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Abstract. From an epistemic point of view, coherent lower proba-
bilities allow us to model the imprecise information about a partially
unknown probability. However, there are some issues that hinder their
use in practice. Since belief functions are easier to deal with, we propose
to approximate the coherent lower probability by a belief function that
is at the same time as close as possible to the initial coherent lower prob-
ability while not including additional information. We show that this
problem can be tackled by means of linear programming, and investigate
the features of the set of optimal solutions. Moreover, we emphasize the
di�erences with the outer approximations by 2-monotone lower prob-
abilities. We also study the problem for two particular cases of belief
functions that are computationally easier to handle: necessity measures
and probability boxes.
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1. Introduction

In an experiment with imprecise or ambiguous information, it may be
di�cult to elicit a unique probability model that accurately formalizes our
uncertainty; instead, it is arguably more realistic to take an epistemic ap-
proach and to work with the set of probability distributions that are com-
patible with the available information. Such a set is referred to as a credal
set [24], and it can be summarized by means of the lower and upper prob-
abilities that can be obtained by taking lower and upper envelopes. These
two functions give the tightest lower and upper bounds of the probability of
any event, representing the information at our disposal, and are an instance
of imprecise probability models [1].

The lower and upper probabilities associated with a credal set satisfy the
property of coherence [34], that allows to give them a behavioural interpre-
tation similar to the one considered by Bruno de Finetti [10] in the context
of subjective probability. However, as an imprecise probability model they
also have a number of drawbacks that hinder somewhat their use in practice:
(a) they do not have a unique extension as an expectation operator, mean-
ing that we must instead consider the model of coherent lower and upper
previsions; (b) the veri�cation of the property of coherence for some given
lower and upper probabilities may be di�cult; and (c) the structure of the
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credal set associated with a pair of coherent lower and upper probabilities
in terms of extreme points is not straightforward.

The reasons above motivate the use of other imprecise probability models
that, while slightly less expressive, are easier to use in practice. In [3],
the authors proposed to outer approximate a coherent lower probability by
means of a 2-monotone one. Following this idea, in a previous contribution
[26] we studied in detail how to obtain outer approximations in terms of 2-
monotone lower probabilities as well as their features. These have a number
of advantages over coherent lower and upper probabilities: for instance, the
property of 2-monotonicity determines a unique extension as an expectation
operator (the Choquet integral [5]), and their associated credal set has a
neat structure in terms of its extreme points [30].

This is not to say, however, that 2-monotone lower probabilities are with-
out drawbacks: for instance, their interpretation is not as clear as that of co-
herent lower and upper probabilities, even if there exists a link with comono-
tone addivitity [8]; moreover, the computational cost of working with them
may still be high.

For this reason, in this paper we go a bit further and consider a particular
case of 2-monotone lower probabilities that has a clearer interpretation and
is at the same time computationally simpler: belief functions [29]. They were
studied in detail by Shafer in the context of evidence theory, and had also
appeared earlier in connection with multi-valued mappings [11] and with the
property of complete monotonicity [5]. As particular cases of lower prob-
abilities, belief functions are uniquely determined by their Möbius inverse;
however, unlike arbitrary lower probabilities, the Möbius inverse of a belief
function is non-negative, and can thus be interpreted as a basic probability
assignment. Because of this, they bene�t from the machinery established in
evidence and in random set theory [?, ?, 29].

In this work we shall look for the closest (in a sense that shall be speci�ed
later on) belief function that outer approximates a given coherent lower
probability, meaning that it does not introduce any additional information.
While we shall prove that there is always one such approximation, we will
also see that our problem does not have a unique solution in general, and
that in fact there may be in�nitely many. Moreover, we shall show that
the in�nite set of solutions may not even be convex. For this reason, we
will study a number of particular cases of belief functions that, although
entailing a loss of expressive power, are also computationally simpler, such
as belief functions de�ned on ternary spaces, possibility/necessity measures
and probability boxes. In these two cases, we shall establish that the set of
optimal outer approximations is �nite and can be easily determined.

Some earlier works in the literature also studied this, or related approaches:
in [6], de Campos de�ned an inclusion relation between fuzzy measures that
in certain cases is equivalent to being an outer approximation; in [14, 17, 18],
Dubois and Prade investigated the problem of outer approximating a belief
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function by means of a necessity measure; and some algorithms for approxi-
mating a coherent lower probability by means of a belief function were pro-
posed in [21, 28]. We shall give more detailed information about these works
at various points in the paper.

The contribution is organized as follows: after giving some preliminary
concepts in Section 2, Section 3 summarizes our previous work [26] on
the problem of outer approximating a coherent lower probability with a 2-
monotone one. Section 4 contains the main bulk of our work: we investigate
the same problem in terms of belief functions, showing that we can solve
it by means of linear programming (Section 4.1), studying the properties of
the set of solutions (Section 4.2) and characterizing this set on the particu-
lar case of ternary spaces (Section 4.3). Also, in Section 5 we compare our
approach with some previous works on the matter. Finally, in Sections 6.1
and 6.2 we consider the particular cases of necessity measures and p-boxes,
respectively. Some additional comments are given in Section 7.

2. Preliminaries

In this section we introduce the main concepts we shall use in this pa-
per: coherent lower previsions and probabilities, belief functions, possibility
measures and p-boxes.

2.1. Lower previsions. Consider a �nite possibility space X = {x1, . . . , xn}
with cardinality n. A gamble is a real-valued function f : X → R, and the
set of all the gambles in X is denoted by L(X ). A lower prevision de�ned
on K ⊆ L(X ) is a function P : K → R. In this paper, we follow an epis-
temic interpretation, so we regard P (f) as a lower bound of the expectation
of f with respect to some partially unknown probability P0, EP0(f). With
this in mind, the set of probability measures that are compatible with the
information given by P is:

M(P ) = {P probability measure | P (f) ≥ P (f) ∀f ∈ K}. (1)

M(P ) is usually called a credal set following the terminology of Levi [24].
Some particular cases of lower previsions have been considered, de�ned

in terms of rationality criteria. The minimal requirement on P we shall
consider in this paper is that the bounds it provides on the expectations of
the gambles of K are tight:

De�nition 1. [34] A lower prevision P is called coherent when its associated
credal setM(P ) is non-empty and P is the lower envelope of this set: P (f) =
minP∈M(P ) P (f) for every f ∈ K.

The conjugate of a lower prevision P , denoted by P , is called upper pre-
vision and it is given by P (f) = −P (−f) for every f such that −f ∈ K.
P (f) can be interpreted as an upper bound for the expectation of f with
respect to the partially unknown probability P0. When P is coherent, P can
be computed by P (f) = maxP∈M(P ) P (f) for every f such that −f ∈ K.
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2.2. Lower probabilities. One particular case of lower previsions are those
whose domain contains only indicator functions: IA for some A ⊆ X . In that
case, we will use the notation P (A) instead of P (IA), and the lower prevision
will be called lower probability.

Formally, a lower probability on K ⊆ P(X ) is a function P : K → [0, 1].
Following the epistemic interpretation, P (A) can be interpreted as a lower
bound of some unknown probability P0(A). The credal set associated with
the lower probability can then be determined using Eq. (1):

M(P ) = {P probability measure | P (A) ≥ P (A) ∀A ∈ K}.
The conjugate of a lower probability P , denoted by P , is called upper prob-
ability and it is given by P (A) = 1 − P (Ac) for every A such that Ac ∈ K.
Also, when P is coherent, P can be computed by P (A) = maxP∈M(P ) P (A)
for every A such that Ac ∈ K.

From now on, we will assume that the lower previsions/probabilities are
coherent, and that they are de�ned on L(X ) or P(X ), respectively. Note
that if P is a coherent lower prevision (de�ned on L(X )), we can de�ne
its restriction to events: P ′(A) = P (IA) for every A ∈ P(X ), and P ′ is a
coherent lower probability.

On the other hand, there may be di�erent coherent lower previsions on
L(X ) with the same coherent lower probability as their restriction to events,
and in this sense coherent lower previsions are a more informative model
than coherent lower probabilities; see [34, Section 2.7.3] for more details.

Any lower probability, coherent or not, de�ned on P(X ) can be equiva-
lently represented in terms of a function m : P(X ) → R called its Möbius
inverse, de�ned by:

m(A) =
∑
B⊆A

(−1)|A\B|P (B) ∀A ⊆ X . (2)

This function allows to retrieve the initial lower probability by using the
formula:

P (A) =
∑
B⊆A

m(B) ∀A ⊆ X . (3)

2.3. 2- and completely monotone lower probabilities. One useful prop-
erty that a coherent lower probability may satisfy is that of 2-monotonicity.

De�nition 2. [5] A lower probability P : P(X )→ [0, 1] is called 2-monotone
if it satis�es P (A ∪B) + P (A ∩B) ≥ P (A) + P (B) for every A,B ⊆ X .

The use of 2-monotone lower probabilities has some bene�ts with respect
to coherent lower probabilities:

• For coherent lower probabilities, M(P ) is a closed and convex set
of probabilities, hence it is characterized by its extreme points. It
is known that the maximal number of extreme points of M(P ) is
n! [35]. However, there is no procedure for obtaining those extreme
points. Instead, such a procedure does exist in the particular case
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of 2-monotone lower probabilities P : as shown by Shapley [30], the
extreme points ofM(P ) are in correspondence with the permutations
of {1, . . . , n}.
• We mentioned in the previous subsection that a coherent lower prob-
ability on P(X ) may have more than one coherent extension to L(X ).
However, a 2-monotone lower probability P on P(X ) has a unique
extension to L(X ) that satis�es 2-monotonicity [8, 33], its Choquet
integral [5]:

P (f) = (C)

∫
fdP = inf f +

∫ sup f

inf f
P ({f > t})dt. (4)

For additional discussion about 2-monotonicity, we refer to [8, 12].
The notion of 2-monotonicity can be extended to higher degrees:

De�nition 3. [5] A lower probability P : P(X )→ [0, 1] is k-monotone if for
every p ≤ k, and for every A1, . . . , Ap ⊆ X it holds that:

P
(
∪pi=1 Ai

)
≥

∑
∅6=I⊆{1,...,p}

(−1)|I|+1P
(
∩i∈I Ai

)
.

If P is k-monotone for every k, it is called completely monotone.

In Shafer's Evidence Theory [29], completely monotone lower probabilities
are usually called belief functions, denoted by Bel, and their conjugate upper
probabilities are usually called plausibility functions and denoted by Pl.

As lower probabilities, belief functions can also be equivalently expressed
in terms of their Möbius inverse using Eq. (2). Interestingly, belief functions
can be characterized as those lower probabilities whose Möbius inverse m
is non-negative: we have m(A) ∈ [0, 1] for every A ⊆ X , m(∅) = 0 and∑

A⊆X m(A) = 1. In the context of belief functions, the functionm is usually
called basic probability assignment, and an event A with strictly positive
mass, m(A) > 0, is called focal event. The mass m(A) may be interpreted
as the amount of evidence supporting the occurrence of the event A.

2.4. Possibility measures. A particular case of plausibility functions are
possibility measures.

De�nition 4. [16, 37] A possibility measure Π : P(X ) → [0, 1] is a nor-
malized and supremum preserving function: Π(X ) = 1 and Π(∪i∈IAi) =
supi∈I Π(Ai) for every family of events Ai ⊆ X , i ∈ I.

Since in this paper we are dealing with �nite spaces, the above supremum
becomes a maximum, whence there must be some x ∈ X such that Π({x}) =
1. The conjugate function of a possibility measure is called necessity measure
and is denoted by N . A necessity measure and its conjugate possibility
measure are in particular belief and plausibility functions: they correspond
to the case where the focal events are nested, meaning that for every two
focal events E1, E2, either E1 ⊆ E2 or E2 ⊆ E1.
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Since a possibility measure is a particular case of coherent upper proba-
bility, its associated credal set is given by:

M(Π) = {P probability measure | P (A) ≤ Π(A) ∀A ⊆ X}. (5)

A possibility measure Π can be represented by means of a function π : X →
[0, 1] called possibility distribution, and de�ned by π(x) = Π({x}) ∀x ∈ X .
That is, π is the restriction of Π to singletons. Since Π is supremum-
preserving (or maxitive in our �nite framework), it holds that Π(A) =
supx∈A π(x) for every A ⊆ X .

2.5. Probability boxes. Probability boxes (p-boxes, for short) [19, 31] are
useful models when there is imprecise information about a cumulative dis-
tribution function (cdf, for short) and we consider lower and upper bounds:

De�nition 5. Let X = {x1, . . . , xn} be a totally ordered space, so that x1 ≤
. . . ≤ xn. A p-box (F , F ) is a pair of cdfs F , F satisfying F ≤ F .

A p-box (F , F ) de�nes a credal set by:

M(F , F ) = {P probability measure | F (x) ≤ FP (x) ≤ F (x) ∀x ∈ R}, (6)

where FP denotes the cdf associated with the probability P . The lower
and upper envelopes of M(F , F ), that we shall denote P (F ,F ), P (F ,F ), are

coherent lower and upper probabilities, and they satisfy:

P (F ,F )({x1, . . . , xi}) = F (xi), P (F ,F )({x1, . . . , xi}) = F (xi) ∀xi ∈ X . (7)

These lower and upper probabilities are not only coherent, but also belief and
plausibility functions [31]. Their focal events are ordered intervals, meaning
that for every focal event E, if minE ≤ x ≤ maxE, then x ∈ E, and if
E1, E2 are two focal events, either minE1 ≤ minE2 and maxE1 ≤ maxE2

or minE2 ≤ minE1 and maxE2 ≤ maxE1. Conversely, if Bel is a belief
function whose focal events are ordered intervals, and we de�ne the p-box
(F , F ) by:

F (xi) = Bel({x1, . . . , xi}), F (xi) = Pl({x1, . . . , xi}) ∀xi ∈ X ,

then Bel = P (F ,F ).

