

40 

35 

30 

25 

20 

15 

10 

5 

0 

KI FROM MARÍA'S RESULTS 

0˚ 5˚ 10˚ 15˚ 20˚ 25˚ 30˚ 35˚ 40˚ 45˚ 50˚ 55˚ 60˚ 65˚ 70˚ 75˚ 80˚ 85˚ 90˚ 

CRACK ANGLE [-] 

RATIO 0,8 

RATIO 0,9 

5 

0 

RATIO 0,7 10 

RATIO 0,6 
15 

RATIO 0,5 
20 

RATIO 0,3 

RATIO 0,4 

30 

25 

RATIO 0,2 
35 

RATIO 0,1 
40 

KII FROM MARÍA'S RESULTS 

K
II 

K
I 
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VALUES OF CALIBRATION CURVES FOR MODE I AND II 

 
α 

RATIO a/R = 0.1 RATIO a/R = 0.2 RATIO a/R = 0.3 

KI KII KI KII KI KII 

0˚ 26.52766 0.87143 24.31702 0.99835 25.32604 1.14376 

5˚ 24.86968 5.99012 24.31702 5.49094 24.48184 6.10004 

10˚ 21.55372 14.97529 22.10638 12.47941 21.94924 16.01260 

15˚ 19.89575 23.21170 16.57979 23.46129 16.88403 25.16265 

20˚ 14.92181 31.44811 13.26383 32.44647 12.66302 32.78770 

25˚ 11.60585 37.43823 11.05319 37.43823 9.28622 38.50648 

30˚ 1.65798 41.18205 2.21064 42.42999 3.37681 42.31900 

35˚ 8.28989 44.92588 8.84255 45.42505 11.81882 45.36902 

40˚ 14.92181 47.17217 17.68511 46.92258 21.10504 46.13153 

45˚ 26.52766 47.92093 26.52766 46.92258 29.54705 44.98777 

50˚ 34.81755 47.17217 35.37021 44.92588 37.14486 42.70025 

55˚ 44.76543 44.92588 43.10745 42.42999 43.89848 39.26898 

60˚ 51.39734 41.18205 50.84468 37.93741 50.65209 33.55020 

65˚ 58.02926 35.19194 57.47660 32.44647 55.71730 28.21267 

70˚ 66.31915 29.95058 63.00319 26.45635 60.78251 22.87514 

75˚ 69.63511 20.96541 66.31915 18.96870 64.15931 16.39385 

80˚ 74.60904 12.72900 70.74043 10.48270 66.69192 9.53131 

85˚ 76.26702 3.09133 71.84575 3.49423 67.53612 4.19378 

90˚ 76.26702 1.49753 71.84575 1.49753 68.38032 1.90626 

Table 20: Calibration curves for mode I and II. a/R = 0.1, a/R = 0.2 and a/R = 0.3 

from María Villanueva's thesis. 

 

 

 
VALUES OF CALIBRATION CURVES FOR MODE I AND II 

 
α 

RATIO a/R = 0.4 RATIO a/R = 0.5 RATIO a/R = 0.6 

KI KII KI KII KI KII 

º0˚ 25.04408 1.83409 25.97500 1.74712 27.07468 0.81515 

5˚ 24.36721 7.94773 23.76436 11.23147 24.36721 13.65379 

10˚ 20.30601 19.25796 19.89575 22.21335 18.04979 25.26970 

15˚ 14.89107 28.42841 14.36915 30.94894 9.47614 34.23637 

20˚ 9.47614 34.84773 5.52660 37.18864 0.45124 38.92349 

25˚ 0.67687 39.43296 3.31596 40.68288 8.57365 41.16516 

30˚ 7.44554 42.79546 12.71117 42.67958 16.69605 40.96137 

35˚ 16.24481 44.01819 20.44840 42.67958 23.46472 40.35001 

40˚ 24.36721 43.71251 27.63298 41.43164 29.78215 38.31213 

45˚ 31.13588 42.18410 34.26489 38.93576 35.19708 35.25531 
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50˚ 38.58142 39.12728 39.79149 35.69111 40.16078 32.60607 

