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Abstract. The law of large numbers for coherent lower previsions (specif-
ically, Choquet integrals against belief measures) can be applied to pos-
sibility measures, yielding that sample averages are asymptotically con-
fined in a compact interval. This interval differs from the one appearing in
the law of large numbers from possibility theory. In order to understand
this phenomenon, we undertake an in-depth study of the compatibility
of the assumptions in those results. It turns out that, although there is
no incompatibility between their conclusions, their assumptions can only
be simultaneously satisfied if the possibility distributions of the variables
are 0-1 valued.

1 The problem

This contribution is part of a systematic analysis of the relationships
between the laws of large numbers in different uncertainty frameworks
(plausibility/belief measures, upper/lower probabilities, upper/lower pre-
visions, sublinear expectations) in the particular case that they are ap-
plied to possibility measures. The main part of that analysis is [13].
In [11, Theorem 2.6], the first author obtained the following law of large
numbers for possibilistic variables.

Theorem 1. Let X be a bounded variable in a possibility space (Ω,A, Π)
such that the possibility distribution πX of X is upper semicontinuous.
Let {Xn}n be a sequence of variables such that
(i) Xn are product related,
(ii) Xn are identically distributed as X.
Then, for any fixed ε > 0,

N

(
M[X]− ε < n−1

n∑
i=1

Xi < M[X] + ε

)
→ 1.
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sejeŕıa de Economı́a y Empleo (FC-15-GRUPIN14-101) and by Spain’s Ministerio de
Economı́a y Competitividad (MTM2015–63971–P).



Here A is a σ-algebra, Π : A → [0, 1] a possibility measure with N
its dual necessity measure, πX is given by πX(x) = Π(X = x), and
M[X],M[X] are the infimum and supremum, respectively, of the 1-cut
of πX . The requirement that Xn are product related means

Π(X1 = x1, . . . , Xn = xn) = Π(X1 = x1) . . . Π(Xn = xn)

for all n ∈ N and xi ∈ R. Indeed, Theorem 1 in its original presentation
also considers the more general situation that the product is generalized
to a continuous Archimedian triangular norm.
This law of large numbers is in line with previous results in the literature
of possibility measures [5,6,8,10]. However, it must be compared to the
law of large numbers of De Cooman and Miranda [2, Theorem 2] devel-
oped in the context of coherent lower previsions as a generalization of
the law of large numbers for belief measures [7] (see also [9]) in which a
similar limit interval appears but involves Choquet integrals instead. For
more information on Choquet integrals and lower previsions, the reader
is referred to Denneberg and Walley’s books, respectively [3,14].
Indeed, by observing that the Choquet integral against a necessity mea-
sure is a coherent lower prevision, and also rewriting their result in a way
closer to Theorem 1 for ease of comparison, we obtain the following.

Theorem 2. (De Cooman and Miranda) Let X be a bounded variable
in a possibility space (Ω,P(Ω), Π). Let {Xn}n be a sequence of variables
such that
(i’) (X1, . . . , Xn) is forward factorizing for the Choquet integral EN , for

each n ∈ N,
(ii’) Xn are uniformly bounded and such that EN [Xn] = EN [X] and

EΠ [Xn] = EΠ [X] for all n ∈ N.
Then, for any fixed ε > 0,

N

(
EN [X]− ε < n−1

n∑
i=1

Xi < EΠ [X] + ε

)
→ 1.

We emphasize that this version is weaker than [2, Theorem 2] in several
respects, but will be better suited to our purpose. In it, EN and EΠ

denote the Choquet integrals with respect to N and Π, respectively.
Condition (ii’) is obviously satisfied if Xn are identically distributed as
X, i.e. if (ii) holds. The restriction to the σ-algebra of parts P(Ω) is
inessential. Therefore, the substantial difference in the assumptions is
condition (i’) of forward factorization, namely the property that

EN [g(X1, . . . , Xn−1)(h(Xn)− EN [h(Xn)])] ≥ 0 (1)

for all n ∈ N and bounded functions g : Rn−1 → [0,∞) and h : R → R.
Condition (i’) is rather different from condition (i), and any relationship
between them is not obviously visible. In this communication, we aim
at clarifying their relationships or lack thereof, in view of the fact that
different conclusions appear in Theorems 1 and 2. Both results claim
that the averages n−1∑n

i=1 Xi tend to be asymptotically confined inside
a compact interval, but each yields a different interval: [M[X],M[X]] in
Theorem 1 and [EN [X], EΠ [X]] in Theorem 2.