The de�nition of p-box requires X to be endowed with a total order.
However, this is sometimes a rather strong condition. To be able to deal with
the nice properties of p-boxes in non-ordered spaces, the following notion was
introduced in [13].

De�nition 6. Let X be an arbitrary space. A generalized p-box (F , F ) is
a pair of comonotone1 mappings such that there exists x ∈ X with F (x) =
F (x) = 1 and F is dominated by F : F ≤ F .

1Two functions f, g are comonotone if for every x, y ∈ X it holds that f(x) < f(y)
implies g(x) ≤ g(y).
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From [13], a generalized p-box (F , F ) induces an order ≤(F ,F ) in X and a

permutation σ of {1, . . . , n} such that:

F (xσ(1)) ≤(F ,F ) . . . ≤(F ,F ) F (xσ(n)) = 1,

F (xσ(1)) ≤(F ,F ) . . . ≤(F ,F ) F (xσ(n)) = 1.

We shall use this fact in Section 6.2 later on.

2.6. Aim of the paper. Because of the advantageous mathematical prop-
erties of 2-monotone lower probabilities over those that are merely coherent,
following the initial steps in [3], in a recent paper [26] we investigated how to
approximate a coherent lower probability P : P(X )→ [0, 1] by a 2-monotone
lower probability Q that at the same time (a) introduces no new informa-
tion, in the sense that the credal set associated with Q includes all those
probability measures in M(P ), that were considered a suitable model for
the available knowledge; and (b) is as close as possible to the original model.

De�nition 7. Let C denote a class of coherent lower probabilities. We say
that Q ∈ C is an outer approximation of P in C if Q ≤ P . Moreover, Q ∈ C
is an undominated outer approximation of P in C if there is no Q′ ∈ C such
that Q � Q′ ≤ P .

In terms of credal sets, Q is an outer approximation of P whenM(P ) ⊆
M(Q), and it is an undominated outer approximation in C when there is no

Q′ such thatM(P ) ⊆M(Q′) (M(P ).
In the remainder of this paper, we denote by C2, C∞, CΠ, C(F ,F ) and C∗(F ,F )

the families of 2-monotone lower probabilities, belief functions, possibility
measures, p-boxes and generalized p-boxes, respectively, de�ned for a �xed
possibility space X .

The following lemma shall be useful later on.

Lemma 1 ([26]). Let P be a coherent lower probability and denote by P ′ an
outer approximation in the class C. If P ′ is a solution to the problem:

min
P ′∈C,P ′≤P

∑
E⊆X

g(P (E)− P ′(E)),

for some strictly increasing function g : R → R, then P ′ is an undominated
outer approximation of P in C.

In the rest of the paper we aim to:

• investigate how to obtain undominated outer approximations of a
coherent lower probability in C∞, as well as the properties of the set
of undominated outer approximations;
• compare the results with those in [26] where we studied how to obtain
undominated outer approximations in C2;
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• study how to outer approximate a coherent lower probability with
some particular families of belief functions: possibility measures and
p-boxes.

It may also be of interest to determine inner approximations in C∞, which
are those belief functions Bel satisfying P ≤ Bel. Although the linear
programming approach we shall discuss below could easily be applied in
that context, the use of inner approximations is in con�ict with the goal of
not introducing new information. Indeed, if Q is an inner approximation of
P then we have the inclusion between the credal setsM(P ) ⊇ M(Q), and
the strict inclusion means that we are removing some elements fromM(P ),
that according to our model are compatible with the available information.

In addition, the existence of an outer approximation is always guaranteed
to hold both for belief functions and their subfamilies we shall consider later
on in this paper, while the same cannot be said for inner approximations:
it may not be possible for instance, to �nd a possibility measure that inner
approximates a coherent upper probability. For all these reasons, in this
paper we focus on outer approximations. For a deeper discussion about
inner approximations we refer to [26, Section 7].

3. Outer approximations of coherent lower probabilities by

means of 2-monotone lower probabilities

In this section, we recall our results from [26] about the problem of outer
approximating a coherent lower probability by means of a 2-monotone one.

In [26], we showed that the set of undominated outer approximations of
a coherent lower probability in C2 may be too large, and as a consequence
we need some criterion that allows us to choose some outer approximations
over others. One possibility is to focus on those outer approximations that
minimize the distance with the initial model P . If we pursue this avenue,
then we need to choose an appropriate distance between the two models. In
[26] we considered the distance proposed by Baroni and Vicig in [2], given
by2:

d(P ,Q) :=
∑
E⊆X

(P (E)−Q(E)). (8)

If we interpret P (E) − Q(E) as the additional imprecision introduced on
E when replacing P (E) with Q(E), then d(P ,Q) has the meaning of total
imprecision added by the outer approximation Q.

In our view, this distance makes more sense from the point of view of the
interpretation than other alternatives, such as the quadratic distance we shall
consider in Section 5.2, because it takes into account the di�erences on all
subsets of the possibility space and treats all these di�erences in the same

2The distance by Baroni and Vicig could be normalized just dividing by the maximum
value of d(P ,Q). In this case, if P ≥ Q, the maximum distance is attained takingQ(A) = 0

for any A 6= X and Q(X ) = 1, usually called vacuous lower probability, and P a precise

probability measure on X . Thus, we obtain a maximum distance of 2n−1 − 1.
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manner (instead of giving less weight to small di�erences, as is implicitly
done with the quadratic distance). In addition, it shall allow us to use the
machinery of linear programming, for which the set of solutions is a bounded
polyhedral set with a �nite number of extreme points. See [26, Section 5.1]
for further discussion.

We obtain thus the following minimization problem, where the 2-monotone
lower probability Q is expressed in terms of its Möbius inverse mQ by means

of Eq. (3):

min d(P ,Q) =
∑
E⊆X

(
P (E)−

∑
B⊆E

m(B)
)

(LP-2monot)

subject to:∑
E⊆X

mQ(E) = 1, mQ(∅) = 0. (LP-2monot.1)

∑
{xi,xj}⊆B⊆E

mQ(B) ≥ 0, ∀E ⊆ X , ∀xi, xj ∈ E, xi 6= xj . (LP-2monot.2)

mQ({xi}) ≥ 0, ∀xi ∈ X . (LP-2monot.3)∑
B⊆E

mQ(B) ≤ P (E) ∀E 6= ∅,X . (LP-2monot.4)

As discussed in [26], according to [4], (LP-2monot.1)÷(LP-2monot.3) assure
that mQ de�nes a 2-monotone lower probability by means of Eq. (3). Our

next proposition summarizes some of the main results from [26]:

Proposition 2. Let P be a coherent lower probability. The following state-
ments hold:

(1) The optimal solutions of (LP-2monot) subject to the restrictions
(LP-2monot.1)÷(LP-2monot.4) are undominated outer approxima-
tions of P in C2.

(2) The optimal solutions of (LP-2monot) subject to the restrictions
(LP-2monot.1)÷(LP-2monot.4) and also to:∑

B⊆A
mQ(B) = P (A), (LP-2monot.A)

for a �xed event A, are undominated outer approximations of P in
C2 satisfying Q(A) = P (A).

(3) If Q is an undominated outer approximation in C2, and Q is its

conjugate upper probability, then Q({x}) = P ({x}) and Q({x}) =

P ({x}) for every x ∈ X .
(4) If {Q

i
}i∈I denotes the set of undominated outer approximations in

C2, it holds that P (A) = maxi∈I Qi(A) for every A ⊆ X .

The �rst and second items mean that it is possible to �nd undominated
outer approximations in C2 just by solving linear programming problems.
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The third item shows that any undominated outer approximation in C2 and
its conjugate upper probability preserve the order determined by P and P on
X . Finally, the fourth item says that the undominated outer approximations
in C2 allow us to retrieve the initial lower probability. Also, in [26, Example 1]
it is shown that the set of undominated outer approximations of P in C2

may be in�nite. When that is the case, the problem of characterizing all the
undominated outer approximations arises.

Besides the linear programming approach, in [26] we also studied some
other approaches to obtain undominated outer approximation in C2: we
considered for instance some extensions of the total variation distance to
the imprecise case, and showed that none of them guarantees obtaining an
undominated outer approximation; in addition, we also considered the qua-
dratic distance, that, although determining a unique undominated outer ap-
proximation, is not so well justi�ed as the distance by Baroni and Vicig we
have considered, in our view.

4. Outer approximations of coherent lower probabilities by

means of belief functions

In this section, we consider the problem of outer approximating a coherent
lower probability by means of a belief function. Although belief functions
are particular cases of 2-monotone lower probabilities, and as a consequence
their use as outer approximating models will entail a loss of information
with respect to the ones we can obtain in C2, they also have advantages over
them: the most important of these is that they have a clearer interpretation
from the point of view of evidential theory, because in the case of belief
functions, the Möbius inverse m(A) can be interpreted as a measure of the
evidence supporting event A as the outcome of the experiment. This is no
longer possible for 2-monotone lower probabilities, because in their case the
Möbius inverse need not be non-negative.

In [26], we considered already one instance of belief functions: the so-called
ε-contamination models [34], or linear-vacuous mixtures, given by

P ε(A) =

{
(1− ε)P0(A) if A 6= X ,
1 if A = X ,

for a given probability measure P0 and ε ∈ (0, 1). The lower probability P ε is
completely monotone, because it is a convex combination of two completely
monotone models: the probability measure P0 and the vacuous lower proba-
bility. Its focal events are the singletons and the total space, with respective
masses:

m({xi}) = (1− ε)P0({xi}) ∀i = 1, . . . , n and m(X ) = ε.

The credal set of the ε-contamination model is given by those probability
measures that are mixtures of P0 with some probability Q, with respective
weights 1− ε and ε. Thus, the ε-contamination corresponds to a particular
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family of distortion models, and were also considered in outer approxima-
tion problems by Quaeghebeur in [28]. In this section we analyze the outer
approximations in the whole class C∞.

As shown in [26, Example 1], some of the solutions of the linear program-
ming problem (LP-2monot) subject to (LP-2monot.1)÷(LP-2monot.4) may
be in particular completely monotone lower probabilities, and therefore they
are also undominated outer approximations in the smaller class C∞. This is
of course not always the case: if P is 2-monotone but not completely mono-
tone, then it is the only undominated outer approximation of itself in C2.
Another example can be seen in Example 1 later on.

4.1. Outer approximations in C∞ by means of linear programming.

Our proposal is to consider those outer approximations that minimize the
distance in Eq. (8) between the initial lower probability P and the belief
function: d(P ,Bel) =

∑
E⊆X (P (E) − Bel(E)). This expression can be

equivalently written using the basic probability assignment m:

d(P ,Bel) =
∑
E⊆X

P (E)−
∑
B⊆E

m(B)

 .

Thus, our goal is to determine the basic probability assignment minimizing
the previous expression; this will induce a belief function using Eq. (3).

Proposition 3. Let P be a coherent lower probability. Consider the follow-
ing minimization problem:

min d(P ,Bel) =
∑
E⊆X

P (E)−
∑
B⊆E

m(B)

 (LP-bel)

subject to:∑
B⊆X

m(B) = 1, m(B) ≥ 0 ∀B ⊆ X . (LP-bel.1)

∑
B⊆E

m(B) ≤ P (E) ∀E ⊆ X . (LP-bel.2)

Then, the following statements hold:

(1) The feasible region of the linear programming problem is non-empty.
(2) Any optimal solution to the linear programming problem is an un-

dominated outer approximation of P in C∞.
(3) Consider the problem (LP-bel) subject to (LP-bel.1)÷(LP-bel.2) and

also to: ∑
B⊆A

m(B) = P (A) (LP-bel.A)

for a �xed event A ( X . Then the feasible region is not empty and
the optimal solutions are also undominated outer approximations of
P in C∞ satisfying Bel(A) = P (A).
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Proof. We shall estalish the last statement, and deduce the other two as
particular cases.

(3) Consider the problem (LP-bel) subject to (LP-bel.1)÷(LP-bel.2) and
(LP-bel.A) for a �xed event A. The feasible region of this lin-
ear programming problem is non-empty (consider for instance the
simple support function, given by the basic probability assignment
m(A) = P (A), m(X ) = 1 − P (A) and 0 elsewhere), it forms a
bounded polyhedral set, and since the objective function is contin-
uous in the variables m(B), we can apply Weierstrass' theorem to
deduce that there exists an optimal solution. Let Bel be one such
solution, and let m denote its basic probability assignment. Since
P (∅) = 0, conditions (LP-bel.1) and (LP-bel.2) imply that m(∅) = 0.
This, together with condition (LP-bel.1) ensures that m is a ba-
sic probability assignment, so it de�nes a belief function Bel using
Eq. (3). Also, (LP-bel.2) implies that Bel is an outer approximation
of P . Condition (LP-bel.A) guarantees that Bel(A) = P (A). The
fact that Bel is undominated follows from Lemma 1, just considering
the identity function g(x) = x for every x ∈ R.