55˚ 44.67322 35.76478 44.76543 31.94729 43.77073 28.73410 

60˚ 50.08816 31.17955 49.18670 28.20347 47.38069 24.86213 

65˚ 54.14936 26.28864 53.05532 23.71088 50.53940 20.99016 

70˚ 58.21056 20.78637 55.81862 18.71912 52.79563 16.71061 

75˚ 60.91803 14.97841 58.02926 13.47776 54.60060 12.22727 

80˚ 62.94863 9.17046 59.13458 8.73559 55.95434 7.94773 

85˚ 63.62550 4.89091 60.23990 4.99176 56.85683 4.89091 

90˚ 64.30236 1.52841 60.79255 1.24794 57.30807 1.01894 

Table 21: Calibration curves for mode I and II. a/R = 0.4, a/R = 0.5 and a/R = 0.6 

from María Villanueva's thesis. 

 

 
VALUES OF CALIBRATION CURVES FOR MODE I AND II 

 
α 

RATIO a/R = 0.7 RATIO a/R = 0.8 RATIO a/R = 0.9 

KI KII KI KII KI KII 

0˚ 26.77325 0.81697 26.80399 0.99835 25.05390 0.74876 

5˚ 23.15524 17.64653 19.61942 23.71088 9.02677 33.27843 

10˚ 14.11022 30.22786 7.46090 35.19194 2.94752 36.93905 

15˚ 3.97981 37.25379 3.59229 38.43658 8.84255 36.19029 

20˚ 5.78881 39.86809 11.05319 38.43658 13.26383 34.94235 

25˚ 13.38662 40.19488 16.85612 37.06385 17.31667 33.77760 

30˚ 19.89903 38.88773 21.83005 35.44152 20.81684 32.11368 

35˚ 25.68784 36.92701 25.97500 33.32002 23.76436 30.28337 

40˚ 30.75305 34.63949 30.11995 31.32332 27.44876 28.45305 

45˚ 35.09466 32.02519 33.43591 28.82744 30.39628 26.12357 

50˚ 39.07447 29.24750 36.75186 26.08197 32.97536 23.71088 

55˚ 42.33067 25.48944 39.51516 23.08691 35.37021 21.21500 

60˚ 45.22508 22.22156 42.00213 20.09185 37.58085 18.21994 

65˚ 47.39588 19.11708 44.21277 16.72241 39.42305 15.55766 

70˚ 49.92849 15.03223 45.87075 13.72735 40.89681 12.47941 

75˚ 51.37569 10.78399 47.25239 10.23312 42.18635 9.40116 

80˚ 52.09929 7.35272 48.35771 6.61409 42.92323 6.23971 

85˚ 53.18469 4.24824 48.91037 3.99341 43.47589 3.24465 

90˚ 53.18469 0.98036 48.91037 0.74876 43.66011 0.27692 

Table 22: Calibration curves for mode I and II. a/R = 0.7, a/R = 0.8 and a/R = 0.9 

from María Villanueva's thesis. 

The following graphs summarize the results below. 
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Graph 17: Calibration curves for mode I, from María Villanueva's thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Graph 18: Calibration curves for mode II, from María Villanueva's thesis. 
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9.2.5. CALIBRATION CURVES OBTAINED EXPERIMENTALLY [27] 

 
GEOMETRY FUNCTIONS 

 

RATIO a/R = 0.4 

 YI YII 

 

 

 

 

 

 

 
α 

0˚ 0.96443426 0 

2˚ 0.9569435 0.15908637 

4˚ 0.9346094 0.3163768 

5˚ 0.91800081 0.39381705 

6˚ 0.89783104 0.47015211 

8˚ 0.84725311 0.61876984 

10˚ 0.78371988 0.76075642 

12˚ 0.70829046 0.89479176 

14˚ 0.62216217 1.01977065 

15˚ 0.57548312 1.07857612 

16˚ 0.52660904 1.1348028 

18˚ 0.42295116 1.23985752 

20˚ 0.31257003 1.33261697 

22˚ 0.19675503 1.41467754 

24˚ 0.07682318 1.48533313 

25˚ 0.01565997 1.51640133 

25.25˚ 0 1.52375393 

Table 23: Calibration curves for mode I and II obtained experimentally. 

 
The following graphs are created from the values above. It is also shown the linear 

regression line and the equation. 

 

 

 
Graph 19: 

Calibration 

curve for mode I, 

obtained by 

experimental 

results. Linear 

regression 

equation. 
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Graph 20: 

Calibration curve 

for mode II, 

obtained by 

experimental 

results. Linear 

regression 

equation. 