There are three important remarks to be made. Firstly, both intervals
have a special significance in fuzzy and possibility theory, making their
study particularly relevant. Indeed, if the possibility distribution πX is
a fuzzy interval then [M[X],M[X]] is its core and [EN [X], EΠ [X]] is its
mean value in the sense of Dubois and Prade [4] (as follows immediately
from the fact that EN [X] and EΠ [X] are the infimum and the supremum
of all expectations of X against probability measures dominated by Π,
see [1, Lemma A.2] or [12, Proposition 3.5]).

Secondly, there is no incompatibility between both conclusions, since it
is always the case that [M[X],M[X]] ⊂ [EN [X], EΠ [X]]. Therefore the
task of contrasting (i) and (i’) is not a trivial one.

And thirdly, it may happen that [EN [X], EΠ [X]] is significantly larger
than [M[X],M[X]], which is reduced to a point if there is a unique point
x ∈ R such that Π(X = x) = 1.

We will proceed by analyzing a specific type of function depending on two
events, which eventually leads to 625 systems of equations and inequa-
tions, at least one of which must be satisfied if (i,i’) hold simultaneously.
Patient work reduces those systems to 14, which are finally shown to have
solutions only under restrictive conditions, yielding the result stated in
the abstract (see Corollary 5 below).

2 Forward factorization and product relatedness

In this section we will prove that conditions (i) and (i’) are compati-
ble only under very special circumstances. To that end it is enough to
consider the situation of a couple of variables X,Y instead of a whole
sequence.

Our first result shows that certain functions of X and Y must have
Choquet integrals of opposite signs under those conditions. Below, IA
and IB denote the indicator functions of events A,B. We also use the
notation ∨ for the maximum.

Proposition 3. Let X,Y be bounded variables in a possibility space
(Ω,P(Ω), Π). Then, for any A,B ⊂ Ω,

(a) If (X,Y ) is forward factorizing for the Choquet integral EN , then

EN [IA(X)(IB(Y )−N(Y ∈ B))] ≥ 0.

(b) If X and Y are product related, then

EN [IA(X)(IB(Y )−N(Y ∈ B))] ≤ 0.

Proof. Part (a) follows directly from (1), taking g = IA and h = IB and
observing

EN [IB(Y )] = EN [I{Y ∈B}] = N(Y ∈ B).

As regards part (b), set

κ = EN [IA(X)(IB(Y )−N(Y ∈ B))]



and the variable

Z =


1, X ∈ A, Y ∈ B

N(Y ∈ B), X ̸∈A
0, X ∈ A, Y ̸∈B.

Now we work towards expressing κ in terms of possibilities:

κ = EN [IA(X)IB(Y ) +N(Y ∈ B)IAc(X)−N(Y ∈ B)]

= EN [Z]−N(Y ∈ B)

= N(Y ∈ B)N({X ∈ A, Y ∈ B} ∪ {X ̸∈A})
+(1−N(Y ∈ B))N(X ∈ A, Y ∈ B)−N(Y ∈ B)

= N(Y ∈ B)N({X ∈ A, Y ∈ Bc}c)
+(1−N(Y ∈ B))N(X ∈ A, Y ∈ B)−N(Y ∈ B)

= −N(Y ∈ B)(1−N({X ∈ A, Y ∈ Bc}c))
+(1−N(Y ∈ B))N(X ∈ A, Y ∈ B)

= −(1−Π(Y ∈ Bc))Π(X ∈ A, Y ∈ Bc)

+Π(Y ∈ Bc)(1−Π({X ∈ A, Y ∈ B}c)).
Let a, b, c, d be the possibilities of the events involved as summarized in
the following table:

Π Y ∈ B Y ∈ Bc

X ∈ A a b a ∨ b
X ∈ Ac c d c ∨ d

a ∨ c b ∨ d
With that notation,

κ = −(1− (b ∨ d)) · b+ (b ∨ d)(1− (b ∨ c ∨ d)).