(1),(2) These correspond to the particular case of A = ∅ in item (3). �

This means that, as we did in the case of 2-monotone outer approxi-
mations, we can again obtain undominated outer approximations in C∞ by
solving a linear programming problem. Also, if we want to obtain an undom-
inated outer approximation satisfying Bel(A) = P (A) for a �xed A, we just
need to impose the additional constraint (LP-bel.A). This could be useful
in some situations where all the optimal solutions Bel of (LP-bel) satisfy
Bel(A) < P (A) for a �xed event A, as next example shows.

Example 1. Let us consider a four-element space X and the coherent lower
probability P given in Table 1. To see that it is coherent, note that it is the
lower envelope of the probability measures with mass functions (0.1, 0, 0.4, 0.5),
(0.4, 0.1, 0.2, 0.3) and (0.3, 0.3, 0, 0.4). Solving the linear programming prob-
lem (LP-bel) with constraints (LP-bel.1)÷(LP-bel.2), we obtain the opti-
mal solutions Bel0 and Bel1 as well as their convex combinations Belα =
αBel0 + (1− α)Bel1 for α ∈ [0, 1].

However, any of these convex combinations satis�es

Belα({x3, x4}) = 0.3 < 0.4 = P ({x3, x4}).

If we want to obtain an outer approximation in C∞ whose value for the
event {x3, x4} equals P ({x3, x4}), we can solve the same linear programming
problem with the additional constraint (LP-bel.A) with A = {x3, x4}. In that
case, we obtain in�nite solutions, such as Bel2. Of course, since Bel2 is not
an optimal solution to the former linear programming problem (without the
constraint (LP-bel.A)), we observe that:

d(P ,Bel0) = d(P ,Bel1) = 0.3 < 0.5 = d(P ,Bel2).
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A P (A) Q Bel0 Bel1 Bel2
{x1} 0.1 0.1 0.1 0.1 0.1
{x2} 0 0 0 0 0
{x3} 0 0 0 0 0
{x4} 0.3 0.3 0.3 0.3 0.3
{x1, x2} 0.1 0.1 0.1 0.1 0.1
{x1, x3} 0.3 0.3 0.2 0.3 0.1
{x1, x4} 0.6 0.5 0.6 0.5 0.6
{x2, x3} 0.3 0.2 0.3 0.2 0.2
{x2, x4} 0.4 0.4 0.3 0.4 0.3
{x3, x4} 0.4 0.4 0.3 0.3 0.4
{x1, x2, x3} 0.5 0.5 0.5 0.5 0.4
{x1, x2, x4} 0.6 0.6 0.6 0.6 0.6
{x1, x3, x4} 0.7 0.7 0.7 0.7 0.7
{x2, x3, x4} 0.6 0.6 0.6 0.6 0.6

X 1 1 1 1 1

Table 1. Coherent lower probability of Example 1 and some
of its outer approximations in C2 and C∞.

Table 1 also shows the values of the belief functions Bel0, Bel1 and Bel2, as
well as an undominated 2-monotone lower probability Q that outer approxi-
mates P . It holds that Bel1 is dominated by Q, showing that the undominated
outer approximations in C∞ may be dominated in the broader class C2. �

In particular, this example shows that there may be in�nitely many un-
dominated outer approximations in C∞.

We can easily see that we can retrieve the original lower probability from
these undominated outer approximations in C∞.

Proposition 4. Let P be a coherent lower probability, and let {Beli}i∈I be
the set of undominated outer approximations in C∞ that are optimal solutions
of (LP-bel) subject to either (LP-bel.1)÷(LP-bel.2) or (LP-bel.1)÷(LP-bel.2)
and (LP-bel.A) for any �xed event A ( X . Then

P (E) = max
i∈I

Beli(E) ∀E ⊆ X .

Equivalently, if M(P ) and M(Beli) are the credal sets of P and Beli, re-
spectively, it holds thatM(P ) =

⋂
i∈IM(Beli).

Proof. On the one hand, since any Beli is an outer approximation of P , it
holds that P ≥ Beli for every i ∈ I, and therefore P ≥ maxi∈I Beli. On the
other hand, take A ⊆ X . Using Proposition 3(3) with this event A, there is
an undominated belief function Beli such that Beli(A) = P (A). Therefore,
for every A there is an undominated outer approximation Beli such that
Beli(A) = P (A), and we conclude that P = maxi∈I Beli. �
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4.2. Properties of the undominated outer approximations in C∞.
Next, we investigate the properties of the set of undominated outer approx-

imations in C∞, that we shall denote from now on by C̃∞.
From Proposition 3 we know that solving the linear programming problem

(LP-bel) we obtain undominated belief functions. One may wonder whether
all undominated outer approximations in C∞ are solutions of (LP-bel) sub-
ject to either (LP-bel.1)÷(LP-bel.2) or (LP-bel.1)÷(LP-bel.2) and (LP-bel.A)
for a �xed event A ( X . However, as next example shows, there are undom-
inated belief functions that are not optimal solutions of any of these linear
programming problems.

Example 2. Consider a four element space, the lower probability P and the
belief functions Bel1, Bel2 de�ned as follows:

A P (A) m1 Bel1 m2 Bel2
{x1} 0.1 0.1 0.1 0.1 0.1
{x2} 0 0 0 0 0
{x3} 0 0 0 0 0
{x4} 0.1 0.1 0.1 0.1 0.1
{x1, x2} 0.4 0.3 0.4 0.3 0.4
{x1, x3} 0.4 0.1 0.2 0.1 0.2
{x1, x4} 0.4 0.1 0.3 0 0.2
{x2, x3} 0.2 0 0 0 0
{x2, x4} 0.4 0 0.1 0.1 0.2
{x3, x4} 0.4 0.2 0.3 0.3 0.4
{x1, x2, x3} 0.5 0 0.5 0 0.5
{x1, x2, x4} 0.6 0 0.6 0 0.6
{x1, x3, x4} 0.6 0 0.6 0 0.6
{x2, x3, x4} 0.5 0.1 0.4 0 0.5

X 1 0 1 0 1

On the one hand, P is a coherent lower probability because it is the lower
envelope of the probability measures with mass functions:

(0.3, 0.1, 0.1, 0.5), (0.4, 0.2, 0, 0.4), (0.3, 0.3, 0.3, 0.1), (0.1, 0.3, 0.3, 0.3)

(0.2, 0.2, 0.4, 0.2), (0.4, 0, 0.2, 0.4), (0.2, 0.4, 0.2, 0.2), (0.5, 0.1, 0.1, 0.3).

If we now compute the distance in Eq. (8) between P and these belief func-
tions, we obtain that d(P ,Bel1) = 1, while d(P ,Bel2) = 0.8. We deduce
that, while Bel2 � Bel1, d(Bel2, P ) < d(Bel1, P ); moreover, Bel2 agrees
with P in all events E such that Bel1(E) = P (E). Thus, Bel1 is not an
optimal solution to any of the linear programming problems.
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Let us show that Bel1 is undominated. Any Bel such that Bel1 ≤ Bel ≤ P
should satisfy:

A m Bel
{x1} 0.1 0.1
{x2} 0 0
{x3} 0 0
{x4} 0.1 0.1
{x1, x2} 0.3 0.4
{x1, x3} a 0.1 + a
{x1, x4} b 0.2 + b
{x2, x3} c c
{x2, x4} d 0.1 + d
{x3, x4} e 0.1 + e
{x1, x2, x3} f 0.5
{x1, x2, x4} g 0.6
{x1, x3, x4} h 0.6
{x2, x3, x4} i 0.1 + c+ d+ e+ i

X j 1

Since Bel1(E) ≤ Bel(E), taking E = {x1, x3}, {x1, x4}, {x2, x3}, {x2, x4}
or {x3, x4}, we obtain respectively that:

0.1 + a ≥ 0.2⇒ a ≥ 0.1. (9)

0.2 + b ≥ 0.3⇒ b ≥ 0.1. (10)

c ≥ 0.

d ≥ 0.

e ≥ 0.2. (11)

Adding these inequalities,

a+ b+ c+ d+ e ≥ 0.4. (12)

If we now apply the constraint Bel1(E) ≤ Bel(E) for E = {x1, x2, x3},
{x1, x2, x4} or {x1, x3, x4}, we deduce that:

a+ c+ f = 0.1. (13)

b+ d+ g = 0.1. (14)

a+ b+ e+ h = 0.4. (15)

From Eqs. (9) and (13), we obtain that a = 0.1, c = f = 0; from Eqs. (10)
and (14), we deduce that b = 0.1, d = g = 0. This, together with Eqs. (11),
(12) and (15) implies that e = 0.2, h = 0. Also, since Bel1({x2, x3, x4}) ≤
Bel({x2, x3, x4}):

0.3 + i ≥ 0.4⇒ i ≥ 0.1.

Finally, since the sum of all the masses is 1, i + j = 0.1, so i = 0.1 and
j = 0. We get that m = m1, and so Bel = Bel1, and as a consequence we
conclude that Bel1 is undominated. �
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We conclude from this example that there are undominated outer approx-
imations that are not optimal solutions of any of the previous linear pro-
gramming problems. This is not surprising, since this feature was already
observed for the outer approximations in C2 [26, Example 3]. In Section 5
we shall discuss some alternatives to the linear programming approach.

Next we show that, perhaps surprisingly, the set C̃∞ of undominated outer
approximations in C∞ is not convex:

Example 3. Let X = {x1, x2, x3, x4} be a four-element space, and consider
the lower probability P given in Table 2.

P Bel m Bel1 m1 Bel2 m2 B̃el m̃
{x1} 0 0 0 0 0 0 0 0 0
{x2} 0 0 0 0 0 0 0 0 0
{x3} 0 0 0 0 0 0 0 0 0
{x4} 0 0 0 0 0 0 0 0 0
{x1, x2} 1/6 1/6 1/6 1/6 1/6 1/12 1/12 1/8 1/8

{x1, x3} 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6

{x1, x4} 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6

{x2, x3} 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6

{x2, x4} 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6

{x3, x4} 1/6 1/6 1/6 1/12 1/12 1/6 1/6 1/8 1/8

{x1, x2, x3} 7/12 1/2 0 7/12 1/12 5/12 0 1/2 1/24

{x1, x2, x4} 1/2 1/2 0 1/2 0 5/12 0 11/24 0
{x1, x3, x4} 1/2 1/2 0 5/12 0 1/2 0 11/24 0
{x2, x3, x4} 7/12 1/2 0 5/12 0 7/12 1/12 1/2 1/24

X 1 1 0 1 0 1 0 1 0

Table 2. Lower probability P from Example 3 and some of
its outer approximations in C∞.

This lower probability is coherent because it is the lower envelope of the prob-
ability measures associated with the mass functions:

(0, 1/3, 1/3, 1/3) , (1/3, 0, 1/3, 1/3) , (1/3, 1/3, 0, 1/3) , (1/3, 1/3, 1/3, 0) .

(1/12, 1/12, 5/12, 5/12) , (5/12, 5/12, 1/12, 1/12) , (1/12, 1/2, 1/12, 1/3) .

(1/12, 1/2, 1/3, 1/12) , (5/12, 1/12, 1/12, 5/12) , (1/3, 1/12, 1/2, 1/12) .

In that table we also show some belief functions as well as their respective
Möbius inverses. It is immediate to see that all of them are outer approx-
imations of the coherent lower probability P . In addition, they satisfy the
following properties:

• Bel ∈ C̃∞: if there exists a belief function Bel′ such that Bel ≤
Bel′ ≤ P , then Bel and Bel′ should coincide in all the events of
cardinality one and two, hence also m and m′ coincide for those
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events. Since
∑
|A|=2m

′(A) =
∑
|A|=2m(A) = 1, it holds that m =

m′, so Bel and Bel′ coincide.

• Bel1 ∈ C̃∞: if there exists a belief function Bel′ such that Bel1 ≤
Bel′ ≤ P , then Bel′ and its Möbius inverse should satisfy:

Bel′({x1, x2}) =
1

6
⇒ m′({x1, x2}) =

1

6
.

Bel′({x1, x3}) =
1

6
⇒ m′({x1, x3}) =

1

6
.

Bel′({x1, x4}) =
1

6
⇒ m′({x1, x4}) =

1

6
.

Bel′({x2, x3}) =
1

6
⇒ m′({x2, x3}) =

1

6
.

Bel′({x2, x4}) =
1

6
⇒ m′({x2, x4}) =

1

6
.

Bel′({x3, x4}) ≥
1

12
⇒ m′({x3, x4}) ≥

1

12
.

Bel′({x1, x2, x3}) =
7

12
⇒ m′({x1, x2, x3}) =

1

12
.

Since the sum of the masses of these events is greater than or equal to
1, it must be m′ = m1 and Bel′ = Bel1. Thus, Bel1 is undominated.

• With an analogous reasoning, we see that Bel2 ∈ C̃∞.
• The belief function B̃el can be expressed as a convex combination of

Bel1 and Bel2: B̃el = 1
2Bel1 + 1

2Bel2. However, B̃el is dominated
by the belief function Bel.

Thus, the set C̃∞ of undominated outer approximations in the class of belief
functions in not convex. �

Note that all the undominated belief functions in this example can be
obtained as solutions of a linear programming problem of the type con-
sidered in Proposition 3: Bel is the unique optimal solution of (LP-bel)
subject to (LP-bel.1)÷(LP-bel.2); Bel1 is an optimal solution of the lin-
ear programming problem (LP-bel) subject to (LP-bel.1)÷(LP-bel.2) and
(LP-bel.A) with A = {x1, x2, x3}; and Bel2 is an optimal solution of the
linear programming problem (LP-bel) subject to (LP-bel.1)÷(LP-bel.2) and
(LP-bel.A) with A = {x2, x3, x4}. Hence, it alternatively follows from Propo-
sition 3 that they are all undominated outer approximations in C∞.