 

 

 
9.2.6. CALIBRATION CURVES OBTAINED FOR ANGLE BETWEEN 0˚ 

AND 25˚ 

 

 
Graph 21: 

Calibration 

curve for mode 

I, obtained by 

me. Linear 

regression 

equation. 

 

 

 

 

 
 

Graph 22: 

Calibration 

curve for mode 

II, obtained by 

me. Linear 

regression 

equation. 
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Now it is shown the comparison between Miarka’s [27] model and mine, including 

the error for both modes. 

 
ERROR FOR a/R=0.4 

 

 
α [°] 

YI MIARKA YI ME ERROR 

YI 

YII MIARKA YII ME ERROR 

YII 

0 0.964434256 0.876799771 9.09% 0 0 0.00% 

2 0.956943504 0.87136 8.94% 0.15908637 0.1457975 8.35% 

4 0.934609399 0.85188 8.85% 0.3163768 0.29219969 7.64% 

5 0.918000807 0.835158409 9.02% 0.39381705 0.36324804 7.76% 

6 0.897831037 0.81912 8.77% 0.47015211 0.43619991 7.22% 

8 0.847253115 0.77404 8.64% 0.61876984 0.57779996 6.62% 

10 0.783719876 0.714351459 8.85% 0.76075642 0.70190605 7.74% 

12 0.708290464 0.65076 8.12% 0.89479176 0.85379999 4.58% 

14 0.622162172 0.57448 7.66% 1.01977065 0.98819999 3.10% 

15 0.575483124 0.526805531 8.46% 1.07857612 0.99595235 7.66% 

16 0.526609041 0.48972 7.01% 1.1348028 1.1202 1.29% 

18 0.422951162 0.39744 6.03% 1.23985752 1.2498 0.80% 

20 0.312570026 0.289421567 7.41% 1.33261697 1.23183233 7.56% 

22 0.196755026 0.19416 1.32% 1.41467754 1.5018 6.16% 

24 0.076823183 0.08508 10.75% 1.48533313 1.6242 9.35% 

25 0.015659969 0.020632684 31.75% 1.51640133 1.4034173 7.45% 

25.25 0 0 0.00% 1.52375393 1.69948125 11.53% 

Table 24: Error results between Petr Miarka (experimentally) [27] and me. 

 
 

9.2.7. CALIBRATIONS CURVES OBTAINED FROM AYATOLLAHI AND 
ALIHA’S [19] 

 

VALUES OF GEOMETRY FUNCTIONS [19] 
 

 
α [˚] 

0.3  0.4  0.5  0.6 

YI YII YI YII YI YII YI YII 

0 1.135 0 1.243 0 1.387 0 1.578 0 

2 1.128 0.186 1.233 0.219 1.375 0.251 1.555 0.283 

4 1.107 0.369 1.204 0.435 1.339 0.5 1.488 0.566 

6 1.071 0.549 1.157 0.645 1.281 0.741 1.379 0.837 

8 1.022 0.723 1.091 0.846 1.202 0.968 1.234 1.093 

10 0.959 0.889 1.009 1.036 1.104 1.182 1.058 1.326 

12 0.884 1.046 0.911 1.209 0.991 1.371 0.86 1.535 
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YI FOR RATIO a/R = 0,3 

1 
 

0,8 
 

0,6 
 

0,4 
 

0,2 
 

0 

0 5 10 15 20 25 30 

y = -4E-09x + 4E-07x - 1E-06x - 0,0013x - 1E-05x + 0,8631 
R² = 1 

5 4 3 2 

α [-] 

14 0.798 1.194 0.801 1.375 0.864 1.555 0.646 1.738 

16 0.701 1.33 0.677 1.521 0.727 1.712 0.429 1.903 

18 0.593 1.455 0.544 1.652 0.583 1.848 0.222 2.047 

20 0.477 1.568 0.401 1.767 0.433 1.964 0.013 2.161 

22 0.353 1.67 0.253 1.865 0.281 2.059 0 2.253 

24 0.222 1.76 0.098 1.95 0 2.132   

26 0.085 1.838 0 2.015     

28 0 1.906       

Table 25: Calibration curves for a/R = 0.3, a/R = 0.4, a/R = 0.5 and a/R = 0.6 taken 

from article [19]. 