Since X and Y are product related,

b = Π(X ∈ A, Y ∈ Bc) = sup
x∈A,y∈Bc

Π(X = x, Y = y)

= sup
x∈A,y∈Bc

πX(x)πY (y) = Π(X ∈ A)Π(Y ∈ Bc) = (a ∨ b)(b ∨ d),

whence

κ =− (1− (b ∨ d)) · (a ∨ b) · (b ∨ d) + (b ∨ d)(1− (b ∨ c ∨ d))

=(b ∨ d)[1− (b ∨ c ∨ d)− (1− (b ∨ d))(a ∨ b)].
(2)

Observing
1 = Π(Ω) = a ∨ b ∨ c ∨ d,

there are two possibilities:
CASE 1. If a = 1, then

κ = (b ∨ d)[(b ∨ d)− (b ∨ c ∨ d)] ≤ 0.

CASE 2. If b ∨ c ∨ d = 1, then

κ = −(b ∨ d)(1− (b ∨ d))(a ∨ b) ≤ 0.

Hence κ ≤ 0 and the proof is complete. �



It is clear from Proposition 3 that forward factorization and product
relatedness can occur simultaneously only if, in the notation of its proof,
κ = 0. That has definite consequences for the possible distributions of
X and Y , as our main result shows that at least one of them must be
uniform, i.e. there is a set A such that πX = IA or πY = IA.

Theorem 4. Let X and Y be bounded variables in a possibility space
(Ω,P(Ω), Π). Conditions
(I) (X,Y ) is forward factorizing for the Choquet integral EN

(II) X and Y are product related
cannot be simultaneously met unless at least one of the variables is uni-
form.

Proof. Let A,B ⊆ R. By Proposition 3, if both (I) and (II) hold then it
must be

EN [IA(X)(IB(Y )−N(Y ∈ B)] = 0

and therefore for a, b, c, d in the notation of (2) we have

(b ∨ d)[1− (b ∨ c ∨ d)− (1− (b ∨ d))(a ∨ b)] = 0, (3)

whence
b ∨ d = 0 (i.e. b = d = 0)

or
1− (b ∨ c ∨ d) = (1− (b ∨ d))(a ∨ b).

Since a ∨ b ∨ c ∨ d = 1, there are 3 possibilities for the latter equation:

. If a = 1, it becomes 1− (b ∨ c ∨ d) = 1− (b ∨ d) i.e. c ≤ b ∨ d.

. If b = 1 or d = 1, then it always holds.

. If c = 1, it becomes 0 = (1 − (b ∨ d))(a ∨ b), whence b ∨ d = 1 or
a = b = 0.

The solution c = 1, b ∨ d = 1 is already included in either case b = 1 or
d = 1, whence (3) is rewritten as

b = d = 0 or a = 1, c ≤ b ∨ d or b = 1

or c = 1, a = b = 0 or d = 1.
(4)

The same reasoning applies to the pairs of events (Ac, B), (A,Bc) and
(Ac, Bc), from which the analogous conditions

d = b = 0 or c = 1, a ≤ d ∨ b or d = 1

or a = 1, c = d = 0 or b = 1;
(5)

a = c = 0 or b = 1, d ≤ a ∨ c or a = 1

or d = 1, b = a = 0 or c = 1;
(6)

c = a = 0 or d = 1, b ≤ c ∨ a or c = 1

or b = 1, d = c = 0 or a = 1.
(7)

are derived. Thus conditions (4) through (7) might simultaneously be
satisfied in 54 = 625 different ways. Since a, b, c, d come from a possibility
measure we have the restrictions

0 ≤ a ≤ 1, 0 ≤ b ≤ 1, 0 ≤ c ≤ 1, 0 ≤ d ≤ 1, a ∨ b ∨ c ∨ d = 1 (8)



as well as, by the product relatedness,

a = (a ∨ b)(a ∨ c), b = (a ∨ b)(b ∨ d),

c = (a ∨ c)(c ∨ d), d = (b ∨ d)(c ∨ d).
(9)