We observe then that the structure of the set of undominated outer ap-
proximations in C∞ is not simple. On the one hand, Example 1 shows that
this set may be in�nite, as it includes the (often) in�nite set of optimal
solutions of the linear programming problems considered in Proposition 3.
However, Example 2 shows that our linear programming approach does not
allow to retrieve all the undominated outer approximations, and Example 3
implies that the set of undominated solutions is not convex in general. As a
consequence, we cannot summarize this in�nite set by means of a family of
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extreme points. All these examples are established on a space of cardinality
four. As we shall see in Section 4.3, in the case of ternary spaces there is a
simple procedure that determines all the undominated outer approximations.

One main di�erence with respect to optimal outer approximations in C2

is that in the case of undominated outer approximations Bel ∈ C∞, Bel and
P , as well as their conjugate Pl and P , may not coincide on some singleton.
This means that the outer approximations in C∞ may not preserve the orders
that P and P determine on X .

Example 4. Consider the belief function Bel with Möbius inverse m and
the dominating coherent lower probability P given by:

A P m Bel
{x1} 0.1 0 0
{x2} 0 0 0
{x3} 0 0 0
{x4} 0.2 0.2 0.2
{x1, x2} 0.1 0.1 0.1
{x1, x3} 0.1 0.1 0.1
{x1, x4} 0.3 0.1 0.3
{x2, x3} 0.2 0.2 0.2
{x2, x4} 0.3 0.1 0.3
{x3, x4} 0.3 0.1 0.3
{x1, x2, x3} 0.5 0.1 0.5
{x1, x2, x4} 0.5 0 0.5
{x1, x3, x4} 0.5 0 0.5
{x2, x3, x4} 0.6 0 0.6

X 1 0 1

P is coherent because it is the lower envelope of the probability measures
associated with the mass functions

(0.1, 0, 0.4, 0.5), (0.1, 0.4, 0, 0.5), (0.1, 0.2, 0.5, 0.2), (0.3, 0.1, 0.1, 0.5),

(0.2, 0.5, 0.1, 0.2), (0.3, 0.1, 0.4, 0.2), (0.4, 0.2, 0.2, 0.2).

Let us now prove that Bel is undominated. Since Bel(E) = P (E) for any
event E except for E = {x1}, it may only be dominated if we increase the
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mass of {x1} and leave the belief of all the other events equal. This gives:

A m Bel
{x1} a a
{x2} 0 0
{x3} 0 0
{x4} 0.2 0.2
{x1, x2} 0.1− a 0.1
{x1, x3} 0.1− a 0.1
{x1, x4} 0.1− a 0.3
{x2, x3} 0.2 0.2
{x2, x4} 0.1 0.3
{x3, x4} 0.1 0.3
{x1, x2, x3} 0.1 + a 0.5
{x1, x2, x4} a 0.5
{x1, x3, x4} a 0.5
{x2, x3, x4} 0 0.6

X 0 1

But in this case
∑

E⊆X m(E) = 1 + a, so Bel is a belief function if and only
if a = 0. Therefore, Bel is undominated but does not coincide with P on all
the singletons.

To see that P and Pl do not coincide in general, consider the coherent
lower probability P in Example 2 and its undominated outer approximation
Bel1. It satis�es that

Bel1({x2, x3, x4}) = 0.4 < 0.5 = P ({x2, x3, x4}),

and therefore by conjugacy Pl({x1}) = 0.6 > 0.5 = P ({x1}). �

We conclude that, as we did in [26] for C2, we can �nd undominated
outer approximations of a coherent lower probability in C∞ by solving linear
programming problems. In comparison with the results in [26], the only
main property that is lost when we outer approximate in C∞ is that the
order between the singletons given by P and P may not be preserved.

However, the use of belief functions has two advantages over 2-monotone
lower probabilities: on the one hand, their interpretation is clearer, and
they allow us to use a number of tools from evidence theory; on the other,
the number of constraints in the linear programming problem is smaller:
in the case of (LP-bel.1)÷(LP-bel.2) we have 2n+1 constraints: 2n + 1 in
(LP-bel.1) and 2n − 1 in (LP-bel.2), while solving (LP-2monot) subject to
(LP-2monot.1)÷(LP-2monot.4) involves 2n+n+2n−2

(
n
2

)
constraints (see [26]

for more details). Hence, the number of constraints decreases signi�cantly.
Next we show that it is possible to characterize those belief functions that

outer approximate the coherent lower probability P and agree with it on the
singletons:
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Proposition 5. Let P : P(X ) → [0, 1] be a coherent lower probability, and
let α =

∑
x∈X P ({x}). Let P1 be the probability measure given by

P1({x}) =
P ({x})
α

∀x ∈ X ,

and let P 2 be the lower probability given by

P 2(A) =
P (A)−

∑
x∈A P ({x})

1− α
=
P (A)− αP1(A)

1− α
. (16)

The following statements hold:

(1) P = αP1 + (1− α)P 2.
(2) P 2 is a coherent lower probability.
(3) Bel ≤ P is a belief function such that Bel({x}) = P ({x}) ∀x ∈ X

if and only if there exists a belief function Bel2 ≤ P 2 such that
Bel = αP1 + (1 − α)Bel2. Moreover, Bel is an undominated outer
approximation of P if and only if Bel2 is an undominated outer ap-
proximation of P 2.

(4) In the above correspondence, we obtain d(P ,Bel) = 1
1−αd(P 2, Bel2).

Proof. Before we proceed, note that we may assume that α < 1; when α = 1
then P = P1 and the only belief function that agrees with P on singletons
is P itself.

(1) Consider A ⊆ X . Then

αP1(A) + (1− α)P 2(A) =
∑
x∈A

P ({x}) +

(
P (A)−

∑
x∈A

P ({x})

)
= P (A).

(2) To see that P 2 is coherent, we are going to prove �rst that

M(P 2) =

{
P − αP1

1− α
: P ∈M(P )

}
. (17)

We begin with the direct inclusion. Consider P2 ∈ M(P 2), and let
P := αP1 + (1− α)P2. Then P ≥ αP1 + (1− α)P 2 = P , and it is a
probability measure because it is a convex combination of probability
measures. Thus, P ∈M(P ), and by construction P2 = P−αP1

1−α .

To see the converse inclusion, take P ∈M(P ). Then

P2 :=
P − αP1

1− α
≥ P − αP1

1− α
= P 2,

where last equality follows by Eq. (16). To see that it is a probability
measure, note that immediately P2(∅) = 0, P2(X ) = 1, that it is
additive because it is a linear combination of additive functions, and
that P2(A) ≥ P 2(A) ≥ 0 for every A ⊆ X .

Let us prove now that P 2 is the lower envelope of M(P 2). Take
A ⊆ X . Then since P is coherent there is some P ∈M(P ) such that
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P (A) = P (A). Let P2 := P−αP1
1−α . By Eq. (17), P2 ≥ P 2. In addition,

P2(A) =
P (A)− αP1(A)

1− α
=
P (A)− αP1(A)

1− α
= P 2(A).

(3) Let Bel be a belief function with Möbius inverse mB that outer
approximates P and satis�es Bel({x}) = P ({x}) for every x ∈ X . If
we de�ne the belief function Bel2 with Möbius inverse

mB2(A) =
mB(A)

1− α
∀A ⊆ X with |A| ≥ 2

and mB2(A) = 0 otherwise, then

Bel(B) =
∑
x∈B

mB({x}) +
∑

A⊆B,|A|≥2

mB(A) = αP1(B) + (1− α)Bel2(B)

for every B ⊆ X . Thus, Bel2 = Bel−αP1
1−α satis�es Bel2 ≤ P−αP1

1−α =
P 2.

Conversely, if Bel2 is a belief function that outer approximates
P 2, then Bel := αP1 + (1−α)Bel2 is a belief function because it is a
convex combination of belief functions and Bel ≤ αP1 +(1−α)P 2 =
P . Moreover, ∀x ∈ X it is P 2({x}) = 0, whence Bel2({x}) = 0
(because we assumed Bel2 ≤ P 2) and as a consequence Bel({x}) =
αP1({x}) = P ({x}).

A similar proof shows that Bel is undominated if and only if Bel2
is undominated.

(4) Finally, note that

d(P 2, Bel2) =
∑
E⊆X

(P 2(E)−Bel2(E))

=
∑
E⊆X

(
P (E)− αP1(E)

1− α
− Bel(E)− αP1(E)

1− α

)
=

1

1− α
∑
E⊆X

(P (E)−Bel(E)) =
d(P ,Bel)

1− α
.

This completes the proof. �

This procedure shows that if we want to consider the undominated outer
approximations that agree with the initial model P on the singletons, it
su�ces to de�ne the coherent lower probability P 2 as in Eq. (16), deter-
mine undominated outer approximations of P 2 by linear programming, as
in Proposition 3, and then transform these into outer approximations of P ,
using Proposition 5(3).

4.3. Outer approximations in ternary spaces. We now investigate the
particular case of a three-element space X = {x1, x2, x3}. Any coherent
lower probability P in a three-element space is 2-monotone. Also, if we
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denote by m its associated Möbius inverse by Eq. (2), it follows from the
non-negativity of P that:

P ({xi}) = m({xi}) ≥ 0,

and from the property of superadditivity [34], P (A∪B) ≥ P (A) +P (B) for
any A ∩B = ∅, it holds that:

m({xi, xj}) +m({xi}) +m({xj}) = P ({xi, xj})
≥ P ({xi}) + P ({xj}) = m({xi}) +m({xj}),

which implies m({xi, xj}) ≥ 0. We conclude that a coherent lower prob-
ability P in a three-element space is not a belief function if and only if
m(X ) < 0.

We start with two preliminary results that provide necessary conditions
for Bel to be an undominated outer approximation.

Lemma 6. Let P be a coherent lower probability on P(X ) for X = {x1, x2, x3}
with associated Möbius inverse m. Assume that m(X ) < 0 and that Bel ∈
C∞ is an undominated outer approximation of P with Möbius inverse mB.
Then mB({xi}) = m({xi}) for every i = 1, 2, 3.

Proof. Assume that mB({xi}) < m({xi}) for some i = 1, 2, 3, and de�ne
Bel∗ by:

Bel∗({xi}) = P ({xi}), i = 1, 2, 3,

Bel∗({xi, xj}) = Bel({xi, xj}) + δij , 1 ≤ i < j ≤ 3,

where δij = max{0,m({xi}) + m({xj}) − Bel({xi, xj})}. Then the Möbius
inverse m∗ of Bel∗ satis�es:

• m∗({xi}) = m({xi}) ≥ 0, for i = 1, 2, 3.
• If δij = 0, it holds that:

m∗({xi, xj}) = Bel∗({xi, xj})−Bel∗({xi})−Bel∗({xj})
= Bel({xi, xj})−m({xi})−m({xj}) ≥ 0.

If δij > 0, it holds that:

m∗({xi, xj}) = Bel∗({xi, xj})−Bel∗({xi})−Bel∗({xj})
= Bel({xi, xj}) +m({xi}) +m({xj})
−Bel({xi, xj})−m({xi})−m({xj}) = 0.

In both cases, m∗({xi, xj}) ≥ 0.
• Let us see that m∗(X ) ≥ 0. We distinguish the following cases:
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� Case 1: δ12, δ13, δ23 > 0.

m∗(X ) = 1 +m({x1}) +m({x2}) +m({x3})
−
(
Bel({x1, x2}) +Bel({x1, x3}) +Bel({x2, x3})

)
−
(
m({x1}) +m({x2})−Bel({x1, x2}) +m({x1}) +m({x3})

−Bel({x1, x3}) +m({x2}) +m({x3})−Bel({x2, x3})
)

= 1−
(
m({x1}) +m({x2}) +m({x3})

)
≥ 0,

from the superadditivity of P .
� Case 2: δ12, δ13 > 0 and δ23 = 0.

m∗(X ) = 1 +m({x1}) +m({x2}) +m({x3})
−
(
Bel({x1, x2}) + (Bel({x1, x3}) +Bel({x2, x3})

)
−
(
m({x1}) +m({x2})−Bel({x1, x2}) +m({x1})

+m({x3})−Bel({x1, x3})
)

= 1−Bel({x2, x3})−m({x1})
≥ 1− P ({x2, x3})− P ({x1}) ≥ 0,

from the superadditivity of P .
� Case 3: δ12 > 0 and δ13 = δ23 = 0.

m∗(X ) = 1 +m({x1}) +m({x2}) +m({x3})
−
(
Bel({x1, x2}) +Bel({x1, x3}) +Bel({x2, x3})

)
−
(
m({x1}) +m({x2})−Bel({x1, x2})

)
= 1 +m({x3})−Bel({x1, x3})−Bel({x2, x3})
≥ Bel(X ) +Bel({x3})−Bel({x1, x3})−Bel({x2, x3}) ≥ 0,

because Bel is a belief function and, in particular, 2-monotone.
� Case 4: δ12 = δ13 = δ23 = 0.

m∗(X ) = 1 +m({x1}) +m({x2}) +m({x3})
−
(
Bel({x1, x2}) +Bel({x1, x3}) +Bel({x2, x3})

)
≥ 1 +mB({x1}) +mB({x2}) +mB({x3})
−
(
Bel({x1, x2}) +Bel({x1, x3}) +Bel({x2, x3})

)
= mB(X ) ≥ 0.