 

 

 

 

 
 

 

 

 

 

 

 

 
Graph 23: Calibration curve for mode I and a/R = 0.3, obtained by me. Linear 

regression equation. 
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Calibration 

curve for 

mode II and 
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obtained by 
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regression 

equation. 
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Graph 25: 

Calibration 

curve for 

mode I and 

a/R = 0.4, 

obtained by 

me. Linear 

regression 

equation. 

 

 

 

 

 
Graph 26: 

Calibration 

curve for 

mode II and 

a/R = 0.4, 

obtained by 

me. Linear 

regression 

equation. 

 

 

 

 

 
Graph 27: 

Calibration 

curve for 

mode I and 

a/R = 0.5, 

obtained by 

me. Linear 

regression 

equation. 
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Graph 28: 

Calibration 

curve for mode 

II and a/R = 

0.5, obtained 

by me. Linear 

regression 

equation. 

 

 

 

 

 

 
Graph 29: 

Calibration 

curve for mode 

I and a/R = 

0.6, obtained 

by me. Linear 

regression 

equation. 

 

 

 

 

 
Graph 30: 

Calibration 

curve for 

mode II and 

a/R = 0.6, 

obtained by 

me. Linear 

regression 

equation. 

 

 
The following tables carry out the comparison between my results and Ayatollahi’s 

article [19] for relative crack lengths a/R = 0.3, a/R = 0.4, a/R = 0.5 and a/R = 0.6. 
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CALIBRATION CURVES ERROR 

 

 
α 

RATIO 0.3 

YI YI ME ERROR YI YII YII ME ERROR YII 

0 1.13500 0.86310 23.96% 0.00000 0.00000 0.00% 

2 1.12800 0.85789 23.95% 0.18600 0.13439 27.75% 

4 1.10700 0.84236 23.91% 0.36900 0.26707 27.62% 

6 1.07100 0.81673 23.74% 0.54900 0.39703 27.68% 

8 1.02200 0.78133 23.55% 0.72300 0.52331 27.62% 

10 0.95900 0.73660 23.19% 0.88900 0.64495 27.45% 

12 0.88400 0.68308 22.73% 1.04600 0.76099 27.25% 

14 0.79800 0.62138 22.13% 1.19400 0.87047 27.10% 

16 0.70100 0.55216 21.23% 1.33000 0.97243 26.88% 

18 0.59300 0.47615 19.70% 1.45500 1.06591 26.74% 

20 0.47700 0.39410 17.38% 1.56800 1.14995 26.66% 

22 0.35300 0.30677 13.10% 1.67000 1.22359 26.73% 

24 0.22200 0.21492 3.19% 1.76000 1.28587 26.94% 

26 0.08500 0.11930 40.36% 1.83800 1.33583 27.32% 

28 0.00000 0.02064 - 1.90600 1.37251 27.99% 

Table 26: Calibration curve error for a/R = 0.3. 

 
CALIBRATION CURVES ERROR 

 

 
α 

RATIO 0.4 

YI YI ME ERROR YI YII YII ME ERROR YII 

0 1.24300 0.87660 29.48% 0.00000 0.00000 0.00% 

2 1.23300 0.87136 29.33% 0.21900 0.14834 32.26% 

4 1.20400 0.85188 29.25% 0.43500 0.29362 32.50% 

6 1.15700 0.81912 29.20% 0.64500 0.43458 32.62% 

8 1.09100 0.77404 29.05% 0.84600 0.57026 32.59% 

10 1.00900 0.71760 28.88% 1.03600 0.69970 32.46% 

12 0.91100 0.65076 28.57% 1.20900 0.82194 32.01% 

14 0.80100 0.57448 28.28% 1.37500 0.93602 31.93% 

16 0.67700 0.48972 27.66% 1.52100 1.04098 31.56% 

18 0.54400 0.39744 26.94% 1.65200 1.13586 31.24% 

20 0.40100 0.29860 25.54% 1.76700 1.21970 30.97% 

22 0.25300 0.19416 23.26% 1.86500 1.29154 30.75% 

24 0.09800 0.08508 13.18% 1.95000 1.35042 30.75% 

26 0.00000 0.00000 0.00% 2.01500 1.39538 30.75% 

28  

Table 27: Calibration curve error for a/R = 0.4. 
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CALIBRATION CURVES ERROR 
 