The task of finding a, b, c, d is thus tantamount to solving these 625
systems of 13 to 17 equations and inequations in 4 unknowns.
We start by combining restrictions (4) through (7), adding one at a time
and always using (8) to simplify the obtained conditions if convenient
(thus, for example, a = b = 0 would replace a ∨ b = 0).
Conditions (4) and (5) can be satisfied in 25 ways, of which the following
6 contain all others:
1. b = d = 0
2. a = c = 1, b ∨ d = 1
3. c = d = 0, a = 1
4. b = 1
5. a = b = 0, c = 1
6. d = 1

Merging these with (6), conditions (4) through (6) can be satisfied in 30
ways, of which the following 14 contain all others:
1. b = d = 0, a = 1
2. b = d = 0, c = 1
3. a = b = 1
4. a = c = 1, b ∨ d = 1
5. c = d = 0, a = 1
6. a = c = 0, b = 1
7. b = 1, d ≤ a ∨ c
8. b = c = 1
9. a = b = 0, c = 1

10. a = c = 0, d = 1
11. b = d = 1, a ∨ c = 1
12. a = d = 1
13. a = b = 0, d = 1
14. c = d = 1
Merging these with (7), conditions (4) through (7) can be satisfied in 70
ways, of which the following 14 contain all others:
1. b = d = 0, a = 1
2. b = d = 0, c = 1
3. a = b = 1
4. a = c = 1, b ∨ d = 1
5. c = d = 0, a = 1
6. a = c = 0, b = 1
7. b = d = 1, a ∨ c = 1
8. b = c = 1
9. c = d = 0, b = 1

10. a = b = 0, c = 1
11. a = c = 0, d = 1
12. a = d = 1
13. a = b = 0, d = 1
14. c = d = 1



With a direct inspection of (9) in each of the fourteen cases, after elim-
inating redundancies and imposing (8) on the range of the variables we
finally arrive at the following ten families of solutions:
1. a = 0, b = 0, c = 1, d ∈ [0, 1].
2. a = 0, b = 0, c ∈ [0, 1], d = 1.
3. a = 0, b = 1, c = 0, d ∈ [0, 1].
4. a = 0, b ∈ [0, 1], c = 0, d = 1.
5. a = 1, b = 0, c ∈ [0, 1], d = 1.
6. a ∈ [0, 1], b = 0, c = 1, d = 0.
7. a = 1, b ∈ [0, 1], c = 0, d = 0.
8. a ∈ [0, 1], b = 1, c = 0, d = 0.
9. a = 1, b = 1, c = d ∈ [0, 1].

10. a = b ∈ [0, 1], c = 1, d = 1.
Reasoning by contradiction, assume now that X and Y were both not
uniform. By definition, there would exist x, y ∈ R such that

p := Π(X = x) ∈ (0, 1), q := Π(Y = y) ∈ (0, 1).

Taking A = {x} and B = {y} above, using (8) and (9) we obtain the
table

Π Y ∈ B Y ∈ Bc

X ∈ A pq p p
X ∈ Ac q 1 1

q 1
representing a solution which nonetheless is not in any of the ten families
above, a contradiction. Therefore, indeed X or Y must be uniform. �

As a consequence, for sequences of variables we obtain the following
corollary.

Corollary 5. Let {Xn}n be a sequence of identically distributed vari-
ables in a possibility space (Ω,P(Ω),Π). If both forward factorization
and product relatedness, i.e. conditions (i) and (i’), hold, then the Xn

must have uniform possibility distributions.

3 Discussion

It is interesting that the conditions studied here are barely compatible,
in the sense that a sequence of identically distributed variables satisfying
both must have distributions giving possibility 0 or 1 to every event. Thus
Theorems 1 and 2 are complementary as regards those assumptions.
The original laws of large numbers from which they have been simplified
are also complementary in that both have content not covered by the
other. The law from Possibility Theory covers the situation that the
marginals of the Xn are linked by a triangular norm more general than
the product, whereas the one from Imprecise Probability is of course
applicable beyond possibility measures and also shows that the speed of
the convergence is exponential.
It would be tempting to conclude that this ‘almost incompatibility’ is the
explanation of the fact that both laws exhibit different limit intervals,



specially since [M[X],M[X]] = [EN [X], EΠ [X]] when both conditions
apply (as follows from [13]).
However, it must be emphasized that such a conclusion is not warranted,
i.e. it is unclear whether the larger interval in Theorem 2 is actually
optimal under condition (i’) when applied to possibility measures.
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