The remaining cases for δ12, δ13, δ23 follow by analogy. We conclude
that Bel∗ is a belief function. Also, it satis�es the following proper-
ties:
• Bel∗ is an outer approximation of P . Trivially, Bel∗({xi}) = P ({xi})
for i = 1, 2, 3. Also, if δij = 0:

Bel∗({xi, xj}) = Bel({xi, xj}) ≤ P ({xi, xj},
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because Bel is an outer approximation of P . If δij > 0:

Bel∗({xi, xj}) = Bel({xi, xj}) +m({xi}) +m({xj})−Bel({xi, xj})
≤ m({xi}) +m({xj}) +m({xi, xj}) = P ({xi, xj}).

• Finally, Bel∗ dominates Bel. On the one hand,

Bel∗({xi}) = P ({xi}) ≥ Bel({xi}) ∀i,
with strict inequality in some {xi}. Also:
Bel∗({xi, xj}) = Bel({xi, xj}) + δij ≥ Bel({xi, xj}) ∀i 6= j.

We conclude that Bel cannot be an undominated outer approximation. �

The next auxiliary result shows that the undominated outer approxima-
tions in C∞ must assign zero mass to the sure event X .

Lemma 7. Let X = {x1, x2, x3} and let P be a coherent lower probability
on P(X ) with associated Möbius inverse m. If m(X ) < 0, and Bel ∈ C∞
is an undominated outer approximation of P with Möbius inverse mB, then
mB(X ) = 0.

Proof. Assume that mB(X ) > 0. Since we can assume from the previous
lemma that P and Bel coincide in singletons,

mB({x1}) +mB({x2}) +mB({x3}) = m({x1}) +m({x2}) +m({x3}),
whence:

mB({x1, x2}) +mB({x1, x3}) +mB({x2, x3}) +mB(X )

= m({x1, x2}) +m({x1, x3}) +m({x2, x3}) +m(X ).

As a consequence,

m({x1, x2}) +m({x1, x3}) +m({x2, x3})−mB({x1, x2})
−mB({x1, x3})−mB({x2, x3}) = mB(X )−m(X ),

where both terms in the right hand side of the equality are strictly positive.
Let us de�ne m∗ by:

m∗({xi}) = m({xi}), i = 1, 2, 3.

m∗({xi, xj}) = mB({xi, xj}) +
mB(X )

mB(X )−m(X )

(
m({xi, xj})−mB({xi, xj})

)
.

m∗(X ) = 0.

This function m∗ is non-negative and also:∑
A⊆X

m∗(A) = mB({x1}) +mB({x2}) +mB({x3})

+mB({x1, x2}) +mB({x1, x3}) +mB({x2, x3})

+
mB(X )

mB(X )−m(X )

(
mB(X )−m(X )

)
= 1.
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We conclude that m∗ is a basic probability assignment, so it de�nes a belief
function Bel∗. This belief function Bel∗ satis�es Bel ≤ Bel∗ ≤ P :

• Bel({xi}) = Bel∗({xi}) = P ({xi}) for every i = 1, 2, 3.
• Bel({xi, xj}) ≤ Bel∗({xi, xj}) ≤ P ({xi, xj}) holds if and only if
mB({xi, xj}) ≤ m∗({xi, xj}) ≤ m({xi, xj}). These inequalities hold
because:

mB({xi, xj}) ≤ mB({xi, xj}) +
mB(X )

mB(X )−m(X )

(
m({xi, xj})−mB({xi, xj})

)
≤ mB({xi, xj}) +

(
m({xi, xj})−mB({xi, xj})

)
= m({xi, xj}).

Also, Bel({xi, xj}) < Bel∗({xi, xj}) for all 1 ≤ i < j ≤ 3 such that
m({xi, xj}) > mB({xi, xj}) (and there exist at least some i, j for which
this inequality holds, because Bel � P ), so Bel cannot be undominated. �

Using these preliminary lemmas, we can characterize the set C̃∞ of un-
dominated outer approximations in the class of belief functions of P .

Proposition 8. Let P be a coherent lower probability in a ternary space
with Möbius inverse m, and assume that it is not a belief function. Then,
a belief function Bel is an undominated outer approximation in C∞ of P if
and only if its Möbius inverse mB satis�es the following properties:

(1) mB({xi}) = m({xi}), i = 1, 2, 3.
(2) 0 ≤ mB({xi, xj}) ≤ m({xi, xj}), 1 ≤ i < j ≤ 3.
(3)

∑
|A|=2mB(A) = m(X ) +

∑
|A|=2m(A).

(4) mB(X ) = 0.

Proof. On the one hand, from Lemma 6 we know that the undominated
outer approximations in C∞ must coincide with P in singletons. Also, from
Lemma 7, they should assign zero mass to the sure event, so every undomi-
nated outer approximation in C∞ should satisfy properties (1)÷(4).
On the other hand, assume that Bel satis�es the given properties, and let
us see that it is an undominated outer approximation of P in C∞. First of
all, Bel satis�es:

Bel({xi}) = P ({xi}), i = 1, 2, 3.

Bel({xi, xj}) ≤ P ({xi, xj}), 1 ≤ i < j ≤ 3.

Bel(X ) = P (X ) = 1.

This means that Bel is an outer approximation of P , and since all the masses
are non-negative and they sum up to 1, it is a belief function. Let us now
assume that there exists another belief function Bel′, with associated Möbius
inverse m′, such that Bel ≤ Bel′ ≤ P . Then, they should satisfy:

Bel({xi}) = Bel′({xi}) = P ({xi})⇒ mB({xi}) = m′({xi}), ∀i = 1, 2, 3.

Bel({xi, xj}) ≤ Bel′({xi, xj})⇒ mB({xi, xj}) ≤ m′({xi, xj})
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for every 1 ≤ i < j ≤ 3. Then, it holds that:

1 ≥
∑

i=1,2,3

m′({xi}) +
∑

1≤i<j≤3

m′({xi, xj})

≥
∑

i=1,2,3

mB({xi}) +
∑

1≤i<j≤3

mB({xi, xj}) = 1,

which implies that mB = m′, so Bel = Bel′. We conclude that Bel is
undominated in C∞. �

From the previous result, we deduce that all undominated outer approxi-
mations are at the same distance from the original coherent lower probability:

d(P ,Bel) =
∑
E⊆X

(
P (E)−Bel(E)) =

∑
|E|=2

(
P (E)−Bel(E)) = −m(X ).

From this fact, we deduce the following properties:

Corollary 9. Let P be a coherent lower probability on a three-element space.
The undominated outer approximations of P in C∞ coincide with the optimal

solutions of (LP-bel) subject to (LP-bel.1)÷(LP-bel.2). Hence, the set C̃∞
is convex.

We conclude that for ternary spaces, all the undominated outer approxi-
mations in C∞ are in particular solutions of the linear programming problem

(LP-bel)3. Further, the set C̃∞ is convex and all the undominated outer ap-
proximations Bel in C∞ coincide with P in singletons. These facts are in
contrast with the general results established in Section 4.2, where we have
proven that not all the undominated outer approximations in C∞ are ob-

tained solving a linear programming problem (see Example 2), C̃∞ is not
convex in general (Example 3) and the undominated outer approximations
Bel in C∞ may not coincide with P in singletons (see Example 4). Since
all these examples are established in spaces of cardinality four, we believe it
would be hard to �nd other cases where the structure of the set of undomi-
nated outer approximations is easy to work with.

5. Comparison with other approaches

Next we consider other approaches to compute undominated outer approx-
imations. First of all, we discuss two algorithms given in [21, 28] which can
be used to compute outer approximations, and also we consider quadratic
linear problems instead of linear ones.

3Note that we do not even need to run the linear programming problem (LP-bel): its
optimality set is characterized by conditions (1)÷(4) in Proposition ??. Because of this, it
is easy to see that it is a singleton (i.e., that there is a unique solution to (LP-bel)) if and
only if the mass function of P is zero in two of the three events of P(X ) with cardinality
two.
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5.1. Iterative and minimal rescaling methods. The problem of outer
approximating a coherent lower probability by means of a belief function was
also investigated in [21, 28]. In both references, the authors considered the
linear programming problem (LP-bel) subject to (LP-bel.1)÷(LP-bel.2), and
they discussed how to solve it e�ciently by means of a heuristic procedure.
In [21], Hall and Lawry proposed an algorithm called Iterative Rescaling
Method (IRM) to �nd outer approximations in C∞. This algorithm works as
follows:

Step 0: P is the coherent lower probability with Möbius inverse m. De�ne
an order among the non-empty subsets of X such that i < j whenever
|Ai| < |Aj |. Set i = 1.

Step 1: For Ai, evaluate m(Ai) = P (Ai)−
∑

B(Aim(B).
Step 2: If m(Ai) ≥ 0, then let i = i+ 1 and go to Step 3.

Else:
Step 2.1: Determine the value k:

k = max

j∣∣∣j < |Ai|, ∑
B(Ai:|B|≥j

m(B) > P (Ai)

 , (18)

Step 2.2: Set

α =
∑

B(Ai:|B|≥k

m(B). (19)

Step 2.3: For each B ( Ai with |B| ≥ k, rescale m(B) using the
formula:

m(B) =
α+m(Ai)

α
m(B).

Step 2.4: Set m(Ai) = 0, let i = i+ 1 and go to Step 3.
Step 3: If Ai = X , end the algorithm.

Else: go to Step 1.

The basic idea behind this algorithm is to compute the Möbius inverses until
we �nd a negative value for the event Ai. At that point, positive masses of
some subsets of Ai are transferred to Ai. In this way, the masses of some
subsets are slightly decreased, while the mass of Ai becomes 0. It was proven
in [21, Thm. 1] that this algorithm produces a belief function that outer
approximates P .

Afterwards, Quaeghebeur [28] pointed out two �aws of the IRM: on the one
hand, the solution of the algorithm depends on the order chosen among the
non-empty subsets, in the sense that di�erent orders may produce di�erent
solutions (see Table 1 in [28]). On the other hand, even if all the optimal
solutions of the linear programming problem (LP-bel) satisfy Bel(A) = P (A)
for an event A, the solution given by the IRM may not attain the value P (A)
(see Table 2 in [28]).

Inspired by these comments, Quaeghebeur [28] compared the IRM with a
number of alternative approaches:
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• Solving the linear programming problem by means of either a dual
simplex solver or a criss-cross solver.
• The restriction of the set of outer approximations to linear-vacuous
mixtures. This coincides with the ε-contamination outer approxima-
tion we gave in [26].
• Iterative minimal rescaling method: a slightly modi�ed version of
the IRM, that performs better than the IRM.

The modi�ed version of the IRM works as follows:

Step 0: P is the coherent lower probability with Möbius inverse m. Set
i = 1.

Step 1: For eachA satisfying |A| = i, evaluatem(A) = P (A)−
∑

B(Am(B),
and consider the set A = {A ⊆ X | |A| = i, m(A) < 0}.

Step 2: If A = ∅, let i = i+ 1 and go to Step 1.
Else:
Step 2.1: For each A ∈ A, use Eqs. (18) and (19) to obtain the

values kA and αA.
Step 2.2: Set k = minA∈A kA and B = {A ∈ A | lA = k}.
Step 2.3: For each A ∈ B, set βA =

∑
B(A:|B|=km(B).

Step 2.4: For each B ∈ ∪A∈BP(A) such that |B| = k, rescale m(B)
using the formula:

µ(B) = max
A∈B:B(A

αA +m(A)

βA
m(B).

Step 2.5: Let i = i+ 1 and go to Step 3.
Step 3: If i > n, end the algorithm.

Else: go to Step 1.

In contrast to the IRM, the IMRM rescales the negative masses of all the
events of the same cardinality at the same time. In doing so, the algorithm
limits the mass loss for events with low cardinality. The reason is that an
event of low cardinality loses mass only if it cannot be compensated with
events of higher cardinality.

In any case, Quaeghebeur [28] showed that neither IRM nor its modi�ed
version performs so well as the linear programming approach, because they
may produce suboptimal solutions. Our next example also shows that both
the IRM and its modi�ed version may produce dominated outer approxima-
tions in C∞.

Example 5. Let us consider the example given in [28, Table 1]. There, X is
a four element possibility space, and the following coherent lower probability
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is de�ned:

A P P IRM mIRM P IMRM mIMRM

{x1} 0 0 0 0 0
{x2} 0 0 0 0 0
{x3} 0 0 0 0 0
{x4} 0 0 0 0 0
{x1, x2} 0.117 0.046 0.046 0.066 0.066
{x1, x3} 0.358 0.185 0.185 0.211 0.211
{x1, x4} 0.381 0.242 0.242 0.244 0.244
{x2, x3} 0.162 0.074 0.074 0.082 0.082
{x2, x4} 0.391 0.219 0.219 0.227 0.227
{x3, x4} 0.132 0.099 0.099 0.081 0.081
{x1, x2, x3} 0.358 0.305 0 0.358 0
{x1, x2, x4} 0.579 0.507 0 0.579 0.042
{x1, x3, x4} 0.550 0.526 0 0.550 0.014
{x2, x3, x4} 0.391 0.391 0 0.391 0

X 1 1 0.136 1 0.033

Let us see that none of P IRM and P IMRM is undominated. First of all, with
respect to P IRM, note that P IRM({x1, x2, x3}) < P ({x1, x2, x3}). Also, since
mIRM(X ) > 0, we can transfer some positive mass from X to {x1, x2, x3},
getting a greater belief function. Formally, take

ε = P ({x1, x2, x3})− P IRM{x1, x2, x3} = 0.053,

and de�ne the basic probability assignment m1 by:

m1(A) =


ε if A = {x1, x2, x3}.
m(X )− ε if A = X .
m(A) otherwise.