 
α 

RATIO 0.5 

YI YI ME ERROR 

YI 

YII YII ME ERROR YII 

0 1.38700 0.89460 35.50% 0.00000 0.00000 0.00% 

2 1.37500 0.88597 35.57% 0.25100 0.16947 32.48% 

4 1.33900 0.85918 35.83% 0.50000 0.33501 33.00% 

6 1.28100 0.81544 36.34% 0.74100 0.49655 32.99% 

8 1.20200 0.75608 37.10% 0.96800 0.65409 32.43% 

10 1.10400 0.68260 38.17% 1.18200 0.80763 31.67% 

12 0.99100 0.59665 39.79% 1.37100 0.95717 30.18% 

14 0.86400 0.50005 42.12% 1.55500 1.10271 29.09% 

16 0.72700 0.39473 45.70% 1.71200 1.24425 27.32% 

18 0.58300 0.28283 51.49% 1.84800 1.38179 25.23% 

20 0.43300 0.16660 61.52% 1.96400 1.51533 22.84% 

22 0.28100 0.04846 82.75% 2.05900 1.64487 20.11% 

24 0.00000 0.00000 0.00% 2.13200 1.77041 16.96% 

26  

28  

Table 28: Calibration curve error for a/R = 0.5. 

 

 
CALIBRATION CURVES ERROR 

 

 
α 

0.6 

YI YI ME ERROR YI YII YII ME ERROR YII 

0 1.57800 0.91160 42.23% 0.00000 0.00000 0.00% 

2 1.55500 0.89984 42.13% 0.28300 0.20280 28.34% 

4 1.48800 0.86152 42.10% 0.56600 0.39660 29.93% 

6 1.37900 0.80048 41.95% 0.83700 0.57920 30.80% 

8 1.23400 0.72056 41.61% 1.09300 0.74820 31.55% 

10 1.05800 0.62560 40.87% 1.32600 0.90120 32.04% 

12 0.86000 0.51944 39.60% 1.53500 1.03580 32.52% 

14 0.64600 0.40592 37.16% 1.73800 1.14960 33.86% 

16 0.42900 0.28888 32.66% 1.90300 1.24020 34.83% 

18 0.22200 0.17216 22.45% 2.04700 1.30520 36.24% 

20 0.01300 0.05960 78.19% 2.16100 1.34220 37.89% 

22 0.00000 0.00000 0.00% 2.25300 1.34880 40.13% 
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24  

26  

28  

Table 29: Calibration curve error for a/R = 0.6. 

 
 

· 
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9.3. ANNEX III. LIST OF ABBREVIATIONS 

 
GMTS Generalized maximum tangential stress. 

MTS Maximum tangential stress. 

LEFM Linear elastic fracture mechanics. 

BD Brazilian disc. 

FEA Finite element analysis. 

SIF Stress intensity factor. 
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9.4. ANNEX IV. LIST OF SYMBOLS 

 
σ Applied stress. 

𝐾𝐼𝑐 Fracture tenacity. 

C Specimen’s geometry constant. 

a Crack length. 

A Crack tip. 

𝜎𝐴 Located stress at A. 

ρ Radius of curvature. 

𝜎𝑓 Remote stress at failure. 

E Young’s modulus. 

𝛾𝑠 Surface energy per unit area. 

𝑓𝑖𝑗 Dimensionless function. 

K Stress intensity factor. 

𝜎𝑖𝑗 Stress tensor. 

r, θ Polar Coordinates. 

𝐾𝐼 Stress intensity factor for Mode I. 

𝐾𝐼𝐼 Stress intensity factor for Mode II. 

𝐾𝐼𝐼𝐼 Stress intensity factor for Mode III. 

𝜈 Poisson’s ratio. 

𝜎𝑦𝑠 Yield strength. 

𝑟𝑦 Radius of the plastic zone. 

G Energy release rate. 

β Angle of the crack. 

𝑘𝐼, 𝑘𝐼𝐼 Local stress intensity factors at the tip of the kink. 

T T – stress. tangential stress. 

P Applied load. 

t Specimen’s thickness or height. 

d Specimen’s diameter. 

x, y Cartesian coordinates respect to the specimen’s centre. 

𝑎/𝑅 Relative Crack length. 

𝛼 Notch angle. 

ET Element type. 
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