It can be easily seen that its associated belief function, Bel1, satis�es the
equality Bel1(A) = P IRM(A) for every A 6= {x1, x2, x3} and

Bel1({x1, x2, x3}) = ε+ P IRM({x1, x2, x3}) > P IRM({x1, x2, x3}).

Also, Bel1 � P , so we conclude that P IRM is not undominated.
Similarly, P IMRM(A) < P (A) for every event A of cardinality 2, and

also mIMRM({x1, x2, x4}),mIMRM({x1, x3, x4}) > 0. This means that we can
increase the mass of the events {x1, x4} and X by ε small enough and decrease
the mass of the events {x1, x2, x4}, {x1, x3, x4} by the same ε. Formally, take:

ε = min
{
mIMRM({x1, x2, x4}),mIMRM({x1, x3, x4}),

P ({x1, x4})− P IMRM({x1, x4})
}

= min{0.042, 0.014, 0.137} = 0.014.
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Now, we can de�ne the basic probability assignment m2 by:

m2(A) =



mIMRM({x1, x4}) + ε if A = {x1, x4}.
mIMRM(X ) + ε if A = X .
mIMRM({x1, x2, x4})− ε if A = {x1, x2, x4}.
mIMRM({x1, x3, x4})− ε if A = {x1, x3, x4}.
mIMRM(A) otherwise.

Its associated belief function, Bel2, satis�es Bel2(A) = P IMRM(A) for every
A 6= {x1, x4} and

Bel2({x1, x4}) = P IMRM({x1, x4}) + ε > P IMRM({x1, x4}).

Also, Bel2 � P , so we conclude that P IMRM is dominated by Bel2 in C∞,
hence it is not undominated. �

5.2. Outer approximations using quadratic programming problems.
In Section 4 we have studied how to obtain undominated outer approxima-
tions by means of linear programming. One of the drawbacks of this approach
is that the optimization problem has no unique solution in general. This is-
sue can be overcome by means of quadratic programming, so that instead of
minimizing the sum of the distances over all events, we minimize the sum of
the square distances4:

min
∑
E⊆X

(P (E)−Bel(E))2. (QP-bel)

By expanding this expression, we obtain that this is equivalent to:

min
∑
E⊆X

(Bel(E)2 − 2P (E)Bel(E)).

Of course, we need to add the constraints (LP-bel.1) and (LP-bel.2). The
quadratic programming problem in (QP-bel) can be expressed in the usual
matrix form:

min
1

2
~Bel

t
H ~Bel + ct ~Bel,

where ~Bel denotes a vector with the values of Bel, H = 2I2n−1 is twice the

identity matrix of size 2n − 1 and c = −2~P , where again ~P is a vector with
the values of P . Since H is positive de�nite, the quadratic programming
problem (QP-bel) subject to constraints (LP-bel.1) and (LP-bel.2) has an
optimal solution and it is unique.

Next, we prove that the unique optimal solution of (QP-bel) is an undom-
inated outer approximation of P .

4The quadratic distance could be normalized just dividing by the maximum quadratic
distance. If P ≥ Q, the maximum distance turns out to be

∑n−1
k=1

(
n−1
k−1

)
k
n
, that is attained

taking Q the vacuous lower probability and P a precise probability uniformly distributed

on X .
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Proposition 10. Let P be a coherent lower probability, and denote by Bel
the optimal solution to the quadratic programming problem (QP-bel) subject
to (LP-bel.1) and (LP-bel.2). Then, Bel is an undominated belief function
that outer approximates P .

Proof. ThatBel is a belief function trivially follows from constraint (LP-bel.1).
Also, from and (LP-bel.2) Bel is an outer approximation of P in C∞. It only
remains to see that it is undominated in C∞, but it su�ces to use Lemma 1
with the function g(x) = x2, that is increasing for x ∈ [0,+∞). �

Example 6. Let us continue Example 1. If we solve the corresponding
quadratic programming problem, we obtain the following undominated belief
function:

A Bel(A)
{x1} 0.1
{x2} 0
{x3} 0
{x4} 0.3
{x1, x2} 0.1
{x1, x3} 0.25
{x1, x4} 0.55
{x2, x3} 0.25
{x2, x4} 0.35
{x3, x4} 0.3
{x1, x2, x3} 0.5
{x1, x2, x4} 0.6
{x1, x3, x4} 0.7
{x2, x3, x4} 0.6

X 1

None of the undominated belief functions given in Example 1 dominates this
belief function: in fact, if we consider the optimal solutions Bel0, Bel1 of the
linear programming problem, it holds that Bel = Bel0.5 = (Bel0 + Bel1)/2,
whence they are all at the same distance from P . This means that the solution
of the quadratic problem is also an optimal solution of the linear programming
problem (and is therefore undominated). �

We see then that we can obtain undominated outer approximations by
means of both the linear or quadratic programming approaches. However,
these two approaches are not without drawbacks: on the one hand, the linear
programming problem does not produce a unique solution; on the other, the
quadratic distance lacks a compelling interpretation and it also entails a
heavier computational cost. For these reasons, in the remainder of the paper
we investigate the problem for the two particular cases of belief functions
introduced in Sections 2.4 and 2.5.



32 IGNACIO MONTES, ENRIQUE MIRANDA AND PAOLO VICIG

6. Particular cases: possibility measures and p-boxes

In this section we consider outer approximations in two particular fam-
ilies of belief functions: necessity measures (or their conjugate possibility
measures) and p-boxes. These two families are computationally simpler;
moreover, we shall prove that in these cases, either the undominated outer
approximation is unique, or we can determine the �nite set of undominated
outer approximations.

6.1. Outer approximations using possibility measures. In this sub-
section we consider the problem of outer approximating a coherent lower
probability using a necessity measure. Since possibility measures appear
more frequently in the literature than their conjugate necessity measures,
due for instance to their connection with fuzzy sets [16, 37], throughout this
section we shall work with them and use the following notation: we say that
a possibility measure Π outer approximates a coherent upper probability P
with conjugate lower probability P when P ≤ Π. Of course, this is equiva-
lent to N ≤ P , where N is the conjugate necessity measure of Π, and also
to M(P ) ⊆ M(Π), where these two sets are given by Eqs. (??) and (5),
respectively. Because of the conjugacy relation, we will call such an outer
approximation Π non-dominating when its conjugate necessity measure is
an undominated outer approximation of N : that is, when there is no other
possibility measure Π

′
such that P ≤ Π

′ � Π.
Our next result provides non-dominating outer approximations of a co-

herent upper probability P in CΠ; we will later establish (in Corollary 13)
that they are the only ones.

Proposition 11. Let P be a coherent upper probability on P(X ). Take
σ ∈ Sn and de�ne a possibility measure Π : P(X )→ [0, 1] by Π(∅) = 0,

Π({xσ(1)}) = P ({xσ(1)}) and (20)

Π({xσ(i)}) = max
A∈Aσ(i)

P
(
A ∪ {xσ(i)}

)
, where for every i > 1: (21)

Aσ(i) =

{
A ⊆ {xσ(1), . . . , xσ(i−1)} | P

(
A ∪ {xσ(i)}

)
> max

x∈A
Π({x})

}
, (22)

and let Π(A) = maxx∈A Π({x}) for every other A ⊆ X . Then, Π is a non-
dominating outer approximation of P in CΠ.

Proof. Let us prove that Π is a possibility measure, that it outer approxi-
mates P and that it is non-dominating.

(i) To see that Π is a possibility measure, since it is maxitive by con-
struction we only need to show that maxx∈X Π({x}) = 1. Now, if
maxi<n Π({xσ(i)}) < 1, it follows from Eq. (22) that

A = {xσ(1), . . . , xσ(n−1)} ∈ Aσ(n),

and then by Eq. (21), Π({xn}) = P (X ) = 1.



COMPLETELY MONOTONE APPROXIMATIONS 33

(ii) Let us now see that Π is an outer approximation of P , that is,
P (A) ≤ Π(A) for every A ⊆ X . First of all, note that P ({xσ(1)}) =
Π({xσ(1)}) by Eq. (20). Take A 6= {xσ(1)}, and denote by i the
element:

i = max{j = 1, . . . , n | xσ(j) ∈ A}.
Then, {xσ(1), . . . , xσ(i)} ⊇ A. There are two possibilities:
(a) If A\{xσ(i)} /∈ Aσ(i), then by de�nition of Aσ(i),

P (A) ≤ max
x∈A\{xσ(i)}

Π({x}) = Π(A\{xσ(i)}) ≤ Π(A),

and as a consequence P (A) ≤ Π(A).
(b) If A\{xσ(i)} ∈ Aσ(i), then by Eq. (21)

Π({xσ(i)}) = max
B∈Aσ(i)

P
(
B ∪ {xσ(i)}

)
≥ P (A),

whence

Π(A) = max
x∈A

Π({x}) ≥ Π({xσ(i)}) ≥ P (A).

Thus, Π outer approximates P .
(iii) To see that it is a non-dominating outer approximation in CΠ, let Π′

denote a possibility measure satisfying P ≤ Π′ ≤ Π. By de�nition,
Π({xσ(1)}) = P ({xσ(1)}), and therefore Π({xσ(1)}) = Π′({xσ(1)}).
Assume that

Π({xσ(1)}) = Π′({xσ(1)}), . . . ,Π({xσ(i−1)}) = Π′({xσ(i−1)})

and let us prove that Π({xσ(i)}) = Π′({xσ(i)}). Taking Eqs. (21)�(22)
into account, we have the following possibilities:
(a) If there is no A 6= ∅ in Aσ(i), we deduce from Eq. (21) that:

Π({xσ(i)}) = P ({xσ(i)}),

whence Π({xσ(i)}) = Π′({xσ(i)}).
(b) If there exists A 6= ∅ such that A ∈ Aσ(i), let B denote an event

in Aσ(i) such that Π({xσ(i)}) = P (B∪{xσ(i)}). Since B ∈ Aσ(i),
it holds that

P (B ∪ {xσ(i)}) > max
x∈B

Π({x}) = Π(B). (23)

Therefore:

Π(B ∪ {xσ(i)}) = max{Π({xσ(i)}),Π(B)} = Π({xσ(i)}) = P (B ∪ {xσ(i)}),

whence Π(B ∪ {xσ(i)}) = Π′(B ∪ {xσ(i)}) = P (B ∪ {xσ(i)}). On
the other hand,

P (B ∪ {xσ(i)}) ≤ Π′(B ∪ {xσ(i)}) = max
{

Π′({xσ(i)}),Π′(B)
}

≤ max
{

Π′({xσ(i)}),Π(B)
}

= Π′({xσ(i)}),
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taking into account that Π(B) < P (B ∪ {xσ(i)}) by Eq. (23).

Thus, Π′({xσ(i)}) ≥ P (B ∪ {xσ(i)}) = Π({xσ(i)}) and therefore
Π′({xσ(i)}) = Π({xσ(i)}).

We conclude that Π({x}) = Π′({x}) for every x ∈ X , and as a
consequence

Π(A) = max
x∈A

Π({x}) = max
x∈A

Π′({x}) = Π′(A) ∀A ⊆ X . �

Similarly to the comment we made in Example 1 about the outer approx-
imations in C∞ and C2, a non-dominating outer approximation of P in the
class CΠ may not be so if we consider the broader class of the plausibility
functions: to see this, it su�ces to consider P that is a plausibility function
and not a possibility measure.

Let us show next that the possibility measures determined by Proposi-
tion 11 allow us to recover the initial coherent lower probability.

Proposition 12. Let P be a coherent lower probability with associated credal
set M(P ), and let P be its conjugate coherent upper probability. Denote by
Π1, . . . ,Πk the possibility measures determined by Eqs. (20)�(22) for σ ∈ Sn.
ThenM(P ) =M(Π1) ∩ . . . ∩M(Πk), or equivalently,

P (A) = min{Π1(A), . . . ,Πk(A)} ∀A ⊆ X .

Proof. Since Πi is an outer approximation of P for i ∈ {1, . . . , k}, it follows
that P ≤ min{Π1, . . . ,Πk}. In order to establish the converse, we shall
prove that for every A ⊆ X there exists some i ∈ {1, . . . , k} such that
Πi(A) = P (A). First of all, if A is a singleton, A = {x}, we just need to
consider a permutation such that x is the �rst element, since then Eq. (20)
implies that P (A) = P ({x}) = Π({x}). Assume that |A| ≥ 2, and let σ
be a permutation such that A = {xσ(1), . . . , xσ(i)}. Let Π be the possibility
measure it determines by means of Eqs. (20)�(22).

By monotonicity, for every j ≤ i it holds that

Π({xσ(j)}) = max
B∈Aσ(j)

P (B ∪ {xσ(j)}) ≤ P (A),

whence Π(A) = maxj≤i Π({xσ(j)}) ≤ P (A). Since the converse inequality

holds because Π is an outer approximation of P , we conclude that Π(A) =
P (A). �

This result allows us to deduce that the procedure in Proposition 11 de-
termines all the non-dominating outer approximations of P in CΠ:

Corollary 13. Let P be a coherent upper probability. A possibility measure
Π is a non-dominating outer approximation of P in CΠ if and only if there
exists σ ∈ Sn inducing Π by means of Eqs. (20)�(22).

Proof. The `if' part has been established in Proposition 11; let us then prove
the `only if' part.
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Let π be the possibility distribution of Π, and let σ ∈ Sn be a permutation
satisfying π(xσ(1)) ≤ π(xσ(2)) ≤ . . . ≤ π(xσ(n)) = 1. Denote by Πσ the
possibility measure σ determines by means of Eqs. (20)�(22). We shall prove
that Πσ({xσ(i)}) ≤ Π({xσ(i)}) for every i ∈ {1, . . . , n}.

From the proof of Proposition 12, for every i ∈ {1, . . . , n} it holds that

Πσ({xσ(1), . . . , xσ(i)}) = P ({xσ(1), . . . , xσ(i)})
≤ Π({xσ(1), . . . , xσ(i)}) = Π({xσ(i)}),

from which it follows in particular that Πσ({xσ(i)}) ≤ Π({xσ(i)}) for every
i. This implies that Πσ ≤ Π, and since Π is assumed to be non-dominating
we conclude that they are equal. �

As a consequence, there are at most n! non-dominating outer approxima-
tions of P in CΠ. Our next example shows that this bound is tight:

Example 7. Let X be a possibility space with cardinality n, and consider
the credal set M = {P} where P is the uniform distribution in X . Then,

P (A) = |A|
n for every A ⊆ X . Given a permutation σ of {1, . . . , n}, using

Eqs. (20)�(22) we obtain the possibility measure Πσ given by Πσ({xσ(i)}) = i
n

for every i ∈ {1, . . . , n}. Therefore, every permutation produces a di�erent
possibility measure. �

6.1.1. Comparison with the Optimal Mass Allocation Procedure. A proce-
dure similar to that of Proposition 11 was considered earlier by Dubois and
Prade in [14] and [17, Section 3.3] in the particular case where P is a belief
function, and it was given the name of Optimal Mass Allocation Procedure.
Dubois and Prade later adapted it to outer approximate a coherent upper
(or lower) probability [18]. The generalized procedure works as follows: for
every permutation σ ∈ Sn, de�ne Eσj = {xσ(1), . . . , xσ(j)} for j = 1, . . . , n.

Then, let the possibility distribution πDPσ be given by:

πDPσ (xσ(i)) = 1− P (Eσi−1) = P ({xσ(i), . . . , xσ(n)}) ∀i ∈ {1, . . . , n}, (24)

where Ej0 := ∅, and then ΠDP
σ (A) = maxx∈A π

DP
σ (x) for any A ⊆ X .

In [17], it was proven that among the set {ΠDP
σ : σ ∈ Sn} we can �nd all

the undominated outer approximations of P .
Let us prove that the possibility measures de�ned with the Optimal Mass

Allocation Procedure always dominate some of the possibility measures de-
�ned using our procedure from Proposition 11. For this aim, we use the fol-
lowing notation: if σ ∈ Sn, σ is the permutation de�ned by σ(i) = σ(n−i+1)
for every i ∈ {1, . . . , n}.

Proposition 14. Let P be a coherent lower probability and σ ∈ Sn, and let
P denote its conjugate coherent upper probability. Let Πσ be the possibility
measure built using Eqs. (20)�(22), and let ΠDP

σ be the possibility measure
de�ned using the Optimal Mass Allocation Procedure with the permutation
σ. Then, Πσ ≤ ΠDP

σ .
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Proof. By Eq. (24), it holds that:

ΠDP
σ ({xσ(n)}) = P ({xσ(n)}) = P ({xσ(1)}),

ΠDP
σ ({xσ(n−1)}) = P ({xσ(n−1), xσ(n)}) = P ({xσ(1), xσ(2)}),

. . .

ΠDP
σ ({xσ(2)}) = P ({xσ(2), . . . , xσ(n)}) = P ({xσ(1), . . . , xσ(n−1)}),

ΠDP
σ ({xσ(1)}) = P ({xσ(1), . . . , xσ(n)}) = 1,

whence

ΠDP
σ ({xσ(n)}) ≤ ΠDP

σ ({xσ(n−1)}) ≤ . . .ΠDP
σ ({xσ(2)}) ≤ ΠDP

σ ({xσ(1)}) = 1.
(25)

Recall that by de�nition of σ, ΠDP
σ ({xσ(i)}) = ΠDP

σ ({xσ(n−i+1)}).
Let us now prove by induction that Πσ({xσ(i)}) ≤ ΠDP

σ ({xσ(i)}) for every
i ∈ {1, . . . , n}.

• For i = 1, it holds that:

Πσ({xσ(1)}) = P ({xσ(1)}) ≤ ΠDP
σ ({xσ(1)}),

where the equality follows by Eq. (20) and the inequality follows
because ΠDP

σ is an outer approximation of P .
• Assume that Πσ({xσ(j)}) ≤ ΠDP

σ ({xσ(j)}) for every j = 2, . . . , i− 1,

and let us prove that Πσ({xσ(i)}) ≤ ΠDP
σ ({xσ(i)}). There are two

possible scenarios:
� If there exists j < i such that Πσ({xσ(i)}) ≤ Πσ({xσ(j)}), then

Πσ({xσ(i)}) ≤ Πσ({xσ(j)}) ≤ ΠDP
σ ({xσ(j)}) ≤ ΠDP

σ ({xσ(i)}),
where the second inequality follows by the induction hypothesis
and the third one follows from Eq. (25).

� If Πσ({xσ(i)}) > maxj<i Πσ({xσ(j)}) then by de�nition (see
Eq. (21))

Πσ({xσ(i)}) = max
A∈Aσ(i)

P (A ∪ {xσ(i)}).

Let A∗ ∈ Aσ(i) be an event such that Πσ({xσ(i)}) = P (A∗ ∪
{xσ(i)}); note that there is one such event because otherwise it
would be Πσ({xσ(i)}) = 0. This implies that:

Πσ(A∗ ∪ {xσ(i)}) = max{Πσ({xσ(i)}),Πσ({xσ(j)}) | xσ(j) ∈ A∗}
= Πσ({xσ(i)}) = P (A∗ ∪ {xσ(i)}), (26)

where the second equality follows by our assumption. Using
Eqs. (25) and (26), we deduce that:

ΠDP
σ ({xσ(i)}) = ΠDP

σ (A∗ ∪ {xσ(i)}) ≥ P (A∗ ∪ {xσ(i)}) = Πσ({xσ(i)}),

where the inequality follows because ΠDP
σ is an outer approxi-

mation of P .



COMPLETELY MONOTONE APPROXIMATIONS 37

This completes the proof. �

Thus, if P is a coherent upper probability, ΠDP
σ dominates Πσ. In partic-

ular, for ΠDP
σ to be non-dominating it must coincide with Πσ. Otherwise,

ΠDP
σ would be more imprecise than Πσ. This means that our procedure

in Proposition 11 gives all the non-dominating possibility measures, while
Dubois and Prade's procedure gives not only the non-dominating possibility
measures, but maybe also some dominating ones.

The following example shows that the inequality established in Proposi-
tion 14 may be strict.

Example 8. Consider a three-element space and the belief and plausibility
functions Bel, P l determined by the basic probability assignment:

m({x1}) = 0.3, m({x3}) = 0.3, m({x1, x2}) = 0.1, m({x2, x3}) = 0.3,

and m(E) = 0 otherwise. Then, Bel, P l are given by:

A Bel(A) Pl(A)
{x1} 0.3 0.4
{x2} 0 0.4
{x3} 0.3 0.6
{x1, x2} 0.4 0.7
{x1, x3} 0.6 1
{x2, x3} 0.6 0.7
X 1 1

Considering the permutation σ = (3, 1, 2), our procedure from Proposition 11
gives the possibility measure Πσ with possibility distribution:

πσ(x1) = 1, πσ(x2) = 0.7, πσ(x3) = 0.6.

If we apply Dubois and Prade's procedure with the permutation σ = (2, 1, 3),
we obtain the possibility distribution πDPσ given by:

πDPσ (x1) = πDPσ (x2) = 1, πDPσ (x3) = 0.6.

We deduce that πDPσ dominates πσ.
In Figure 1 we have graphically depicted the credal sets of Bel, Πσ and

ΠDP
σ . In that �gure it can be seen that their credal sets are nested: M(Bel) (
M(Πσ) (M(ΠDP

σ ). �

6.1.2. Preserving preferences with outer approximations. When outer ap-
proximating a coherent lower probability with either a 2-monotone one or
a belief function, the number of distinct numerical evaluations theoretically
possible for the elements of P(X ) remains unchanged and bounded above by
2n. By contrast, replacing a coherent upper probability P by a possibility
measure decreases this number to n+1, with the additional constraint that
at least one xi ∈ X must satisfy Π({xi}) = 1. Because of this, one cannot
expect an outer approximation in CΠ to be really close to the original co-
herent upper probability. One might arguably regard possibility measures
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p(x1)

p(x2)

p(x3)

M(Bel)

M(Πσ)

M(ΠDP
σ )

Figure 1. Credal sets of the belief function Bel (dark gray
area) and the possibility measures Πσ (the union of dark and
medium gray areas) and ΠDP

σ (the union of the dark, medium
and light gray areas) from Example 8.

as little more than a qualitative judgment, and with these considerations in
mind, evaluate that the possibility measure should preserve the order of P ,
rather than aiming at a di�cult to reach minimal numerical distance. As we
shall now see, there is a trade-o� between these goals.

We say that Π weakly preserves the ordering given by P when, ∀A,B ∈
P(X ),

P (A) = P (B)⇒ Π(A) = Π(B) (N1)

P (A) > P (B)⇒ Π(A) ≥ Π(B). (N2)

These two conditions formalize a form of the Weak Preference Preservation
(WPP) principle.

We have already seen that 2-monotone outer approximations ensure a
strong form of WPP on singletons (Proposition 2(3)), while the outer ap-
proximations in C∞ do not (see Example 4 and also Proposition 5). As for
possibility measures outer approximating P by either Proposition 11 or the
Optimal Mass Allocation Procedure, it follows easily from Example 8 that
they do not satisfy WPP on singletons in general. Because of this, we say
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that a permutation σ∗ is order basic when

P ({xσ∗(1)}) ≤ P ({xσ∗(2)}) ≤ · · · ≤ P ({xσ∗(n)});

the possibility measure Πσ∗ it induces by means of Proposition 11 is then
termed order basic, too. It is easy to see that, since Eqs. (20)�(22) deter-
mine a non-decreasing sequence Π({xσ∗(i)})i=1,...,n, an order basic possibility

measure induces the same order on the atoms of X , and therefore when P
has no ties on the singletons:

P ({xσ∗(1)}) < P ({xσ∗(2)}) < . . . < P ({xσ∗(n)})
⇒ Π({xσ∗(1)}) ≤ Π({xσ∗(2)}) ≤ · · · ≤ Π({xσ∗(n)}).

This means that Π satis�es WPP on singletons; as we shall see in Example 10
later on, it may not satisfy WPP on events.

This result may be a motivation for selecting order basic permutations
when outer approximating P with a possibility measure. Yet, doing so does
not guarantee WPP on all events of the power set of X , nor on the atomic
events of X if P has ties there. More generally, it is possible that, whatever
permutation is chosen, order basic or not, WPP is violated for at least a
couple of events in P(X ). Our next example illustrates this.

Example 9. Consider X = {x1, x2, x3} and the upper probability P given
in the following table. It is coherent, being the upper envelope of the prob-
ability measures P1, P2. We also depict in Table 2 the possibility measures
determined by Eqs. (20)�(22) for the di�erent permutations.

{x1} {x2} {x3} {x1, x2} {x1, x3} {x2, x3}
P1 0.5 0.25 0.25 0.75 0.75 0.5
P2 0.4 0.3 0.3 0.7 0.7 0.6
P 0.5 0.3 0.3 0.75 0.75 0.6

Π(1,2,3) 0.5 0.75 1 0.75 1 1
Π(1,3,2) 0.5 1 0.75 1 0.75 1
Π(2,1,3) 0.75 0.3 1 0.75 1 1
Π(2,3,1) 1 0.3 0.6 1 1 0.6
Π(3,1,2) 0.75 1 0.3 1 0.75 1
Π(3,2,1) 1 0.6 0.3 1 1 0.6

We see for instance that the possibility measure originated by the per-
mutation σ = (1, 2, 3) is at con�ict with WPP at (x1, x2): we have that
P ({x1}) > P ({x2}) while Π(1,2,3)({x1}) < Π(1,2,3)({x2}). Similar violations
can be observed for the other outer approximating possibility measures in the
table above.

In this case, the order basic possibility measures are the ones associated
with the permutations (2,3,1) and (3,2,1); they violate WPP with A = {x2}
and B = {x3}: we have that P (A) = P (B) while Π(A) 6= Π(B) in both
cases. �
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A procedure to outer approximate an upper probability with a possibility
measure that guarantees WPP was introduced by Baroni and Vicig in [2,
Section 6.3]; let us call it BV-procedure. It determines a unique possibility
measure that outer approximates P , satis�es WPP and is non-dominating
in the subclass of CΠ satisfying WPP [2, Proposition 10] 5. However, while
o�ering a solution to the WPP problem, the BV-procedure may return a
possibility measure that is dominating in the class of outer approximations
in CΠ, as we can see applying Corollary 13 to Example 9, where all the
non-dominating outer approximations of P violate WPP.

We conclude thus that a trade-o� arises here as for the kind of information
we believe the outer approximating possibility should retain. If (weakly)
preserving the ordering given by P is the most important feature, the BV-
procedure should be used. If being numerically as close as possible to P
is what mostly matters, the procedure of Proposition 11 should be applied.
It is possible to achieve both goals in some, but not all instances. In this
respect, it is interesting to see that, unlike Example 9, order basic possibility
measures may not minimize the distance with respect to the original coherent
upper probability:

Example 10. Consider X = {x1, x2, x3} and let P be the coherent upper
probability that is the upper envelope of the probability measures with the
mass functions (0.3, 0.2, 0.5), (0.31, 0.45, 0.24), (0.4, 0.3, 0.3). Its values are
depicted in the table below.

A P (A) Πσ(A) Πσ∗(A)
{x1} 0.4 0.4 1
{x2} 0.45 0.76 0.45
{x3} 0.5 1 0.7
{x1, x2} 0.76 0.76 1
{x1, x3} 0.8 1 1
{x2, x3} 0.7 1 0.7

Since P ({x1}) < P ({x2}) < P ({x3}), the only order basic permutation is
σ = (1, 2, 3). Its associated possibility measure is given in the table above.
However, if we consider σ∗ = (2, 3, 1) we obtain the possibility measure Πσ∗

in the same table, and it holds that

d(Πσ∗ , P ) = 1.24 < 1.31 = d(Π, P ).

Thus, the minimal distance is not always attained by an order basic possibility
measure. �

6.2. Outer approximations using p-boxes. As we mentioned in Sec-
tion 2.5, a p-box is a particular case of belief function where the focal events
are ordered intervals. In our next result we assume that the possibility space

5The procedure was more generally devised to outer approximate a coherent upper
probability de�ned on a subset K ⊆ P(X ) by means of a possibility measure on the same
domain.
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X is totally ordered and derive an optimal outer approximation by means of
p-boxes.

Proposition 15. Let X be a totally ordered space, with x1 ≤ . . . ≤ xn and
let P be a coherent lower probability on P(X ). De�ne the p-box (F , F ) by:

F (xi) = P ({x1, . . . , xi}), F (xi) = P ({x1, . . . , xi}) ∀xi ∈ X . (27)

Then, the belief function P (F ,F ) this p-box determines via Eq. (7) is the

unique undominated outer approximation of P in C(F ,F ).

Proof. The inequality P (F ,F ) ≤ P follows from [31, Theorem 2]. Let us prove

next that P (F ,F ) is an undominated outer approximation. Indeed, if (F ′, F
′
)

is a p-box satisfying P (F ,F ) ≤ P (F ′,F
′
)
≤ P , for every i ∈ {1, . . . , n} it holds

that:

P
(F ′,F

′
)
({x1, . . . , xi}) = P (F ,F )({x1, . . . , xi}) = P ({x1, . . . , xi}),

whence P (F ,F ) and P
(F ′,F

′
)
coincide on the events {x1, . . . , xi} for every

i ∈ {1, . . . , n}. Applying Eq. (6), M(F , F ) = M(F ′, F
′
) and therefore

P (F ,F ) = P
(F ′,F

′
)
.

To see that P (F ,F ) is the unique undominated outer approximation of P

in C(F ,F ), note that any p-box (F ′, F
′
) outer approximating P must satisfy

F ′ ≤ F ≤ F ≤ F ′. From Eq. (6) this means thatM(F , F ) ⊆M(F ′, F
′
). �

Since C(F ,F ) ⊂ C∞ (for n ≥ 3), the outer approximation given in the

previous result is also an outer approximation that belongs to the broader
class C∞. However, it may not be an undominated outer approximation in
C∞: it su�ces to outer approximate a belief function that is not induced
by a p-box. This is also illustrated by our next example, that shows that
the unique outer approximation may not coincide with the initial model on
singletons.

Example 11. Consider again the lower probability in Example 1, and as-
sume that the total ordering in X is given by x1 ≤ x2 ≤ x4 ≤ x3. Then, the
p-box de�ned from Eq. (27) is

x1 x2 x4 x3

F 0.1 0.1 0.6 1
F 0.4 0.6 1 1

In Figure 2 we have depicted this p-box emphasizing its focal events.
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E4

E3

E2m(E2)

m(E3)

m(E4)

m(E1)
x1x1 x2x2 x4x4 x3x3

F

Figure 2. P-box (left) from Example 11 and its associated
belief function (right), with focal events E1 = {x1}, E2 =
{x1, x2, x4}, E3 = {x2, x4} and E4 = {x4, x3}.

Using the results in [13], the belief function P (F ,F ) associated with (F , F )

is given by:

A P (F ,F )(A)

{x1} 0.1
{x2} 0
{x3} 0
{x4} 0
{x1, x2} 0.1
{x1, x3} 0.1
{x1, x4} 0.1
{x2, x3} 0
{x2, x4} 0.2
{x3, x4} 0.4
{x1, x2, x3} 0.1
{x1, x2, x4} 0.6
{x1, x3, x4} 0.5
{x2, x3, x4} 0.6

X 1

We see then that P (F ,F ) ≤ Bel2, where Bel2 from Example 1 is an undomi-

nated outer approximation of P in C∞, and the inequality is strict for some
events, such as {x4}. �

While in Proposition 15 we have assumed that the possibility space X is
endowed with a total order, this may not always be the case. One alternative
would be then to consider the outer approximations in terms of generalized
p-boxes. As we mentioned in Section 2.5, a generalized p-box (F , F ) induces
a permutation σ and an order ≤(F ,F ) such that xσ(1) ≤(F ,F ) . . . ≤(F ,F ) xσ(n).

Hence, looking for generalized p-boxes outer approximating P is equivalent
to looking for a p-box (F , F ) and a permutation σ of X so that:

xσ(1) ≤σ . . . ≤σ xσ(n). (28)
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If we then apply Proposition 15, we obtain a p-box (F σ, F σ), given by:

F σ(xσ(i)) = P ({xσ(1), . . . , xσ(i)}) and

F σ(xσ(i)) = P ({xσ(1), . . . , xσ(i)}) ∀i ∈ {1, . . . , n}, (29)

whose associated belief function outer approximates the initial coherent lower
probability P . Moreover, by considering all the generalized p-boxes deter-
mined by these orders we can recover P :

Proposition 16. Let P be a coherent lower probability. For every permuta-
tion σ ∈ Sn de�ne the total order ≤σ as in Eq. (28), and let (F σ, F σ) be the
generalized p-box de�ned as in Eq. (29). Then:

P (A) = max
σ∈Sn

P (Fσ ,Fσ)(A) ∀A ⊆ X .

Equivalently, if M(P ) and M(F σ, F σ) denote the credal sets of P and
P (Fσ ,Fσ), respectively, it holds that:

M(P ) =
⋂
σ∈Sn

M(F σ, F σ).

Proof. First of all, from Proposition 15, P (Fσ ,Fσ) is an outer approximation

of P for every σ ∈ Sn, whence P (Fσ ,Fσ) ≤ P and also:

max
σ∈Sn

P (Fσ ,Fσ) ≤ P .

In order to prove the equality, we are going to establish that for every A ⊆ X ,
there exists a permutation σ ∈ Sn such that P (Fσ ,Fσ)(A) = P (A). For this

aim, given A ⊆ X , take a permutation σ such that A = {xσ(1), . . . , xσ(k)}.
By construction, the p-box de�ned from the total ordering ≤σ satis�es

F (xσ(k)) = P ({xσ(1), . . . , xσ(k)}),

so

P (Fσ ,Fσ)(A) = P (Fσ ,Fσ)({xσ(1), . . . , xσ(k)}) = P ({xσ(1), . . . , xσ(k)}) = P (A).

This completes the proof. �

Finally, we prove that all undominated outer approximations in C∗
(F ,F )

are

of the form (F σ, F σ).

Theorem 17. Let P be a coherent lower probability and let (F , F ) be an un-
dominated outer approximation of P in C∗

(F ,F )
. Then, there is a permutation

σ such that (F , F ) = (F σ, F σ).

Proof. The generalized p-box (F , F ) has an associated order on X . Assume
that the order corresponds to the permutation σ ∈ Sn such that:

xσ(1) ≤σ . . . ≤σ xσ(n).



44 IGNACIO MONTES, ENRIQUE MIRANDA AND PAOLO VICIG

For this permutation σ, de�ne the p-box (F σ, F σ) as in Eq. (29). On the
one hand, for every i ∈ {1, . . . , n}, it holds that:

F σ(xσ(i)) = P ({xσ(1), . . . , xσ(i)}) ≥ F (xσ(i)),

and similarly, F σ ≤ F . By Eq. (6), M(F σ, F σ) ⊆ M(F , F ); since on the
other hand (F , F ) is an undominated outer approximation by assumption,
we conclude that (F , F ) and (F σ, F σ) coincide. �

7. Conclusions

In this paper, we have investigated the problem of outer approximating
a coherent lower probability by means of a belief function with a minimal
loss of information. We have considered those belief functions that minimize
the distance proposed by Baroni and Vicig in [2], and showed that, while
the problem always has a solution, it may not be unique. In addition, the
structure of the set of undominated solutions is not straightforward: for
instance, we have seen that this set is generally not convex (Example 3) and
it may be formed by in�nitely many belief functions (Example 1). For these
reasons, we have also considered three particular cases for which we can
determine the set of all undominated outer approximations and that are also
computationally simpler: ternary possibility spaces, possibility measures and
p-boxes.

By comparing our results with those in [26], it becomes clear that the
use of belief functions, while having some computational advantages over
2-monotone lower probabilities, also entails some loss of information. To
illustrate this, recall that, from Example 1, an undominated outer approxi-
mation in the class of belief functions may be dominated in the larger class
of 2-monotone lower probabilities. In other words, the inclusion C∞ ⊂ C2

does not imply that C̃∞ is a subset of the set of undominated 2-monotone
outer approximations.

The following table summarizes some of the results we have obtained in
this paper and in our previous contribution [26]. We see for instance that
the uniqueness of the solution is obviously incompatible with the ability to
retrieve the initial model. Moreover, the use of more restrictive families (a)
improves the mathematical structure of the set of solutions and decreases
the computational cost; but (b) also entails a loss of information that can
be avoided with the more general models.
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Unique The undominated Characterization of
Outer undominated outer the undominated Coincide

approximation outer approximation(s) outer with P , P on
in the class C approximation? retrieve P? approximation(s) singletons?

C∞ NO YES (Prop. 4) Open problem NO (Ex. 4)

C(F,F ) YES (Prop. 15) NO YES (Prop. 15) NO (Ex. 11)

C∗
(F,F )

NO YES (Prop. 16) YES (Thm. 17) NO (Ex. 11)

CΠ NO YES (Prop.12) YES (Cor. 13) NO (Ex. 8)

C2 NO YES (Prop. 2) Open problem YES ([26])

Prob. intervals YES ([26]) NO YES ([26]) YES ([26])

Distortion models YES ([26]) NO YES ([26]) PARTIALLY ([26])

Finally, let us mention that in this paper we investigate how to outer
approximate a coherent lower probability by means of a belief function. As
was proved in [26, Theorem 1], if we want to outer approximate a coherent
lower prevision, we just need to consider its restriction to events, which is a
coherent lower probability, outer approximate it using some of the procedures
presented in this paper, and lastly extend it to gambles using the Choquet
integral as in Eq. (4). This is because there is a one-to-one correspondence
between the undominated outer approximations and the ones we obtain if
we consider the problem on the restrictions to events, as we have done in
this paper.

Although the results are promising, there are a few points still pending,
that we would like to tackle in the near future: �rst and foremost, we would
like to study how to choose among the di�erent optimal outer approxima-
tions, when there is more than one. This could be done, for instance, by
comparing them by means of other distances to the original model, or by
other tools such as speci�city measures, measures of information, entropies,
etc. [6, 7, 15, 36]. We could also investigate how the loss of information
entailed by the use of outer approximations propagates when making infer-
ences with the credal sets. In addition, we may also compare the undom-
inated outer approximations obtained via linear programming by means of
other distances, such as the quadratic or the L2-distance; and it might be
worth considering distances with di�erent weights on the di�erences on the
subsets, depending on their cardinality.

There are also other transformations between imprecise probability mod-
els that may be interesting; as we mentioned, Dubois and Prade studied
the transformation of belief functions into possibility measures in [14]; we
could also analyze if our results provide some advantages in this respect.
In particular, if we focus on belief functions we may consider several other
distance measures [22]; the choice between them may be made in terms of
their compatibility with some order between belief models, in the manner
discussed in [23, Section 3.3]; see also Proposition 5.

We may also follow the converse path and look for inner approximations,
that is, more informative models than a coherent lower probability that
satisfy some desirable properties. This is in line with the procedure of natural
extension of Walley [34] as a minimal correction procedure, but has the
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drawback that, unlike with the problem we have considered in this paper, in
some cases the inner approximations may not exist. Some early results were
established in [26], where we studied how to inner approximate a coherent
lower probability in C2, and in [20], where inner approximations in the family
of k-additive measures were considered. Other relevant results may be found
in [2, 18, 25, 32].
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